1
|
Meyer J, Teixeira AM, Richter S, Larner DP, Syed A, Klöting N, Matz-Soja M, Gaul S, Barnikol-Oettler A, Kiess W, Le Duc D, Penke M, Garten A. Sex differences in diet-induced MASLD - are female mice naturally protected? Front Endocrinol (Lausanne) 2025; 16:1567573. [PMID: 40162312 PMCID: PMC11949793 DOI: 10.3389/fendo.2025.1567573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Males suffer more often from profibrotic changes in liver than females. The underlying mechanism for this sex difference in the prevalence and manifestation of Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) is not yet completely known. We studied male and female mice that were induced to develop MASLD by consuming a "fast food" diet (FFD) and assessed metabolic phenotype as well as liver histology and compared them with mice fed with a matched control diet (CD). Our aim was to check for sex-specific differences in MASLD development in a mouse model of diet-induced profibrotic changes in the liver. Our results demonstrate a clear difference in body weight, fat distribution and changes in liver tissue for male and female mice fed with FFD. We found that female mice stored lipids mainly in subcutaneous and visceral adipose tissue while males increased ectopic lipid accumulation in the liver which resulted in hepatomegaly and increased transforming growth factor β 1 (Tgfb1) and collagen I (Col1a1) expression concomitant to fibrosis development. This was absent in female mice. Analysis of estrogen receptor -α (Esr1) and -β (Esr2) expression revealed an upregulation of Esr2 in livers of male FFD-fed mice whereas in female liver tissue a higher expression in Esr1 could be observed. This study supports Esr1 and Esr2 as potential targets to reverse negative effects of diet-induced profibrotic changes in the liver.
Collapse
Affiliation(s)
- Jana Meyer
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Ana Mendes Teixeira
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Dean P. Larner
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Asifuddin Syed
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) belonging to Helmholtz Center Munich at the University and University Hospital, Leipzig, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Gaul
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
- Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anja Barnikol-Oettler
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
4
|
Eisa MA, Mansour AM, Salama SA, Elsadek BEM, Ashour AA, Abdelghany TM. Estrogen/estrogen receptor activation protects against DEN-induced liver fibrosis in female rats via modulating TLR-4/NF-kβ signaling. Eur J Pharmacol 2023; 960:176165. [PMID: 38059444 DOI: 10.1016/j.ejphar.2023.176165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
AIM Men are more susceptible to liver fibrosis (LF) than women. However, the underlying molecular mechanism, especially the role of estrogen/estrogen receptor (ER) activation in this sexual dimorphism is unclear. Therefore, the aim of the current study was to investigate the impact and the underlying molecular mechanisms of estrogen/ER activation on diethyl nitrosamine (DEN)-induced LF. MAIN METHODS Thirty ovariectomized (OVX) female rats were randomly allocated into five groups (n = 6), and received no treatment, diethyl nitrosamine (DEN), DEN/fulvestrant, DEN/silymarin or DEN/estradiol benzoate (EB). In addition, three sham groups received no treatment, DEN or DEN/fulvestrant, and one control group that neither ovariectomized nor treated. Directly after treatment, liver injury biomarkers were measured. In addition, hepatic tissue hydroxyproline, TNF- α, TGF- β, and IL-10 were evaluated. Expression of NF-kβ, CD68 (a marker for macrophage infiltration), ER-β and TLR-4 were measured. Finally, liver tissue histopathology was assessed. KEY FINDINGS Ovariectomy aggravates DEN-induced LF, as it significantly elevated all liver tissue injury biomarkers. This effect has become even worse after blocking ER by fulvestrant, indicating a protective role of estrogen/ER activation against DEN-induced LF. Inhibition of TLR-4/NF-kβ signaling pathway contributed to this protective effect, as estrogen deprivation or blocking of ER significantly activates this pathway during the onset of LF. While administration of EB or silymarin (selective ER-β activator) improved LF indices and deactivated this pathway. SIGNIFICANCE These results provide new insight into the pivotal role of estrogen/ER activation via modulation of TLR-4/NF-kβ, in the alleviation of LF pathogenesis.
Collapse
Affiliation(s)
- Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy Heliopolis University, Cairo, 11785, Egypt.
| |
Collapse
|
5
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. Sci Rep 2023; 13:9841. [PMID: 37330610 PMCID: PMC10276872 DOI: 10.1038/s41598-023-37007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Fuller KNZ, Allen J, Kumari R, Akakpo JY, Ruebel M, Shankar K, Thyfault JP. Pre- and Post-Sexual Maturity Liver-specific ERα Knockout Does Not Impact Hepatic Mitochondrial Function. J Endocr Soc 2023; 7:bvad053. [PMID: 37197409 PMCID: PMC10184454 DOI: 10.1210/jendso/bvad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/19/2023] Open
Abstract
Compared with males, premenopausal women and female rodents are protected against hepatic steatosis and present with higher functioning mitochondria (greater hepatic mitochondrial respiration and reduced H2O2 emission). Despite evidence that estrogen action mediates female protection against steatosis, mechanisms remain unknown. Here we validated a mouse model with inducible reduction of liver estrogen receptor alpha (ERα) (LERKO) via adeno-associated virus (AAV) Cre. We phenotyped the liver health and mitochondrial function of LERKO mice (n = 10-12 per group) on a short-term high-fat diet (HFD), and then tested whether timing of LERKO induction at 2 timepoints (sexually immature: 4 weeks old [n = 11 per group] vs sexually mature: 8-10 weeks old [n = 8 per group]) would impact HFD-induced outcomes. We opted for an inducible LERKO model due to known estrogen-mediated developmental programming, and we reported both receptor and tissue specificity with our model. Control mice were ERαfl/fl receiving AAV with green fluorescent protein (GFP) only. Results show that there were no differences in body weight/composition or hepatic steatosis in LERKO mice with either short-term (4-week) or chronic (8-week) high-fat feeding. Similarly, LERKO genotype nor timing of LERKO induction (pre vs post sexual maturity) did not alter hepatic mitochondrial O2 and H2O2 flux, coupling, or OXPHOS protein. Transcriptomic analysis showed that hepatic gene expression in LERKO was significantly influenced by developmental stage. Together, these studies suggest that hepatic ERα is not required in female protection against HFD-induced hepatic steatosis nor does it mediate sexual dimorphism in liver mitochondria function.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Roshan Kumari
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
| | - Jephte Y Akakpo
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Meghan Ruebel
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - Kartik Shankar
- USDA-ARS, Southeast Area, Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, KS 64128, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, MO 64108, USA
| |
Collapse
|
7
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534216. [PMID: 36993459 PMCID: PMC10055366 DOI: 10.1101/2023.03.25.534216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shivani N. Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P. Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
8
