1
|
Kostadinova R, Ströbel S, Chen L, Fiaschetti-Egli K, Gadient J, Pawlowska A, Petitjean L, Bieri M, Thoma E, Petitjean M. Digital pathology with artificial intelligence analysis provides insight to the efficacy of anti-fibrotic compounds in human 3D MASH model. Sci Rep 2024; 14:5885. [PMID: 38467661 PMCID: PMC10928082 DOI: 10.1038/s41598-024-55438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe liver disease characterized by lipid accumulation, inflammation and fibrosis. The development of MASH therapies has been hindered by the lack of human translational models and limitations of analysis techniques for fibrosis. The MASH three-dimensional (3D) InSight™ human liver microtissue (hLiMT) model recapitulates pathophysiological features of the disease. We established an algorithm for automated phenotypic quantification of fibrosis of Sirius Red stained histology sections of MASH hLiMTs model using a digital pathology quantitative single-fiber artificial intelligence (AI) FibroNest™ image analysis platform. The FibroNest™ algorithm for MASH hLiMTs was validated using anti-fibrotic reference compounds with different therapeutic modalities-ALK5i and anti-TGF-β antibody. The phenotypic quantification of fibrosis demonstrated that both reference compounds decreased the deposition of fibrillated collagens in alignment with effects on the secretion of pro-collagen type I/III, tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-3 and pro-fibrotic gene expression. In contrast, clinical compounds, Firsocostat and Selonsertib, alone and in combination showed strong anti-fibrotic effects on the deposition of collagen fibers, however less pronounced on the secretion of pro-fibrotic biomarkers. In summary, the phenotypic quantification of fibrosis of MASH hLiMTs combined with secretion of pro-fibrotic biomarkers and transcriptomics represents a promising drug discovery tool for assessing anti-fibrotic compounds.
Collapse
Affiliation(s)
| | - Simon Ströbel
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Li Chen
- PharmaNest, Princeton, NJ, USA
| | | | - Jana Gadient
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | | | | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, Schlieren, Switzerland
| | | |
Collapse
|
2
|
Yang HX, Guo FY, Lin YC, Wu YL, Nan JX, Jin CH, Lian LH. Synthesis of and anti-fibrotic effect of pyrazole derivative J-1048: Inhibition of ALK5 as a novel approach to liver fibrosis targeting inflammation. Bioorg Chem 2023; 139:106723. [PMID: 37459824 DOI: 10.1016/j.bioorg.2023.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a worldwide challenge of health issue. Developing effective new drugs for treating liver fibrosis is of great importance. In recent years, chemically synthesized drugs have significant advantages in treating liver fibrosis. Small molecule pyrazole derivatives as activin receptor-like kinase 5 (ALK5) inhibitors have also shown anti-fibrotic and tumor growth inhibitory effects. To develop the candidate with anti-fibrotic effect, we synthesized a novel pyrazole derivative, J-1048. The inhibitory effect of J-1048 on ALK5 and p38α mitogen-activated protein (MAP) kinase activity was assessed by enzymatic assays. We established an in vivo liver fibrosis model by injecting thioacetamide (TAA) into mice and in vitro model of TGF-β stimulated hepatic stellated cells to explore the inhibition mechanisms and therapeutic potential of J-1048 as an ALK5 inhibitor in liver fibrosis. Our data showed that J-1048 inhibited TAA-induced liver fibrosis in mice by explicitly blocking the TGF-β/Smad signaling pathway. Additionally, J-1048 inhibited the production of inflammatory cytokine Interleukin-1β (IL-1β) by inhibiting the purinergic ligand-gated ion channel 7 receptor (P2X7r) -Nucleotide-binding domain-(NOD-)like receptor protein 3 (NLRP3) axis, thereby alleviating liver fibrosis. Our findings demonstrated that a novel small molecule ALK5 inhibitor, J-1048, exhibited strong potential as a clinical therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Hong-Xu Yang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Fang-Yan Guo
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yong-Ce Lin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
3
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Kong CS. Oleracone C from Portulaca oleracea attenuates UVB-induced changes in matrix metalloproteinase and type I procollagen production via MAPK and TGF-β/Smad pathways in human keratinocytes. Int J Cosmet Sci 2022; 45:166-176. [PMID: 36415152 DOI: 10.1111/ics.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic exposure to ultraviolet (UV) radiation induces photo-oxidation, which in turn causes the overproduction of matrix metalloproteinases (MMPs) and collagen degradation. These symptoms are referred to as photoaging, which is characterized by skin thickness, irregular pigmentation, elastosis and coarse wrinkles. In this study, the protective effects of oleracone C isolated from Portulaca olerace against UVB-induced changes in MMPs and type I procollagen production were investigated in human keratinocytes. METHODS Human immortalized keratinocytes have been used as an in vitro cell model to study the abnormal skin barrier development such as in photoaging. The effects of the compound on cell viability were determined by colorimetric MTT assay. This study also measured ROS production using DCFH-DA assay. Releases of MMPs and type Iα1 procollagen were analysed by ELISA. RT-PCR and Western blot were carried out to test the expressions of mRNA and proteins related to MMPs and type I procollagen biosynthesis. RESULT Effect of oleracone C against UVB-mediated oxidative stress was evaluated measuring its ability to eliminate UVB-induced activation of reactive oxygen species (ROS). Treatment of oleracone C hindered the production of intracellular ROS. UVB exposure increased MMPs (MMP-1, MMP-2 and MMP-9) release from keratinocytes and decreased the release of type I procollagen. Treatment with oleracone C reversed these effects of UVB exposure. Oleracone C treatment also diminished the intracellular expression of MMP-1, MMP-2 and MMP-9 and elevated the type I procollagen. Oleracone C suppressed the UVB irradiation-dependent upregulation phosphorylation of p38 and ERK1/2 in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, oleracone C stimulated collagen production through the TGF-β signalling pathway, which activates collagen synthesis in UVB-irradiated keratinocytes. CONCLUSION These findings reasonably suggest ameliorating the potential of oleracone C against the UVB-induced photoaging of the human keratinocytes.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, Korea Maritime and Ocean University, Busan, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan, Korea.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, Korea
| |
Collapse
|
4
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Shin HB, Jeong YJ. Hepatoprotective Effects of a Natural Flavanol 3,3'-Diindolylmethane against CCl 4-Induced Chronic Liver Injury in Mice and TGFβ1-Induced EMT in Mouse Hepatocytes via Activation of Nrf2 Cascade. Int J Mol Sci 2022; 23:ijms231911407. [PMID: 36232707 PMCID: PMC9569868 DOI: 10.3390/ijms231911407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-β1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-β1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-β1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-β1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Beak Shin
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence:
| |
Collapse
|
5
|
Sharma A, Verma AK, Kofron M, Kudira R, Miethke A, Wu T, Wang J, Gandhi CR. Lipopolysaccharide Reverses Hepatic Stellate Cell Activation Through Modulation of cMyb, Small Mothers Against Decapentaplegic, and CCAAT/Enhancer-Binding Protein C/EBP Transcription Factors. Hepatology 2020; 72:1800-1818. [PMID: 32064648 PMCID: PMC8009050 DOI: 10.1002/hep.31188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS During liver injury, quiescent hepatic stellate cells (qHSCs) transdifferentiate into proliferative and fibrogenic activated myofibroblastic phenotype (activated hepatic stellate cell; aHSCs) expressing smooth muscle α-actin (αSMA) and platelet-derived growth factor beta receptor (PDGFβR). Their interactions with gut-derived bacterial lipopolysaccharide (LPS) are implicated in hepatic fibrogenesis. However, LPS can also attenuate fibrogenic characteristics of aHSCs. APPROACH AND RESULTS We examined molecular mechanisms of antifibrogenic effects of LPS on aHSCs in vitro and in vivo. Culture-activated rat HSCs were exposed to 0-100 ng/mL of LPS or its active component, diphosphoryl-lipid A (DPLA), and parameters of fibrosis and inflammatory cytokines/chemokines were determined by qRT-PCR, western, and immunohistochemical analyses. In vivo, HSCs were activated by repeated CCl4 administration to rats every 3 days for 3 or 8 weeks, then challenged with LPS (5 mg/kg; IP). HSCs were isolated 24 hours later, and fibrogenic/inflammatory parameters were analyzed. LPS induced phenotypic changes in aHSCs (rounding, size reduction) and loss of proliferation. LPS down-regulated expression of αSMA, PDGFβR, transforming growth factor beta receptor 1 (TGFβR1), collagen 1α1 (Col1α1), and fibronectin while up-regulating tumor necrosis factor alpha, interleukin-6, and C-X-C motif chemokine ligand 1 expression. LPS did not increase peroxisome proliferation-activated receptor gamma expression or lipid accumulation typical of qHSCs. DPLA elicited the same effects as LPS on aHSCs, indicating specificity, and monophosphoryl lipid A down-regulated fibrogenic markers, but elicited very weak inflammatory response. LPS down-regulated the expression of cMyb, a transcription factor for αSMA, and up-regulated small mother against decapentaplegic (SMAD)7 and CCAAT/enhancer-binding protein (C/EBP)δ, the transcriptional inhibitors of Col1α1 expression. In vivo LPS treatment of aHSCs inhibited their proliferation, down-regulated PDGFβR, αSMA, TGFβR1, Col1α1, and cMyb expression, and increased expression of SMAD7, C/EBPα, and C/EBPδ. CONCLUSIONS In conclusion, LPS induces a unique phenotype in aHSCs associated with down-regulation of key fibrogenic mechanisms and thus may have an important role in limiting fibrosis.
