1
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Xia M, Tong S, Gao L. Identification of MDK as a Hypoxia- and Epithelial-Mesenchymal Transition-Related Gene Biomarker of Glioblastoma Based on a Novel Risk Model and In Vitro Experiments. Biomedicines 2024; 12:92. [PMID: 38255198 PMCID: PMC10813330 DOI: 10.3390/biomedicines12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Tumor cells are commonly exposed to a hypoxic environment, which can easily induce the epithelial-mesenchymal transition (EMT) of tumor cells, further affecting tumor proliferation, invasion, metastasis, and drug resistance. However, the predictive role of hypoxia and EMT-related genes in glioblastoma (GBM) has not been investigated. METHODS Intersection genes were identified by weighted correlation network analysis (WGCNA) and differential expression analyses, and a risk model was further constructed by LASSO and Cox analyses. Clinical, immune infiltration, tumor mutation, drug treatment, and enrichment profiles were analyzed based on the risk model. The expression level of the MDK gene was tested using RT-PCR, immunohistochemistry, and immunofluorescence. CCK8 and EdU were employed to determine the GBM cells' capacity for proliferation while the migration and invasion ability were detected by a wound healing assay and transwell assay, respectively. RESULTS Based on the GBM data of the TCGA and GTEx databases, 58 intersection genes were identified, and a risk model was constructed. The model was verified in the CGGA cohort, and its accuracy was confirmed by the ROC curve (AUC = 0.807). After combining clinical subgroups, univariate and multivariate Cox regression analyses showed that risk score and age were independent risk factors for GBM patients. Furthermore, our subsequent analysis of immune infiltration, tumor mutation, and drug treatment showed that risk score and high- and low-risk groups were associated with multiple immune cells, mutated genes, and drugs. Enrichment analysis indicated that the differences between high- and low-risk groups were manifested in tumor-related pathways, including the PI3K-AKT and JAK-STAT pathways. Finally, in vivo experiments proved that the hypoxia environment promoted the expression of MDK, and MDK knockdown reduced the proliferation, migration, and EMT of GBM cells induced by hypoxia. CONCLUSIONS Our novel prognostic correlation model provided more potential treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
4
|
Kam NW, Lau CY, Che CM, Lee VHF. Nasopharynx Battlefield: Cellular Immune Responses Mediated by Midkine in Nasopharyngeal Carcinoma and COVID-19. Cancers (Basel) 2023; 15:4850. [PMID: 37835544 PMCID: PMC10571800 DOI: 10.3390/cancers15194850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Clinical evidence suggests that the severe respiratory illness coronavirus disease 2019 (COVID-19) is often associated with a cytokine storm that results in dysregulated immune responses. Prolonged COVID-19 positivity is thought to disproportionately affect cancer patients. With COVID-19 disrupting the delivery of cancer care, it is crucial to gain momentum and awareness of the mechanistic intersection between these two diseases. This review discusses the role of the cytokine midkine (MK) as an immunomodulator in patients with COVID-19 and nasopharyngeal carcinoma (NPC), both of which affect the nasal cavity. We conducted a review and analysis of immunocellular similarities and differences based on clinical studies, research articles, and published transcriptomic datasets. We specifically focused on ligand-receptor pairs that could be used to infer intercellular communication, as well as the current medications used for each disease, including NPC patients who have contracted COVID-19. Based on our findings, we recommend close monitoring of the MK axis to maintain the desirable effects of therapeutic regimens in fighting both NPC and COVID-19 infections.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Cho-Yiu Lau
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Ltd., Hong Kong Science Park, New Territories, Hong Kong 999077, China;
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (N.-W.K.); (C.-Y.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
5
|
Schlosser S, Tümen D, Volz B, Neumeyer K, Egler N, Kunst C, Tews HC, Schmid S, Kandulski A, Müller M, Gülow K. HCC biomarkers - state of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front Oncol 2022; 12:1016952. [PMID: 36518320 PMCID: PMC9742592 DOI: 10.3389/fonc.2022.1016952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly tumors worldwide. Management of HCC depends on reliable biomarkers for screening, diagnosis, and monitoring of the disease, as well as predicting response towards therapy and safety. To date, imaging has been the established standard technique in the diagnosis and follow-up of HCC. However, imaging techniques have their limitations, especially in the early detection of HCC. Therefore, there is an urgent need for reliable, non/minimal invasive biomarkers. To date, alpha-fetoprotein (AFP) is the only serum biomarker used in clinical practice for the management of HCC. However, AFP is of relatively rather low quality in terms of specificity and sensitivity. Liquid biopsies as a source for biomarkers have become the focus of clinical research. Our review highlights alternative biomarkers derived from liquid biopsies, including circulating tumor cells, proteins, circulating nucleic acids, and exosomes, and their potential for clinical application. Using defined combinations of different biomarkers will open new perspectives for diagnosing, treating, and monitoring HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Majaj M, Weckbach LT. Midkine-A novel player in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1003104. [PMID: 36204583 PMCID: PMC9530663 DOI: 10.3389/fcvm.2022.1003104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Midkine (MK) is a 13-kDa heparin-binding cytokine and growth factor with anti-apoptotic, pro-angiogenic, pro-inflammatory and anti-infective functions, that enable it to partake in a series of physiological and pathophysiological processes. In the past, research revolving around MK has concentrated on its roles in reproduction and development, tissue protection and repair as well as inflammatory and malignant processes. In the recent few years, MK's implication in a wide scope of cardiovascular diseases has been rigorously investigated. Nonetheless, there is still no broadly accepted consensus on whether MK exerts generally detrimental or favorable effects in cardiovascular diseases. The truth probably resides somewhere in-between and depends on the underlying physiological or pathophysiological condition. It