1
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Serumula W, Nkambule B, Parboosing R. Novel Aptamers for the Reactivation of Latent HIV. Curr HIV Res 2023; 21:279-289. [PMID: 37881079 DOI: 10.2174/011570162x248488230926045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION A "Shock and Kill" strategy has been proposed to eradicate the HIV latent viral reservoir. Effective Latency Reversal Agents (LRA) are a key requirement for this strategy. The search for LRAs with a novel mechanism of action is ongoing. This is the first study to propose aptamers for the reactivation of HIV. OBJECTIVE The purpose of this study was to identify an aptamer that potentially reactivates HIV via the NF-κβ pathway, specifically by binding to IkB and releasing NF-κβ. METHODS Aptamer selection was performed at Aptus Biotech (www.aptusbiotech.es), using ikB human recombinant protein with His tag bound to Ni-NTA agarose resin using the SELEX procedure. Activation of NF-κβ was measured by SEAP Assay. HIV reactivation was measured in JLat cells using a BD FACS-Canto™ II flow cytometer. All flow cytometry data were analyzed using Kaluza analyzing software. RESULTS Clones that had equivalent or greater activation than the positive control in the SEAP assay were regarded as potential reactivators of the NF-κβ pathway and were sequenced. The three ikb clones namely R6-1F, R6-2F, and R6-3F were found to potentially activate the NF-κβ pathway. Toxicity was determined by exposing lymphocytes to serial dilutions of the aptamers; the highest concentration of the aptamers that did not decrease viability by > 20% was used for the reactivation experiments. The three novel aptamers R6-1F, R6-2F, and R6-3F resulted in 4,07%, 6,72% and 3,42% HIV reactivation, respectively, while the untreated control showed minimal (<0.18%) fluorescence detection. CONCLUSION This study demonstrated the reactivation of latent HIV by aptamers that act via the NF-κβ pathway. Although the effect was modest and unlikely to be of clinical benefit, future studies are warranted to explore ways of enhancing reactivation.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban4091, South Africa
| | - Bongani Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- National Health Laboratory Service/University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Kim HI, Kim GN, Yu KL, Park SH, You JC. Identification of Novel Nucleocapsid Chimeric Proteins Inhibiting HIV-1 Replication. Int J Mol Sci 2022; 23:ijms232012340. [PMID: 36293198 PMCID: PMC9604505 DOI: 10.3390/ijms232012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is an essential factor that induces transcription elongation and is also negatively regulated by the cellular factor HEXIM1. Previously, the chimeric protein HEXIM1-Tat (HT) was demonstrated to inhibit human immunodeficiency virus-1 (HIV)-1 transcription. In this study, we attempted to develop an improved antiviral protein that specifically binds viral RNA (vRNA) by fusing HT to HIV-1 nucleocapsid (NC). Thus, we synthesized NC-HEXIM1-Tat (NHT) and HEXIM1-Tat-NC (HTN). NHT and HTN inhibited virus proliferation more effectively than HT, and they did not attenuate the function of HT. Notably, NHT and HTN inhibited the infectivity of the progeny virus, whereas HT had no such effect. NHT and HTN selectively and effectively interacted with vRNA and inhibited the proper packaging of the HIV-1 genome. Taken together, our results illustrated that the novel NC-fused chimeric proteins NHT and HTN display novel mechanisms of anti-HIV effects by inhibiting both HIV-1 transcription and packaging.
Collapse
Affiliation(s)
- Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Seong-Hyun Park
- Graduate Program in Bio-industrial Engineering, College of Life Science and Biotechnology, The Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
4
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH, Lange MJ. Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 2022; 50:1701-1717. [PMID: 35018437 PMCID: PMC8860611 DOI: 10.1093/nar/gkab1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.
Collapse
Affiliation(s)
- Paige R Gruenke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachna Aneja
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Sarah Welbourn
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Obiaara B Ukah
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
7
|
Qu N, Ying Y, Qin J, Chen AK. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic Acids Res 2021; 50:e44. [PMID: 34967412 PMCID: PMC9071489 DOI: 10.1093/nar/gkab1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.
