1
|
Li YC, Lin BH, Murakami M, Wu YS, Hung TH, Chen CC, Ambudkar SV, Wu CP. Vodobatinib overcomes cancer multidrug resistance by attenuating the drug efflux function of ABCB1 and ABCG2. Eur J Pharmacol 2025; 988:177231. [PMID: 39725134 DOI: 10.1016/j.ejphar.2024.177231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) remains a significant obstacle in cancer treatment, primarily attributable to the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2 within cancer cells. These transporters actively diminish the effectiveness of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux, thereby reducing intracellular drug accumulation. Given the absence of approved treatments for multidrug-resistant cancers and the established benefits of combining tyrosine kinase inhibitors (TKIs) with conventional anticancer drugs, we investigate the potential of vodobatinib, a potent c-Abl TKI presently in clinical trials, to restore sensitivity to chemotherapeutic agents in multidrug-resistant cancer cells overexpressing ABCB1 and ABCG2. Results indicate that vodobatinib, administered at sub-toxic concentrations, effectively restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. Moreover, vodobatinib enhances drug-induced apoptosis in these cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, while maintaining their expression levels. Moreover, we found that while vodobatinib enhances the ATPase activity of ABCB1 and ABCG2, the overexpression of these transporters does not induce resistance to vodobatinib. These results strongly suggest that increased levels of ABCB1 or ABCG2 are unlikely to play a significant role in the development of resistance to vodobatinib in cancer patients. Overall, our findings unveil an additional pharmacological facet of vodobatinib against ABCB1 and ABCG2 activity, suggesting its potential incorporation into combination therapy for a specific subset of patients with tumors characterized by high ABCB1 or ABCG2 levels. Further investigation is warranted to fully elucidate the clinical implications of this therapeutic approach.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
2
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
3
|
da Silva Zanzarini I, Henrique Kita D, Scheiffer G, Karoline Dos Santos K, de Paula Dutra J, Augusto Pastore M, Gomes de Moraes Rego F, Picheth G, Ambudkar SV, Pulvirenti L, Cardullo N, Rotuno Moure V, Muccilli V, Tringali C, Valdameri G. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024; 146:107283. [PMID: 38513324 PMCID: PMC11069345 DOI: 10.1016/j.bioorg.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.
Collapse
Affiliation(s)
- Isadora da Silva Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Kelly Karoline Dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Matteo Augusto Pastore
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
4
|
Li YC, Hsiao SH, Murakami M, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV, Wu CP. Epidermal Growth Factor Receptor Inhibitor Mobocertinib Resensitizes Multidrug-Resistant Cancer Cells by Attenuating the Human ATP-Binding Cassette Subfamily B Member 1 and Subfamily G Member 2. ACS Pharmacol Transl Sci 2024; 7:161-175. [PMID: 38230272 PMCID: PMC10789147 DOI: 10.1021/acsptsci.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
ATP-binding cassette (ABC) transporters, notably ABCB1 (P-glycoprotein) and ABCG2, play a crucial role in the development of multidrug resistance (MDR) during the administration of chemotherapy for cancer patients. With a lack of approved treatments for addressing multidrug-resistant cancers, MDR remains a substantial challenge to the effective management of cancer. Rather than focusing on developing novel synthetic inhibitors, a promising approach to combat MDR involves repurposing approved therapeutic agents to enhance the sensitivity to cytotoxic antiproliferative drugs of multidrug-resistant cancer cells with high expression of ABCB1 or ABCG2. In this investigation, we observed a substantial reversal of MDR conferred by ABCB1 and ABCG2 in multidrug-resistant cancer cells through the use of mobocertinib, an approved third-generation inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. Mobocertinib demonstrated the ability to hinder drug transport function without causing changes in protein expression. The interactions between mobocertinib and ABCB1, as well as ABCG2, were validated through ATPase assays. Furthermore, in silico docking simulations were utilized to substantiate the binding of mobocertinib within the drug-binding pockets of both ABCB1 and ABCG2. We conclude that further testing of mobocertinib in combination therapy is warranted for patients with tumors expressing elevated levels of the ABC drug transporters ABCB1 and ABCG2.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sung-Han Hsiao
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Yang-Hui Huang
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Medicine, College of Medicine, Chang
Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Keelung Chang
Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department
of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh. V. Ambudkar
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, United States
| | - Chung-Pu Wu
- Graduate
Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Chang
Gung Memorial Hospital, Taipei 10507, Taiwan
- Department
of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular
Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Wu CP, Murakami M, Li YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Imperatorin Restores Chemosensitivity of Multidrug-Resistant Cancer Cells by Antagonizing ABCG2-Mediated Drug Transport. Pharmaceuticals (Basel) 2023; 16:1595. [PMID: 38004460 PMCID: PMC10674403 DOI: 10.3390/ph16111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The high expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the emergence of multidrug resistance (MDR) in individuals afflicted with either solid tumors or blood cancers. MDR poses a major impediment in the realm of clinical cancer chemotherapy. Recently, substantial endeavors have been dedicated to identifying bioactive compounds isolated from nature capable of counteracting ABCG2-mediated MDR in cancer cells. Imperatorin, a natural coumarin derivative renowned for its diverse pharmacological properties, has not previously been explored for its impact on cancer drug resistance. This study investigates the chemosensitizing potential of imperatorin in ABCG2-overexpressing cancer cells. Experimental results reveal that at sub-toxic concentrations, imperatorin significantly antagonizes the activity of ABCG2 and reverses ABCG2-mediated MDR in a concentration-dependent manner. Furthermore, biochemical data and in silico analysis of imperatorin docking to the inward-open conformation of human ABCG2 indicate that imperatorin directly interacts with multiple residues situated within the transmembrane substrate-binding pocket of ABCG2. Taken together, these results furnish substantiation that imperatorin holds promise for further evaluation as a potent inhibitor of ABCG2, warranting exploration in combination drug therapy to enhance the effectiveness of therapeutic agents for patients afflicted with tumors that exhibit high levels of ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-C.L.); (Y.-H.H.)