is therefore crucial to thoroughly examine and appraise MK's participation in cardiovascular diseases. In this review, we introduce the MK gene and protein, its multiple receptors and signaling pathways along with its expression in the vascular system and its most substantial functions in cardiovascular biology. Further, we recapitulate the current evidence of MK's expression in cardiovascular diseases, addressing the various sources and modes of MK expression. Moreover, we summarize the most significant implications of MK in cardiovascular diseases with particular emphasis on MK's advantageous and injurious functions, highlighting its ample diagnostic and therapeutic potential. Also, we focus on conflicting roles of MK in a number of cardiovascular diseases and try to provide some clarity and guidance to MK's multifaceted roles. In summary, we aim to pave the way for MK-based diagnostics and therapies that could present promising tools in the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Marina Majaj
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludwig T. Weckbach
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V, Berlin, Germany
| |
Collapse
|
7
|
Xia T, Chen D, Liu X, Qi H, Wang W, Chen H, Ling T, Otkur W, Zhang CS, Kim J, Lin SC, Piao HL. Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex. Cell Death Dis 2022; 13:414. [PMID: 35487917 PMCID: PMC9054788 DOI: 10.1038/s41419-022-04801-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Midkine (MDK), a secreted growth factor, regulates signal transduction and cancer progression by interacting with receptors, and it can be internalized into the cytoplasm by endocytosis. However, its intracellular function and signaling regulation remain unclear. Here, we show that intracellular MDK interacts with LKB1 and STRAD to disrupt the LKB1-STRAD-Mo25 complex. Consequently, MDK decreases the activity of LKB1 to dampen both the basal and stress-induced activation of AMPK by glucose starvation or treatment of 2-DG. We also found that MDK accelerates cancer cell proliferation by inhibiting the activation of the LKB1-AMPK axis. In human cancers, compared to other well-known growth factors, MDK expression is most significantly upregulated in cancers, especially in liver, kidney and breast cancers, correlating with clinical outcomes and inversely correlating with phosphorylated AMPK levels. Our study elucidates an inhibitory mechanism for AMPK activation, which is mediated by the intracellular MDK through disrupting the LKB1-STRAD-Mo25 complex.
Collapse
|
8
|
Sheng B, Wei Z, Wu X, Li Y, Liu Z. USP12 promotes breast cancer angiogenesis by maintaining midkine stability. Cell Death Dis 2021; 12:1074. [PMID: 34759262 PMCID: PMC8580968 DOI: 10.1038/s41419-021-04102-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022]
Abstract
Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12-MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Bin Sheng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zichao Wei
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Yi Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
9
|
Midkine promotes glioblastoma progression via PI3K-Akt signaling. Cancer Cell Int 2021; 21:509. [PMID: 34556138 PMCID: PMC8461913 DOI: 10.1186/s12935-021-02212-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background Our previous bioinformatics-based study found that midkine (MDK) was associated with poor prognosis of glioblastoma (GBM). However, the mechanism of MDK in GBM remains elusive. Methods A public GBM-related dataset and GBM tissues from our center were used validate the aberrant expression of MDK in GBM at the RNA and protein levels. The relationship between MDK expression and survival of GBM patients was also explored through survival analysis. Subsequently, we identified MDK-related GBM-specific genes using differential expression analysis. Functional enrichment analyses were performed to reveal their potential biological functions. CCK-8, 5-ethynyl-2′-deoxyuridine, and Matrigel-transwell assays were performed in GBM cell lines in which MDK was knocked out or overexpressed in order assess the effects of MDK on proliferation, migration, and invasion of GBM cells. Western blotting was performed to detect candidate proteins. Results Our study showed MDK is a promising diagnostic and prognostic biomarker for GBM because it is highly expressed in the disease and it is associated with poor prognosis. MDK is involved in various cancer-related pathways, such as PI3K-Akt signaling, the cell cycle, and VEGF signaling. A comprehensive transcriptional regulatory network was constructed to show the potential pathways through which MDK may be involved in GBM. In vitro, Overexpression of MDK augmented proliferation, migration, and invasion of GBM cell lines, whereas suppression of MDK led to the opposite effects. Furthermore, our study confirmed that MDK promotes the progression of GBM by activating the PI3K-Akt signaling pathway. Conclusions Our present study proposes that MDK promotes GBM by activating the PI3K-Akt signaling pathway, and it describes a potential regulatory network involved. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02212-3.
Collapse
|
10
|
Zhang ZZ, Wang G, Yin SH, Yu XH. Midkine: A multifaceted driver of atherosclerosis. Clin Chim Acta 2021; 521:251-257. [PMID: 34331952 DOI: 10.1016/j.cca.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis constitutes the pathological basis of life-threatening events, including heart attack and stroke. Midkine is a heparin-binding growth factor and forms a small protein family with pleiotrophin. Under inflammatory or hypoxic conditions, midkine expression is up-regulated. Upon binding to its receptors, midkine can activate multiple signal pathways to regulate cell survival and migration, epithelial-to-mesenchymal transition, and oncogenesis. Circulating midkine levels are significantly increased in patients with essential hypertension, obesity or severe peripheral artery disease. Importantly, midkine exerts a proatherogenic effect by altering multiple pathophysiological processes involving atherogenesis, including macrophage lipid accumulation, vascular inflammation, neointima formation, insulin resistance and macrophage apoptosis. Midkine represents a potential therapeutic target for atherosclerosis-associated diseases. This review described the structure characteristics, expression patterns and signal transduction pathways of midkine with an emphasis on its role in atherosclerosis.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang 421005, Hunan, China
| | - Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Shan-Hui Yin
- Department of Neonatology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China.