Collapse
Affiliation(s)
- Na Qu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Jinshan Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Guo Y, Shi M, Liu X, Liang H, Gao L, Liu Z, Li J, Yu D, Li K. Selection and preliminary application of DNA aptamer targeting A549 excreta in cell culture media. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C. Aptamer Applications in Emerging Viral Diseases. Pharmaceuticals (Basel) 2021; 14:ph14070622. [PMID: 34203242 PMCID: PMC8308861 DOI: 10.3390/ph14070622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.
Collapse
Affiliation(s)
- Arne Krüger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
| | - Ana Paula de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Vanessa de Sá
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-900-SP, Brazil; (A.P.d.J.S.); (V.d.S.)
- Correspondence: (H.U.); (C.W.)
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000-SP, Brazil;
- Correspondence: (H.U.); (C.W.)
| |
Collapse
|
10
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
11
|
Emerging Technologies for the Treatment of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:81-96. [PMID: 33656715 DOI: 10.1007/978-3-030-59261-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The new coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), turned into a pandemic affecting more than 200 countries. Due to the high rate of transmission and mortality, finding specific and effective treatment options for this infection is currently of urgent importance. Emerging technologies have created a promising platform for developing novel treatment options for various viral diseases such as the SARS-CoV-2 virus. Here, we have described potential novel therapeutic options based on the structure and pathophysiological mechanism of the SARS-CoV-2 virus, as well as the results of previous studies on similar viruses such as SARS and MERS. Many of these approaches can be used for controlling viral infection by reducing the viral damage or by increasing the potency of the host response. Owing to their high sensitivity, specificity, and reproducibility, siRNAs, aptamers, nanobodies, neutralizing antibodies, and different types of peptides can be used for interference with viral replication or for blocking internalization. Receptor agonists and interferon-inducing agents are also potential options to balance and enhance the innate immune response against SARS-CoV-2. Solid evidence on the efficacy and safety of such novel technologies is yet to be established although many well-designed clinical trials are underway to address these issues.
Collapse
|
12
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
13
|
Mohammadinezhad R, Jalali SAH, Farahmand H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3823-3835. [PMID: 32676627 DOI: 10.1039/d0ay00491j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Systematic Evolution of Ligands by Exponential enrichment (SELEX) is an iterative method for in vitro selection of aptamers from a random synthetic oligonucleotide library. Successful retrieving of aptamers by SELEX relies on optimization of various steps including target immobilization, aptamer partitioning, amplification, and ssDNA generation, which all require spending considerable effort and cost. Furthermore, due to the random nature of the initial library, SELEX may redirect toward the selection of low-affinity aptamers that are over-represented in the ssDNA population due to PCR bias. Thus, precise monitoring of the SELEX process is crucial to ensure the selection of target-specific aptamers. In the present study, we investigated the reliability and simplicity of different direct and indirect monitoring methods including UV-Vis spectroscopy, real-time PCR quantification and melt-curve analysis, electrophoretic mobility shift assay (EMSA) and enzyme-linked oligonucleotide assay (ELONA) for selection of DNA aptamers for a protein target. All the examined methods were capable of illustrating the gradual evolution of specific aptamers by the progression of SELEX and showed almost similar results regarding the identification of the enriched round of selection. Moreover, we describe the use of melt-curve analysis in the colony real-time PCR method as a simple, robust, and repeatable tool for pre-sequencing separation of distinct aptamer clones.