Collapse
Affiliation(s)
- Akanksha Sharma
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| | - Alok K. Verma
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| | - Matthew Kofron
- Developmental Biology, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ramesh Kudira
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jiang Wang
- Deparment of Pathology, University of Cincinnati, Cincinnati, OH
| | - Chandrashekhar R. Gandhi
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| |
Collapse
|
6
|
Ding S, Yu L, An B, Zhang G, Yu P, Wang Z. Combination effects of airborne particulate matter exposure and high-fat diet on hepatic fibrosis through regulating the ROS-endoplasmic reticulum stress-TGFβ/SMADs axis in mice. CHEMOSPHERE 2018; 199:538-545. [PMID: 29455124 DOI: 10.1016/j.chemosphere.2018.02.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hepatic fibrosis, characterized by an excessive accumulation of extracellular matrix, is associated with toxic substance exposure, chronic infections, mechanical injury, airborne fine particulate matter (PM2.5) exposure and metabolic disease. This study aimed to investigate the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on hepatic fibrosis and further explored whether combination treatment of PM exposure and high-fat diet (HFD) aggravate the adverse effects in mice. METHODS AND RESULTS Six-week-old male C57BL/6J mice fed with either a standard chow diet (STD) or an HFD were treated with either filtered air (FA) or PM for 18 weeks. Metabolic parameters, histological examination, gene expression analysis, and Western blot analysis were utilized to measure the effect and mechanism of PM exposure on hepatic fibrosis and to further analyze the synergistic effect of HFD. Subchronic airborne PM exposure induces hepatic fibrosis in mice, and combination treatment of PM exposure and HFD accelerate the adverse effect. Meanwhile, subchronic exposure to real-world PM increased the level of hepatic ROS, and the expression of endoplasmic reticulum (ER) stress markers (GRP78 and CHOP), p-SMAD2 and p-SMAD3, as well as up-regulated TGFβ and collagen 1 in liver tissues. Furthermore, PM exposure and HFD displayed the synergistic effects on these changes in liver. CONCLUSION Our findings indicate that airborne PM exposure aggravates HFD -induced hepatic fibrosis. The ROS-ER stress-TGFβ/SMADs regulatory axis mediates the effects of airborne PM exposure on accelerating hepatic fibrosis.
Collapse
Affiliation(s)
- Shibin Ding
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Lanlan Yu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Baijie An
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Pengxin Yu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| |
Collapse
|
7
|
Vega-Magaña N, Delgado-Rizo V, García-Benavides L, Del Toro-Arreola S, Segura-Ortega J, Morales ASMZ, Zepeda-Nuño JS, Escarra-Senmarti M, Gutiérrez-Franco J, Haramati J, Bueno-Topete MR. Bacterial Translocation Is Linked to Increased Intestinal IFN-γ, IL-4, IL-17, and mucin-2 in Cholestatic Rats. Ann Hepatol 2018; 17:318-329. [PMID: 29469038 DOI: 10.5604/01.3001.0010.8662] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Bacterial translocation is an important triggering factor of infection and mortality in cirrhosis. In a rat model using bile duct ligation (BDL), bacterial translocation appears within 24 h after ligation. The dynamic between TH1/TH2/TH17 cytokines and the integrity of the colonic mucosa in the context of cirrhosis is little known. This study aims to determine the link between bacterial translocation and intestinal inflammation in a cholestasis model. Additionally, alterations of the colonic mucus layer and the bacterial load were also addressed. RESULTS Bacterial translocation detected by microbiological cultures and MALDI-TOF showed that Escherichia coli predominates in mesenteric lymph nodes of BDL rats. Intestinal bacterial load analyzed by qPCR indicates a dramatic Escherichia/Shigella overgrowth at 8 and 30 days post-BDL. IFN-γ, IL-4, and IL-17 evaluated by Western blotting were increased at 8 and 30 days in the small intestine. In the colon, in contrast, only IFN-γ was significantly increased. The colonic mucus layer and mucin-2 expression determined by Alcian blue staining and immunohistochemistry surprisingly showed an increase in the mucus layer thickness related to increased mucin-2 expression during the entire process of liver damage. Hepatic enzymes, as well as collagen I, collagen III, TNF-α, and IL-6 liver gene expression were increased. In conclusion, bacterial overgrowth associated with bacterial translocation is linked to the over-expression of IFN-γ, IL-4, IL-17 and mucin-2. These molecules might facilitate the intestinal permeability through exacerbating the inflammatory process and disturbing tight junctions, leading to the perpetuation of the liver damage.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Vidal Delgado-Rizo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Fisiología
| | - Leonel García-Benavides
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología
| | - Susana Del Toro-Arreola
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Segura-Ortega
- OPD Hospital Civil de Guadalajara "Juan I. Menchaca". Guadalajara, Jalisco, México. Servicio de Gastroenterología
| | - Adelaida Sara M Zepeda Morales
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - José Sergio Zepeda-Nuño
- Centro Universitario de Ciencias de la Salud. Laboratorio de Patología, Departamento de Microbiología y Patología
| | - Marta Escarra-Senmarti
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Gutiérrez-Franco
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jesse Haramati
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Biología Celular y Molecular
| | - Miriam R Bueno-Topete
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| |
Collapse
|
8
|
Effect of Compound 21, a Selective Angiotensin II Type 2 Receptor Agonist, in a Murine Xenograft Model of Dupuytren Disease. Plast Reconstr Surg 2017; 140:686e-696e. [PMID: 29068929 DOI: 10.1097/prs.0000000000003800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Although surgical excision and intralesional collagenase injection are mainstays in Dupuytren disease treatment, no effective medical therapy exists for recurrent disease. Compound 21, a selective agonist of the angiotensin II type 2 receptor, has been shown to protect against fibrosis in models of myocardial infarction and stroke. The authors investigated the potential use of compound 21 in the treatment of Dupuytren disease. METHODS Human dermal fibroblasts were treated in vitro with compound 21 and assessed for viability using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, migration by means of scratch assay, and profibrotic gene transcription by means of quantitative reverse transcription polymerase chain reaction. Compound 21 effects in vivo were assessed using a xenograft model. Dupuytren disease cord specimens from patients undergoing open partial fasciectomy were divided into two segments. Segments were implanted under the dorsal skin of nude mouse pairs. Beginning on day 5, one mouse from each pair received daily intraperitoneal injections of compound 21 (10 μg/kg/day), and the other received vehicle. On day 10, segments were explanted and submitted for immunohistochemistry. RESULTS Human dermal fibroblasts treated with compound 21 displayed decreased migration and decreased gene expression of connective tissue growth factor, fibroblast specific protein-1, transforming growth factor-β1, Smad3, and Smad4. Dupuytren disease segments from compound 21-treated mice demonstrated significantly reduced alpha-smooth muscle actin and Ki67 staining, with increased density of CD31 staining vessels. CONCLUSIONS Compound 21 significantly decreases expression of profibrotic genes and decreases myofibroblast proliferation as indicated by reduced Ki67 and alpha-smooth muscle actin expression. These findings support compound 21 as a potential novel treatment modality for Dupuytren disease.
Collapse
|
9
|
Khedr NF, Khedr EG. Branched chain amino acids supplementation modulates TGF-β1/Smad signaling pathway and interleukins in CCl4-induced liver fibrosis. Fundam Clin Pharmacol 2017; 31:534-545. [DOI: 10.1111/fcp.12297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Naglaa F. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| | - Eman G. Khedr
- Faculty of Pharmacy; Tanta University; Postal number: 31527 Tanta Egypt
| |
Collapse
|
10
|
Liu XY, Fan YC, Gao S, Zhao J, Li F, Zhang J, Wang K. Hypermethylation of the N-Myc Downstream-Regulated Gene 2 Promoter in Peripheral Blood Mononuclear Cells is Associated with Liver Fibrosis in Chronic Hepatitis B. TOHOKU J EXP MED 2017; 241:155-163. [PMID: 28202850 DOI: 10.1620/tjem.241.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA methylation is a fundamental epigenetic modification to regulate gene expression. N-Myc downstream-regulated gene (NDRG) 2 is a cytoplasmic protein and participates in the pathogenesis of liver fibrosis. In this study, the mRNA expression and methylation status of NDRG2 was evaluated in patients with chronic hepatitis B (CHB). The study included 143 CHB patients and 65 normal controls (NC). The mRNA expression of NDRG2 in peripheral blood mononuclear cells (PBMCs) was detected by quantitative real-time polymerase chain reaction. The methylation status of the NDRG2 promoter in PBMCs was detected by methylation-specific polymerase chain reaction. The NDRG2 mRNA level was lower in the CHB group than in the NC group (p < 0.001). Methylation frequency of the NDRG2 promoter was significantly higher in CHB patients than in the NC group (52.44% vs. 26.15%, p < 0.001). Importantly, the relative expression levels of NDRG2 mRNA were significantly lower in the methylated group than in the unmethylated group in both CHB patients and NC (p < 0.001). Furthermore, a lower mRNA level and hypermethylation of NDRG2 were associated with liver fibrosis and inflammation grade in CHB. The aspartate aminotransferase-to-platelet ratio index (APRI) score is widely used to predict liver fibrosis. The mRNA expression levels and methylation status of NDRG2 showed a better score compared to APRI for discriminating the severity of liver fibrosis. In conclusion, hypermethylation of NDRG2 in PBMCs was correlated with decreased mRNA expression and with liver fibrosis. The methylation status of the NDRG2 promoter in PBMCs is a potential noninvasive biomarker to predict the severity of liver fibrosis.