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
7
|
Wu CP, Li YC, Murakami M, Hsiao SH, Lee YC, Huang YH, Chang YT, Hung TH, Wu YS, Ambudkar SV. Furmonertinib, a Third-Generation EGFR Tyrosine Kinase Inhibitor, Overcomes Multidrug Resistance through Inhibiting ABCB1 and ABCG2 in Cancer Cells. Int J Mol Sci 2023; 24:13972. [PMID: 37762275 PMCID: PMC10531071 DOI: 10.3390/ijms241813972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
ATP-binding cassette transporters, including ABCB1 (P-glycoprotein) and ABCG2 (BCRP/MXR/ABCP), are pivotal in multidrug resistance (MDR) development in cancer patients undergoing conventional chemotherapy. The absence of approved therapeutic agents for multidrug-resistant cancers presents a significant challenge in effectively treating cancer. Researchers propose repurposing existing drugs to sensitize multidrug-resistant cancer cells, which overexpress ABCB1 or ABCG2, to conventional anticancer drugs. The goal of this study is to assess whether furmonertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor overcomes drug resistance mediated by ABCB1 and ABCG2 transporters. Furmonertinib stands out due to its ability to inhibit drug transport without affecting protein expression. The discovery of this characteristic was validated through ATPase assays, which revealed interactions between furmonertinib and ABCB1/ABCG2. Additionally, in silico docking of furmonertinib offered insights into potential interaction sites within the drug-binding pockets of ABCB1 and ABCG2, providing a better understanding of the underlying mechanisms responsible for the reversal of MDR by this repurposed drug. Given the encouraging results, we propose that furmonertinib should be explored as a potential candidate for combination therapy in patients with tumors that have high levels of ABCB1 and/or ABCG2. This combination therapy holds the potential to enhance the effectiveness of conventional anticancer drugs and presents a promising strategy for overcoming MDR in cancer treatment.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Chieh Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
9
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
10
|
Gyöngy Z, Mocsár G, Hegedűs É, Stockner T, Ritter Z, Homolya L, Schamberger A, Orbán TI, Remenyik J, Szakacs G, Goda K. Nucleotide binding is the critical regulator of ABCG2 conformational transitions. eLife 2023; 12:83976. [PMID: 36763413 PMCID: PMC9917445 DOI: 10.7554/elife.83976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.
Collapse
Affiliation(s)
- Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Éva Hegedűs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary,Doctoral School of Molecular Cell and Immune Biology, University of DebrecenDebrecenHungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecenHungary
| | - Gergely Szakacs
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary,Institute of Cancer Research, Medical University of ViennaViennaAustria
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
11
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
12
|
Nwabufo CK. Relevance of ABC Transporters in Drug Development. Curr Drug Metab 2022; 23:434-446. [PMID: 35726814 DOI: 10.2174/1389200223666220621113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper provides a description of the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters are provided.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Interaction of crown ethers with the ABCG2 transporter and their implication for multidrug resistance reversal. Histochem Cell Biol 2022; 158:261-277. [PMID: 35648291 DOI: 10.1007/s00418-022-02106-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 02/03/2023]
Abstract
Overexpression of ABC transporters, such as ABCB1 and ABCG2, plays an important role in mediating multidrug resistance (MDR) in cancer. This feature is also attributed to a subpopulation of cancer stem cells (CSCs), having enhanced tumourigenic potential. ABCG2 is specifically associated with the CSC phenotype, making it a valuable target for eliminating aggressive and resistant cells. Several natural and synthetic ionophores have been discovered as CSC-selective drugs that may also have MDR-reversing ability, whereas their interaction with ABCG2 has not yet been explored. We previously reported the biological activities, including ABCB1 inhibition, of a group of adamantane-substituted diaza-18-crown-6 (DAC) compounds that possess ionophore capabilities. In this study, we investigated the mechanism of ABCG2-inhibitory activity of DAC compounds and the natural ionophores salinomycin, monensin and nigericin. We used a series of functional assays, including real-time microscopic analysis of ABCG2-mediated fluorescent substrate transport in cells, and docking studies to provide comparative aspects for the transporter-compound interactions and their role in restoring chemosensitivity. We found that natural ionophores did not inhibit ABCG2, suggesting that their CSC selectivity is likely mediated by other mechanisms. In contrast, DACs with amide linkage in the side arms demonstrated noteworthy ABCG2-inhibitory activity, with DAC-3Amide proving to be the most potent. This compound induced conformational changes of the transporter and likely binds to both Cavity 1 and the NBD-TMD interface. DAC-3Amide reversed ABCG2-mediated MDR in model cells, without affecting ABCG2 expression or localization. These results pave the way for the development of new crown ether compounds with improved ABCG2-inhibitory properties.
Collapse
|
14
|
Wu CP, Murakami M, Wu YS, Lin CL, Li YQ, Huang YH, Hung TH, Ambudkar SV. The multi-targeted tyrosine kinase inhibitor SKLB610 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biomed Pharmacother 2022; 149:112922. [PMID: 36068781 PMCID: PMC10506422 DOI: 10.1016/j.biopha.2022.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein) or ABCG2 (BCRP/MXR/ABCP) in cancer cells is frequently associated with the development of multidrug resistance (MDR) in cancer patients, which remains a major obstacle to effective cancer treatment. By utilizing energy derived from ATP hydrolysis, both transporters have been shown to reduce the chemosensitivity of cancer cells by actively effluxing cytotoxic anticancer drugs out of cancer cells. Knowing that there are presently no approved drugs or other therapeutics for the treatment of multidrug-resistant cancers, in recent years, studies have investigated the repurposing of tyrosine kinase inhibitors (TKIs) to act as agents against MDR mediated by ABCB1 and/or ABCG2. SKLB610 is a multi-targeted TKI with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor 2 (FGFR2). In this study, we investigate the interaction of SKLB610 with ABCB1 and ABCG2. We discovered that neither ABCB1 nor ABCG2 confers resistance to SKLB610, but SKLB610 selectively sensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer agents in a concentration-dependent manner. Our data indicate that SKLB610 reverses ABCG2-mediated MDR by attenuating the drug-efflux function of ABCG2 without affecting its total cell expression. These findings are further supported by results of SKLB610-stimulated ABCG2 ATPase activity and in silico docking of SKLB610 in the drug-binding pocket of ABCG2. In summary, we reveal the potential of SKLB610 to overcome resistance to cytotoxic anticancer drugs, which offers an additional treatment option for patients with multidrug-resistant cancers and warrants further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chun-Ling Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
15
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
16
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
MicroRNAs in Pancreatic Cancer and Chemoresistance. Pancreas 2021; 50:1334-1342. [PMID: 35041330 DOI: 10.1097/mpa.0000000000001934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading malignancies affecting human health, largely because of the development of resistance to chemotherapy/radiotherapy. There are many mechanisms that mediate the development of drug resistance, such as the transport of antineoplastic agents into cells, shifts in energy metabolism and environment, antineoplastic agent-induced DNA damage, and genetic mutations. MicroRNAs are short, noncoding RNAs that are 20 to 24 nucleotides in length and serve several biological functions. They bind to the 3'-untranslated regions of target genes and induce target degradation or translational inhibition. MicroRNAs can regulate several target genes and mediate PDAC chemotherapy/radiotherapy resistance. The detection of novel microRNAs would not only reveal the molecular mechanisms of PDAC and resistance to chemotherapy/radiotherapy but also provide new approaches to PDAC therapy. MicroRNAs are thus potential therapeutic targets for PDAC and might be essential in uncovering new mechanisms of the disease.