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Zhao M, Ma L, Honda T, Kato A, Ohshiro T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Nakamura M, Kawashima H, Tsuji NM, Ishigami M, Fujishiro M. Astaxanthin Attenuates Nonalcoholic Steatohepatitis with Downregulation of Osteoprotegerin in Ovariectomized Mice Fed Choline-Deficient High-Fat Diet. Dig Dis Sci 2023; 68:155-163. [PMID: 35397697 DOI: 10.1007/s10620-022-07489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Postmenopausal estrogen decline increases the risk of developing nonalcoholic steatohepatitis (NASH), and it might accelerate progression to cirrhosis and hepatocellular carcinoma. AIMS This study aimed to investigate a novel therapy for postmenopausal women who are diagnosed with NASH. METHODS Seven-week-old female C57BL/6 J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + 0.02% astaxanthin (OVX + ASTX group). These three groups of mice were fed a choline-deficient high-fat (CDHF) diet for 8 weeks. Blood serum and liver tissues were collected to examine liver injury, histological changes, and hepatic genes associated with NASH. An in vitro study was performed with the hepatic stellate cell line LX-2. RESULTS The administration of ASTX significantly improved pathological NASH with suppressed steatosis, inflammation, and fibrosis, in comparison with those in the OVX-induced estrogen deficiency group. As a result, liver injury was also attenuated with reduced levels of alanine aminotransferase and aspartate transaminase. In addition, our study found that ASTX supplementation decreased hepatic osteoprotegerin (OPG) in vivo, a possible factor that contributes to NASH development. In vitro, this study further confirmed that ASTX has an inhibitory effect on the secretion of OPG in LX-2 human hepatic stellate cells. CONCLUSIONS Our findings suggest that ASTX alleviates CDHF-OVX-induced pathohistological NASH with downregulated OPG, possibly via suppression of the transforming growth factor beta pathway. ASTX could has promise for use in postmenopausal women diagnosed with NASH.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Lingyun Ma
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Asuka Kato
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Ohshiro
- ITOCHU Collaborative Research-Molecular Targeted Cancer Treatment for Next Generation, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Noriko M Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Food Science, Jumonji University, Saitama, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Wang Y, Wu C, Zhou J, Fang H, Wang J. Overexpression of estrogen receptor β inhibits cellular functions of human hepatic stellate cells and promotes the anti-fibrosis effect of calycosin via inhibiting STAT3 phosphorylation. BMC Pharmacol Toxicol 2022; 23:77. [PMID: 36207725 PMCID: PMC9541055 DOI: 10.1186/s40360-022-00617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Estrogen receptor β (ERβ) is the major ER subtype in hepatic stellate cells (HSCs). Previously we reported phytoestrogen calycosin suppressed liver fibrosis progression and inhibited HSC-T6 cell functions, suggesting the effects may be related to ERβ. Here, we explore the effect of overexpressed ERβ on human HSCs and the role of ERβ in pharmacological action of calycosin. METHODS LX-2 cells were transfected with lentivirus to overexpress ERβ. In the presence or absence of overexpressed ERβ, the effects of ERβ and calycosin on proliferation, migration, activation, collagen production and degradation of TGF-β1-induced LX-2 cells and the role of ERβ in the inhibition effect of calycosin were investigated. LX-2 cells overexpressed with ERβ or treated with ER non-selective antagonist ICI182,780 were used to investigate the regulation of ERβ on JAK2/STAT3 signaling pathway. CCK-8 method was used to screen effective doses of calycosin and investigate cell proliferation. The cell migration was detected by transwell chamber assay. The expression of α-SMA was detected by immunofluorescence and western blot. The protein expressions of Col-I, MMP1, TIMP1, JAK2, p-JAK2, STAT3 and p-STAT3 were detected by western blot. RESULTS ERβ overexpressed lentivirus was successfully transfected into LX-2 cells with high efficiency. Overexpressed ERβ or calycosin alone inhibited the TGF-β1-induced LX-2 cell proliferation and migration, downregulated the protein expressions of α-SMA, Col-I, TIMP-1, p-STAT3 and upregulated MMP-1. Both overexpressed ERβ and calycosin had no significant effect on JAK2, p-JAK2 and STAT3 expressions. ERβ overexpression further enhanced the above effects of calycosin. However, after the cells were treated with ICI182,780, downregulation of STAT3 phosphorylation induced by calycosin was reversed. CONCLUSIONS ERβ mediated the inhibition of major functions of LX-2 cell possibly by inhibiting the phosphorylation of STAT3, and was an important pathway through which calycosin exerted anti-liver fibrosis effect.
Collapse
Affiliation(s)
- Yaxin Wang
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Canyan Wu
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Jiahui Zhou
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Haiming Fang
- Department of Gastroenterology, the Second Hospital of Anhui Medical University, NO.678 Furong Road, Hefei, 230601, Anhui Province, China.
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences of Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
11
|
Zhang K, Lin L, Zhu Y, Zhang N, Zhou M, Li Y. Saikosaponin d Alleviates Liver Fibrosis by Negatively Regulating the ROS/NLRP3 Inflammasome Through Activating the ERβ Pathway. Front Pharmacol 2022; 13:894981. [PMID: 35694250 PMCID: PMC9174603 DOI: 10.3389/fphar.2022.894981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Saikosaponin d (SSd) has a steroidal structure and significant anti-inflammatory effects. The purpose of this study was to explore the mechanism underlying SSd’s inhibitory effects on liver fibrosis. Methods: Wild-type and estrogen receptor knockout (ERKO) mice were treated with CCl4 to establish liver fibrosis mouse models. The effects of SSd on hepatic fibrogenesis were studied in these mouse models. Hepatic stellate cells (HSCs) were activated by H2O2 to investigate the potential molecular mechanisms. The establishment of the models and the degrees of inflammation and liver tissue fibrosis were evaluated by detecting changes in serum liver enzymes and liver histopathology. The expression of α-SMA and TGF-β1 was determined by immunohistochemistry. The expression and significance of NLRP3 inflammasome proteins were explored by RT-PCR and Western blotting analyses. The mitochondrial ROS-related indexes were evaluated by MitoSOX Red. Results: In wild-type and ERKO mice treated with CCl4, the fluorescence expression of mitochondrial ROS was up-regulated, while the mitochondrial membrane potential and ATP content were decreased, suggesting that the mitochondria were damaged. In addition, the expression of NLRP3 inflammatory bodies and fibrosis markers (α-SMA, TGF-β, TIMP-1, MMP-2, and Vimentin) in liver tissue increased. Furthermore, the above indexes showed the same expression trend in activated HSCs. In addition, the peripheral serum ALT and AST levels increased in CCl4-induced liver injury model mice. And HE staining showed a large number of inflammatory cell infiltration in the liver of model mice. Picric acid-Sirius staining and Masson staining showed that there was significant collagen fibrous tissue deposition in mice liver sections. IHC and WB detection confirmed that the expression of α-SMA and TGF-β1 increased. Liver fibrosis scores were also elevated. Then, after SSd intervention, the expression of ROS in wild-type mice and αERKO mice decreased, mitochondrial membrane potential recovered, ATP level increased, NLRP3 inflammasome and fibrosis indexes decreased, liver enzyme levels decreased, and liver pathology showed liver inflammation. The damage and collagen deposition were significantly relieved, the expression of α-SMA and TGF-β1 was decreased, and the fibrosis score was also decreased. More importantly, the effect of SSd in alleviating liver injury and liver fibrosis had no effect on βERKO mice. Conclusion: SSd alleviated liver fibrosis by negatively regulating the ROS/NLRP3 inflammasome through activating the ERβ pathway. By establishing liver fibrosis models using wild-type and ERKO mice, we demonstrated that SSd could alleviate liver fibrosis by inhibiting the ROS/NLRP3 inflammasome axis through activating the ERβ pathway.