Collapse
Affiliation(s)
- Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | | |
Collapse
|
14
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Retureau R, Oguey C, Mauffret O, Hartmann B. Structural Explorations of NCp7-Nucleic Acid Complexes Give Keys to Decipher the Binding Process. J Mol Biol 2019; 431:1966-1980. [PMID: 30876916 DOI: 10.1016/j.jmb.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
A comprehensive view of all the structural aspects related to NCp7 is essential to understand how this protein, crucial in many steps of the HIV-1 cycle, binds and anneals nucleic acids (NAs), mainly thanks to two zinc fingers, ZF1 and ZF2. Here, we inspected the structural properties of the available experimental models of NCp7 bound to either DNA or RNA molecules, or free of ligand. Our analyses included the characterization of the relative positioning of ZF1 and ZF2, accessibility measurements and the exhaustive, quantitative mapping of the contacts between amino acids and nucleotides by a recent tessellation method, VLDM. This approach unveiled the intimate connection between NA binding process and the conformations explored by the free protein. It also provided new insights into the functional specializations of ZF1 and ZF2. The larger accessibility of ZF2 in free NCp7 and the consistency of the ZF2/NA interface in different models and conditions give ZF2 the lead of the binding process. ZF1 contributes to stabilize the complexes through various organizations of the ZF1/NA interface. This work outcome is a global binding scheme of NCp7 to DNA and RNA, and an example of how protein-NA complexes are stabilized.
Collapse
Affiliation(s)
- Romain Retureau
- LBPA, UMR 8113, ENS Paris-Saclay-CNRS, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Christophe Oguey
- LPTM, CNRS UMR 8089, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95031 Cergy-Pontoise, France
| | - Olivier Mauffret
- LBPA, UMR 8113, ENS Paris-Saclay-CNRS, 61 avenue du Président Wilson, 94235 Cachan cedex, France.
| | - Brigitte Hartmann
- LBPA, UMR 8113, ENS Paris-Saclay-CNRS, 61 avenue du Président Wilson, 94235 Cachan cedex, France.
| |
Collapse
|
16
|
Molefe PF, Masamba P, Oyinloye BE, Mbatha LS, Meyer M, Kappo AP. Molecular Application of Aptamers in the Diagnosis and Treatment of Cancer and Communicable Diseases. Pharmaceuticals (Basel) 2018; 11:ph11040093. [PMID: 30274155 PMCID: PMC6315466 DOI: 10.3390/ph11040093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays. Unfortunately, the control of these diseases depends on early detection and administration of effective treatment therefore any diagnostic delay is a huge challenge to curbing these diseases. Hence, there is a need for alternative diagnostic tools, discovery and development of novel therapeutic agents. Studies have demonstrated that aptamers could potentially offer one of the best solutions to these problems. Aptamers are short sequences of either DNA or RNA molecules, which are identified in vitro through a SELEX process. They are sensitive and bind specifically to target molecules. Their promising features suggest they may serve as better diagnostic agents and can be used as drug carriers for therapeutic purposes. In this article, we review the applications of aptamers in the theranostics of cancer and some infectious diseases.
Collapse
Affiliation(s)
- Philisiwe Fortunate Molefe
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
17
|
René B, Mauffret O, Fossé P. Retroviral nucleocapsid proteins and DNA strand transfers. BIOCHIMIE OPEN 2018; 7:10-25. [PMID: 30109196 PMCID: PMC6088434 DOI: 10.1016/j.biopen.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
An infectious retroviral particle contains 1000-1500 molecules of the nucleocapsid protein (NC) that cover the diploid RNA genome. NC is a small zinc finger protein that possesses nucleic acid chaperone activity that enables NC to rearrange DNA and RNA molecules into the most thermodynamically stable structures usually those containing the maximum number of base pairs. Thanks to the chaperone activity, NC plays an essential role in reverse transcription of the retroviral genome by facilitating the strand transfer reactions of this process. In addition, these reactions are involved in recombination events that can generate multiple drug resistance mutations in the presence of anti-HIV-1 drugs. The strand transfer reactions rely on base pairing of folded DNA/RNA structures. The molecular mechanisms responsible for NC-mediated strand transfer reactions are presented and discussed in this review. Antiretroviral strategies targeting the NC-mediated strand transfer events are also discussed.