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, China.
| |
Collapse
|
11
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gowhari Shabgah A, Ezzatifar F, Aravindhan S, Olegovna Zekiy A, Ahmadi M, Gheibihayat SM, Gholizadeh Navashenaq J. Shedding more light on the role of Midkine in hepatocellular carcinoma: New perspectives on diagnosis and therapy. IUBMB Life 2021; 73:659-669. [PMID: 33625758 DOI: 10.1002/iub.2458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
One of the most common malignant tumors is hepatocellular carcinoma (HCC). Progression of HCC mainly results from highly complex molecular and pathological pathways. Midkine (MDK) is a growth factor that impacts viability, migration, and other cell activities. Since MDK has been involved in the inflammatory responses, it has been claimed that MDK has a crucial role in HCC. MDK acts as an anti-apoptotic factor, which mediates tumor cell viability. In addition, MDK blocks anoikis to promote metastasis. There is also evidence that MDK is involved in angiogenesis. It has been shown that the application of anti-MDK approaches might be promising in the treatment of HCC. Besides, due to the elevated expression in HCC, MDK has been proposed as a biomarker in the prognosis and diagnosis of HCC. In this review, we will discuss the role of MDK in HCC. It is hoped that the development of new strategies concerning MDK-based therapies will be promising in HCC management.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of Medicine, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Gholizadeh Navashenaq
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran.,Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
13
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Sanino G, Bosco M, Terrazzano G. Physiology of Midkine and Its Potential Pathophysiological Role in COVID-19. Front Physiol 2020; 11:616552. [PMID: 33414726 PMCID: PMC7783444 DOI: 10.3389/fphys.2020.616552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV2 infection not only causes abnormal severe pneumonia but also induces other relevant pathophysiological effects on several tissues and organs. In this regard, the clinical complications observed in COVID-19 include acute coronary syndrome, pulmonary thromboembolism, myocarditis and, in the severe cases, the occurrence of disseminated intravascular coagulation. Literature on COVID-19 highlighted the central role of the Renin Angiotensin Aldosterone System in the determinism of SARS-CoV2 cellular internalization in the target tissues. Lung degeneration and respiratory distress appear to be dependent on the perturbance of physiological mechanisms, such as the uncontrolled release of pro-inflammatory cytokines, a dysregulation of the fibrinolytic coagulative cascade and the hyperactivation of immune effector cells. In this mini review, we address the physiology of Midkine, a growth factor able to bind heparin, and its pathophysiological potential role in COVID-19 determinism. Midkine increases in many inflammatory and autoimmune conditions and correlates with several dysfunctional immune-inflammatory responses that appear to show similarities with the pathophysiological elicited by SARS-CoV2. Midkine, together with its receptor, could facilitate the virus entry, fostering its accumulation and increasing its affinity with Ace2 receptor. We also focus on Netosis, a particular mechanism of pathogen clearance exerted by neutrophils, which under certain pathological condition becomes dysfunctional and can cause tissue damage. Moreover, we highlight the mechanism of autophagy that the new coronavirus could try to escape in order to replicate itself, as well as on pulmonary fibrosis induced by hypoxia and on the release of cytokines and mediators of inflammation, correlating the interplay between Midkine and SARS-CoV2.
Collapse
Affiliation(s)
- Giulia Sanino
- Farmacia Municipale 2, Azienda Sanitaria Locale (ASL) CN1, Fossano, Italy
| | - Martino Bosco
- Anatomia Patologica, Hospital “Michele e Pietro Ferrero”, Verduno, Italy
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, Potenza, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
15
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
16
|
Midkine activation of CD8 + T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun 2020; 11:2177. [PMID: 32358581 PMCID: PMC7195398 DOI: 10.1038/s41467-020-15770-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Brain tumors (gliomas) are heterogeneous cellular ecosystems, where non-neoplastic monocytic cells have emerged as key regulators of tumor maintenance and progression. However, relative to macrophages/microglia, comparatively less is known about the roles of neurons and T cells in glioma pathobiology. Herein, we leverage genetically engineered mouse models and human biospecimens to define the axis in which neurons, T cells, and microglia interact to govern Neurofibromatosis-1 (NF1) low-grade glioma (LGG) growth. NF1-mutant human and mouse brain neurons elaborate midkine to activate naïve CD8+ T cells to produce Ccl4, which induces microglia to produce a key LGG growth factor (Ccl5) critical for LGG stem cell survival. Importantly, increased CCL5 expression is associated with reduced survival in patients with LGG. The elucidation of the critical intercellular dependencies that constitute the LGG neuroimmune axis provides insights into the role of neurons and immune cells in controlling glioma growth, relevant to future therapeutic targeting. The role of neurons and T cells in glioma progression remains poorly understood. Here the authors show that midkine-dependent activation of a neuron-T cell-microglia axis promotes the growth of optic pathway gliomas.
Collapse
|
17
|
Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 2019; 39:2040-2054. [PMID: 31801970 DOI: 10.1038/s41388-019-1124-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Midkine is a heparin-binding growth factor, originally reported as the product of a retinoic acid-responsive gene during embryogenesis, but currently viewed as a multifaceted factor contributing to both normal tissue homeostasis and disease development. Midkine is abnormally expressed at high levels in various human malignancies and acts as a mediator for the acquisition of critical hallmarks of cancer, including cell growth, survival, metastasis, migration, and angiogenesis. Several studies have investigated the role of midkine as a cancer biomarker for the detection, prognosis, and management of cancer, as well as for monitoring the response to cancer treatment. Moreover, several efforts are also being made to elucidate its underlying mechanisms in therapeutic resistance and immunomodulation within the tumor microenvironment. We hereby summarize the current knowledge on midkine expression and function in cancer development and progression, and highlight its promising potential as a cancer biomarker and as a future therapeutic target in personalized cancer medicine.
Collapse
|
18
|
Bertram S, Roll L, Reinhard J, Groß K, Dazert S, Faissner A, Volkenstein S. Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro. Exp Brain Res 2019; 237:2983-2993. [PMID: 31515588 DOI: 10.1007/s00221-019-05644-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, αv integrin, β3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.