Collapse
|
12
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
13
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
14
|
Lin L, Zhou M, Que R, Chen Y, Liu X, Zhang K, Shi Z, Li Y. Saikosaponin-d protects against liver fibrosis by regulating Estrogen receptor-β/NLRP3 inflammasome pathway. Biochem Cell Biol 2021; 99:666-674. [PMID: 33974808 DOI: 10.1139/bcb-2020-0561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Liver fibrosis is the ultimate common pathway in most types of chronic liver damage characterized by imbalance of extracellular matrix degradation and synthesis. Saikosaponin-d (SSd) possesses anti-inflammatory and anti-liver fibrosis effects. However, the underlying mechanism of SSd in repressing hepatic stellate cells (HSCs) activation remains unclear. Here we found that SSd alleviated remarkably carbon tetrachloride (CCl4)-induced liver fibrosis, as evidenced by decreased collagen level and profibrotic markers (COl1a1 and α-smooth muscle actin (SMA)) expression. SSd repressed CCl4-induced NOD-like receptor family pyrin-domain-containng-3 (NLRP3) activation in fibrotic livers, as suggested by decreased level of NLRP3, IL-18, and IL-β. The primary HSCs of CCl4 mice exhibited a significant increase in profibrotic markers expression and NLRP3 activation, but SSd treatment reversed the effect. SSd also repressed TGF-β-induced profibrotic markers expression and NLRP3 activation in vitro. Mechanistically, TGF-β decreased the expression of Estrogen receptor-β (ERβ) in HSCs, whereas SSd treatment reversed the effect. ERβ inhibition enhanced NLRP3 activation in HSCs. More important, ERβ or NLRP3 inhibition destroyed partially the function of SSd on anti-liver fibrosis. In summary, the current data suggest that SSd prevents hepatic fibrosis through regulating ERβ/NLRP3 inflammasome pathway, and suggest SSd as a potential agent for treating liver fibrosis.
Collapse
Affiliation(s)
- Liubing Lin
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Mengen Zhou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Renye Que
- Shanghai TCM Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Yirong Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Xiaolin Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Kehui Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Zhe Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, Shanghai, China;
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Gastroenterology, 274 Middle Zhijiang Road, Jing 'an District, Shanghai, Shanghai, China, 200071;
| |
Collapse
|
15
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
16
|
Drake M, Dodwad SJM, Davis J, Kao LS, Cao Y, Ko TC. Sex-Related Differences of Acute and Chronic Pancreatitis in Adults. J Clin Med 2021; 10:300. [PMID: 33467580 PMCID: PMC7830423 DOI: 10.3390/jcm10020300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of acute and chronic pancreatitis is increasing in the United States. Rates of acute pancreatitis (AP) are similar in both sexes, but chronic pancreatitis (CP) is more common in males. When stratified by etiology, women have higher rates of gallstone AP, while men have higher rates of alcohol- and tobacco-related AP and CP, hypercalcemic AP, hypertriglyceridemic AP, malignancy-related AP, and type 1 autoimmune pancreatitis (AIP). No significant sex-related differences have been reported in medication-induced AP or type 2 AIP. Whether post-endoscopic retrograde cholangiopancreatography pancreatitis is sex-associated remains controversial. Animal models have demonstrated sex-related differences in the rates of induction and severity of AP, CP, and AIP. Animal and human studies have suggested that a combination of risk factor profiles, as well as genes, may be responsible for the observed differences. More investigation into the sex-related differences of AP and CP is desired in order to improve clinical management by developing effective prevention strategies, diagnostics, and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Yanna Cao
- Department of Surgery, UT Health Houston, Houston, TX 77030, USA; (M.D.); (S.-J.M.D.); (J.D.); (L.S.K.)
| | - Tien C. Ko
- Department of Surgery, UT Health Houston, Houston, TX 77030, USA; (M.D.); (S.-J.M.D.); (J.D.); (L.S.K.)
| |
Collapse
|
17
|
Zhang M, Wang Y, Zhu G, Sun C, Wang J. Hepatoprotective effect and possible mechanism of phytoestrogen calycosin on carbon tetrachloride-induced liver fibrosis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:189-204. [PMID: 32474674 DOI: 10.1007/s00210-020-01891-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
Abstract
The study was to explore the hepatoprotective effect and possible mechanism of calycosin on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Hepatic fibrosis was induced by intraperitoneal injection of CCl4 in C57BL/6 male mice. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, superoxide dismutase (SOD) activity, and hydroxyproline (Hyp) and malondialdehyde (MDA) levels were determined by biochemical assays. Liver histopathology was assessed by H&E and Masson trichrome staining. The mRNA expressions of α-smooth muscle actin (α-SMA), collagen-I (Col-I), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined using qRT-PCR. The protein levels of α-SMA, Col-I, estrogen receptor α (ERα), estrogen receptor β (ERβ), tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-1 (MMP-1), JAK2, phospho-JAK2 (p-JAK2), STAT3, and phospho-STAT3 (p-STAT3) were detected by Western blotting. The levels of α-SMA and ERβ were measured by immunohistochemistry. Calycosin significantly reduced liver index, MDA level, and ALT and AST activity and increased SOD activity. The α-SMA, Col-I, and Hyp of the calycosin group were significantly lower than those of the model group. Calycosin increased MMP-1 and inhibited TIMP-1 expression resulting in the improvement of MMP-1/TIMP-1 ratio. Importantly, calycosin improved ERβ protein expression, JAK2 and STAT3 mRNA expressions, p-JAK2/JAK2, and p-STAT3/STAT3 relative protein expressions. However, ERα, JAK2, and STAT3 protein expressions were relatively unchanged. Calycosin significantly inhibits liver fibrosis in mice, and its mechanism may involve the following: calycosin inhibits oxidative stress; calycosin inhibits collagen synthesis and balances MMP-1/TIMP-1 system; calycosin increases ERβ expression and activates JAK2-STAT3 pathway.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yaxin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Guannan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Cheng Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
18
|
Koyuncuoğlu T, Yıldırım A, Dertsiz EK, Yüksel M, Ercan F, Yeğen BÇ. Estrogen receptor agonists protect against acetaminophen-induced hepatorenal toxicity in rats. Life Sci 2020; 263:118561. [PMID: 33045213 DOI: 10.1016/j.lfs.2020.118561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Acetaminophen-induced hepatorenal toxicity varies among sexes with controversial results among species. The aim was to compare the impact of sex and ovarian hormones on hepatorenal toxicity and to elucidate protective effects of estrogen and estrogen receptor (ER) agonists. MAIN METHODS Under anesthesia, female rats underwent ovariectomy (OVX) or sham-OVX. Starting at postsurgical 40th day, OVX-rats received subcutaneously (each, 1 mg/kg/day) 17β-estradiol (E2), ERβ-agonist (DPN) or ERα-agonist (PPT) for 10 days, while male and sham-OVX rats received vehicle for 10 days. Then, rats received either acetaminophen (3 g/kg) or saline by orogastric gavage and were decapitated at 24th h. Blood samples were obtained to measure serum ALT, AST, BUN, creatinine levels. Liver and kidney samples were obtained for histopathologic examination and for analyzing levels of luminol- and lucigenin-chemiluminescence, glutathione and myeloperoxidase activity. KEY FINDINGS Compared to their control groups, levels of AST, ALT, BUN, creatinine, hepatic and renal myeloperoxidase activity and chemiluminescence levels were increased, and hepatic glutathione level was decreased in acetaminophen-administered male groups, while ALT and hepatic chemiluminescence levels were not elevated in sham-OVX-rats. Both ER-agonists and E2 reduced BUN, creatinine and reversed all oxidative parameters in renal tissues of OVX-rats. Additionally, ERα-agonist reversed all hepatic injury parameters, while ERβ-agonist elevated hepatic glutathione level. SIGNIFICANCE Acetaminophen toxicity in female rats presented with a more preserved hepatic function, while renal toxicity was not influenced by sex or by the lack of ovarian hormones. Pretreatment with estrogen or ER agonists, via their antioxidant actions, provided protective effects on acetaminophen-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ekin K Dertsiz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
19
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020; 1:51-74. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
21
|
Savva C, Korach-André M. Estrogen Receptor beta (ERβ) Regulation of Lipid Homeostasis-Does Sex Matter? Metabolites 2020; 10:metabo10030116. [PMID: 32244965 PMCID: PMC7143602 DOI: 10.3390/metabo10030116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
In this communication, we aim to summarize the role of estrogen receptor beta (ERβ) in lipid metabolism in the main metabolic organs with a special focus on sex differences. The action of ERβ is tissue-specific and acts in a sex-dependent manner, emphasizing the necessity of developing sex- and tissue-selective targeting drugs in the future.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Metabolism Unit and KI/AZ Integrated Cardio Metabolic Center (ICMC), Metabolism and Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
- Clinical Department of Endocrinology Diabetes, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit and KI/AZ Integrated Cardio Metabolic Center (ICMC), Metabolism and Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
- Clinical Department of Endocrinology Diabetes, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
22
|
Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Cells 2019; 8:cells8101259. [PMID: 31619023 PMCID: PMC6835656 DOI: 10.3390/cells8101259] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) caused by fat accumulation in the liver is globally the most common cause of chronic liver disease. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH), a more severe form of NAFLD. The most potent driver for NASH is hepatocyte death induced by lipotoxicity, which triggers inflammation and fibrosis, leading to cirrhosis and/or liver cancer. Despite the significant burden of NAFLD, there is no therapy for NAFLD/NASH. Accumulating evidence indicates gender-related NAFLD progression. A higher incidence of NAFLD is found in men and postmenopausal women than premenopausal women, and the experimental results, showing protective actions of estradiol in liver diseases, suggest that estrogen, as the main female hormone, is associated with the progression of NAFLD/NASH. However, the mechanism explaining the functions of estrogen in NAFLD remains unclear because of the lack of reliable animal models for NASH, the imbalance between the sexes in animal experiments, and subsequent insufficient results. Herein, we reviewed the pathogenesis of NAFLD/NASH focused on gender and proposed a feasible association of estradiol with NAFLD/NASH based on the findings reported thus far. This review would help to expand our knowledge of the gender differences in NAFLD and for developing gender-based treatment strategies for NAFLD/NASH.