Collapse
Affiliation(s)
- Brigitte René
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Olivier Mauffret
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Philippe Fossé
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| |
Collapse
|
18
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
19
|
Bala J, Chinnapaiyan S, Dutta RK, Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol 2018; 15:327-337. [PMID: 29431588 PMCID: PMC5927724 DOI: 10.1080/15476286.2017.1414131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/07/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Aptamers are high affinity single-stranded nucleic acid or protein ligands which exhibit specificity and avidity comparable to, or exceeding that of antibodies and can be generated against most targets. The functionality of aptamers is based on their unique tertiary structure, complexity and their ability to attain unique binding pockets by folding. Aptamers are selected in vitro by a process called Systematic Evolution of Ligands by Exponential enrichment (SELEX). The Kd values for the selected aptamer are often in the picomolar to low nanomolar range. Stable and nontoxic aptamers could be selected for a wide range of ligands including small molecules to large proteins. Aptamers have shown tremendous potential and have found multipurpose application in the field of therapeutic, diagnostic, biosensor and bio-imaging. While their mechanism of action can be similar to that of monoclonal antibodies, aptamers provide additional advantages in terms of production cost, simpler regulatory approval and lower immunogenicity as they are synthesized chemically. Human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), which causes significant morbidity and mortality with a significant consequent decrease in the quality of patient's lives. While cART has led to good viral control, people living with HIV now suffer from non-HIV comorbidities due to viral protein expression that cannot be controlled by cART. Hence pathophysiological mechanisms that govern these comorbidities with a focus on therapies that neutralize these HIV effects gained increased attention. Recent advances in HIV/AIDS research have identified several molecular targets and for the development of therapeutic and diagnostic using aptamers against HIV/AIDS. This review presents recent advances in aptamers technology for potential application in HIV diagnostics and therapeutics towards improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Jyoti Bala
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rajib Kumar Dutta
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hoshang Unwalla
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
20
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2015; 42:847-65. [PMID: 26258445 PMCID: PMC5022137 DOI: 10.3109/1040841x.2015.1070115] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed.
Collapse
Affiliation(s)
- Anna Davydova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Maria Vorobjeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Dmitrii Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Sidney Altman
- b Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Valentin Vlassov
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Alya Venyaminova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| |
Collapse
|
22
|
High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e228. [PMID: 25689224 PMCID: PMC4345311 DOI: 10.1038/mtna.2015.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
HIV-1 aspartyl protease (PR) plays a key role in virion morphogenesis, underscoring the effectiveness of protease inhibitors (PI). Despite their utility, side effects and drug-resistance remains a problem. We report the development of RNA aptamers as inhibitors of HIV-1 PR for potential use in anti-HIV gene therapy. Employing Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated four unique families of anti-HIV-1 PR RNA aptamers displaying moderate binding affinities (Kd = 92–140 nmol/l) and anti-PR inhibitory activity (Kis = 138–647 nmol/l). Second-generation RNA aptamers selected from partially randomized pools based on two of the aptamer sequences displayed striking enhancements in binding (Kds = 2–22 nmol/l) and inhibition (Kis = 31–49 nmol/l). The aptamers were specific in that they did not bind either the related HIV-2 protease, or the cellular aspartyl protease, Cathepsin D. Site-directed mutagenesis of a second-generation aptamer to probe the predicted secondary structure indicated that the stem-loops SL2 and SL3 and the stem P1 were essential for binding and that only the 3'-most 17 nucleotides were dispensable. Anti-PR aptamers inhibited HIV replication in vitro and the degree of inhibition was higher for second-generation aptamers with greater affinity and the inhibition was abrogated for a nonbinding aptamer variant.
Collapse
|
23
|
Aptamers in diagnostics and treatment of viral infections. Viruses 2015; 7:751-80. [PMID: 25690797 PMCID: PMC4353915 DOI: 10.3390/v7020751] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus), HBV (Hepatitis B Virus), HCV (Hepatitis C Virus), SARS (Severe Acute Respiratory Syndrome), H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.