Collapse
|
18
|
Zattoni IF, Kronenberger T, Kita DH, Guanaes LD, Guimarães MM, de Oliveira Prado L, Ziasch M, Vesga LC, Gomes de Moraes Rego F, Picheth G, Gonçalves MB, Noseda MD, Ducatti DRB, Poso A, Robey RW, Ambudkar SV, Moure VR, Gonçalves AG, Valdameri G. A new porphyrin as selective substrate-based inhibitor of breast cancer resistance protein (BCRP/ABCG2). Chem Biol Interact 2021; 351:109718. [PMID: 34717915 DOI: 10.1016/j.cbi.2021.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
The ABCG2 transporter plays a pivotal role in multidrug resistance, however, no clinical trial using specific ABCG2 inhibitors have been successful. Although ABC transporters actively extrude a wide variety of substrates, photodynamic therapeutic agents with porphyrinic scaffolds are exclusively transported by ABCG2. In this work, we describe for the first time a porphyrin derivative (4B) inhibitor of ABCG2 and capable to overcome multidrug resistance in vitro. The inhibition was time-dependent and 4B was not itself transported by ABCG2. Independently of the substrate, the porphyrin 4B showed an IC50 value of 1.6 μM and a mixed type of inhibition. This compound inhibited the ATPase activity and increased the binding of the conformational-sensitive antibody 5D3. A thermostability assay confirmed allosteric protein changes triggered by the porphyrin. Long-timescale molecular dynamics simulations revealed a different behavior between the ABCG2 porphyrinic substrate pheophorbide a and the porphyrin 4B. Pheophorbide a was able to bind in three different protein sites but 4B showed one binding conformation with a strong ionic interaction with GLU446. The inhibition was selective toward ABCG2, since no inhibition was observed for P-glycoprotein and MRP1. Finally, this compound successfully chemosensitized cells that overexpress ABCG2. These findings reinforce that substrates may be a privileged source of chemical scaffolds for identification of new inhibitors of multidrug resistance-linked ABC transporters.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Thales Kronenberger
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Melanie Ziasch
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Luis C Vesga
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Research Group in Biochemistry and Microbiology (GIBIM), School of Chemistry, Industrial University of Santander, A.A. 678, Bucaramanga, Colombia; Research Group on Organic Compounds of Medicinal Interest (CODEIM), Technological Park of Guatiguara, Industrial University of Santander, A. A. 678, Piedecuesta, Colombia
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, 80230-901 Curitiba, Parana, Brazil
| | - Miguel D Noseda
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Diogo R B Ducatti
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
19
|
Investigating Intestinal Transporter Involvement in Rivaroxaban Disposition through Examination of Changes in Absorption. Pharm Res 2021; 38:795-801. [PMID: 33847849 DOI: 10.1007/s11095-021-03039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE The involvement of the intestinally expressed xenobiotic transporters P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) have been implicated in rivaroxaban disposition based on in vitro studies, similar to what had previously been proposed for apixaban. We recently showed that these efflux transporters were not clinically relevant for apixaban disposition and examine here their relevance for this second Factor Xa inhibitor. METHODS Using recently published methodologies to discern metabolic- from transporter- mediated drug interactions, a critical evaluation was undertaken of 9 rivaroxaban studies reporting 12 DDIs, one study of food effects and one study of hepatic function. RESULTS Rationale examination of these clinical studies using basic pharmacokinetic theory finds little support for the clinical significance of intestinal efflux transporters in rivaroxaban disposition. Drug-drug interactions are most likely adequately predicted based on the level of CYP 3A metabolism. CONCLUSION These analyses indicate that inhibition of efflux transporters appears to have negligible, clinically insignificant effects on the rivaroxaban absorption process, which is consistent with the concern that predictions based on in vitro measures may not translate to a clinically relevant interaction in vivo. We emphasize the need to evaluate gastric emptying, dissolution and other processes related to absorption when using MAT changes to indicate efflux transporter inhibition.
Collapse
|
20
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
21
|
Bartos Z, Homolya L. Identification of Specific Trafficking Defects of Naturally Occurring Variants of the Human ABCG2 Transporter. Front Cell Dev Biol 2021; 9:615729. [PMID: 33634118 PMCID: PMC7900420 DOI: 10.3389/fcell.2021.615729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Proper targeting of the urate and xenobiotic transporter ATP-binding transporter subfamily G member 2 (ABCG2) to the plasma membrane (PM) is essential for its normal function. The naturally occurring Q141K and M71V polymorphisms in ABCG2, associated with gout and hyperuricemia, affect the cellular routing of the transporter, rather than its transport function. The cellular localization of ABCG2 variants was formerly studied by immunolabeling, which provides information only on the steady-state distribution of the protein, leaving the dynamics of its cellular routing unexplored. In the present study, we assessed in detail the trafficking of the wild-type, M71V-, and Q141K-ABCG2 variants from the endoplasmic reticulum (ER) to the cell surface using a dynamic approach, the so-called Retention Using Selective Hooks (RUSH) system. This method also allowed us to study the kinetics of glycosylation of these variants. We found that the fraction of Q141K- and M71V-ABCG2 that passes the ER quality control system is only partially targeted to the PM; a subfraction is immobile and retained in the ER. Surprisingly, the transit of these variants through the Golgi apparatus (either the appearance or the exit) was unaffected; however, their PM delivery beyond the Golgi was delayed. In addition to identifying the specific defects in the trafficking of these ABCG2 variants, our study provides a novel experimental tool for studying the effect of drugs that potentially promote the cell surface delivery of mutant or polymorphic ABCG2 variants with impaired trafficking.