Collapse
|
23
|
Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, Abdelmalek MF, Suzuki A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019; 70:1457-1469. [PMID: 30924946 PMCID: PMC6766425 DOI: 10.1002/hep.30626] [Citation(s) in RCA: 632] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Despite tremendous research advancements in nonalcoholic fatty liver disease (NAFLD), our understanding of sex differences in NAFLD remains insufficient. This review summarizes the current knowledge on sex differences in NAFLD, identifies gaps, and discusses important considerations for future research. The prevalence and severity of NAFLD are higher in men than in women during the reproductive age. However, after menopause, NAFLD occurs at a higher rate in women, suggesting that estrogen is protective. Sex differences also exist for the major risk factors of NAFLD. In general, animal models of NAFLD recapitulate the sex differences observed in patients, with more severe steatosis and steatohepatitis, more proinflammatory/profibrotic cytokines, and a higher incidence of hepatic tumors in male than female subjects. Based on computer modeling, female and male livers are metabolically distinct with unique regulators modulating sex-specific metabolic outcomes. Analysis of the literature reveals that most published clinical and epidemiological studies fail to examine sex differences appropriately. Considering the paucity of data on sex differences and the knowledge that regulators of pathways relevant to current therapeutic targets for NAFLD differ by sex, clinical trials should be designed to test drug efficacy and safety according to sex, age, reproductive stage (i.e., menopause), and synthetic hormone use. Conclusion: Sex differences do exist in the prevalence, risk factors, fibrosis, and clinical outcomes of NAFLD, suggesting that, while not yet incorporated, sex will probably be considered in future practice guidelines; adequate consideration of sex differences, sex hormones/menopausal status, age, and other reproductive information in clinical investigation and gene association studies of NAFLD are needed to fill current gaps and implement precision medicine for patients with NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | | | | | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sanda Win
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tin A. Than
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA,Division of Gastroenterology, Durham VA Medical Center, Durham. North Carolina, USA,Corresponding author: Ayako Suzuki, MD, PhD, MSc, Gastroenterology, Duke University, 40 Duke Medicine Circle, Suite 03107, Durham, NC, 27710, TEL: 919-684-6211, FAX: 919-684-8857,
| |
Collapse
|
24
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|
25
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Deng T, Liu J, Zhang M, Wang Y, Zhu G, Wang J. Inhibition effect of phytoestrogen calycosin on TGF-β1-induced hepatic stellate cell activation, proliferation, and migration via estrogen receptor β. Can J Physiol Pharmacol 2018; 96:1268-1275. [DOI: 10.1139/cjpp-2018-0474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study was designed to investigate the effects of calycosin on hepatic stellate cell (HSC) function and to explore whether the drug exerts its effect through the estrogen receptor. HSC proliferation and migration were measured by MTT assay and transwell chamber assay, respectively. The mRNA and protein expression of α-SMA, COL-I, and ERβ were detected by real-time PCR and Western blotting. The co-localization and expression of α-SMA and ERβ protein were detected by immunofluorescence. All the studies were investigated in the absence or presence of ICI 182,780. The results showed that calycosin inhibited the proliferation of activated HSCs and remarkably inhibited HSC migration. Calycosin significantly reduced the expression of α-SMA and COL-I in activated HSCs. However, with co-treatment with ICI 182,780, the inhibitory effect of calycosin against the above effects was strongly negated. Importantly, calycosin significantly downregulated the expression of ERβ protein, while co-treatment with ICI 182,780 partially reversed the ERβ downregulation. In addition, α-SMA decreased with the decrease of ERβ expression and the subtype of ERβ on HSC is ERβ5. In conclusion, calycosin inhibits proliferation, activation, and migration of TGF-β1-induced HSCs. The effect may be related to binding and downregulation of ERβ5.