Collapse
Affiliation(s)
- Xin-Yuan Liu
- Department of Hepatology, Qilu Hospital of Shandong University
| | | | | | | | | | | | | |
Collapse
|
11
|
González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, Álvarez M, Tuñón MJ, González-Gallego J. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. Biofactors 2017; 43:272-282. [PMID: 27801960 DOI: 10.1002/biof.1342] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 01/02/2023]
Abstract
The sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) system is involved in different pathological processes, including fibrogenesis. Melatonin abrogates activation of hepatic stellate cells (HSCs) and attenuates different profibrogenic pathways in animal models of fibrosis, but it is unknown if protection associates with its inhibitory effect on the SphK1/S1P axis. Mice in treatment groups received carbon tetrachloride (CCl4 ) 5 μL g-1 body wt i.p. twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg kg-1 day-1 i.p, beginning 2 weeks after the start of CCl4 administration. At both 4 and 6 weeks following CCl4 treatment, liver mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production, and expression of S1P receptor (S1PR)1, S1PR3 and acid sphingomyelinase (ASMase) were significantly elevated. However, there was a decreased expression of S1PR2 and S1P lyase (S1PL). Melatonin attenuated liver fibrosis, as shown by a significant inhibition of the expression of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β and collagen (Col) Ι. Furthermore, melatonin inhibited S1P production, lowered expression of SphK1, S1PR1, SP1R3, and ASMase, and increased expression of S1PL. Melatonin induced a reversal of activated human HSCs cell line LX2, as evidenced by a reduction in α-SMA, TGF-β, and Col I expression. Melatonin-treated cells also exhibited an inhibition of the SphK1/S1P axis. Antifibrogenic effect of SphK1 inhibition was confirmed by treatment of LX2 cells with PF543. Abrogation of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in liver fibrogenesis. © 2016 BioFactors, 43(2):272-282, 2017.
Collapse
Affiliation(s)
| | - Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
12
|
Effect of Exogenous Fetuin-A on TGF- β/Smad Signaling in Hepatic Stellate Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8462615. [PMID: 27990439 PMCID: PMC5136394 DOI: 10.1155/2016/8462615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
Objective. To explore the effects of low concentration of exogenous fetuin-A intervention on TGF-β1 induced LX2 cells through detection of the expression of mRNA and protein of Smad2, Smad3, and Smad7. Methods. MTT assay was used to detect the LX2 cells proliferation and the regression equation calculating software was applied to determine IC50 of fetuin-A. RT-PCR was used to determine the relative content of Smad2, Smad3, and Smad7 mRNA in LX2 cells. Western blot was used to detect the LX2 cells relative content of Smad2, Smad3, Smad7 protein expression, respectively. Results. The analysis from RT-PCR and western blot showed that when compared with the other groups TGF-β1 + fetuin-A group increased the expression of Smad2 and Smad3 while decreased the expression of Smad7 (P < 0.05). Conclusion. Fetuin-A may improve the excessive activation of hepatic stellate cells which is caused by an enhanced positive regulation of Smad2 and Smad3 protein and the deficiency in negative regulation of Smad7 protein. This is through inhibiting the expression of Smad2 and Smad3 gene and promoting the expression of Smad7 gene. As a result, the development of liver fibrosis will be reduced.
Collapse
|
13
|
TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. Inflamm Res 2016; 65:355-65. [PMID: 26856334 DOI: 10.1007/s00011-016-0921-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/07/2015] [Accepted: 01/27/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Although animal studies demonstrated that Smad7 induction ameliorates TGF-β/SMAD-mediated fibrogenesis, its role in human hepatic diseases is rather obscure. Our study explored the activation status of TGF-β/activin pathway in patients with chronic liver diseases, and how it is affected by successful antiviral treatment in chronic HBV hepatitis (CHB). METHODS Thirty-seven CHB patients (19 with active disease, 14 completely remitted on long-term antiviral treatment and 4 with relapse after treatment withdrawal), 18 patients with chronic HCV hepatitis, 12 with non-alcoholic fatty liver disease (NAFLD), and 3 controls were enrolled in the study. Liver mRNA levels of CTGF, all TGF-β/activin isoforms, their receptors and intracellular mediators (SMADs) were evaluated using qRT-PCR and were correlated with the grade of liver inflammation and fibrosis staging. The expression and localization of pSMAD2 and pSMAD3 were assessed by immunohistochemistry. RESULTS TGF-β signalling is activated in CHB patients with active disease, while SMAD7 is up-regulated during the resolution of inflammation after successful treatment. SMAD7 overexpression was also observed in NAFLD patients exhibiting no or minimal fibrosis, despite the activation of TGF-β/activin signaling. CONCLUSIONS SMAD7 overexpression might represent a mechanism limiting TGF-β-mediated fibrogenesis in human hepatic diseases; therefore, SMAD7 induction likely represents a candidate for novel therapeutic approaches.
Collapse
|
14
|
Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem Cytochem 2016; 64:157-67. [PMID: 26747705 DOI: 10.1369/0022155415627681] [Citation(s) in RCA: 517] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1), a key member in the TGF-β superfamily, plays a critical role in the development of hepatic fibrosis. Its expression is consistently elevated in affected organs, which correlates with increased extracellular matrix deposition. SMAD proteins have been studied extensively as pivotal intracellular effectors of TGF-β1, acting as transcription factors. In the context of hepatic fibrosis, SMAD3 and SMAD4 are pro-fibrotic, whereas SMAD2 and SMAD7 are protective. Deletion of SMAD3 inhibits type I collagen expression and blocks epithelial-myofibroblast transition. In contrast, disruption of SMAD2 upregulates type I collagen expression. SMAD4 plays an essential role in fibrosis disease by enhancing SMAD3 responsive promoter activity, whereas SMAD7 negatively mediates SMAD3-induced fibrogenesis. Accumulating evidence suggests that divergent miRNAs participate in the liver fibrotic process, which partially regulates members of the TGF-β/SMAD signaling pathway. In this review, we focus on the TGF-β/SMAD and other relative signaling pathways, and discussed the role and molecular mechanisms of TGF-β/SMAD in the pathogenesis of hepatic fibrosis. Moreover, we address the possibility of novel therapeutic approaches to hepatic fibrosis by targeting to TGF-β/SMAD signaling.
Collapse
Affiliation(s)
- Fengyun Xu
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| | - Changwei Liu
- Anhui Medical University, Hefei 230022, ChinaDepartment of Pharmacy, The First Affiliated Hospital of Anhui Medical University (CL)
| | - Dandan Zhou
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| | - Lei Zhang
- School of Pharmacy (FX, DZ, LZ),Anhui Medical University, Hefei 230022, ChinaInstitute for Liver Diseases (FX, DZ, LZ)
| |
Collapse
|
15
|
Lei XF, Fu W, Kim-Kaneyama JR, Omoto T, Miyazaki T, Li B, Miyazaki A. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol 2016; 64:110-7. [PMID: 26334580 DOI: 10.1016/j.jhep.2015.08.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIM Hydrogen peroxide-inducible clone-5 (Hic-5), also named as transforming growth factor beta-1-induced transcript 1 protein (Tgfb1i1), was found to be induced by TGF-β. Previous studies have shown that TGF-β is a principal mediator of hepatic stellate cell (HSC) activation in liver fibrosis. However, this process remains elusive. In this study, we aimed to define the role of Hic-5 in HSC activation and liver fibrosis. METHODS We examined the expression levels of Hic-5 during HSCs activation and in fibrotic liver tissues by quantitative real-time reverse transcriptase polymerase chain reaction, Western blot and immunohistochemistry. Hic-5 knockout (KO) and wild-type (WT) mice were subjected to bile duct ligation (BDL) or carbon tetrachloride (CCl4) injection to induce liver fibrosis. RESULTS Hic-5 expression was strongly upregulated in activated HSCs of the human fibrotic liver tissue and BDL or CCl4-induced mouse liver fibrosis. Hic-5 deficiency significantly attenuated mouse liver fibrosis and HSC activation. Furthermore, Hic-5 knockdown by siRNA in vivo repressed CCl4-induced liver fibrosis in mice. Mechanistically, the absence of Hic-5 significantly inhibited the TGF-β/Smad2 signaling pathway, proved by increasing Smad7 expression, resulting in reduced collagen production and α-smooth muscle actin expression in the activated HSCs. CONCLUSION Hic-5 deficiency attenuates the activation of HSCs and liver fibrosis though reducing the TGF-β/Smad2 signaling by upregulation of Smad7. Thus, Hic-5 can be regarded as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Feng Lei
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Wenguang Fu
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sichuan Medical University, Luzhou, China
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan.