Collapse
Affiliation(s)
- Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| |
Collapse
|
22
|
Kita DH, Guragossian N, Zattoni IF, Moure VR, Rego FGDM, Lusvarghi S, Moulenat T, Belhani B, Picheth G, Bouacida S, Bouaziz Z, Marminon C, Berredjem M, Jose J, Gonçalves MB, Ambudkar SV, Valdameri G, Le Borgne M. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci Rep 2021; 11:1788. [PMID: 33469044 PMCID: PMC7815716 DOI: 10.1038/s41598-020-79892-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moulenat
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Billel Belhani
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Sofiane Bouacida
- Département Sciences de la Matière, Faculté des Sciences exactes et Sciences de la nature et de la vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria.,Research Unit for Chemistry of the Environment and Molecular Structural, University of Constantine 1, Constantine, Algeria
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, PR, 80230-901, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil. .,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France. .,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.
| |
Collapse
|
23
|
Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, Sarkadi B, Özvegy-Laczka C. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13:pharmaceutics13010081. [PMID: 33435273 PMCID: PMC7827085 DOI: 10.3390/pharmaceutics13010081] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Csilla Ambrus
- SOLVO Biotechnology, Irinyi József Street 4-20, 1117 Budapest, Hungary;
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
- Correspondence: (B.S.); (C.Ö.-L.)
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Correspondence: (B.S.); (C.Ö.-L.)
| |
Collapse
|
24
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Kim H, Shin JY, Lee YS, Yun SP, Maeng HJ, Lee Y. Brain Endothelial P-Glycoprotein Level Is Reduced in Parkinson's Disease via a Vitamin D Receptor-Dependent Pathway. Int J Mol Sci 2020; 21:ijms21228538. [PMID: 33198348 PMCID: PMC7696047 DOI: 10.3390/ijms21228538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The progressive neurodegeneration in Parkinson's disease (PD) is accompanied by neuroinflammation and endothelial vascular impairment. Although the vitamin D receptor (VDR) is expressed in both dopamine neurons and brain endothelial cells, its role in the regulation of endothelial biology has not been explored in the context of PD. In a 6-hydroxydopamine (6-OHDA)-induced PD mouse model, we observed reduced transcription of the VDR and its downstream target genes, CYP24 and MDR1a. The 6-OHDA-induced transcriptional repression of these genes were recovered after the VDR ligand-1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment. Similarly, reduced vascular protein expression of P-glycoprotein (P-gp), encoded by MDR1a, after 6-OHDA administration was reversed by 1,25(OH)2D3. Moreover, marked reduction of endothelial P-gp expression with concomitant α-synuclein aggregation was found in a combinatorial AAV-αSyn/αSyn preformed fibril (PFF) injection mouse model and postmortem PD brains. Supporting the direct effect of α-synuclein aggregation on endothelial biology, PFF treatment of human umbilical vein endothelial cells (HUVECs) was sufficient to induce α-synuclein aggregation and repress transcription of the VDR. PFF-induced P-gp downregulation and impaired functional activity in HUVECs completely recovered after 1,25(OH)2D3 treatment. Taken together, our results suggest that a dysfunctional VDR-P-gp pathway could be a potential target for the maintenance of vascular homeostasis in PD pathological conditions.
Collapse
Affiliation(s)
- Hyojung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Jeong-Yong Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Yun-Song Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
| | - Seung Pil Yun
- Department of Pharmacology and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea
- Correspondence: (H.-J.M.); (Y.L.); Tel.: +82-32-820-4935 (H.-J.M.); +82-31-299-6194 (Y.L.)
| | - Yunjong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.K.); (J.-Y.S.); (Y.-S.L.)
- Correspondence: (H.-J.M.); (Y.L.); Tel.: +82-32-820-4935 (H.-J.M.); +82-31-299-6194 (Y.L.)
| |
Collapse
|
26
|
Water-soluble inhibitors of ABCG2 (BCRP) - A fragment-based and computational approach. Eur J Med Chem 2020; 210:112958. [PMID: 33199153 DOI: 10.1016/j.ejmech.2020.112958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
A good balance between hydrophilicity and lipophilicity is a prerequisite for all bioactive compounds. If the hydrophilicity of a compound is low, its solubility in water will be meager. Many drug development failures have been attributed to poor aqueous solubility. ABCG2 inhibitors are especially prone to be insoluble since they have to address the extremely large and hydrophobic multidrug binding site in ABCG2. For instance, our previous, tariquidar-related ABCG2 inhibitor UR-MB108 (1) showed high potency (79 nM), but very low aqueous solubility (78 nM). To discover novel potent ABCG2 inhibitors with improved solubility we pursued a fragment-based approach. Substructures of 1 were optimized and the fragments 'enlarged' to obtain inhibitors, supported by molecular docking studies. Synthesis was achieved, i.a., via Sonogashira coupling, click chemistry and amide coupling. A kinetic solubility assay revealed that 1 and most novel inhibitors did not precipitate during the short time period of the applied biological assays. The solubility of the compounds in aqueous media at equilibrium was investigated in a thermodynamic solubility assay, where UR-Ant116 (40), UR-Ant121 (41), UR-Ant131 (48) and UR-Ant132 (49) excelled with solubilities between 1 μM and 1.5 μM - an up to 19-fold improvement compared to 1. Moreover, these novel N-phenyl-chromone-2-carboxamides inhibited ABCG2 in a Hoechst 33342 transport assay with potencies in the low three-digit nanomolar range, reversed MDR in cancer cells, were non-toxic and proved stable in blood plasma. All properties make them attractive candidates for in vitro assays requiring long-term incubation and in vivo studies, both needing sufficient solubility at equilibrium. 41 and 49 were highly ABCG2-selective, a precondition for developing PET tracers. The triple ABCB1/C1/G2 inhibitor 40 qualifies for potential therapeutic applications, given the concerted role of the three transporter subtypes at many tissue barriers, e.g. the BBB.
Collapse
|
27
|
Sarkadi B, Homolya L, Hegedűs T. The ABCG2/BCRP transporter and its variants - from structure to pathology. FEBS Lett 2020; 594:4012-4034. [PMID: 33015850 DOI: 10.1002/1873-3468.13947] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The ABCG2 protein has a key role in the transport of a wide range of structurally dissimilar endo- and xenobiotics in the human body, especially in the tissue barriers and the metabolizing or secreting organs. The human ABCG2 gene harbors a high number of polymorphisms and mutations, which may significantly modulate its expression and function. Recent high-resolution structural data, complemented with molecular dynamic simulations, may significantly help to understand intramolecular movements and substrate handling, as well as the effects of mutations on the membrane transporter function of ABCG2. As reviewed here, structural alterations may result not only in direct alterations in drug binding and transporter activity, but also in improper folding or problems in the carefully regulated process of trafficking, including vesicular transport, endocytosis, recycling, and degradation. Here, we also review the clinical importance of altered ABCG2 expression and function in general drug metabolism, cancer multidrug resistance, and impaired uric acid excretion, leading to gout.