Collapse
Affiliation(s)
- Tan Deng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Jing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Mengmeng Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Yaxin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Guannan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, China
| |
Collapse
|
27
|
Zhang B, Zhang CG, Ji LH, Zhao G, Wu ZY. Estrogen receptor β selective agonist ameliorates liver cirrhosis in rats by inhibiting the activation and proliferation of hepatic stellate cells. J Gastroenterol Hepatol 2018; 33:747-755. [PMID: 28884481 DOI: 10.1111/jgh.13976] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The aim of this study is to explore the roles of estrogen receptor (ER) subtypes and corresponding agonists/antagonists on the development of cirrhosis and activation and proliferation of hepatic stellate cells (HSCs). METHODS Carbon tetrachloride (CCl4 )-induced cirrhotic ovariectomized rats were administered non-selective ER agonist (β-estradiol, E2), ER selective agonists (ERα agonist, propylpyrazoletriol; ERβ agonist, diarylpropionitrile [DPN]; and G-protein-coupled ER [GPER] agonist, G1), or E2 + ER selective antagonists (ERα antagonist, MPP; ERβ antagonist, PHTPP; and GPER antagonist, G15) for 12 weeks. The expression of the three ER subtypes in livers and HSCs and the effects of the drugs on hepatic fibrosis, isolated HSCs, and uteri were evaluated. RESULTS Selective ER agonists/antagonists had various effects on CCl4 -induced cirrhosis. The cirrhotic rats in the CCl4 + E2, CCl4 + DPN, CCl4 + E2 + MPP, and CCl4 + E2 + G15 groups presented reduced fibrosis scores, compared with those in the CCl4 group. The cirrhotic rats in the E2 + PHTPP group presented increased fibrosis scores that similar to those in the CCl4 group. The ovariectomized rats had enlarged uteri with increased uterus indexes after E2 administration; however, the proliferative effects of E2 were partially blocked by MPP or G15, but not PHTPP. In the in vitro study, DPN attenuated the transformation of quiescent HSCs to activated phenotype, suppressed collagen I, and α-smooth muscle actin expression. DPN also suppressed platelet-derived growth factor-induced proliferation in cultured HSCs, which was reversed by PHTPP. CONCLUSIONS The antifibrogenic effects of estrogen were mediated by ERβ but not ERα or GPER. The ERβ selective agonist exerted a fibrosuppressive effect by inhibiting the activation and proliferation of HSCs, but did not induce uterine hyperplasia.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Gang Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Yong Wu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Que R, Shen Y, Ren J, Tao Z, Zhu X, Li Y. Estrogen receptor‑β‑dependent effects of saikosaponin‑d on the suppression of oxidative stress‑induced rat hepatic stellate cell activation. Int J Mol Med 2017; 41:1357-1364. [PMID: 29286085 PMCID: PMC5819932 DOI: 10.3892/ijmm.2017.3349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/06/2017] [Indexed: 11/22/2022] Open
Abstract
Saikosaponin-d (SSd) is one of the major triterpenoid saponins derived from Bupleurum falcatum L., which has been reported to possess antifibrotic activity. At present, there is little information regarding the potential target of SSd in hepatic stellate cells (HSCs), which serve an important role in excessive extracellular matrix (ECM) deposition during the pathogenesis of hepatic fibrosis. Our recent study indicated that SSd may be considered a novel type of phytoestrogen with estrogen-like actions. Therefore, the present study aimed to investigate the effects of SSd on the proliferation and activation of HSCs, and the underlying mechanisms associated with estrogen receptors. In the present study, a rat HSC line (HSC-T6) was used and cultured with dimethyl sulfoxide, SSd, or estradiol (E2; positive control), in the presence or absence of three estrogen receptor (ER) antagonists [ICI-182780, methylpiperidinopyrazole (MPP) or (R,R)-tetrahydrochrysene (THC)], for 24 h as pretreatment. Oxidative stress was induced by exposure to hydrogen peroxide for 4 h. Cell proliferation was assessed by MTT growth assay. Malondialdehyde (MDA), CuZn-superoxide dismutase (CuZn-SOD), tissue inhibitor of metalloproteinases-1 (TIMP- 1), matrix metalloproteinase-1 (MMP-1), transforming growth factor-β1 (TGF-β1), hydroxyproline (Hyp) and collagen-1 (COL1) levels in cell culture supernatants were determined by ELISA. Reactive oxygen species (ROS) was detected by flow cytometry. Total and phosphorylated mitogen-activated protein kinases (MAPKs) and α-smooth muscle actin (α-SMA) were examined by western blot analysis. TGF-β1 mRNA expression was determined by RT-quantitative (q)PCR. SSd and E2 were able to significantly suppress oxidative stress-induced proliferation and activation of HSC-T6 cells. Furthermore, SSd and E2 were able to reduce ECM deposition, as demonstrated by the decrease in transforming growth factor-β1, hydroxyproline, collagen-1 and tissue inhibitor of metalloproteinases-1, and by the increase in matrix metalloproteinase-1. These results suggested that the possible molecular mechanism could involve downregulation of the reactive oxygen species/mitogen-activated protein kinases signaling pathway. Finally, the effects of SSd and E2 could be blocked by co-incubation with ICI-182780 or THC, but not MPP, thus indicating that ERβ may be the potential target of SSd in HSC-T6 cells. In conclusion, these findings suggested that SSd may suppress oxidative stress-induced activation of HSCs, which relied on modulation of ERβ.
Collapse
Affiliation(s)
- Renye Que
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanting Shen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianlin Ren
- Department of Scientific Research, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Zhihui Tao
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xiaoyan Zhu
- Department of Physiology, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
29
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
30
|
Zhang CG, Zhang B, Deng WS, Duan M, Chen W, Wu ZY. Role of estrogen receptor β selective agonist in ameliorating portal hypertension in rats with CCl 4-induced liver cirrhosis. World J Gastroenterol 2016; 22:4484-4500. [PMID: 27182159 PMCID: PMC4858631 DOI: 10.3748/wjg.v22.i18.4484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/27/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of diarylpropionitrile (DPN), a selective agonist of estrogen receptor β (ERβ), in liver cirrhosis with portal hypertension (PHT) and isolated hepatic stellate cells (HSCs).
METHODS: Female Sprague-Dawley rats were ovariectomized (OVX), and liver cirrhosis with PHT was induced by CCl4 injection. DPN and PHTPP, the selective ERβ agonist and antagonist, were used as drug interventions. Liver fibrosis was assessed by hematoxylin and eosin (HE) and Masson’s trichrome staining and by analyzing smooth muscle actin expression. Hemodynamic parameters were determined in vivo using colored microspheres technique. Protein expression and phosphorylation were determined by immunohistochemical staining and Western blot analysis. Messenger RNA levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Collagen gel contraction assay was performed using gel lattices containing HSCs treated with DPN, PHTPP, or Y-27632 prior to ET-1 addition.
RESULTS: Treatment with DPN in vivo greatly lowered portal pressure and improved hemodynamic parameters without affecting mean arterial pressure, which was associated with the attenuation of liver fibrosis and intrahepatic vascular resistance (IHVR). In CCl4-treated rat livers, DPN significantly decreased the expression of RhoA and ROCK II, and even suppressed ROCK II activity. Moreover, DPN remarkedly increased the levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS, and promoted the activities of protein kinase G (PKG), which is an NO effector in the liver. Furthermore, DPN reduced the contractility of activated HSCs in the 3-dimensional stress-relaxed collagen lattices, and decreased the ROCK II activity in activated HSCs. Finally, in vivo/in vitro experiments demonstrated that MLC activity was inhibited by DPN.
CONCLUSION: For OVX rats with liver cirrhosis, DPN suppressed liver RhoA/ROCK signal, facilitated NO/PKG pathways, and decreased IHVR, giving rise to reduced portal pressure. Therefore, DPN represents a relevant treatment choice against PHT in cirrhotic patients, especially postmenopausal women.
Collapse
|
31
|
Luo F, Ishigami M, Achiwa K, Ishizu Y, Kuzuya T, Honda T, Hayashi K, Ishikawa T, Katano Y, Goto H. Raloxifene Ameliorates Liver Fibrosis of Nonalcoholic Steatohepatitis Induced by Choline-Deficient High-Fat Diet in Ovariectomized Mice. Dig Dis Sci 2015; 60:2730-9. [PMID: 25868633 DOI: 10.1007/s10620-015-3660-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/03/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The prevalence of nonalcoholic fatty liver disease (NAFLD) is higher in men than in women, but according to some epidemiological studies, this gender difference disappears after menopause. Estrogen therapy protects against NAFLD and nonalcoholic steatohepatitis (NASH) after menopause. We investigated the therapeutic effect of raloxifene, a second-generation selective estrogen-receptor modulator, on NASH induced by a choline-deficient high-fat (CDHF) diet in female ovariectomized (OVX) mice. METHODS Seven-week-old female C57BL/6J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + raloxifene (intraperitoneal injection, 3 mg/kg body weight/day; OVX + RLX group). These three groups of mice were fed a CDHF diet for 8 weeks; choline-sufficient high-fat (CSHF) diet was used as control diet. Serum biochemical indicators of hepatic function and liver histological changes were evaluated. RESULTS Compared with CSHF diet, ovariectomy enhances liver injury and fibrosis in CDHF diet-fed mice. Serum alanine aminotransferase (ALT) levels were significantly lower in the OVX + RLX group than in the OVX group. The OVX group developed extensive steatosis with inflammation and fibrosis. Lobular inflammatory scores and fibrosis staging in the OVX + RLX group were significantly lower than in the OVX group. Furthermore, the OVX + RLX group exhibited significantly higher expression of hepatic estrogen receptor-α, which was significantly lower in the OVX group than in the SHAM group. CONCLUSIONS Raloxifene may ameliorate progression of liver fibrosis of NASH induced by CDHF diet in ovariectomized female mice, and up-regulation of estrogen receptor-α may play an important role in the beneficial effects of raloxifene on NASH.