| | - Tomokatsu Omoto
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Bo Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sichuan Medical University, Luzhou, China
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Lin X, Chen Y, Lv S, Tan S, Zhang S, Huang R, Zhuo L, Liang S, Lu Z, Huang Q. Gypsophila elegans isoorientin attenuates CCl4-induced hepatic fibrosis in rats via modulation of NF-κB and TGF-β1/Smad signaling pathways. Int Immunopharmacol 2015; 28:305-12. [DOI: 10.1016/j.intimp.2015.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
|
17
|
Li J, Li X, Xu W, Wang S, Hu Z, Zhang Q, Deng X, Wang J, Zhang J, Guo C. Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFβ/Smad signalling pathways. Liver Int 2015; 35:1222-33. [PMID: 25040634 DOI: 10.1111/liv.12638] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Luteolin has been reported to exert antifibrogenic effects in CCl4 -induced hepatic fibrosis in mice. However, limited information is available on the cellular and molecular events responsible for this effect. This study focused on the action of luteolin on hepatic stellate cells (HSCs) and the relevant signalling molecules and pathways as well as the antifibrotic efficacy in multiple models of fibrosis. METHODS The in vitro effect of luteolin on rat HSCs and HSC-T6 cells was assessed using proliferation assays, invasion chamber, quantitative real-time PCR analysis and Western blotting. The in vivo effect of luteolin on progression of fibrosis was assessed in three experimental rat models induced by CCl4 , dimethylnitrosamine (DMN) and bile duct ligation (BDL). RESULTS Luteolin inhibited proliferation, migration, collagen synthesis as well as expression of fibrosis-related genes in the activated HSCs and HSC-T6 cells stimulated with or without transforming growth factor-β1(TGFβ1) or platelet-derived growth factor (PDGF). Luteolin induced HSC apoptosis associated with the increased caspase 3 activity and p53 expression, and induced G1 arrest with the decreased expression of bcl-2, Cyclin E and p-Cdk-2. Moreover, luteolin significantly inhibited PDGF and TGFβ1-simulated phosphorylation of AKT and Smad pathway. In vivo study showed that luteolin administration markedly alleviated hepatic fibrosis along with reduced elevations of alanine aminotransferase and aspartate aminotransferase. HSCs were found to undergo apoptosis and decreased expression of p-Smad2 and p-AKT in luteolin-treated animals. CONCLUSIONS This study demonstrates that luteolin prevents the progression of liver fibrosis through multiple mechanisms and indicates that luteolin has potential for effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen N, Geng Q, Zheng J, He S, Huo X, Sun X. Suppression of the TGF-β/Smad signaling pathway and inhibition of hepatic stellate cell proliferation play a role in the hepatoprotective effects of curcumin against alcohol-induced hepatic fibrosis. Int J Mol Med 2014; 34:1110-6. [PMID: 25069637 DOI: 10.3892/ijmm.2014.1867] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
The hepatoprotective effects of curcumin against alcohol-induced hepatic fibrosis have rarely been discussed and its mechanisms of action in alcohol-induced liver disease remain unknown. In this study, serum alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to assess hepatic function; histopathological and immunohistochemical observations were used to evaluate pathological and specific molecular changes in liver tissue and flow cytometry was used to detect the apoptosis in cultured hepatic stellate cells (HSCs), the major fibrogenic cells in the liver; PCR and western blot analysis were employed to evaluate the changes in the expression of molecules and signaling pathways. We demonstrate that curcumin alleviates alcohol-induced hepatic fibrosis by affecting the HSCs. We found that the administration of curcumin inhibited alcohol-induced HSC proliferation and even induced HSC apoptosis by stimulating endoplasmic reticulum (ER) stress. We also found that by suppressing the transforming growth factor-β (TGF-β)/Smad signaling pathway, the administration of curcumin impaired the production of extracellular matrix proteins in alcohol-stimulated HSCs. These results indicate that curcumin exerts its hepatoprotective effects against alcohol-induced hepatic fibrosis by inhibiting the proliferation and inducing the apoptosis of HSCs by stimulating ER stress and deactivating HSCs by suppressing the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianqian Geng
- Department of Nuclear Medicine, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sai He
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiongwei Huo
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1074] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
20
|
Li J, Li J, Li S, He B, Mi Y, Cao H, Zhang C, Li L. Ameliorative effect of grape seed proanthocyanidin extract on thioacetamide-induced mouse hepatic fibrosis. Toxicol Lett 2012; 213:353-60. [PMID: 22863721 DOI: 10.1016/j.toxlet.2012.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 01/11/2023]
Abstract
The present study was designed to examine the effect of the grape seed proanthocyanidin extract (GSPE) on developing hepatic fibrosis that was induced by thioacetamide (TAA) in mice. Administration of TAA for 9 weeks led to a serious necrosis and apoptosis of the parenchymal cells, which resulted in an accumulation of excessive collagen in the liver and an increase of transformed hepatic stellate cells (HSCs). In addition, the mRNA expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (α-SMA), as the marker of the activated HSCs, and α1-(I)-collagen were all up-regulated significantly when compared with the control. However, combined oral administration of GSPE at 100 mg/kg suppressed the mRNA expression of TGF-β1 and α-SMA, with decreased collagen accumulation as demonstrated by histomorphological evaluation and quantitative RT-PCR. The mRNA expression of the pro-inflammatory factors, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), was remarkably enhanced by TAA treatment. However, their levels displayed a down-regulated trend beyond simultaneous GSPE treatment. Moreover, GSPE administration markedly suppressed lipid peroxidation. In conclusion, as a plant antioxidant, GSPE manifested effective hepatocellular protective action to ameliorate the developing liver fibrosis induced by chronic TAA administration in mice.
Collapse
Affiliation(s)
- Jie Li
- MOE Key Laboratory of Molecular Animal Nutrition and Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. microRNA are Central Players in Anti- and Profibrotic Gene Regulation during Liver Fibrosis. Front Physiol 2012; 3:49. [PMID: 22457651 PMCID: PMC3307137 DOI: 10.3389/fphys.2012.00049] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/23/2012] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miRNA) are small non-coding RNA molecules that posttranscriptionally effect mRNA stability and translation by targeting the 3'-untranslated region (3'-UTR) of various transcripts. Thus, dysregulation of miRNA affects a wide range of cellular processes such as cell proliferation and differentiation involved in organ remodeling processes. Divergent miRNA patterns were observed during chronic liver diseases of various etiologies. Chronic liver diseases result in uncontrolled scar formation ending up in liver fibrosis or even cirrhosis. Since it has been shown that miR-29 dysregulation is involved in synthesis of extracellular matrix proteins, miR-29 is of special interest. The importance of miR-29 in hepatic collagen homeostasis is underlined by in vivo data showing that experimental severe fibrosis is associated with a prominent miR-29 decrease. The loss of miR-29 is due to the response of hepatic stellate cells to exposure to the profibrogenic mediators TGF-β and PDGF-BB. Several putative binding sites for the Smad proteins and the Ap1 complex are located in the miR-29 promoter, which are suggested to mediate miR-29 decrease in fibrosis. Other miRNA are highly increased after profibrogenic stimulation, such as miR-21. miR-21 is transcriptionally upregulated in response to Smad-3 rather than Smad-2 activation after TGF-β stimulation. In addition, TGF-β promotes miR-21 expression by formation of a microprocessor complex containing Smad proteins. Elevated miR-21 may then act as a profibrogenic miRNA by its repression of the TGF-β inhibitory Smad-7 protein.
Collapse
Affiliation(s)
- Andrea Noetel
- Laboratory of Molecular Hepatology, Institute for Pathology, University Hospital of Cologne Cologne, Germany
| | | | | | | | | |
Collapse
|
22
|
Yang J, Zheng J, Wu L, Shi M, Zhang H, Wang X, Xia N, Wang D, Liu X, Yao L, Li Y, Dou K. NDRG2 ameliorates hepatic fibrosis by inhibiting the TGF-β1/Smad pathway and altering the MMP2/TIMP2 ratio in rats. PLoS One 2011. [PMID: 22110735 DOI: 10.1371/journal.pone.0027710]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a worldwide clinical issue. It has been well established that activated hepatic stellate cells (HSCs) are responsible for excessive extracellular matrix (ECM) deposition in chronically damaged livers. The identification of key elements that control HSCs activation will help to further our understanding of liver fibrosis and improve the outcome of clinical treatment. This study demonstrates that N-Myc downstream-regulated gene 2 (NDRG2) is a potential regulator of liver fibrosis as NDRG2 mRNA and protein levels were reduced during HSCs activation. In addition, enhanced NDRG2 expression reduced Smad3 transcription and phosphorylation, which inhibited HSCs activation by blocking the TGF-β1 signal. Moreover, NDRG2 contributed to an increase in the ratio of matrix metalloproteinase 2 (MMP2) to tissue inhibitor of matrix metalloproteinase 2 (TIMP2), which may facilitate the degradation of the ECM. In dimethylnitrosamine (DMN)-induced fibrotic rat livers, adenovirus-mediated NDRG2 overexpression resulted in decreased ECM deposition and improved liver function compared with controls. In conclusion, the present findings indicate that the modulation of NDRG2 is a promising strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiandong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yang J, Zheng J, Wu L, Shi M, Zhang H, Wang X, Xia N, Wang D, Liu X, Yao L, Li Y, Dou K. NDRG2 ameliorates hepatic fibrosis by inhibiting the TGF-β1/Smad pathway and altering the MMP2/TIMP2 ratio in rats. PLoS One 2011; 6:e27710. [PMID: 22110735 PMCID: PMC3218018 DOI: 10.1371/journal.pone.0027710] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/22/2011] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a worldwide clinical issue. It has been well established that activated hepatic stellate cells (HSCs) are responsible for excessive extracellular matrix (ECM) deposition in chronically damaged livers. The identification of key elements that control HSCs activation will help to further our understanding of liver fibrosis and improve the outcome of clinical treatment. This study demonstrates that N-Myc downstream-regulated gene 2 (NDRG2) is a potential regulator of liver fibrosis as NDRG2 mRNA and protein levels were reduced during HSCs activation. In addition, enhanced NDRG2 expression reduced Smad3 transcription and phosphorylation, which inhibited HSCs activation by blocking the TGF-β1 signal. Moreover, NDRG2 contributed to an increase in the ratio of matrix metalloproteinase 2 (MMP2) to tissue inhibitor of matrix metalloproteinase 2 (TIMP2), which may facilitate the degradation of the ECM. In dimethylnitrosamine (DMN)-induced fibrotic rat livers, adenovirus-mediated NDRG2 overexpression resulted in decreased ECM deposition and improved liver function compared with controls. In conclusion, the present findings indicate that the modulation of NDRG2 is a promising strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiandong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.
Collapse
|
25
|
Biliary innate immunity: function and modulation. Mediators Inflamm 2010; 2010. [PMID: 20798866 PMCID: PMC2926654 DOI: 10.1155/2010/373878] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/22/2010] [Indexed: 12/18/2022] Open
Abstract
Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC) and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR) family and recognize pathogen-associated molecular patterns (PAMPs). Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA) is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ), is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Moreover, the epithelial-mesenchymal transition (EMT) of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.