Collapse
Affiliation(s)
- Sebastian Bertram
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Katharina Groß
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Dazert
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Stefan Volkenstein
- Department of Otorhinolaryngology, Head and Neck Surgery, St. Elisabeth-Hospital, Ruhr-University Bochum, Bleichstr. 15, 44787, Bochum, Germany.
| |
Collapse
|
19
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
20
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Cui R, Lwigale P. Expression of the heparin-binding growth factors Midkine and pleiotrophin during ocular development. Gene Expr Patterns 2019; 32:28-37. [PMID: 30825522 DOI: 10.1016/j.gep.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Midkine (MDK) and Pleiotrophin (PTN) belong to a group of heparin-binding growth factors that has been shown to have pleiotropic functions in various biological processes during development and disease. Development of the vertebrate eye is a multistep process that involves coordinated interactions between neuronal and non-neuronal cells, but very little is known about the potential function of MDK and PTN in these processes. In this study, we demonstrate by section in situ hybridization, the spatiotemporal expression of MDK and PTN during ocular development in chick and mouse. We show that MDK and PTN are expressed in dynamic patterns that overlap in a few non-neuronal tissues in the anterior eye and in neuronal cell layers of the posterior eye. We show that the expression patterns of MDK and PTN are only conserved in a few tissues in chick and mouse but they overlap with the expression of some of their receptors LRP1, RPTPZ, ALK, NOTCH2, ITGβ1, SDC1, and SDC3. The dynamic expression patterns of MDK, PTN and their receptors suggest that they function together during the multistep process of ocular development and they may play important roles in cell proliferation, adhesion, and migration of neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Ruda Cui
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Peter Lwigale
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
22
|
Aynacıoğlu AŞ, Bilir A, Tuna MY. Involvement of midkine in autoimmune and autoinflammatory diseases. Mod Rheumatol 2018; 29:567-571. [DOI: 10.1080/14397595.2018.1523701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ahmet Şükrü Aynacıoğlu
- Department of Medical Pharmacology, Istanbul Aydin University Medical Faculty, Istanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Istanbul Aydin University Medical Faculty, Istanbul, Turkey
| | - Mehmet Yakup Tuna
- Department of Anatomy, Istanbul Aydin University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
23
|
Scilabra SD, Pigoni M, Pravatá V, Schätzl T, Müller SA, Troeberg L, Lichtenthaler SF. Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor. Sci Rep 2018; 8:14697. [PMID: 30279425 PMCID: PMC6168507 DOI: 10.1038/s41598-018-32910-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 08/06/2018] [Indexed: 01/21/2023] Open
Abstract
The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1.
Collapse
Affiliation(s)
- Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Veronica Pravatá
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Tobias Schätzl
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
24
|
Weckbach LT, Preissner KT, Deindl E. The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. Int J Mol Sci 2018; 19:E2559. [PMID: 30158425 PMCID: PMC6163309 DOI: 10.3390/ijms19092559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, 81377 Munich, Germany.
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
25
|
Abstract
Midkine (MDK) is a heparin-binding growth factor that is normally expressed in mid-gestational development mediating mesenchymal and epithelial interactions. As organisms age, expression of MDK diminishes; however, in adults, MDK expression is associated with acute and chronic pathologic conditions such as myocardial infarction and heart failure (HF). The role of MDK is not clear in cardiovascular disease and currently there is no consensus if it plays a beneficial or detrimental role in HF. The lack of clarity in the literature is exacerbated by differing roles that circulating and myocardial MDK play in signaling pathways in cardiomyocytes (some of which have yet to be elucidated). Of particular interest, serum MDK is elevated in adults with chronic heart failure and higher circulating MDK is associated with worse cardiac function. In addition, pediatric HF patients have higher levels of myocardial MDK. This review focuses on what is known about the effect of exogenous versus myocardial MDK in various cardiac disease models in an effort to better clarify the role of midkine in HF.
Collapse
|
26
|
Sorrelle N, Dominguez ATA, Brekken RA. From top to bottom: midkine and pleiotrophin as emerging players in immune regulation. J Leukoc Biol 2017; 102:277-286. [PMID: 28356350 DOI: 10.1189/jlb.3mr1116-475r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokines are pivotal in the generation and resolution of the inflammatory response. The midkine/pleiotrophin (MK/PTN) family of cytokines, composed of just two members, was discovered as heparin-binding neurite outgrowth-promoting factors. Since their discovery, expression of this cytokine family has been reported in a wide array of inflammatory diseases and cancer. In this minireview, we will discuss the emerging appreciation of the functions of the MK/PTN family in the immune system, which include promoting lymphocyte survival, sculpting myeloid cell phenotype, driving immune cell chemotaxis, and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Adrian T A Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA; and .,Division of Surgical Oncology, Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
27
|
Luo J, Wang X, Xia Z, Yang L, Ding Z, Chen S, Lai B, Zhang N. Transcriptional factor specificity protein 1 (SP1) promotes the proliferation of glioma cells by up-regulating midkine (MDK). Mol Biol Cell 2015; 26:430-9. [PMID: 25428991 PMCID: PMC4310735 DOI: 10.1091/mbc.e14-10-1443] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Midkine (MDK) expression is associated with the proliferation of many cancers, including glioma. However, the upstream signaling that leads to MDK accumulation remains elusive. This study investigates the molecular mechanism that induces MDK overexpression in human glioma. The Repository for Molecular Brain Neoplasia Data was analyzed to identify potential MDK regulators. Expression of MDK and specificity protein 1 (SP1) was compared in glioma specimens. Chromatin immunoprecipitation assay was used to confirm the transcriptional regulation. MDK-force-expressed, SP1-silenced glioma cells were used to test rescue effects in vitro and in vivo. MDK and SP1 expression in gliomas was significantly higher than in adjacent tissues and was positively correlated in glioma clinical samples and cell lines. The promoter of the human MDK gene has a putative SP1 binding site. SP1 binds to the promoter of the MDK gene and directly regulates MDK expression. MDK or SP1 gene silencing inhibited the proliferation of glioma cells and reduced the tumor volume in nude mice. Overexpression of MDK in SP1-silenced cells could partially rescue the SP1 inhibition effects in vivo and in vitro. SP1 directly up-regulated the expression of MDK, and the SP1-MDK axis cooperated in glioma tumorigenesis.