Collapse
Affiliation(s)
- Fangqiong Luo
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cai L, Gao C, Tang S, Wang J, Xue X, Yue M, Deng X, Su J, Peng Z, Lu Y, Zhang Y, Wang J. Sex-specific association of estrogen receptor 2 polymorphisms with hepatitis C virus infection outcomes in a high-risk Chinese Han population. INFECTION GENETICS AND EVOLUTION 2014; 28:118-24. [PMID: 25261585 DOI: 10.1016/j.meegid.2014.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023]
Abstract
Hepatitis C virus (HCV) has different clinical and biological characteristics in women versus men, which suggests the potential involvement of estrogen. Estrogen signaling is mediated by the estrogen receptor, and genetic variations in the estrogen receptor gene might affect the pathology of HCV infection. We performed logistic regression analysis to explore the associations between rs1256049, rs4986938 and rs944459 polymorphisms of the estrogen receptor 2 gene (ESR2) and HCV infection outcomes. The variant A allele of rs4986938 was associated with an increased HCV infection susceptibility in the males (additive model: adjusted OR=1.493, P=0.010) and a significantly reduced risk of HCV infection in the female subgroup (GA vs. GG: adjusted OR=0.710, P=0.012; dominant model: adjusted OR=0.686, P=0.004; additive model: adjusted OR=0.703, P=0.002). In addition, females carrying the rs4986938 AA genotype appeared to clear HCV spontaneously more readily (adjusted OR=0.237, P=0.011), and additive model analyses showed that each additional allele contributed a decreased risk of approximately 34% for HCV chronicity (adjusted OR=0.659, P=0.006). Furthermore, a significant multiplicative interaction between the combined rs1256049 and rs4986938 genotypes was found to decrease HCV infection risk (adjusted OR=0.583, P=3.000×10(-4)). The area under the curve, based on the model and including age, gender, HCV genotypes and the three SNPs, was significantly related to the clearance of HCV (P=0.003). We provide here the first report that rs4986938 in the ESR2 gene played a potential sex-specific role in the etiology of HCV infection in a high-risk Chinese Han population, suggesting that ESR2 is a candidate susceptibility gene for HCV infection and viral clearance.
Collapse
Affiliation(s)
- Li Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Chunfang Gao
- Institute of Anus and Intestine, The 150th Hospital of PLA, No. 2 West Huaxia Road, Luoyang 471031, Henan, China
| | - Shaidi Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Jiajia Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Xingxin Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Ming Yue
- Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, No. 293 Zhongshan East Road, Nanjing 210002, Jiangsu, China
| | - Xiaozhao Deng
- Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, No. 293 Zhongshan East Road, Nanjing 210002, Jiangsu, China
| | - Jing Su
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Zhihang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China
| | - Yan Lu
- Department of Epidemic Prevention, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Shenzhen 518055, Guangdong, China
| | - Yun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China; Institute of Epidemiology and Microbiology, Huadong Research Institute for Medicine and Biotechnics, No. 293 Zhongshan East Road, Nanjing 210002, Jiangsu, China
| | - Jie Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China; Department of General Practice, Kangda College, Nanjing Medical University, No. 818 East Tianyuan Road, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
33
|
Yakimchuk K, Jondal M, Okret S. Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 2013; 375:121-9. [PMID: 23707618 DOI: 10.1016/j.mce.2013.05.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 02/07/2023]
Abstract
Estrogens regulate various normal and pathophysiological processes including cancers. Cellular signaling by estrogens is mediated by estrogen receptor α (ERα) and β (ERβ), respectively. Binding of agonists to the ERs affects gene transcription. The main endogenous estrogen, 17β-estradiol (E2), binds to both ERα and ERβ with similar affinity. However, the ligand-binding pocket of ERα and ERβ are slightly different which has allowed the development of selective ER ligands. Importantly, while estrogens via ERα stimulate proliferation, signaling via ERβ inhibits proliferation and promotes apoptosis. In both normal and cancer cells the ERs are co-expressed with ER splice variants which may modify the transcriptional activity of the wild-type receptors. Estrogens have prominent effects on immune functions and both ERα and ERβ are expressed in immune cells and lymphoid malignancies. With regard to lymphoid malignancies, most show estrogen influence as several epidemiological studies of lymphoid cancers demonstrate gender differences in incidence and prognosis with males being more affected. In line with these findings, recent results generated by us have shown that ERβ selective agonists inhibit growth and induce apoptosis in human and murine lymphomas in vivo in xenograft experiments. This suggests that ERβ selective agonists in the future may be useful in the treatment of lymphomas.
Collapse
Affiliation(s)
- Konstantin Yakimchuk
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
34
|
Abstract
Sex differences in the incidence of liver cirrhosis and portal hypertension have been reported by epidemiological studies. Previous studies have indicated that estrogen therapy improved hepatic fibrosis, inhibited the activation of hepatic stellate cells, and reduced portal pressure, whereas the administration of exogenous estrogens resulted in some potential risks, limiting their clinical use. However, the biological actions of estrogens are mediated by three subtypes of estrogen receptors (ERs): ERα, ERβ, and G-protein-coupled ER. These ER subtypes act in distinct ways and exert different biological effects that mediate genomic and nongenomic events, resulting in tissue-specific responses. In addition, active estrogen metabolites, with little or no affinity for ERs, could mediate the fibrosuppressive effect of estrogens through an ER-independent pathway. Taken together, such specific estrogen derivatives as ER selective agonists, or active estrogen metabolites, would provide novel therapeutic opportunities, stratifying this hormonal treatment, thereby reducing undesired side-effects in the treatment of liver cirrhosis and portal hypertension.
Collapse
|
35
|
Guo Y, Wu XQ, Zhang C, Liao ZX, Wu Y, Wang H. Protective effect of sodium ferulate on acetaldehyde-treated precision-cut rat liver slices. J Med Food 2012; 15:557-62. [PMID: 22404575 DOI: 10.1089/jmf.2011.1915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis, and inhibition of HSC activation may prevent liver fibrosis. Acetaldehyde, the most deleterious metabolite of alcohol, triggers HSC activation in alcoholic liver injury. In the present study, we investigated the protective effect of sodium ferulate (SF), a sodium salt of ferulic acid that is rich in fruits and vegetables, on acetaldehyde-stimulated HSC activation using precision-cut liver slices (PCLSs). Rat PCLSs were co-incubated with 350 μM acetaldehyde and different concentrations of SF. Hepatotoxicity was assessed by measuring enzyme leakage and malondialdehyde content in tissue. α-Smooth muscle actin, transforming growth factor-β(1), and hydroxyproline were determined to assess the activation of HSCs. In addition, matrix metalloproteinase (MMP)-1 and the tissue inhibitor of metalloproteinase (TIMP-1) were determined to evaluate collagen degradation. SF prominently prevented the enzyme leakage in acetaldehyde-treated slices and also inhibited HSC activation and collagen production stimulated by acetaldehyde. In addition, SF increased MMP-1 expression and decreased TIMP-1 expression. These results showed that SF protected PCLSs from acetaldehyde-stimulated HSC activation and liver injury, which may be associated with the attenuation of oxidative injury and acceleration of collagen degradation.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
36
|
Trauner M, Halilbasic E. Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 2011; 140:1120-1125.e1-12. [PMID: 21334334 DOI: 10.1053/j.gastro.2011.02.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that act as sensors for a broad range of natural and synthetic ligands and regulate several key hepatic functions including bile acid homeostasis, bile secretion, lipid and glucose metabolism, as well as drug deposition. Moreover, NRs control hepatic inflammation, regeneration, fibrosis, and tumor formation. Therefore, NRs are key for understanding the pathogenesis and pathophysiology of a wide range of hepatic disorders. Finally, targeting NRs and their alterations offers exciting new perspectives for the treatment of liver diseases.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| | | |
Collapse
|
37
|
Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future. Cell Biol Int 2011; 34:1247-72. [PMID: 21067523 DOI: 10.1042/cbi20100321] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.