Collapse
|
24
|
Szilágyi A, Kun Á, Szathmáry E. Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 2014; 9:e109987. [PMID: 25299454 PMCID: PMC4192543 DOI: 10.1371/journal.pone.0109987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.
Collapse
Affiliation(s)
- András Szilágyi
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
25
|
Sánchez-Luque FJ, Stich M, Manrubia S, Briones C, Berzal-Herranz A. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Sci Rep 2014; 4:6242. [PMID: 25175101 PMCID: PMC4150108 DOI: 10.1038/srep06242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/04/2014] [Indexed: 02/08/2023] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.
Collapse
Affiliation(s)
- Francisco J Sánchez-Luque
- 1] Department of Molecular Biology. Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada. Avda. del Conocimiento s/n, Armilla (Granada 18016, Spain) [2]
| | - Michael Stich
- 1] Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain) [2]
| | - Susanna Manrubia
- Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain)
| | - Carlos Briones
- 1] Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain) [2] Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alfredo Berzal-Herranz
- Department of Molecular Biology. Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada. Avda. del Conocimiento s/n, Armilla (Granada 18016, Spain)
| |
Collapse
|
26
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
27
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
28
|
Esseghaier C, Ng A, Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens Bioelectron 2013; 41:335-41. [DOI: 10.1016/j.bios.2012.08.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
|
29
|
Goudreau N, Hucke O, Faucher AM, Grand-Maître C, Lepage O, Bonneau PR, Mason SW, Titolo S. Discovery and structural characterization of a new inhibitor series of HIV-1 nucleocapsid function: NMR solution structure determination of a ternary complex involving a 2:1 inhibitor/NC stoichiometry. J Mol Biol 2013; 425:1982-1998. [PMID: 23485336 DOI: 10.1016/j.jmb.2013.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
Abstract
The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.
Collapse
Affiliation(s)
- Nathalie Goudreau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Oliver Hucke
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Anne-Marie Faucher
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Chantal Grand-Maître
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Olivier Lepage
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Pierre R Bonneau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Stephen W Mason
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Steve Titolo
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| |
Collapse
|
30
|
Mori M, Schult-Dietrich P, Szafarowicz B, Humbert N, Debaene F, Sanglier-Cianferani S, Dietrich U, Mély Y, Botta M. Use of virtual screening for discovering antiretroviral compounds interacting with the HIV-1 nucleocapsid protein. Virus Res 2012; 169:377-87. [PMID: 22634301 DOI: 10.1016/j.virusres.2012.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022]
Abstract
The HIV-1 nucleocapsid protein (NC) is considered as an emerging drug target for the therapy of AIDS. Several studies have highlighted the crucial role of NC within the viral replication cycle. However, although NC inhibition has provided in vitro and in vivo antiretroviral activity, drug-candidates which interfere with NC functions are still missing in the therapeutic arsenal against HIV. Based on previous studies, where the dynamic behavior of NC and its ligand binding properties have been investigated by means of computational methods, here we used a virtual screening protocol for discovering novel antiretroviral compounds which interact with NC. The antiretroviral activity of virtual hits was tested in vitro, whereas biophysical studies elucidated the direct interaction of most active compounds with NC(11-55), a peptide corresponding to the zinc finger domain of NC. Two novel antiretroviral small molecules capable of interacting with NC are presented here.
Collapse
Affiliation(s)
- Mattia Mori
- Università di Roma La Sapienza, Dipartimento di Chimica e Tecnologie del Farmaco, piazzale A. Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Binning JM, Leung DW, Amarasinghe GK. Aptamers in virology: recent advances and challenges. Front Microbiol 2012; 3:29. [PMID: 22347221 PMCID: PMC3274758 DOI: 10.3389/fmicb.2012.00029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
Aptamers generated from randomized libraries of nucleic acids have found utility in a wide variety of fields and in the clinic. Aptamers can be used to target both intracellular and extracellular components, including small molecules, proteins, cells, and viruses. With recent technological developments in stringent selection and rapid isolation strategies, it is likely that aptamers will continue to make an impact as useful tools and reagents. Although many recently developed aptamers are intended for use as therapeutic and diagnostic agents, use of aptamers for basic research, including target validation, remains an active area with high potential to impact our understanding of molecular mechanisms and for drug discovery. In this brief review, we will discuss recent aptamer discoveries, their potential role in structural virology, as well as challenges and future prospects.