Collapse
Affiliation(s)
- Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Kesidis A, Depping P, Lodé A, Vaitsopoulou A, Bill RM, Goddard AD, Rothnie AJ. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020; 180:3-18. [DOI: 10.1016/j.ymeth.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
29
|
Inhibitory Effects of Quercetin and Its Main Methyl, Sulfate, and Glucuronic Acid Conjugates on Cytochrome P450 Enzymes, and on OATP, BCRP and MRP2 Transporters. Nutrients 2020; 12:nu12082306. [PMID: 32751996 PMCID: PMC7468908 DOI: 10.3390/nu12082306] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.
Collapse
|
30
|
Mohos V, Fliszár-Nyúl E, Ungvári O, Bakos É, Kuffa K, Bencsik T, Zsidó BZ, Hetényi C, Telbisz Á, Özvegy-Laczka C, Poór M. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters. Drug Metab Dispos 2020; 48:1064-1073. [PMID: 32661014 DOI: 10.1124/dmd.120.000085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Chrysin is an abundant flavonoid in nature, and it is also contained by several dietary supplements. Chrysin is highly biotransformed in the body, during which conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide are formed. These conjugates appear at considerably higher concentrations in the circulation than the parent compound. Based on previous studies, chrysin can interact with biotransformation enzymes and transporters; however, the interactions of its metabolites have been barely examined. In this in vitro study, the effects of chrysin, chrysin-7-sulfate, and chrysin-7-glucuronide on cytochrome P450 enzymes (2C9, 2C19, 3A4, and 2D6) as well as on organic anion-transporting polypeptides (OATPs; 1A2, 1B1, 1B3, and 2B1) and ATP binding cassette [P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance protein (BCRP)] transporters were investigated. Our observations revealed that chrysin conjugates are strong inhibitors of certain biotransformation enzymes (e.g., CYP2C9) and transporters (e.g., OATP1B1, OATP1B3, OATP2B1, and BCRP) examined. Therefore, the simultaneous administration of chrysin-containing dietary supplements with medications needs to be carefully considered due to the possible development of pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Chrysin-7-sulfate and chrysin-7-glucuronide are the major metabolites of flavonoid chrysin. In this study, we examined the effects of chrysin and its conjugates on cytochrome P450 enzymes and on organic anion-transporting polypeptides and ATP binding cassette transporters (P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2). Our results demonstrate that chrysin and/or its conjugates can significantly inhibit some of these proteins. Since chrysin is also contained by dietary supplements, high intake of chrysin may interrupt the transport and/or the biotransformation of drugs.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ungvári
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Bakos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Katalin Kuffa
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tímea Bencsik
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csaba Hetényi
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágnes Telbisz
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
31
|
Wu CP, Hung CY, Lusvarghi S, Huang YH, Tseng PJ, Hung TH, Yu JS, Ambudkar SV. Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochem Pharmacol 2020; 180:114137. [PMID: 32634436 DOI: 10.1016/j.bcp.2020.114137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Taiwan; Department of Physiology and Pharmacology, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Biochemistry and Molecular Biology, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
32
|
The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201, Reverses Multidrug Resistance Mediated by ABCG2/BCRP. Cells 2020; 9:cells9030613. [PMID: 32143347 PMCID: PMC7140522 DOI: 10.3390/cells9030613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/29/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, such as breast cancer resistance protein (BCRP), are key players in resistance to multiple anti-cancer drugs, leading to cancer treatment failure and cancer-related death. Currently, there are no clinically approved drugs for reversal of cancer drug resistance caused by ABC transporters. This study investigated if a novel drug candidate, SCO-201, could inhibit BCRP and reverse BCRP-mediated drug resistance. We applied in vitro cell viability assays in SN-38 (7-Ethyl-10-hydroxycamptothecin)-resistant colon cancer cells and in non-cancer cells with ectopic expression of BCRP. SCO-201 reversed resistance to SN-38 (active metabolite of irinotecan) in both model systems. Dye efflux assays, bidirectional transport assays, and ATPase assays demonstrated that SCO-201 inhibits BCRP. In silico interaction analyses supported the ATPase assay data and suggest that SCO-201 competes with SN-38 for the BCRP drug-binding site. To analyze for inhibition of other transporters or cytochrome P450 (CYP) enzymes, we performed enzyme and transporter assays by in vitro drug metabolism and pharmacokinetics studies, which demonstrated that SCO-201 selectively inhibited BCRP and neither inhibited nor induced CYPs. We conclude that SCO-201 is a specific, potent, and potentially non-toxic drug candidate for the reversal of BCRP-mediated resistance in cancer cells.
Collapse
|
33
|
Kovacsics D, Brózik A, Tihanyi B, Matula Z, Borsy A, Mészáros N, Szabó E, Németh E, Fóthi Á, Zámbó B, Szüts D, Várady G, Orbán TI, Apáti Á, Sarkadi B. Precision-engineered reporter cell lines reveal ABCG2 regulation in live lung cancer cells. Biochem Pharmacol 2020; 175:113865. [PMID: 32142727 DOI: 10.1016/j.bcp.2020.113865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.
Collapse
Affiliation(s)
- Daniella Kovacsics
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Anna Brózik
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Borbála Tihanyi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Zsolt Matula
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Adrienn Borsy
- South-Pest Hospital Centre, National Institute of Hematology and Infectious Diseases, Laboratory of Molecular and Cytogenetics, Budapest, Hungary
| | - Nikolett Mészáros
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Edit Szabó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Eszter Németh
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ábel Fóthi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Dávid Szüts
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Tamás I Orbán
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Ágota Apáti
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, Hungary.
| |
Collapse
|
34
|
Demurtas OC, de Brito Francisco R, Martinoia E, Giuliano G. Transportomics for the Characterization of Plant Apocarotenoid Transmembrane Transporters. Methods Mol Biol 2020; 2083:89-99. [PMID: 31745915 DOI: 10.1007/978-1-4939-9952-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Apocarotenoids are carotenoid derivatives produced by the nonenzymatic or enzymatic cleavage of carotenoids, followed by different enzymatic modifications. In plants, apocarotenoids play different roles, such as attraction of pollinators and seeds dispersal, defense against pathogens and herbivores, protection against photo-oxidative stresses, stimulation and inhibition of plant growth and regulation of biological processes in the case of phytohormones abscisic acid and strigolactones. While carotenoids are in general plastid-localized metabolites, apocarotenoids can reach different final destinations inside or outside the cell. The mechanisms of apocarotenoid transport through biological membranes have been poorly studied. This chapter describes a method to characterize transmembrane transporters involved in the transport of polar and amphipathic apocarotenoids. This protocol was successfully used to in vitro characterize the transport activity of ATP-binding cassette (ABC) and multidrug and toxic extrusion (MATE) in microsomes isolated from Saccharomyces cerevisiae expressing these plant transporters.