Collapse
|
38
|
Rando G, Wahli W. Sex differences in nuclear receptor-regulated liver metabolic pathways. Biochim Biophys Acta Mol Basis Dis 2011; 1812:964-73. [PMID: 21211563 DOI: 10.1016/j.bbadis.2010.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 12/23/2022]
Abstract
Liver metabolism is markedly sex-dimorphic; accordingly, the prevalence of liver diseases is different between sexes. The superfamily of nuclear receptors (NRs) governs the proper expression of key liver metabolism genes by sensing lipid-soluble hormones and dietary lipids. When the expression of those genes is deregulated, disease development is favored. However, we lack a comprehensive picture of the differences between NR actions in males and females. Here, we reviewed explorative studies that assessed NR functions in both sexes, and we propose a first map of sex-dimorphic NR expression in the liver. Our analysis suggested that NRs in the female liver exhibited cross-talk with more liver-protective potential than NRs in male liver. This study provides empirical support to the hypothesis that women are more resilient to some liver diseases than men, based on a more compensative NR network. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Gianpaolo Rando
- Center for Integrative Genomics and National Research Center Frontiers in Genetics, University of Lausanne, Switzerland
| | | |
Collapse
|
39
|
Padua MAF, Fonseca AM, Deguti MM, Bagnoli VR, Farias AQ, Maciel GAR, Soares JM, Carilho FJ, Baracat EC. Hormone therapy in Brazilian postmenopausal women with chronic hepatitis C: a pilot study. Climacteric 2010; 13:179-86. [DOI: 10.3109/13697130902952577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Smirnov AN. Hormonal mechanisms of sex differentiation of the liver: the modern conception and problems. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Abstract
Liver cancer is the fifth most common cancer worldwide and despite increasing implementation of ultrasonographic surveillance strategies, its incidence is rising, especially in western countries. A universal characteristic of hepatocellular carcinoma is the striking male prevalence that is found, with few exceptions, both in animals and in humans. Many different hypotheses have been put forward in an attempt to explain this finding, which is not a simple epidemiological oddity but could also have pathogenetic implications. An obvious trail to follow, as gender susceptibility is implicated, is the role played by sex hormones, namely estrogens. Estrogens are not simply involved in reproductive mechanisms; instead, it is increasingly evident that they have a role in such an enormous variety of cellular processes that their implication in liver carcinogenesis may be manifold. The purpose of this review is to provide an overview of the available data, with a special focus on the hormonal mechanisms potentially implicated in the development of liver cancer.
Collapse
Affiliation(s)
- Erica Villa
- University of Modena and Reggio Emilia, Gastroenterology Unit, Via del Pozzo 71, 41100 Modena, Italy.
| |
Collapse
|
42
|
McCarty MF. Isoflavones Made Simple – Agonist Activity for the Beta-Type Estrogen Receptor May Mediate Their Health Benefits. COMPLEMENTARY AND ALTERNATIVE THERAPIES AND THE AGING POPULATION 2009:475-522. [DOI: 10.1016/b978-0-12-374228-5.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14:5945-61. [PMID: 18932272 PMCID: PMC2760195 DOI: 10.3748/wjg.14.5945] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
Collapse
|
44
|
McCarty MF, Barroso-Aranda J, Contreras F. Genistein and phycocyanobilin may prevent hepatic fibrosis by suppressing proliferation and activation of hepatic stellate cells. Med Hypotheses 2008; 72:330-2. [PMID: 18789597 DOI: 10.1016/j.mehy.2008.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 12/18/2022]
Abstract
Hepatic fibrosis reflects hepatotoxin-mediated activation of hepatic stellate cells, resulting in their proliferation and transformation to myofibroblasts that secrete collagen. This activation is suppressed by estrogen, an effect which explains the decreased risk for hepatic fibrosis enjoyed by premenopausal women and by postmenopausal women receiving hormone replacement therapy. Since stellate cells have been found to express the beta but not the alpha isoform of the estrogen receptor, it can be predicted that nutritional intakes of the soy isoflavone genistein - a selective agonist for ERbeta in the low nanomolar plasma concentrations achievable with these intakes - have potential for suppressing hepatic fibrosis, in both men and women. The antiproliferative impact of estrogen on stellate cells is mediated at least in part by suppression of NADPH oxidase activity; oxidant production by this enzyme complex plays a crucial role in stellate cell activation. Alternatively, it may be feasible to inhibit NADPH oxidase with phycocyanobilin (PCB), a biliverdin homolog found in spirulina that has recently been shown to inhibit the NADPH oxidase activity of human cell cultures in low micromolar concentrations. Joint administration of soy isoflavones and PCB in appropriate doses might have considerable potential for prevention of hepatic fibrosis in at-risk subjects.
Collapse
|
45
|
Huang H, He J, Yuan Y, Aoyagi E, Takenaka H, Itagaki T, Sannomiya K, Tamaki K, Harada N, Shono M, Shimizu I, Takayama T. Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages. THE JOURNAL OF MEDICAL INVESTIGATION 2008; 55:133-41. [PMID: 18319556 DOI: 10.2152/jmi.55.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In inflammatory and oxidative liver injury, virus proteins and reactive oxygen species are involved in the regulation of proinflammatory cytokine production by macrophages. This study investigated the effects of estradiol (E2) and progesterone on the unstimulated and oxidative stress-stimulated production of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, macrophage inflammatory protein (MIP)-2, and macrophage chemotactic protein (MCP)-1 by peritoneal macrophages isolated from male and female mice. E2 inhibited the cytokine production of TNF-alpha, IL-1beta, MIP-2, and MCP-1 by the unstimulated macrophages from males and females, which was then further stimulated by progesterone. The exposure to hydrogen peroxide in the macrophages from both sexes induced the production of cytokine. The hydrogen peroxide-stimulated cytokine production was suppressed by E2 and enhanced by progesterone. The sex hormone effects on the unstimulated and stimulated macrophages were blocked by their receptor antagonists and showed no significant difference between male and female subjects. These findings suggest that E2 may play a favorable role in the course of persistent liver injury, by inhibiting proinflammatory cytokine production, which, in addition, progesterone may counteract the favorable E2 effects through their receptors.