Collapse
Affiliation(s)
- Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
32
|
Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem Biophys Res Commun 2011; 416:178-83. [PMID: 22093830 DOI: 10.1016/j.bbrc.2011.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that functionalized gold nanoparticles (AuNPs) can be used as a general platform for loading and delivering DNA oligonucleotides and short hairpin RNA to living systems. Here, we report the ability of functionalized AuNP to deliver RNA aptamers into the nuclei of human cells. An in vitro-synthesized RNA aptamer specific to the β-catenin protein was delivered into the HepG2 human cell line more efficiently via functionalized AuNP than liposome-based delivery, and resulted in nearly complete inhibition of β-catenin binding to the p50 subunit of NF-κB in the nucleus. This inhibition led to repression of NF-κB p50-dependent transcription of CRP. Also, the β-catenin aptamer in the nucleus led to down-regulation of β-catenin-mediated transcriptional activity through the TCF complex and resulted in decrease in the levels of cyclin D, and c-myc mRNA by ~47% and ~57%, respectively. In addition, we used functionalized AuNP to deliver another RNA aptamer targeted to the p50 subunit of NF-κB into the A549 human cell line, and this was sufficient to induce apoptosis of the cells. Our findings demonstrate that AuNP GDS can be used to deliver small, highly structured RNA aptamers into the nucleus of human cells where they modulate the activity of transactivators by interacting with target proteins.
Collapse
|
33
|
Hamula CL, Zhang H, Li F, Wang Z, Chris Le X, Li XF. Selection and analytical applications of aptamers binding microbial pathogens. Trends Analyt Chem 2011; 30:1587-1597. [PMID: 32287535 PMCID: PMC7112775 DOI: 10.1016/j.trac.2011.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA aptamers specifically recognizing microbial cells and viruses have a range of analytical and therapeutic applications. This article describes recent advances in the development of aptamers targeting specific pathogens (e.g., live bacteria, whole viral particles, and virally-infected mammalian cells). Specific aptamers against pathogens have been used as affinity reagents to develop sandwich assays, to label and to image cells, to bind with cells for flow-cytometry analysis, and to act as probes for development of whole-cell biosensors. Future applications of aptamers to pathogens will benefit from recent advances in improved selection and new aptamers containing modified nucleotides, particularly slow off-rate modified aptamers (SOMAmers).
Collapse
Affiliation(s)
| | | | | | | | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
34
|
Kim MY, Jeong S. In VitroSelection of RNA Aptamer and Specific Targeting of ErbB2 in Breast Cancer Cells. Oligonucleotides 2011. [DOI: 10.1089/oli.2011.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Kim MY, Jeong S. In Vitro Selection of RNA Aptamer and Specific Targeting of ErbB2 in Breast Cancer Cells. Nucleic Acid Ther 2011; 21:173-8. [DOI: 10.1089/nat.2011.0283] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Mee Young Kim
- National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Yongin-si, Republic of Korea
- Department of Molecular Biology, Dankook University, Yongin-si, Republic of Korea
| | - Sunjoo Jeong
- National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Yongin-si, Republic of Korea
- Department of Molecular Biology, Dankook University, Yongin-si, Republic of Korea
| |
Collapse
|
36
|
Guerrerio AL, Berg JM. Design of single-stranded nucleic acid binding peptides based on nucleocapsid CCHC-box zinc-binding domains. J Am Chem Soc 2010; 132:9638-43. [PMID: 20586464 DOI: 10.1021/ja910942v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structures of nucleocapsid (NC)-like CCHC zinc-binding domains bound to nucleic acid targets have revealed that these domains bind guanosine residues within single-stranded nucleic acids. Here, we have performed initial studies examining the potential use of NC-like CCHC zinc-binding domains as modules to construct single-stranded nucleic acid binding peptides. The affinity for guanosine-containing single-stranded deoxyribooligonucleotides increases with the number of CCHC domains in the peptide. The length of the linker between domains affects the spacing of guanosine residues in oligonucleotides that are preferentially bound. These studies provide a proof of principle that NC-like CCHC zinc-binding domains can be utilized as a basis for designing peptides that bind specific single-stranded nucleic acid sequences.