Collapse
|
26
|
Anthony B, Mathieson W, de Castro-Borges W, Allen J. Schistosoma mansoni: egg-induced downregulation of hepatic stellate cell activation and fibrogenesis. Exp Parasitol 2010; 124:409-20. [PMID: 20045695 DOI: 10.1016/j.exppara.2009.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/30/2009] [Accepted: 12/21/2009] [Indexed: 01/06/2023]
Abstract
Eggs of Schistosoma mansoni trapped in human liver can lead to fibrosis. Since liver fibrosis requires activation of hepatic stellate cells (HSC) from a quiescent to a myofibroblastic phenotype, we investigated the effects of S. mansoni eggs on this process using in vitro co-cultures with human HSC and evaluated established biomarkers for activation and fibrosis. HSC demonstrate significantly reduced expression of alpha-smooth muscle actin (p<0.001), connective tissue growth factor (p<0.01) and type I collagen (p<0.001) but significantly increased expression of peroxisome proliferator-activated receptor-gamma (p<0.01). Morphologically, HSC exhibited elongated fine cellular processes and reduced size, increased accumulation of lipid droplets and reduced expression and organization of alpha-smooth muscle actin and F-actin stress fibres. Additionally, schistosome eggs prevented the HSC fibrogenic response to exogenous transforming growth factor-beta. In summary, schistosome eggs blocked fibrogenesis in HSC, a finding which may have implications for our understanding of the fibrotic pathology in S. mansoni infections.
Collapse
Affiliation(s)
- Barrie Anthony
- Centre for Parasitology and Disease, Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK
| | | | | | | |
Collapse
|
27
|
Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv Drug Deliv Rev 2009; 61:497-512. [PMID: 19393271 DOI: 10.1016/j.addr.2009.03.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 03/10/2009] [Indexed: 02/08/2023]
Abstract
Hepatic stellate cell (HSC) activation is a process of cellular transdifferentiation in which, upon liver injury, the quiescent vitamin A storing perisinusoidal HSC is converted into a wound-healing myofibroblast and acquires potent pro-inflammatory and pro-fibrogenic activities. This remarkable phenotypic transformation is underpinned by changes in the expression of a vast number of genes. In this review we survey current knowledge of the transcription factors that either control HSC activation or which regulate specific fibrogenic functions of the activated HSC such as collagen expression, proliferation and resistance to apoptosis.
Collapse
|
28
|
Harada K, Sato Y, Ikeda H, Isse K, Ozaki S, Enomae M, Ohama K, Katayanagi K, Kurumaya H, Matsui A, Nakanuma Y. Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia. J Pathol 2009; 217:654-64. [PMID: 19116990 DOI: 10.1002/path.2488] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Infections of Reoviridae consisting of a double-stranded RNA (dsRNA) genome and the biliary innate immune response to dsRNA are implicated in the aetiopathogenesis of biliary atresia (BA). Epithelial-mesenchymal transition (EMT) has recently been proposed as a mechanism behind the sclerosing cholangitis in BA. We hypothesized that the innate immune response to dsRNA in biliary epithelial cells plays an important role in peribiliary fibrosis via biliary EMT. Experiments using cultured human biliary epithelial cells revealed that stimulation with poly(I : C) (a synthetic analogue of viral dsRNA) increased the expression of basic fibroblast growth factor (bFGF, an EMT-inducer), S100A4 (a mesenchymal marker) and Snail (a transcriptional factor), and decreased that of epithelial markers (biliary-type cytokeratin 19 and E-cadherin) and Bambi (TGF-beta1 pseudoreceptor). The expression of TGF-beta1 (EMT-inducer) and vimentin (a mesenchymal marker) was not affected by poly(I : C). Both EMT-inducers, bFGF and TGF-beta1, evoked a decrease and increase in the expression of the epithelial markers and of vimentin respectively, and the expression of Bambi was down-regulated on stimulation with bFGF. Combined treatment with bFGF and TGF-beta1 quickly and completely induced a transformation of morphology as well as change from epithelial to mesenchymal features in cultured biliary epithelial cells. Immunohistochemistry revealed that biliary epithelial cells lining extrahepatic bile ducts and peribiliary glands in BA frequently show a lack of epithelial markers and an aberrant expression of vimentin. Moreover, the biliary epithelium showing sclerosing cholangitis expressed bFGF accompanied by bFGF-positive mononuclear cells. In conclusion, the EMT may contribute to the histogenesis of sclerosing cholangiopathy, and the biliary innate immune response to dsRNA viruses induces biliary epithelial cells to undergo EMT via the production of bFGF and the increased susceptibility to TGF-beta1 caused by the down-regulation of Bambi expression.
Collapse
Affiliation(s)
- Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 2008; 43:419-28. [PMID: 18600385 DOI: 10.1007/s00535-008-2180-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 02/25/2008] [Indexed: 02/06/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is the dominant event in liver fibrosis. The early events in the organization of HSC activation have been termed initiation. Initiation encompasses rapid changes in gene expression and phenotype that render the cells responsive to cytokines and other local stimuli. Cellular responses following initiation are termed perpetuation, which encompasses those cellular events that amplify the activated phenotype through enhanced growth factor expression and responsiveness. Multiple cells and cytokines play a part in the regulation of HSC activation. HSC activation consists of discrete phenotype responses, mainly proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis and retinoid loss. Currently, antifibrotic therapeutic strategies include inhibition of HSC proliferation or stimulation of HSC apoptosis, downregulation of collagen production or promotion of its degradation, administration of cytokines, and infusion of mesenchymal stem cells. In this review, we summarize the latest advances in our understanding of the mechanisms of HSC activation and possible antifibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Jing-Ting Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Luojia Hill, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
30
|
Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, Ueberham E, Gebhardt R, Kanzler S, Geier A, Breitkopf K, Weng H, Mertens PR. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008; 135:642-59. [PMID: 18602923 DOI: 10.1053/j.gastro.2008.04.038] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 03/09/2008] [Accepted: 04/21/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The profibrogenic role of transforming growth factor (TGF)-beta in liver has mostly been attributed to hepatic stellate cell activation and excess matrix synthesis. Hepatocytes are believed to contribute to increased rates of apoptosis. METHODS Primary hepatocyte outgrowths and AML12 cells were used as an in vitro model to detect TGF-beta effects on the cellular phenotype and expression profile. Furthermore, a transgenic mouse model was used to determine the outcome of hepatocyte-specific Smad7 expression on fibrogenesis following CCl(4)-dependent damage. Samples from patients with chronic liver diseases were assessed for (partial) epithelial-to-mesenchymal transition (EMT) in hepatocytes. RESULTS In primary cell cultures and in vivo, the majority of hepatocytes survive despite activated TGF-beta signaling. These cells display phenotypic changes and express proteins characteristic for (partial) EMT and fibrogenesis. Experimental expression of Smad7 in hepatocytes of mice attenuated TGF-beta signaling and EMT, resulted in less accumulation of interstitial collagens, and improved CCl(4)-provoked liver damage and fibrosis scores compared with controls. CONCLUSIONS The data indicate that hepatocytes undergo TGF-beta-dependent EMT-like phenotypic changes and actively participate in fibrogenesis. Furthermore, ablation of TGF-beta signaling specifically in this cell type is sufficient to blunt the fibrogenic response.
Collapse
Affiliation(s)
- Steven Dooley
- Department of Medicine II, Gastroenterology and Hepatology, University Hospital, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hamzavi J, Ehnert S, Godoy P, Ciuclan L, Weng H, Mertens PR, Heuchel R, Dooley S. Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med 2008; 12:2130-44. [PMID: 18266971 PMCID: PMC4506177 DOI: 10.1111/j.1582-4934.2008.00262.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) signalling is induced in liver as a consequence of damage and contributes to wound healing with transient activation, whereas it mediates fibrogenesis with long-term up-regulation in chronic disease. Smad-dependent TGF-beta effects are blunted by antagonistic Smad7, which is transcriptionally activated as an immediate early response upon initiation of TGF-beta signalling in most cell types, thereby providing negative feedback regulation. Smad7 can be induced by other cytokines, e.g. IFN-gamma, leading to a crosstalk of these signalling pathways. Here we report on a novel mouse strain, denoted S7DeltaE1, with a deletion of exon I from the endogenous smad7 gene. The mice were viable and exhibited normal adult liver architecture. To obtain insight into Smad7-depend-ent protective effects, chronic liver damage was induced in mice by carbon tetrachloride (CCI4) administration. Subsequent treatment, elevated serum liver enzymes indicated enhanced liver damage in mice lacking functional Smad7. CCI4-dependent Smad2 phosphorylation was pronounced in S7DeltaE1 mice and accompanied by increased numbers of alpha-smooth muscle actin positive 'activated' HSCs. There was evidence for matrix accumulation, with elevated collagen deposition as assessed morphometrically in Sirius red stained tissue and confirmed with higher levels of hydroxyproline in S7DeltaE1 mice. In addition, the number of CD43 positive infiltrating lymphocytes as well as of apoptotic hepatocytes was increased. Studies with primary hepatocytes from S7DeltaE1 and wild-type mice indicate that in the absence of functional Smad7 protein, hepatocytes are more sensitive for TGF-beta effects resulting in enhanced cell death. Furthermore, S7DeltaE1 hepatocytes display increased oxidative stress and cell damage in response to CCI4, as measured by reactive oxygen species production, glutathione depletion, lactate dehydrogenase release and lipid peroxidation. Using an ALK-5 inhibitor all investigated CCI4 effects on hepatocytes were blunted, confirming participation of TGF-beta signalling. We conclude that Smad7 mediates a protective effect from adverse TGF-beta signalling in damaged liver, re-iterating its negative regulatory loop on signalling.