Collapse
Affiliation(s)
- Jingyan Luo
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoxiao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Zhibo Xia
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lixuan Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiming Ding
- Department of Neurosurgery, Huang Pu Division, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Shiyuan Chen
- Department of Neurology and Northwestern Brain Tumor Institute, Center of Genetic Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
| | - Bingquan Lai
- Forevergen Biosciences Center, R&D Unit 602, Guangzhou 510000, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
28
|
Hugosson F, Sjögren C, Birve A, Hedlund L, Eriksson T, Palmer RH. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation. PLoS One 2014; 9:e112250. [PMID: 25380037 PMCID: PMC4224452 DOI: 10.1371/journal.pone.0112250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 01/07/2023] Open
Abstract
Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.
Collapse
Affiliation(s)
| | - Camilla Sjögren
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna Birve
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Ruth H. Palmer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
29
|
Güngör C, Hofmann BT, Wolters-Eisfeld G, Bockhorn M. Pancreatic cancer. Br J Pharmacol 2014; 171:849-58. [PMID: 24024905 DOI: 10.1111/bph.12401] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/16/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED In recent years, it has become clear that the current standard therapeutic options for pancreatic cancer are not adequate and still do not meet the criteria to cure patients suffering from this lethal disease. Although research over the past decade has shown very interesting and promising new therapeutic options for these patients, only minor clinical success was achieved. Therefore, there is still an urgent need for new approaches that deal with early detection and new therapeutic options in pancreatic cancer. To provide optimal care for patients with pancreatic cancer, we need to understand better its complex molecular biology and thus to identify new target molecules that promote the proliferation and resistance to chemotherapy of pancreatic cancer cells. In spite of significant progress in curing cancers with chemotherapy, pancreatic cancer remains one of the most resistant solid tumour cancers and many studies suggest that drug-resistant cancer cells are the most aggressive with the highest relapse and metastatic rates. In this context, activated Notch signalling is strongly linked with chemoresistance and therefore reflects a rational new target to circumvent resistance to chemotherapy in pancreatic cancer. Here, we have focused our discussion on the latest research, current therapy options and recently identified target molecules such as Notch-2 and the heparin-binding growth factor midkine, which exhibit a wide range of cancer-relevant functions and therefore provide attractive new therapeutic target molecules, in terms of pancreatic cancer and other cancers also. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- C Güngör
- Department of General, Visceral and Thoracic Surgery, Experimental Oncology, Campus Research, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
30
|
Winkler C, Yao S. The midkine family of growth factors: diverse roles in nervous system formation and maintenance. Br J Pharmacol 2014; 171:905-12. [PMID: 24125182 DOI: 10.1111/bph.12462] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Midkines are heparin-binding growth factors involved in a wide range of biological processes. Originally identified as retinoic acid inducible genes, midkines are widely expressed during embryogenesis with particularly high levels in the developing nervous system. During postnatal stages, midkine expression generally ceases but is often up-regulated under disease conditions, most notably those affecting the nervous system. Midkines are known as neurotrophic factors, as they promote neurite outgrowth and neuron survival in cell culture. Surprisingly, however, mouse embryos deficient for midkine (knockout mice) are phenotypically normal, which suggests functional redundancy by related growth factors. During adult stages, on the other hand, midkine knockout mice develop striking deficits in neuroprotection and regeneration after drug-induced neurotoxicity and injury. The detailed mechanisms by which midkine controls neuron formation, differentiation and maintenance remain unclear. Recent studies in zebrafish and chick have provided important insight into the role of midkine and its putative receptor, anaplastic lymphoma kinase, in cell cycle control in the central and peripheral nervous systems. A recent structural analysis of zebrafish midkine furthermore revealed essential protein domains required for biological activity that serve as promising novel targets for future drug designs. This review will summarize latest findings in the field that help to better understand the diverse roles of midkine in nervous system formation and maintenance. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- C Winkler
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
31
|
Kadomatsu K, Bencsik P, Görbe A, Csonka C, Sakamoto K, Kishida S, Ferdinandy P. Therapeutic potential of midkine in cardiovascular disease. Br J Pharmacol 2014; 171:936-44. [PMID: 24286213 DOI: 10.1111/bph.12537] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Ischaemic heart disease, stroke and their pathological consequences are life-threatening conditions that account for about half of deaths in developed countries. Pathology of these diseases includes cell death due to ischaemia/reperfusion injury, vascular stenosis and cardiac remodelling. The growth factor midkine plays a pivotal role in these events. Midkine shows an acute cytoprotective effect in ischaemia/reperfusion injury at least in part via its anti-apoptotic effect. Moreover, while midkine promotes endothelial cell proliferation, it also recruits inflammatory cells to lesions. These activities eventually enhance angiogenesis, thereby preventing cardiac tissue remodelling. However, midkine's activity in recruiting inflammatory cells into the vascular wall also triggers neointima formation, and consequently, vascular stenosis. Moreover, midkine is induced in cancer tissues where it enhances angiogenesis. Therefore, midkine may promote tumour formation through its angiogenic and anti-apoptotic activity. This review focuses on the roles of midkine in ischaemic cardiovascular disease and their pathological consequences, that is angiogenesis, vascular stenosis, and cardiac remodelling, and discusses the possible therapeutic potential of modulation of midkine in these diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
33
|
Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 2014; 34:487-98. [PMID: 24504736 DOI: 10.1161/atvbaha.113.301924] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.