Collapse
Affiliation(s)
- Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Rome, Italy
| | | | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Casaccia, Rome, Italy.
| |
Collapse
|
35
|
Zhao RQ, Wen Y, Gupta P, Lei ZN, Cai CY, Liang G, Yang DH, Chen ZS, Xie YA. Y 6, an Epigallocatechin Gallate Derivative, Reverses ABCG2-Mediated Mitoxantrone Resistance. Front Pharmacol 2019; 9:1545. [PMID: 30687102 PMCID: PMC6335976 DOI: 10.3389/fphar.2018.01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/04/2022] Open
Abstract
Multidrug resistance is reported to be related to the transmembrane transportation of chemotherapeutic drugs by adenosine triphosphate-binding cassette (ABC) transporters. ABC subfamily G member 2 (ABCG2) is a member of the ABC transporter superfamily proteins, which have been implicated as a key contributor to the development of multidrug resistance in cancers. A new epigallocatechin gallate derivative, Y6 was synthesized in our group. Our previous study revealed that Y6 increased the sensitivity of drug-resistant cells to doxorubicin, which was associated with down-regulation of P-glycoprotein expression. In this study, we further determine whether Y6 could reverse ABCG2-mediated multidrug resistance. Results showed that, at non-toxic concentrations, Y6 significantly sensitized drug-selected non-small cell lung cancer cell line NCI-H460/MX20 to substrate anticancer drugs mitoxantrone, SN-38, and topotecan, and also sensitized ABCG2-transfected cell line HEK293/ABCG2-482-R2 to mitoxantrone and SN-38. Further study demonstrated that Y6 significantly increased the accumulation of [3H]-mitoxantrone in NCI-H460/MX20 cells by inhibiting the transport activity of ABCG2, without altering the expression levels and the subcellular localization of ABCG2. Furthermore, Y6 stimulated the adenosine triphosphatase activity with a concentration-dependent pattern under 20 μM in membranes overexpressing ABCG2. In addition, Y6 exhibited a strong interaction with the human ABCG2 transporter protein. Our findings indicate that Y6 may potentially be a novel reversal agent in ABCG2-positive drug-resistant cancers.
Collapse
Affiliation(s)
- Rui-Qiang Zhao
- The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yan Wen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Gang Liang
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yu-An Xie
- The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Cao Y, Li Z, Mao L, Cao H, Kong J, Yu B, Yu C, Liao W. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur J Med Chem 2019; 162:423-434. [PMID: 30453249 DOI: 10.1016/j.ejmech.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
|
37
|
Liu YC, Li YY, Yao XJ, Qi HL, Wei XX, Liu JN. Binding Performance of Human Intravenous Immunoglobulin and 20( S)-7-Ethylcamptothecin. Molecules 2018; 23:E2389. [PMID: 30231526 PMCID: PMC6225142 DOI: 10.3390/molecules23092389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
A previous study showed that intravenous immunoglobulin (IVIG) could preserve higher levels of biologically active lactone moieties of topotecan, 7-ethyl-10-hydroxycamptothecin (SN-38) and 10-hydroxycamptothecin at physiological pH 7.40. As one of camptothecin analogues (CPTs), the interaction of 7-ethylcamptothecin and IVIG was studied in vitro in this study. It was shown that the main binding mode of IVIG to 7-ethylcamptothecin was hydrophobic interaction and hydrogen bonding, which is a non-specific and spontaneous interaction. The hydrophobic antigen-binding cavity of IgG would enwrap the drug into a host-guest inclusion complex and prevent hydrolysis of the encapsulated drug, while the drug is adjacent to the chromophores of IgG and may exchange energy with chromophores and quench the fluorescence of the protein. Also, the typical β-sheet structure of IVIG unfolded partially after binding to 7-ethylcamptothecin. Additionally, the binding properties of IVIG and six CPTs with different substituents at A-ring and/or B-ring including camptothecin, topotecan, irinotecan, 10-hydroxycamptothecin, 7-ethylcamptothecin and SN-38 were collected together and compared each other. Synergizing with anti-cancer drugs, IVIG could be used as a transporter protein for 7-ethylcamptothecin and other CPTs, allowing clinicians to devise new treatment protocols for patients.
Collapse
Affiliation(s)
- Yong-Chun Liu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Ying-Ying Li
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Xiao-Jun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Hui-Li Qi
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Xiao-Xia Wei
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Jian-Ning Liu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| |
Collapse
|
38
|
Polymorphisms of ABCG2 and its impact on clinical relevance. Biochem Biophys Res Commun 2018; 503:408-413. [PMID: 29964015 DOI: 10.1016/j.bbrc.2018.06.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
Human ABCG2 is one of the most important ATP-binding cassette (ABC) transporters. This protein functions as a xenobiotic transporter of large, hydrophobic, positively or negatively charged molecules, a wide variety anticancer drugs, fluorescent dyes, and different toxic compounds found in normal food. SNPs in ABCG2 may affect absorption and distribution of these substrates, altering the accumulation, effectiveness and toxicity of compounds or drugs in large populations. Its transport properties have been implicated clinically and ABCG2 expression is linked with different disease states. We reviewed the SNPs of ABCG2 in clinical relevance about gout, acute myeloid leukemia, solid tumors, and other diseases.
Collapse
|
39
|
Krapf MK, Gallus J, Vahdati S, Wiese M. New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold. J Med Chem 2018; 61:3389-3408. [PMID: 29547272 DOI: 10.1021/acs.jmedchem.7b01012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multidrug resistance (MDR) occurring during cancer chemotherapy is a major obstacle for effectiveness and response to therapy and is often caused by ATP-binding cassette (ABC) efflux transporters. Belonging to the family of ABC transporters, breast cancer resistance protein is getting more and more in the spotlight of research. As a strategy to overcome MDR, inhibitors of ABC transporters were synthesized, which could be applied in combination with cytostatic drugs. For this purpose, 2,4-disubstituted pyridopyrimidine derivatives were synthesized. The investigations confirmed three key characteristics of good inhibitors: a low intrinsic cytotoxicity and a high potency and selectivity toward ABCG2. For selected compounds the interaction with ABCG2 was elucidated and their effect on ATPase activity and conformation sensitive 5D3 antibody binding was investigated. Their ability to reverse MDR in coadministration with the active metabolite of irinotecan and mitoxantron was confirmed.