Collapse
Affiliation(s)
- Jafar Hamzavi
- Molecular Alcohol Research in Gastroenterology, Department of Medicine II, Faculty of Medicine at Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
33
|
Zhang BJ, Xu D, Guo Y, Ping J, Chen LB, Wang H. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin Exp Pharmacol Physiol 2007; 35:303-9. [PMID: 17973934 DOI: 10.1111/j.1440-1681.2007.04819.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. The aim of the present study was to investigate the effect and mechanism of berberine, an alkaloid extracted from the traditional Chinese medicine coptis, on rat liver fibrosis induced by multiple hepatotoxic factors. 2. Male Wistar rats were separated into five groups, a normal control group, a fibrotic control group and fibrotic groups treated with three different doses of berberine. The fibrotic models were established by introduction of multiple hepatotoxic factors, including CCl(4), ethanol and high cholesterol. Rats in the treatment groups were administered 50, 100 or 200 mg/kg berberine, intragastrically, daily for 4 weeks. Serum levels of alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST), hepatic activity of superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) and hepatic hydroxyproline (Hyp) content were determined. Liver biopsies were obtained for histological and immunohistochemical studies to detect the expressions of alpha-smooth muscle actin (SMA) and transforming growth factor (TGF)-beta1. 3. The results showed that, compared with the fibrotic control group, serum levels of ALT and AST and hepatic content of MDA and Hyp were markedly decreased, but the activity of hepatic SOD was significantly increased in berberine-treated groups in a dose-dependent manner. In addition, histopathological changes, such as steatosis, necrosis and myofibroblast proliferation, were reduced and the expression of a-SMA and TGF-b1 was significantly downregulated in the berberine-treated groups (P < 0.01). 4. These results suggest that berberine could be used to prevent experimental liver fibrosis through regulation of the anti-oxidant system and lipid peroxidation.
Collapse
Affiliation(s)
- Ben-Jian Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
34
|
Shen H, Fan J, Burczynski F, Minuk GY, Cattini P, Gong Y. Increased Smad1 expression and transcriptional activity enhances trans-differentiation of hepatic stellate cells. J Cell Physiol 2007; 212:764-70. [PMID: 17525996 DOI: 10.1002/jcp.21074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Smad1 is a receptor-activated intracellular signaling protein, which mediates signal transduction of bone morphogenetic proteins. Current study investigated the expression and transcriptional activity of Smad1 during hepatic stellate cell (HSC) activation. Rat HSCs were isolated from rats at 1, 2, 3 and 4 days after gavaged with carbon tetrachloride (CCl(4)) or corn oil. RT-PCR, Western blot, gel-shift assay and luciferase assay were employed to examine Smad1 expression and transcriptional activity, respectively. CCl(4)-cirrhotic liver fat-storing cells-8B (CFSC-8B) cells were infected with recombinant adenoviruses of Smad1 and/or Smad1 shRNA. Both mRNA and protein levels of Smad1 were significantly increased at 48 h after gavage of CCl(4). Gel shift assays demonstrated a significant increase in nuclear Smad1 in day 9 HSCs. Transfection of HSCs with Smad1 responsible luciferase indicated an increase in Smad1 transcriptional activity in day 6 HSCs (1.563 +/- 0.229 in day 6 versus 0.785 +/- 0.192 in day 3). When CFSC-8B cells were infected with adenoviruses with Smad1 or Smad1 short hairpin RNA (shRNA), there was an increase or decrease in Smad1 mRNA and protein, respectively. Smooth muscle alpha-actin expression was increased or decreased according to induction or reduction of Smad1. In conclusion, there were significantly increases in Smad1 expression and transcriptional activity during in vivo activation of hepatic stellate cells.
Collapse
Affiliation(s)
- Hong Shen
- Medical Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
35
|
Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 2007; 282:22089-101. [PMID: 17513865 DOI: 10.1074/jbc.m700998200] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a progressive pathologic process that involves deposition of excess extracellular matrix leading to distorted architecture and culminating in cirrhosis. The role of transforming growth factor-beta (TGF-beta) as a key molecule in the development and progression of hepatic fibrosis via the activation of hepatic stellate cells, among other fibroblast populations, is without controversy. We hereby show that TGF-beta1 induces an epithelial-to-mesenchymal transition (EMT) state in mature hepatocytes in vitro. EMT state was marked by significant upregulation of alpha(1)(I) collagen mRNA expression and type I collagen deposition. Similar changes were found in a "normal" mouse hepatocyte cell line (AML12), thus confirming that hepatocytes are capable of EMT changes and type I collagen synthesis. We also show that in hepatocytes in the EMT state, TGF-beta1 induces the snail-1 transcription factor and activates the Smad2/3 pathway. Evidence for a central role of the TGF-beta1/Smad pathway is further supported by the inhibition of EMT by Smad4 silencing using small interference RNA technology. In conclusion, TGF-beta1, a known pro-apoptotic cytokine in mature hepatocytes, is capable of mediating phenotypic changes and plasticity in the form of EMT, resulting in collagen deposition. Our findings support a potentially crucial role for EMT in the development and progression of hepatic fibrogenesis.
Collapse
Affiliation(s)
- Aki Kaimori
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
36
|
Weng H, Mertens PR, Gressner AM, Dooley S. IFN-gamma abrogates profibrogenic TGF-beta signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 2007; 46:295-303. [PMID: 17125875 DOI: 10.1016/j.jhep.2006.09.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/29/2006] [Accepted: 09/09/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS In a randomized open-labeled multicenter trial with patients suffering from chronic HBV infection, we recently identified a benefit of 9-month IFN-gamma treatment resulting in decreased fibrosis scores and a reduced number of alpha-smooth muscle actin-positive hepatic stellate cells (HSCs). Approaches opposing profibrogenic activities of TGF-beta may be amenable in chronic liver disease. According to experimental models, IFN-gamma counteracts several TGF-beta effects. METHODS The crosstalk of IFN-gamma and TGF-beta signaling relevant for fibrogenesis was investigated in primary cultured rat HSCs and a cell line representing activated HSCs. RESULTS In vitro studies with HSCs demonstrate that TGF-beta-dependent activation of (CAGA)9-MLP-Luc, a Smad3/4 responsive reporter construct, was significantly decreased by IFN-gamma, indicating a TGF-beta antagonizing function. IFN-gamma induced the activity of the Smad7 promoter and Smad7 protein expression via STAT-1 signaling. In contrast to TGF-beta, IFN-gamma was able to induce Smad7 expression in activated HSCs providing increased protein levels for at least 12h. In addition, expression of Smad2/3 was reduced by IFN-gamma and activation of Smads2/3 was abrogated. CONCLUSIONS IFN-gamma displays antifibrotic effects in liver cells via STAT-1 phosphorylation, upregulation of Smad7 expression and impaired TGF-beta signaling.
Collapse
Affiliation(s)
- Honglei Weng
- Institute of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Seyhan H, Hamzavi J, Wiercinska E, Gressner AM, Mertens PR, Kopp J, Horch RE, Breitkopf K, Dooley S. Liver fibrogenesis due to cholestasis is associated with increased Smad7 expression and Smad3 signaling. J Cell Mol Med 2007; 10:922-32. [PMID: 17125595 PMCID: PMC3933087 DOI: 10.1111/j.1582-4934.2006.tb00535.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract Background/Aims: Profibrogenic TGF-β signaling in hepatic stellate cells is modulated during transdifferentiation. Strategies to abrogate TGF-β effects provide promising antifibrotic results, however, in vivo data regarding Smad activation during fibrogenesis are scarce. Methods: Here, liver fibrosis was assessed subsequent to bile duct ligation by determining liver enzymes in serum and collagen deposition in liver tissue. Activated hepatic stellate cells were identified by immunohistochemistry and immunoblots for alpha smooth muscle actin. Cellular localization of Smad3 and Smad7 proteins was demonstrated by immunohistochemistry. RTPCR for Smad4 and Smad7 was conducted with total RNA and Northern blot analysis for Smad7 with mRNA. Whole liver lysates were prepared to detect Smad2/3/4 and phospho- Smad2/3 by Western blotting. Results: Cholestasis induces TGF-β signaling via Smad3 in vivo, whereas Smad2 phosphorylation was only marginally increased. Smad4 expression levels were unchanged. Smad7 expression was continuously increasing with duration of cholestasis. Hepatocytes of fibrotic lesions exhibited nuclear staining Smad3. In contrast to this, Smad7 expression was localized to activated hepatic stellate cells. Conclusions: Hepatocytes of damaged liver tissue display increased TGF-β signaling via Smad3. Further, negative feedback regulation of TGF-β signaling by increased Smad7 expression in activated hepatic stellate cells occurs, however does not interfere with fibrogenesis.