Collapse
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., D.T.A., P.C., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (S.C.M.), University of Maryland School of Medicine, Baltimore
| | | | | | | |
Collapse
|
34
|
Muramatsu T. Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol 2014; 171:814-26. [PMID: 23992440 PMCID: PMC3925020 DOI: 10.1111/bph.12353] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Midkine (MK) is a heparin-binding growth factor or cytokine and forms a small protein family, the other member of which is pleiotrophin. MK enhances survival, migration, cytokine expression, differentiation and other activities of target cells. MK is involved in various physiological processes, such as development, reproduction and repair, and also plays important roles in the pathogenesis of inflammatory and malignant diseases. MK is largely composed of two domains, namely a more N-terminally located N-domain and a more C-terminally located C-domain. Both domains are basically composed of three antiparallel β-sheets. In addition, there are short tails in the N-terminal and C-terminal sides and a hinge connecting the two domains. Several membrane proteins have been identified as MK receptors: receptor protein tyrosine phosphatase Z1 (PTPζ), low-density lipoprotein receptor-related protein, integrins, neuroglycan C, anaplastic lymphoma kinase and Notch-2. Among them, the most established one is PTPζ. It is a transmembrane tyrosine phophatase with chondroitin sulfate, which is essential for high-affinity binding with MK. PI3K and MAPK play important roles in the downstream signalling system of MK, while transcription factors affected by MK signalling include NF-κB, Hes-1 and STATs. Because of the involvement of MK in various physiological and pathological processes, MK itself as well as pharmaceuticals targeting MK and its signalling system are expected to be valuable for the treatment of numerous diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- T Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasakicho, Nisshinn, Aichi, 470-0195, Japan. ,
| |
Collapse
|
35
|
Cohen S, Shachar I. Midkine as a regulator of B cell survival in health and disease. Br J Pharmacol 2014; 171:888-95. [PMID: 24111754 PMCID: PMC3925027 DOI: 10.1111/bph.12419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED In healthy individuals, the pool of peripheral lymphocytes is constant in size. The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, survival and proliferation. Survival factors have been shown to play a critical role in maintaining the correct size of lymphocyte populations. Midkine, a heparin-binding cytokine was recently shown to be involved in cell proliferation, differentiation and apoptosis in various cell types including normal and malignant B cells. This review focuses on the role of midkine in the regulation of peripheral B cell survival in health and disease. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
36
|
Herradón G, Pérez-García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol 2014; 171:837-48. [PMID: 23889475 PMCID: PMC3925022 DOI: 10.1111/bph.12312] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Accepted: 07/21/2013] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non-invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- G Herradón
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| | - C Pérez-García
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| |
Collapse
|
37
|
Ikeda S, Yamada M. Midkine and cytoplasmic maturation of mammalian oocytes in the context of ovarian follicle physiology. Br J Pharmacol 2014; 171:827-36. [PMID: 23889362 PMCID: PMC3925021 DOI: 10.1111/bph.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Midkine (MK) was originally characterized as a member of a distinct family of neurotrophic factors functioning in the CNS. However, it was later discovered that MK is abundantly expressed in ovarian follicles. Since then, the physiological roles of this molecule in the ovary have been steadily investigated. During the in vitro maturation (IVM) of oocytes MK was shown to promote the cytoplasmic maturation of oocytes, as indicated by post-fertilization development. This effect of MK could be mediated via its pro-survival (anti-apoptotic) effects on the cumulus-granulosa cells that surround oocytes. The oocyte competence-promoting effects of MK are discussed in the context of the recently discovered involvement of MK in the full maturation of ovarian follicles. MK was at the frontline of a new paradigm for neurotrophic factors as oocytetrophic factors. MK may promote the developmental competence of oocytes via common signalling molecules with the other neurotrophic factor(s). Alternatively or concomitantly, MK may also interact with various transmembrane molecules on cumulus-granulosa cells, which are important for ovarian follicle growth, dominance and differentiation, and act as a unique pro-survival factor in ovarian follicles, such that MK promotes oocyte competence. MK, along with other ovarian neurotrophic factors, may contribute to the optimization of the IVM system. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| |
Collapse
|
38
|
The cytokine midkine supports neutrophil trafficking during acute inflammation by promoting adhesion via β2 integrins (CD11/CD18). Blood 2014; 123:1887-96. [PMID: 24458438 DOI: 10.1182/blood-2013-06-510875] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Emerging evidence suggests a role of the cytokine midkine (MK) in inflammation. In this study, its functional relevance for recruitment of polymorphonuclear neutrophils (PMNs) during acute inflammation was investigated. Intravital microscopy and histologic analysis of tumor necrosis factor-α-stimulated cremaster muscle venules revealed severely compromised leukocyte adhesion and extravasation in MK(-/-) mice compared with MK(+/+) animals. Systemic administration of recombinant MK completely rescued the adhesion defect in MK(-/-) mice. In a hind limb ischemia model, leukocyte accumulation in MK(-/-) mice was significantly diminished compared with MK(+/+) animals. However, MK did not lead to an inflammatory activation of PMNs or endothelial cells suggesting that it does not serve as classical proinflammatory cytokine. Unexpectedly, immobilized MK mediated PMN adhesion under static and flow conditions, whereas PMN-derived MK was dispensable for the induction of adhesion. Furthermore, adhesion strengthening remained unaffected by MK. Flow cytometry revealed that immobilized, but not soluble MK, significantly promoted the high affinity conformation of β2 integrins of PMNs. Blocking studies of low-density lipoprotein receptor-related protein 1 (LRP1) suggested that LRP1 may act as a receptor for MK on PMNs. Thus, MK seems to support PMN adhesion by promoting the high affinity conformation of β2 integrins, thereby facilitating PMN trafficking during acute inflammation.