Collapse
Affiliation(s)
- Michael K Krapf
- Pharmaceutical Institute , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Jennifer Gallus
- Pharmaceutical Institute , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Sahel Vahdati
- Pharmaceutical Institute , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Michael Wiese
- Pharmaceutical Institute , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
40
|
Price DF, Luscombe CN, Eddershaw PJ, Edwards CD, Gumbleton M. The Differential Absorption of a Series of P-Glycoprotein Substrates in Isolated Perfused Lungs from Mdr1a/1b Genetic Knockout Mice can be Attributed to Distinct Physico-Chemical Properties: an Insight into Predicting Transporter-Mediated, Pulmonary Specific Disposition. Pharm Res 2017; 34:2498-2516. [PMID: 28702798 PMCID: PMC5736782 DOI: 10.1007/s11095-017-2220-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE To examine if pulmonary P-glycoprotein (P-gp) is functional in an intact lung; impeding the pulmonary absorption and increasing lung retention of P-gp substrates administered into the airways. Using calculated physico-chemical properties alone build a predictive Quantitative Structure-Activity Relationship (QSAR) model distinguishing whether a substrate's pulmonary absorption would be limited by P-gp or not. METHODS A panel of 18 P-gp substrates were administered into the airways of an isolated perfused mouse lung (IPML) model derived from Mdr1a/Mdr1b knockout mice. Parallel intestinal absorption studies were performed. Substrate physico-chemical profiling was undertaken. Using multivariate analysis a QSAR model was established. RESULTS A subset of P-gp substrates (10/18) displayed pulmonary kinetics influenced by lung P-gp. These substrates possessed distinct physico-chemical properties to those P-gp substrates unaffected by P-gp (8/18). Differential outcomes were not related to different intrinsic P-gp transporter kinetics. In the lung, in contrast to intestine, a higher degree of non-polar character is required of a P-gp substrate before the net effects of efflux become evident. The QSAR predictive model was applied to 129 substrates including eight marketed inhaled drugs, all these inhaled drugs were predicted to display P-gp dependent pulmonary disposition. CONCLUSIONS Lung P-gp can affect the pulmonary kinetics of a subset of P-gp substrates. Physico-chemical relationships determining the significance of P-gp to absorption in the lung are different to those operative in the intestine. Our QSAR framework may assist profiling of inhaled drug discovery candidates that are also P-gp substrates. The potential for P-gp mediated pulmonary disposition exists in the clinic.
Collapse
Affiliation(s)
- Daniel F Price
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Chris N Luscombe
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Peter J Eddershaw
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Chris D Edwards
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - Mark Gumbleton
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
41
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
42
|
Teodori E, Dei S, Bartolucci G, Perrone MG, Manetti D, Romanelli MN, Contino M, Colabufo NA. Structure-Activity Relationship Studies on 6,7-Dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline Derivatives as Multidrug Resistance Reversers. ChemMedChem 2017; 12:1369-1379. [DOI: 10.1002/cmdc.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Teodori
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Dei
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Gianluca Bartolucci
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Dina Manetti
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Maria Novella Romanelli
- Dipartimento NEUROFARBA-Sezione di Farmaceutica e Nutraceutica; Università di Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino FI Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; via Orabona 4 70125 Bari Italy
| |
Collapse
|
43
|
Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-Binding Cassette Subfamily G Member 2 Confers Resistance to Phosphatidylinositol 3-Kinase Inhibitor PF-4989216 in Cancer Cells. Mol Pharm 2017; 14:2368-2377. [PMID: 28597653 DOI: 10.1021/acs.molpharmaceut.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulated activation of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently found in human cancers, which plays a key role in promoting cancer proliferation and resistance to anticancer therapies. Therefore, developing inhibitors targeting key components of the PI3K/Akt/mTOR signaling pathway has great clinical significance. PF-4989216 is a novel, orally available small-molecule drug that was developed to selectively inhibit the PI3K/Akt/mTOR signaling pathway and subsequent cancer cell proliferation. PF-4989216 exhibited potent and selective inhibition against PI3K kinase activity in preclinical small-cell lung cancer (SCLC) models, and was especially effective against the proliferation of SCLCs harboring PIK3CA mutation. Unfortunately, in addition to innate resistance mechanisms, drug extrusion by the efflux pumps may also contribute to the development of acquired resistance to PI3K inhibitors in cancer cells. The overexpression of ATP-binding cassette (ABC) drug transporters ABCB1 and ABCG2 is one of the most common mechanisms for reducing intracellular drug concentration and developing multidrug resistance, which remains a substantial challenge to the effective treatment of cancer. In this study, we report the discovery of ABCG2 overexpression as a mechanism of resistance to PI3K inhibitor PF-4989216 in human cancer cells. We demonstrated that the inhibition of Akt and downstream S6RP phosphorylation by PF-4989216 were significantly reduced in ABCG2-overexpressing human cancer cells. Moreover, overexpression of ABCG2 in various cancer cell lines confers significant resistance to PF-4989216, which can be reversed by an inhibitor or competitive substrate of ABCG2, indicating that ABCG2-mediated transport alone can sufficiently reduce the intracellular concentration of PF-4989216.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| | | | | | - Yan-Qing Li
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| |
Collapse
|
44
|
Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. Placenta 2017. [PMID: 28623970 DOI: 10.1016/j.placenta.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. METHODS BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). RESULTS AND DISCUSSION BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts.