Collapse
Affiliation(s)
- H Seyhan
- Department of Plastic and Hand Surgery, University Medical Center ErlangenGermany
| | - J Hamzavi
- Center of Molecular Alcohol Research, II. Medical Clinic, Faculty of Medicine Mannheim, University of HeidelbergGermany
| | - Eliza Wiercinska
- Center of Molecular Alcohol Research, II. Medical Clinic, Faculty of Medicine Mannheim, University of HeidelbergGermany
| | - A M Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital AachenGermany
| | - P R Mertens
- Department of Clinical Immunology and Nephrology, RWTH University Hospital AachenGermany
| | - J Kopp
- Department of Plastic and Hand Surgery, University Medical Center ErlangenGermany
| | - R E Horch
- Department of Plastic and Hand Surgery, University Medical Center ErlangenGermany
| | - Katja Breitkopf
- Center of Molecular Alcohol Research, II. Medical Clinic, Faculty of Medicine Mannheim, University of HeidelbergGermany
| | - S Dooley
- Center of Molecular Alcohol Research, II. Medical Clinic, Faculty of Medicine Mannheim, University of HeidelbergGermany
- * Correspondence to: Steven DOOLEY Department of Medicine II, Gastroenterology and Hepatology, University Hospital, Theodor-Kutzer Ufer 1-3, 68135 Mannheim, Germany. Tel.: 0049-621-383-3768 E-mail:
| |
Collapse
|
38
|
Lechuga CG, Hernández-Nazara ZH, Hernández E, Bustamante M, Desierto G, Cotty A, Dharker N, Choe M, Rojkind M. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1051-61. [PMID: 16990448 DOI: 10.1152/ajpgi.00058.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased expression of PDGF-beta receptors is a landmark of hepatic stellate cell activation and transdifferentiation into myofibroblasts. However, the molecular mechanisms that regulate the fate of the receptor are lacking. Recent studies suggested that N-acetylcysteine enhances the extracellular degradation of PDGF-beta receptor by cathepsin B, thus suggesting that the absence of PDGF-beta receptors in quiescent cells is due to an active process of elimination and not to a lack of expression. In this communication we investigated further molecular mechanisms involved in PDGF-beta receptor elimination and reappearance after incubation with PDGF-BB. We showed that in culture-activated hepatic stellate cells there is no internal protein pool of receptor, that the protein is maximally phosphorylated by 5 min and completely degraded after 1 h by a lysosomal-dependent mechanism. Inhibition of receptor autophosphorylation by tyrphostin 1296 prevented its degradation, but several proteasomal inhibitors had no effect. We also showed that receptor reappearance is time and dose dependent, being more delayed in cells treated with 50 ng/ml (48 h) compared with 10 ng/ml (24 h).
Collapse
Affiliation(s)
- Carmen G Lechuga
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fan J, Shen H, Sun Y, Li P, Burczynski F, Namaka M, Gong Y. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J Cell Physiol 2006; 207:499-505. [PMID: 16447265 DOI: 10.1002/jcp.20593] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the important cytokine involving in cell differentiation especially in bone morphogenesis. Hepatic stellate cells (HSCs) undergo a trans-differentiation during their activation after liver injury. Although it has been demonstrated that BMP2 and BMP4 significantly increased the abundance of smooth muscle alpha actin (alpha-SMA) in cultured HSCs, the expression of BMPs has not been examined during the activation of HSCs. In current study, we documented the expression of BMP4 in bile duct ligation (BDL) rats and HSCs in culture. We have found that the expression of BMP4 was significantly elevated in the liver of BDL rats. The increase in BMP4 protein showed two peaks during 6 weeks after BDL. The expression and phosphorylation of Smad1, ERK1/2 and p38 were also elevated after BDL. Moreover, there was a gradual elevation of BMP4 mRNA abundance during 24 days' in vitro culture of HSCs. Furthermore, BMP4 stimulated phosphorylation of Smad1 and ERK1/2 in HSCs. In conclusion, BMP4 expression was significantly increased in the liver of BDL rats and HSCs in culture. These findings indicate that BMP4 may mediate HSC activation through activation of Smad1 and ERK1/2.
Collapse
Affiliation(s)
- Jianghong Fan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Yu H, Bock O, Bayat A, Ferguson MWJ, Mrowietz U. Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg 2006; 59:221-9. [PMID: 16676428 DOI: 10.1016/j.bjps.2005.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Keloids are benign skin tumours occurring during wound healing in genetically predisposed patients. They are characterised by an abnormal deposition of extracellular matrix components, in particular collagen. There is evidence that transforming growth factor-beta (TGFbeta) is involved in keloid formation. SMAD proteins play a crucial role in TGFbeta signaling and in terminating the TGFbeta signal by a negative feedback loop through SMAD6 and 7. It is unclear how TGFbeta signaling is connected to the pathogenesis of keloids. Therefore, we investigated the expression of SMAD mRNA and proteins in keloids, in normal skin and in normal scars. Dermal fibroblasts were obtained from punch-biopsies of keloids, normal scars and normal skin. Cells were stimulated with TGFbeta1 and the expression of SMAD2, 3, 4, 6 and 7 mRNA was analysed by real time RT-PCR. Protein expression was determined by Western blot analysis. Our data demonstrate a decreased mRNA expression of the inhibitory SMAD6 and 7 in keloid fibroblasts as compared to normal scar (p<0.01) and normal skin fibroblasts (p<0.05). SMAD3 mRNA was found to be lower in keloids (p<0.01) and in normal scar fibroblasts (p<0.001) compared to normal skin fibroblasts. Our data showed for the first time a decreased expression of the inhibitory SMAD6 and SMAD7 in keloid fibroblasts. This could explain why TGFbeta signaling is not terminated in keloids leading to overexpression of extracellularmatrix in keloids. These data support a possible role of SMAD6 and 7 in the pathogenesis of keloids.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Dermatology, University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
The prospect of reversing hepatic fibrosis has generated great interest now that basic science advances are being translated into promising new antifibrotic therapies. It is appropriate to recognize both the historical advances that created the framework for these successes, and the important role that Hepatology has played in disseminating them. A sense of urgency underlies this effort as the epidemics of HCV and NASH are becoming associated with advancing fibrosis. To maintain progress and minimize confusion among investigators and clinicians it is essential to standardize terms referring to fibrosis 'reversal' and 'regression.' There must also be rapid optimization of non-invasive markers of fibrosis to relieve this current bottleneck to conducting clinical trials. Progress in identifying genetic determinants of fibrosis could further refine patient selection for clinical trials and shorten their duration, as well as unearthing new directions of scientific inquiry. Realistic expectations for successful anti-fibrotic therapies reflect solid evidence of fibrosis regression in patients treated effectively for viral liver disease, as well as growing clarity in the understanding mechanisms of extracellular matrix production and degradation. The paradigms of stellate cell activation and apoptosis remain valuable frameworks for understanding pathways of hepatic fibrogenesis and fibrosis regression, respectively. Continued progress is essential in order to identify the determinants and dynamics of fibrosis reversibility, to discover additional targets for anti-fibrotic therapy, and to develop customized multi-drug regimens. These advances are sure to be captured in the next 25 years by Hepatology , and to profoundly impact the prognosis of patients with chronic liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
42
|
Chen YW, Li DG, Wu JX, Chen YW, Lu HM. Tetrandrine inhibits activation of rat hepatic stellate cells stimulated by transforming growth factor-beta in vitro via up-regulation of Smad 7. JOURNAL OF ETHNOPHARMACOLOGY 2005; 100:299-305. [PMID: 15905052 DOI: 10.1016/j.jep.2005.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/02/2005] [Accepted: 03/10/2005] [Indexed: 05/02/2023]
Abstract
Tetrandrine is a bisbenzylisoquinoline alkaloid derived from the root of a Chinese herbal medicine Stephania tetrandra S. Moore, which has been used traditionally for the treatment of hepatofibrogenic disease in China for several decades. In the present study, the inhibitory effects of tetrandrine lower concentrations (0.25, 0.5, 1, 2 mg/L) on culture-activation and transforming growth factor-beta(1) (TGF-beta(1))-stimulated activation of quiescent rat hepatic stellate cells (HSCs) in vitro were assessed, and the possible relations between the underlying mechanism of these effects and TGF-beta signaling via its receptors were investigated. As shown by the examination of alpha-SMA using immunocytochemical staining or Western blot, tetrandrine inhibited both culture-activation and TGF-beta(1)-stimulated activation of HSCs. Further investigations revealed that, in this process, TGF-beta(1) mRNA expression was suppressed significantly in contrast to an up-regulation of Smad 7, while the expressions of type I and type II TGF-beta(1) receptors and Smad 3 mRNA were insignificantly changed by tetrandrine. These results suggest that tetrandrine at lower concentrations has a significant inhibiting effect on culture-activation and TGF-beta(1)-stimulated activation of rat HSCs, and that it may be due to an up-regulation of Smad 7 which in turn blocks TGF-beta(1) expression and its downstream signaling.
Collapse
Affiliation(s)
- Yuan-wen Chen
- Digestive Disease Laboratory, Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, PR China.
| | | | | | | | | |
Collapse
|
43
|
Chen YW, Wu JX, Chen YW, Li DG, Lu HM. Tetrandrine inhibits activation of rat hepatic stellate cells in vitro via transforming growth factor-β signaling. World J Gastroenterol 2005; 11:2922-6. [PMID: 15902729 PMCID: PMC4305660 DOI: 10.3748/wjg.v11.i19.2922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of various concentrations of tetrandrine on activation of quiescent rat hepatic stellate cells (HSCs) and transforming growth factor-β (TGF-β) signaling in vitro.
METHODS: HSCs were isolated from rats by in situ perfusion of liver and 18% Nycodenz gradient centrifugation, and primarily cultured on uncoated plastic plates for 24 h with DMEM containing 20% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, the HSCs were cultured in 2% FBS/DMEM with tetrandrine (0.25, 0.5, 1, 2 mg/L, respectively). Cell morphological features were observed under an inverted microscope, smooth muscle-α-actin (α-SMA) was detected by immunocytochemistry and image analysis system, laminin (LN) and type III procollagen (PCIII) in supernatants were determined by radioimmunoassay. TGF-β1 mRNA, Smad 7 mRNA and Smad 7 protein were analyzed with RT-PCR and Western blotting, respectively.