Collapse
|
39
|
ALK: Anaplastic lymphoma kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Kadomatsu K, Kishida S, Tsubota S. The heparin-binding growth factor midkine: the biological activities and candidate receptors. J Biochem 2013; 153:511-21. [PMID: 23625998 DOI: 10.1093/jb/mvt035] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heparin-binding growth factor midkine (MK) comprises a family with pleiotrophin/heparin-binding growth-associated molecule. The biological phenomena in which MK is involved can be categorized into five areas: (i) cancer, (ii) inflammation/immunity, (iii) blood pressure, (iv) development and (v) tissue protection. The phenotypes are clear in vivo, but the mechanisms by which MK exerts these actions are not fully understood. Candidate receptors for MK include anaplastic lymphoma kinase, protein tyrosine phosphatase ζ, Notch2, LDL receptor-related protein 1, integrins and proteoglycans. Some physical associations between these candidate receptors are also known. Because of the striking in vivo phenotypes after manipulation of MK, MK could be an important molecular target for the treatment of various diseases. To this end, it will be important to pursue studies to fully understand the mechanisms of MK action.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
41
|
Qiu L, Hyink DP, Gans WH, Amsler K, Wilson PD, Burrow CR. Midkine promotes selective expansion of the nephrogenic mesenchyme during kidney organogenesis. Organogenesis 2012; 1:14-21. [PMID: 19521555 DOI: 10.4161/org.1.1.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022] Open
Abstract
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.
Collapse
Affiliation(s)
- Libo Qiu
- Division of Nephrology, Department of Medicine; New York, New York USA
| | | | | | | | | | | |
Collapse
|
42
|
Regulation of CLL survival by hypoxia-inducible factor and its target genes. FEBS Lett 2012; 586:2906-10. [PMID: 22841548 DOI: 10.1016/j.febslet.2012.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 02/02/2023]
Abstract
Chronic lymphocytic leukemia (CLL), the most common adult leukemia in the Western world, is characterized by the progressive accumulation of small mature CD5(+)B lymphocytes in the peripheral blood, lymphoid organs, and bone marrow (BM). The main feature of the disease is decreased apoptosis, resulting in the pathologic accumulation of these malignant cells. Appropriate cellular responses to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, are ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Unlike their normal counterparts, CLL cells express HIF-1α even under normoxia. In addition, overexpression of HIF-1α has been observed in leukemic cells in BM specimens from CLL patients. The HIF transcription factor has been implicated in controlling the expression of a wide variety of genes implicated in apoptosis, angiogenesis, invasion, and metastasis. This review describes pathways regulating CLL survival with a focus on HIF-1α and its target genes, MIF and Midkine (MK), and the potential cross-talk between these factors.
Collapse
|
43
|
Cohen S, Shachar I. Cytokines as regulators of proliferation and survival of healthy and malignant peripheral B cells. Cytokine 2012; 60:13-22. [PMID: 22784632 DOI: 10.1016/j.cyto.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 12/31/2022]
Abstract
Adaptive immunity depends on the production and maintenance of a pool of mature peripheral lymphocytes throughout life. The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Lasting B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. Cytokines have been shown to play a critical role in maintaining lymphocyte homeostasis. This review focuses on the role of cytokines and their receptors in the regulation of peripheral B cell survival, with an emphasis on those that have received relatively less attention in the literature.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
44
|
Yan Q, Huang HL, Yao X, Li J, Li LQ, Zhong J, Min LS, Dai LC, Zheng SS. Novel functional proteins interact with midkine in hepatic cancer cells. Hepatobiliary Pancreat Dis Int 2012; 11:272-7. [PMID: 22672821 DOI: 10.1016/s1499-3872(12)60160-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Midkine is a heparin-binding growth factor that promotes the proliferation, survival, migration and differentiation of various target cells. Midkine plays an important role in tumorigenesis and tumor progression, and is overexpressed in many human malignant tumors. Patients with high tumor midkine expression frequently have a worse prognosis than those with low expression. The present study was designed to investigate the interaction network of midkine in hepatic cancer cells, and to elucidate its role in hepatocellular carcinoma. METHODS DNA encoding full-length midkine was cloned into pDBLeu vector to serve as bait in yeast two-hybrid screening to identify interacting proteins. Candidate proteins were examined on SC-Leu-Trp-His+3-AT (20 mmol/L) plates and assayed for X-gal activity, then sequenced and classified according to the GenBank. Finally, identified proteins were expressed by the in vitro expression system pCMVTnT, and protein interactions were confirmed by co-immunoprecipitation. RESULTS Using the yeast two-hybrid system, we found 6 proteins that interacted with midkine: NK-kappa-B inhibitor alpha (I-κ-B-alpha), Dvl-binding protein naked cuticle 2, granulin, latent active TGF-beta binding protein 3, latent active TGF-beta binding protein 4, and phospholipid scramblase 1. In vitro co-immunoprecipitation demonstrated that all identified proteins directly interacted with midkine. CONCLUSION The identification of midkine-interacting proteins in hepatic cancer cells indicates that midkine is a multifunctional factor that may participate in cell migration, differentiation, and proliferation, and is also associated with the multicellular response feedback during the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qiang Yan
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Midkine (MK) is a heparin-binding growth factor involved in various cellular processes such as cellular proliferation, survival, and migration. In addition to these typical growth factor activities, MK exhibits several other activities related to fibrinolysis, blood pressure, host defense and other processes. Many cell-surface receptors have been identified to account for the multiple biological activities of MK. The expression of MK is frequently upregulated in many types of human carcinoma. Moreover, blood MK levels are closely correlated with patient outcome. Knockdown and blockade of MK suppress tumorigenesis and tumor development. Thus, MK serves as a tumor marker and a molecular target for cancer therapy. Furthermore, there is growing evidence that MK plays pivotal roles in neural and inflammatory diseases. Understanding of the mechanisms of action of MK is expected to create new therapeutic options for several human diseases.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