Collapse
Affiliation(s)
- John T Szilagyi
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Anna M Vetrano
- Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, 1 Robert Wood Johnson Place, New Brunswick, NJ 08901, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Bugde P, Biswas R, Merien F, Lu J, Liu DX, Chen M, Zhou S, Li Y. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin Ther Targets 2017; 21:511-530. [DOI: 10.1080/14728222.2017.1310841] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Piyush Bugde
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Science, AUT Roche Diagnostic Laboratory, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shufeng Zhou
- Department of Biotechnology and Bioengineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
46
|
Bohn K, Lange A, Chmielewski J, Hrycyna CA. Dual Modulation of Human P-Glycoprotein and ABCG2 with Prodrug Dimers of the Atypical Antipsychotic Agent Paliperidone in a Model of the Blood-Brain Barrier. Mol Pharm 2017; 14:1107-1119. [PMID: 28264565 DOI: 10.1021/acs.molpharmaceut.6b01044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many atypical antipsychotic drugs currently prescribed for the treatment of schizophrenia have limited brain penetration due to the efflux activity of ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB), including P-glycoprotein (P-gp) and ABCG2. Herein, we describe the design and synthesis of the first class of homodimeric prodrug dual inhibitors of P-gp and ABCG2. These inhibitors are based on the structure of the atypical antipsychotic drug paliperidone (Pal), a transport substrate for both transporters. We synthesized and characterized a small library of homodimeric bivalent Pal inhibitors that contain a variety of tethers joining the two monomers via ester linkages. The majority of our compounds were low micromolar to sub-micromolar inhibitors of both P-gp and ABCG2 in cells overexpressing these transporters and in immortalized human hCMEC/D3 cells that are derived from the BBB. Our most potent dual inhibitor also contained an internal disulfide bond in the tether (Pal-8SS) that allowed for rapid reversion to monomer in the presence of reducing agents or plasma esterases. To increase stability against these esterases, we further engineered Pal-8SS to contain two hindering methyl groups alpha to the carbonyl of the ester moiety within the tether. The resulting dimer, Pal-8SSMe, was also a potent dual inhibitor that remained susceptible to reducing conditions but was more resistant to breakdown in human plasma. Importantly, Pal-8SSMe both accumulated and subsequently reverted to the therapeutic Pal monomer in the reducing environment of BBB cells. Thus, these molecules serve two purposes, acting as both inhibitors of P-gp and ABCG2 at the BBB and as prodrugs, effectively delivering therapies to the brain that would otherwise be precluded.
Collapse
Affiliation(s)
- Kelsey Bohn
- Department of Chemistry and Institute for Integrative Neuroscience, Purdue University , West Lafayette, Indiana 47907, United States
| | - Allison Lange
- Department of Chemistry and Institute for Integrative Neuroscience, Purdue University , West Lafayette, Indiana 47907, United States
| | - Jean Chmielewski
- Department of Chemistry and Institute for Integrative Neuroscience, Purdue University , West Lafayette, Indiana 47907, United States
| | - Christine A Hrycyna
- Department of Chemistry and Institute for Integrative Neuroscience, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
47
|
Hida K, Kikuchi H, Maishi N, Hida Y. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy. Cancer Lett 2017; 400:305-310. [PMID: 28216371 DOI: 10.1016/j.canlet.2017.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
48
|
Zaja R, Popović M, Lončar J, Smital T. Functional characterization of rainbow trout (Oncorhynchus mykiss) Abcg2a (Bcrp) transporter. Comp Biochem Physiol C Toxicol Pharmacol 2016; 190:15-23. [PMID: 27475308 DOI: 10.1016/j.cbpc.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022]
Abstract
ABCG2 (BCRP - breast cancer resistance protein) belongs to the ATP-binding cassette (ABC) superfamily. It plays an important role in the disposition and elimination of xeno- and endobiotics and/or their metabolites in mammals. Likewise, the protective role of ABC transporters, including Abcg2, has been reported for aquatic organisms. In our previous study we have cloned the full gene sequence of rainbow trout (Oncorhynchus mykiss) Abcg2a and showed its high expression in liver and primary hepatocytes. Based on those insights, the main goal of this study was to perform a detailed functional characterization of trout Abcg2a using insect ovary cells (Spodoptera frugiperda, Sf9) as a heterologous expression system. Membrane vesicles preparations from Sf9 cells were used for the ATPase assay determinations and basic biochemical properties of fish Abcg2a versus human ABCG2 have been compared. A series of 39 physiologically and/or environmentally relevant substances was then tested on interaction with trout Abcg2a and human ABCG2. Correlation analysis reveals highly similar pattern of activation and inhibition. Significant activation of trout Abcg2a ATPase was observed for prazosin, doxorubicine, sildenafil, furosemid, propranolol, fenofibrate and pheophorbide. Pesticides showed either a weak activation (malathione) or strong (endosulfan) to weak (chlorpyrifos, fenoxycarb, DDE) inhibition of trout Abcg2a ATPase while the highest activation was obtained for benzo(a)pyrene, curcumine and testosterone. In conclusion, data from this study offer the first characterization of fish Abcg2a, reveal potent interactors among physiologically or environmentally relevant substances and point to similarities regarding strengths and interactor preferences between human ABCG2 and fish Abcg2a.
Collapse
Affiliation(s)
- Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jovica Lončar
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
49
|
Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter. Eur J Med Chem 2016; 124:881-895. [DOI: 10.1016/j.ejmech.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/15/2023]
|
50
|
Kraege S, Stefan K, Köhler SC, Wiese M. Optimization of Acryloylphenylcarboxamides as Inhibitors of ABCG2 and Comparison with Acryloylphenylcarboxylates. ChemMedChem 2016; 11:2547-2558. [PMID: 27785905 DOI: 10.1002/cmdc.201600455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/05/2016] [Indexed: 11/08/2022]
Abstract
ABCG2 belongs to the superfamily of ATP binding cassette (ABC) proteins and is associated with the limited success of anticancer chemotherapy, given its responsibility for the cross-resistance of tumor cells, known as multidrug resistance (MDR). Several classes of ABCG2 inhibitors were developed for increasing the efficacy of chemotherapy. A series of chalcones coupled to an additional aromatic residue was synthesized and investigated for their inhibition of ABC transporters. In our previous work we determined the preferred position of the linker on the A-ring to be ortho, and found several substitution patterns at the additional ring that improved potency. In this study we investigated whether a methoxy group that improved the inhibitory activity of chalcones would also be beneficial for the acryloylphenylcarboxamide scaffold. Indeed, this modification led to highly potent ABCG2 inhibitors. To support the hypothesis of a beneficial effect of the amide linker, six acryloylphenylcarboxylates were synthesized and investigated for their inhibitory activity. Replacement of the amide linker with an ester group resulted in decreased inhibition. Molecular modeling showed that the conformational preference of both series differs, thereby explaining the positive effect of the amide linker. Several compounds were characterized in detail by investigating their intrinsic cytotoxicity and capacity to reverse MDR in MTT assays and their effect on vanadate-sensitive ATPase activity.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sebastian C Köhler
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|