RESULTS: Tetrandrine at the concentrations of 0.25-2 mg/L prevented morphological transformation of HSC from the quiescent state to the activated one, while α-SMA, LN and PCIII expressions were inhibited. As estimated by gray values, the expression of α-SMA in tetrandrine groups (0.25, 0.5, 1, 2 mg/L) was reduced from 21.3% to 42.2% (control: 0.67, tetrandrine groups: 0.82, 0.85, 0.96, or 0.96, respectively, which were statistically different from the control, P<0.01), and the difference was more significant in tetrandrine at 1 and 2 mg/L. The content of LN in supernatants was significantly decreased in tetrandrine groups to 58.5%, 69.1%, 65.8% or 60.0% that of the control respectively, and that of PCIII to 84.6%, 81.5%, 75.7% or 80.7% respectively (P<0.05 vs control), with no significant difference among tetrandrine groups. RT-PCR showed that TGF-β1 mRNA expression was reduced by tetrandrine treatments from 56.56% to 87.90% in comparison with the control, while Smad 7 mRNA was increased 1.4-4.8 times. The TGF-β1 mRNA and Smad 7 mRNA expression was in a significant negative correlation (r = -0.755, P<0.01), and both were significantly correlated with α-SMA protein expression (r = -0.938, P<0.01; r = 0.938, P<0.01, respectively). The up-regulation of Smad 7 protein by tetrandrine (1 mg/L) was confirmed by Western blotting as well.
CONCLUSION: Tetrandrine has a direct inhibiting effect on the activation of rat HSCs in culture. It up-regulates the expression of Smad 7 which in turn blocks TGF-β1 expression and signaling.
Collapse
Affiliation(s)
- Yuan-Wen Chen
- Digestive Disease Laboratory, Xinhua Hospital, Shanghai Second Medical University, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
44
|
Bolkenius U, Hahn D, Gressner AM, Breitkopf K, Dooley S, Wickert L. Glucocorticoids decrease the bioavailability of TGF-beta which leads to a reduced TGF-beta signaling in hepatic stellate cells. Biochem Biophys Res Commun 2005; 325:1264-70. [PMID: 15555563 DOI: 10.1016/j.bbrc.2004.10.164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Indexed: 01/03/2023]
Abstract
Glucocorticoids bound to their receptors transmit information, which regulates numerous physiological and pathophysiological responses, amongst others glucose metabolism, wound healing, inflammation, and stress, either directly as transcription factors by binding DNA elements of target genes or indirectly by protein-protein interactions with other transcription factors. TGF-beta, a key factor in activation of hepatic stellate cells (HSC), induces production of extracellular matrix, this being a prerequisite for the development of liver fibrosis. Glucocorticoids and their receptors may provide a crosstalk with the TGF-beta-Smad signaling pathway by antagonizing TGF-beta effects. We studied the influence of glucocorticoids on the TGF-beta isoform and Smad mRNA expression, TGF-beta secretion, and signaling in activated HSC using gene-specific real-time PCR, ELISA, and transfection techniques. Dexamethasone treatment reduces TGF-beta mRNA transcription in a time-dependent manner. Activated HSC produce TGF-beta and secrete it into the cell culture medium. After dexamethasone treatment, TGF-beta secretion into the medium is reduced dose-dependently but restorable by mifepristone. Further, we found that reduced secretion of endogenous TGF-beta is accompanied by a reduced TGF-beta signal. Additionally, reporter gene analysis after adenoviral infection with a recombinant virus encoding a Smad-binding-element showed that TGF-beta-Smad signaling is significantly down-regulated by dexamethasone in primary HSC and CFSC, a HSC related cell line. Our data suggest that glucocorticoids inhibit TGF-beta expression, prevent TGF-beta from efficient secretion, and finally lead to reduced TGF-beta signaling in primary HSC.
Collapse
Affiliation(s)
- Ursula Bolkenius
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Alcohol abuse is a major cause of liver fibrosis and cirrhosis in developed countries. Before alcoholic liver fibrosis becomes evident, the liver undergoes several stages of alcoholic liver disease including steatosis and steatohepatitis. Although the main mechanisms of fibrogenesis are independent of the etiology of liver injury, alcoholic liver fibrosis is distinctively characterized by a pronounced inflammatory response due to elevated gut-derived endotoxin plasma levels, an augmented generation of oxidative stress with pericentral hepatic hypoxia and the formation of cell-toxic and profibrogenic ethanol metabolites (e.g. acetaldehyde or lipid oxidation products). These factors, based on a complex network of cytokine actions, together result in increased hepatocellular damage and activation of hepatic stellate cells, the key cell type of liver fibrogenesis. Although to date removal of the causative agent, i.e. alcohol, still represents the most effective intervention to prevent the manifestation of alcoholic liver disease, sophisticated molecular approaches are underway, aiming to specifically blunt profibrogenic signaling pathways in liver cells or specifically induce cell death in activated hepatic stellate cells to decrease the scarring of the liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
46
|
|
47
|
Kharbanda KK, Rogers DD, Wyatt TA, Sorrell MF, Tuma DJ. Transforming growth factor-beta induces contraction of activated hepatic stellate cells. J Hepatol 2004; 41:60-6. [PMID: 15246209 DOI: 10.1016/j.jhep.2004.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 03/29/2004] [Accepted: 03/31/2004] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIMS Transforming growth factor-beta (TGF-beta) is a cytokine produced in abundance during liver injury. Recognizing the prominent roles that hepatic stellate cells (HSCs) and TGF-beta play in portal hypertension and fibrogenesis, respectively, we sought to evaluate the effect of TGF-beta on the contractility of activated HSCs. METHODS Spontaneous immortalized cell lines of HSC origin were used in this study. Cells were grown in three-dimensional collagen gel lattice, transferred to 60 mm dishes and exposed to varying concentrations of TGF-beta1 in serum-free medium at 37 degrees C for up to 120 h. The area of the floating gels was measured using a Fluor S-MultiImager (Biorad), the cellular smooth muscle-alpha actin (SMA) content quantified and PKC activation studies conducted. RESULTS TGF-beta1 induced a time- and dose-dependent decrease in lattice area up to 40% of control (P<0.05) that reflects the contraction of activated HSCs. This induced contraction was associated with increases in SMA content (3-fold, P<0.05) and PKC activation (5-fold, P<0.05) in these cells. Furthermore, pre-incubating with a PKC--specific inhibitor completely abrogated the TGF-beta-induced contraction. CONCLUSIONS TGF-beta induces contraction of activated HSCs via an increase in SMA content and a PKC--mediated pathway.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Department of Veterans Affairs Medical Center, VA Alcohol Research Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, PO Box 1123, Mount Sinai School of Medicine, 1425 Madison Ave Room 1170F, New York, NY 10029, USA.
| |
Collapse
|
49
|
Shen H, Huang G, Hadi M, Choy P, Zhang M, Minuk GY, Chen Y, Gong Y. Transforming growth factor-beta1 downregulation of Smad1 gene expression in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G539-46. [PMID: 12791600 DOI: 10.1152/ajpgi.00436.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Smads are intracellular signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-beta significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-beta1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-beta1 significantly inhibits the expression of the Smad1 gene.
Collapse
Affiliation(s)
- Hong Shen
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. ARTHRITIS AND RHEUMATISM 2003; 48:1964-78. [PMID: 12847691 DOI: 10.1002/art.11157] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Scleroderma is characterized by excessive synthesis and accumulation of matrix proteins in lesional tissues. Transforming growth factor beta (TGFbeta) plays a central role in the pathogenesis of fibrosis by inducing and sustaining activation of fibroblasts; however, the underlying mechanisms are poorly understood. We undertook this study to examine the expression and function of SMADs, recently characterized intracellular effectors of TGFbeta signaling, in scleroderma fibroblasts. METHODS Primary dermal fibroblasts obtained from 14 patients with scleroderma and from 4 healthy adult volunteers were studied. Northern analysis was used to determine the expression of endogenous SMAD messenger RNA (mRNA), and Western analysis was used to determine SMAD protein expression. Intracellular compartmentalization of cellular SMAD proteins in the presence and absence of TGFbeta was studied by antibody-mediated immunofluorescence confocal microscopy. The effect of TGFbeta blockade on SMAD subcellular distribution was determined using anti-TGFbeta antibodies as well as a dominant-negative TGFbeta receptor type II (TGFbetaRII) vector to disrupt TGFbeta responses. SMAD-regulated luciferase reporter expression was examined to investigate the potential functional significance of activation and nuclear accumulation of endogenous SMADs in scleroderma fibroblasts. RESULTS Protein and mRNA levels of SMAD3, but not of SMAD4 or SMAD7, were variably elevated in scleroderma fibroblasts compared with those from healthy controls. In sharp contrast to control fibroblasts, which displayed predominantly cytoplasmic localization of SMAD3/4 in the absence of exogenous TGFbeta, in scleroderma fibroblasts SMAD3 and SMAD4 consistently showed elevated nuclear localization. Furthermore, phosphorylated SMAD2/3 levels were elevated and nuclear localization of phosphorylated SMAD2/3 was increased, suggesting activation of the SMAD pathway in scleroderma fibroblasts. Blockade of autocrine TGFbeta signaling with antibodies or by expression of dominant-negative TGFbetaRII failed to normalize SMAD subcellular distribution, suggesting that elevated nuclear SMAD import was due to alterations downstream of the TGFbeta receptors. The activity of a SMAD-responsive minimal promoter-reporter construct was enhanced in transiently transfected scleroderma fibroblasts. CONCLUSION This study is the first to demonstrate apparently ligand-independent constitutive activation of the intracellular TGFbeta/SMAD signaling axis in scleroderma fibroblasts. SMAD signaling may be a mechanism contributing to the characteristic phenotype of scleroderma fibroblasts and playing a role in the pathogenesis of fibrosis.
Collapse
Affiliation(s)
- Yasuji Mori
- University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA
| | | | | |
Collapse
|