46
|
Lee SH, Suh HN, Lee YJ, Seo BN, Ha JW, Han HJ. Midkine prevented hypoxic injury of mouse embryonic stem cells through activation of Akt and HIF-1α via low-density lipoprotein receptor-related protein-1. J Cell Physiol 2012; 227:1731-9. [PMID: 21688265 DOI: 10.1002/jcp.22897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stem cell functions are dramatically altered by oxygen in tissue culture, which means the antioxidant/oxidant balance is critical for protection as well as toxicity. This study examined the effect of the heparin-binding growth factor midkine (MK) on hypoxia-induced apoptosis and related signal pathways in mouse embryonic stem cells (mESCs). Hypoxia (60 h) increased lactate dehydrogenase release and apoptosis, and reduced cell viability and proliferation. These effects were reversed by MK (100 ng/ml). MK also reversed hypoxia-induced increases of intracellular reactive oxygen species, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Blockage of JNK and p38 MAPK using small interference (si)RNAs produced a decrease in apoptosis. A loss of mitochondrial membrane potential, increases of cytochrome c release from mitochondria to cytosol, and cleaved caspase-3 expression, as well as decreases in cIAP-2 and Bcl-2 were also reversed by MK. Hypoxia alone and hypoxia with MK increased low-density lipoprotein receptor-related protein-1 (LRP-1) mRNA and protein expression. Hypoxia with MK rapidly increased serine/threonine protein kinase (Akt) phosphorylation which reversed by LRP-1 Ab (0.1 µg/ml) and prolonged heme oxygenase-1 (HO-1) expression. In addition, hypoxia with MK increased the expression of hypoxia-inducible factor-1α (HIF-1α). Moreover, inhibition of Akt, HO-1, and HIF-1α signaling pathways abolished the MK-induced blockage of apoptosis. In conclusion, MK partially prevented hypoxic injury of mESCs through activation of Akt, HO-1, and HIF-1α via LRP-1.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M, Hazan-Halevy I, Herishanu Y, Shvidel L, Haran M, Leng L, Bucala R, Harroch S, Shachar I. The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:259-69. [PMID: 22140262 PMCID: PMC3244541 DOI: 10.4049/jimmunol.1101468] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lasting B cell persistence depends on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase ζ (RPTPζ). We demonstrate that MK initiates a signaling cascade leading to B cell survival by binding to RPTPζ. In mice lacking PTPRZ, the proportion and number of the mature B cell population are reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74-induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and chronic lymphocytic leukemia cells. Our results indicate that MK and RPTPζ are important regulators of the B cell repertoire. These findings could pave the way toward understanding the mechanisms shaping B cell survival and suggest novel therapeutic strategies based on the blockade of the MK/RPTPζ-dependent survival pathway.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Midkine
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
- Proto-Oncogene Proteins c-met/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/immunology
- Receptors, Growth Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Weckbach LT, Muramatsu T, Walzog B. Midkine in inflammation. ScientificWorldJournal 2011; 11:2491-505. [PMID: 22235180 PMCID: PMC3253530 DOI: 10.1100/2011/517152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/07/2011] [Indexed: 01/06/2023] Open
Abstract
The 13 kDa heparin-binding growth factor midkine (MK) was originally identified as a molecule involved in the orchestration of embryonic development. Recent studies provided evidence for a new role of MK in acute and chronic inflammatory processes. Accordingly, several inflammatory diseases including nephritis, arthritis, atherosclerosis, colitis, and autoimmune encephalitis have been shown to be alleviated in the absence of MK in animal models. Reduced leukocyte recruitment to the sites of inflammation was found to be one important mechanism attenuating chronic inflammation when MK was absent. Furthermore, MK was found to modulate expression of proinflammatory cytokines and the expansion of regulatory T-cells. Here, we review the current understanding of the role of MK in different inflammatory disorders and summarize the knowledge of MK biology.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | |
Collapse
|
49
|
Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 2011; 138:4699-708. [PMID: 21989914 DOI: 10.1242/dev.072157] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and arises from cells of the developing sympathoadrenergic lineage. Activating mutations in the gene encoding the ALK tyrosine kinase receptor predispose for NB. Here, we focus on the normal function of Alk signaling in the control of sympathetic neuron proliferation, as well as on the effects of mutant ALK. Forced expression of wild-type ALK and NB-related constitutively active ALK mutants in cultures of proliferating immature sympathetic neurons results in a strong proliferation increase, whereas Alk knockdown and pharmacological inhibition of Alk activity decrease proliferation. Alk activation upregulates NMyc and trkB and maintains Alk expression by an autoregulatory mechanism involving Hand2. The Alk-ligand Midkine (Mk) is expressed in immature sympathetic neurons and in vivo inhibition of Alk signaling by virus-mediated shRNA knockdown of Alk and Mk leads to strongly reduced sympathetic neuron proliferation. Taken together, these results demonstrate that the extent and timing of sympathetic neurogenesis is controlled by Mk/Alk signaling. The predisposition for NB caused by activating ALK mutations may thus be explained by aberrations of normal neurogenesis, i.e. elevated and sustained Alk signaling and increased NMyc expression.
Collapse
Affiliation(s)
- Tobias Reiff
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, 60528, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Ishimoto H, Jaffe RB. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr Rev 2011; 32:317-55. [PMID: 21051591 PMCID: PMC3365797 DOI: 10.1210/er.2010-0001] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex.
Collapse
Affiliation(s)
- Hitoshi Ishimoto
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | | |
Collapse
|