Collapse
Affiliation(s)
- Huiwei Huang
- Department of Digestive and Cardiovascular Medicine, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shimizu I, Kohno N, Tamaki K, Shono M, Huang HW, He JH, Yao DF. Female hepatology: Favorable role of estrogen in chronic liver disease with hepatitis B virus infection. World J Gastroenterol 2007; 13:4295-305. [PMID: 17708600 PMCID: PMC4250853 DOI: 10.3748/wjg.v13.i32.4295] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is the most common cause of hepatic fibrosis and hepatocellular carcinoma (HCC), mainly as a result of chronic necroinflammatory liver disease. A characteristic feature of chronic hepatitis B infection, alcoholic liver disease and nonalcoholic fatty liver disease (NAFLD) is hepatic steatosis. Hepatic steatosis leads to an increase in lipid peroxidation in hepatocytes, which, in turn, activates hepatic stellate cells (HSCs). HSCs are the primary target cells for inflammatory and oxidative stimuli, and these cells produce extracellular matrix components. Chronic hepatitis B appears to progress more rapidly in males than in females, and NAFLD, cirrhosis and HCC are predominately diseases that tend to occur in men and postmenopausal women. Premenopausal women have lower hepatic iron stores and a decreased production of proinflammatory cytokines. Hepatic steatosis has been observed in aromatase-deficient mice, and has been shown to decrease in animals after estradiol treatment. Estradiol is a potent endogenous antioxidant which suppresses hepatic fibrosis in animal models, and attenuates induction of redox sensitive transcription factors, hepatocyte apoptosis and HSC activation by inhibiting a generation of reactive oxygen species in primary cultures. Variant estrogen receptors are expressed to a greater extent in male patients with chronic liver disease than in females. These lines of evidence suggest that the greater progression of hepatic fibrosis and HCC in men and postmenopausal women may be due, at least in part, to lower production of estradiol and a reduced response to the action of estradiol. A better understanding of the basic mechanisms underlying the sex-associated differences in hepatic fibrogenesis and carciogenesis may open up new avenues for the prevention and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Ichiro Shimizu
- Department of Digestive and Cardiovascular Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Hepatitis C virus infections are recognized as a major causative factor of chronic liver disease. A characteristic feature of chronic hepatitis C, alcoholic liver disease and non-alcoholic fatty liver disease is hepatic steatosis. Hepatic steatosis leads to an increase in lipid peroxidation in hepatocytes, which, in turn, activates hepatic stellate cells (HSCs). HSCs are also thought to be the primary target cells for inflammatory and oxidative stimuli, and to produce extracellular matrix components. Based on available clinical information, chronic hepatitis C appears to progress more rapidly in men than in women, and cirrhosis is predominately a disease of men and postmenopausal women. Estradiol is a potent endogenous antioxidant. Hepatic steatosis was reported to become evident in an aromatase-deficient mouse and was diminished in animals after treatment with estradiol. Our previous studies showed that estradiol suppressed hepatic fibrosis in animal models, and attenuated HSC activation by suppressing the generation of reactive oxygen species in primary cultures. Variant estrogen receptors were found to be expressed to a greater extent in male patients with chronic liver disease than in female subjects. A better understanding of the basic mechanisms underlying the gender-associated differences observed in the progression of chronic liver disease would provide valuable information relative to the search for effective antifibrogenic therapies.
Collapse
Affiliation(s)
- Ichiro Shimizu
- Department of Digestive and Cardiovascular Medicine, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | | |
Collapse
|
48
|
Kawai T, Yokoyama Y, Kawai S, Yokoyama S, Oda K, Nagasaka T, Nagino M, Chaudry IH, Nimura Y. Does estrogen contribute to the hepatic regeneration following portal branch ligation in rats? Am J Physiol Gastrointest Liver Physiol 2007; 292:G582-9. [PMID: 17053157 DOI: 10.1152/ajpgi.00374.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to determine whether estrogen plays any role in the hepatic regeneration of nonligated lobe following portal branch ligation (PBL). Male rats were subjected to PBL on the left and middle lobes. Two and 7 days after PBL, the rats were killed and blood and liver samples were analyzed. Sham animals underwent only laparotomy. The serum estradiol levels were significantly elevated on day 2 following PBL and returned to normal levels on day 7. The expression of estrogen receptors (ER) in the liver evaluated by Western blotting did not show any change in the nonligated lobe compared with shams. Immunohistochemical study for ER showed a predominant ER expression in the hepatocyte nucleus in periportal area (zone 1), although there was no apparent difference in the amount and expression pattern between sham and PBL. However, chronic inhibition of ER by an ER antagonist (ICI 182,780) showed a significantly lower regeneration rate of the nonligated lobe compared with vehicle treatment. Liver regeneration-associated genes also were less activated in the ICI group. Moreover, portal venous flow, determined by fluorescent microsphere injection, was significantly lower in the ICI group compared with vehicle group. These changes correlated with the attenuated expression of endothelial nitric oxide synthase mRNA in both superior mesenteric arteries and veins. In conclusion, these results indicate that the estrogen's contribution on hepatic regeneration following PBL is at least partly mediated through maintaining mesenteric blood flow by mesenteric endothelial nitric oxide synthase upregulation rather than directly activating liver regeneration in the liver.
Collapse
Affiliation(s)
- Toru Kawai
- Division of Surgical Oncology, Dept of Surgery, Nagoya Univ Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cheng X, Shimizu I, Yuan Y, Wei M, Shen M, Huang H, Urata M, Sannomiya K, Fukuno H, Hashimoto-Tamaoki T, Ito S. Effects of estradiol and progesterone on tumor necrosis factor alpha-induced apoptosis in human hepatoma HuH-7 cells. Life Sci 2006; 79:1988-94. [PMID: 16860828 DOI: 10.1016/j.lfs.2006.06.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/13/2006] [Accepted: 06/23/2006] [Indexed: 12/23/2022]
Abstract
Oxidative stress, including the generation of reactive oxygen species (ROS), is known to be involved in apoptosis. Preventing apoptosis may thereby induce a malignant transformation of liver tumor cells. Estradiol (E2) is a potent endogenous antioxidant. We examined the proapoptotic role of progesterone as well as the antiapoptotic role of E2 in human hepatoma HuH-7 cells in a state of early apoptosis induced by tumor necrosis factor (TNF) alpha. The TNF alpha-induced ROS generation, lipid peroxidation, antioxidant enzyme consumption, a proapoptotic predominant expression of Bcl-2 family proteins, and a disruption of mitochondrial membrane potential were all inhibited by E2, and then they were further stimulated by progesterone in HuH-7 cells. The inhibitory effects of E2 were blocked by coincubation with progesterone. Treatment with the progesterone receptor antagonist RU486 led to the blockage of the progesterone-mediated responses to E2 pretreatment in TNF alpha-induced apoptosis. These findings demonstrate that E2 inhibits the TNF alpha-induced early apoptosis in hepatoma cells, by suppressing the oxidative stress processes, whereas progesterone acts in a manner opposite from the effects of E2, and the inhibitory effects of E2 were blocked by progesterone, thus leading to the apoptosis of hepatoma cells.
Collapse
Affiliation(s)
- Xinliang Cheng
- Department of Digestive and Cardiovascular Medicine, Tokushima University Graduate School of Medicine, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yajun Z, Hongshan C, Baoxi S, Dengbing Y, Jianhua S, Xinshun G, Li Y, Yi C. Translocation of Bax in rat hepatocytes cultured with ferric nitrilotriacetate. Life Sci 2005; 76:2763-72. [PMID: 15808878 DOI: 10.1016/j.lfs.2004.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 07/02/2004] [Indexed: 11/16/2022]
Abstract
Hepatic fibrosis occurs after many years of iron overload in liver. An effective iron deposition model induced by ferric nitrilotriacetate (FeNTA) in cultured rat hepatocytes was assumed. It has been shown that treatment of rat hepatocytes with FeNTA lead to oxidative stress and hepatocyte apoptosis. Hepatocyte apoptosis can promote liver fibrosis. The mechanisms of hepatocyte apoptosis induced by FeNTA have not yet been fully elucidated. The present study demonstrated that FeNTA-induced hepatocyte apoptosis was related to Bax translocation, cytochrome c release, and caspase-3 activation.
Collapse
Affiliation(s)
- Zhou Yajun
- Department of Biochemistry and Molecular Biology, Medical College, Nan Tong University 226001, Jiangsu Province, PR China.
| | | | | | | | | | | | | | | |
Collapse
|