Collapse
Affiliation(s)
- Anthony L Guerrerio
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
37
|
RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 2010; 85:305-14. [PMID: 20980522 DOI: 10.1128/jvi.02626-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gag orchestrates the assembly and release of human immunodeficiency virus type 1 (HIV-1) particles. We explored here the potential of anti-Gag RNA aptamers to inhibit HIV-1 replication. In vitro, RNA aptamers raised against an HIV-1 Gag protein, lacking the N-terminal myristate and the C-terminal p6 (DP6-Gag), could bind to matrix protein (MA), nucleocapsid protein (NC), or entire DP6-Gag protein. Upon cotransfection with pNL4-3.Luc molecular clone into 293T cells, six of the aptamers caused mild inhibition (2- to 3-fold) in the extracellular capsid levels, and one aptamer displayed 20-fold inhibition. The reduction was not due to a release defect but reflected Gag mRNA levels. We hypothesized that the aptamers influence genomic RNA levels via perturbation of specific Gag-genomic RNA interactions. Binding studies revealed that the "NC-binders" specifically compete with the packaging signal (ψ) of HIV-1 for binding to DP6-Gag. Therefore, we tested the ability of two NC-binders to inhibit viruses containing ψ-region deletions (ΔSL1 or ΔSL3) and found that the NC-binders were no longer able to inhibit Gag synthesis. The inability of these aptamers to inhibit ψ-deleted viruses correlated with the absence of competition with the corresponding ψ transcripts lacking SL1 or SL3 for binding DP6-Gag in vitro. These results indicate that the NC-binding aptamers disrupt Gag-genomic RNA interaction and negatively affect genomic RNA transcription, processing, or stability. Our results reveal an essential interaction between HIV-1 Gag and the ψ-region that may be distinct from that which occurs during the encapsidation of genomic RNA. Thus, anti-Gag aptamers can be an effective tool to perturb Gag-genomic RNA interactions.
Collapse
|
38
|
Zhang D, Xu L, Wei X, Li Y, He J, Liu K. Hydroxyl-functionalized DNA: an efficient orthogonal protecting strategy and duplex stability. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:924-42. [PMID: 20183562 DOI: 10.1080/15257770903307276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tert-butyldiphenylsilyl (TBDPS) was found to be an effective orthogonal protecting strategy for the 5-substituted hydroxyl groups of de novo synthesized deoxyuridine analogues 1-3 and 7-(3-hydroxypropynyl)- of 8-aza-7-deazadeoxyadenosine 4 for their incorporation into oligodeoxynucleotides by phosphoramidite chemistry. It could be completely cleaved under normal and ultra-mild deprotection conditions applied to DNA synthesis, without extra cleaving operation. The new phosphoramidites were coupled as usual with high yields. The new modified oligodeoxynucleotides were characterized by MALDI-TOF and enzymatic cleavage analysis. The thermal stability and conformation of these hydroxyl-functionalized DNA duplexes were evaluated.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
In the past two decades, high-affinity nucleic acid aptamers have been developed for a wide variety of pure molecules and complex systems such as live cells. Conceptually, aptamers are developed by an evolutionary process, whereby, as selection progresses, sequences with a certain conformation capable of binding to the target of interest emerge and dominate the pool. This protocol, cell-SELEX (systematic evolution of ligands by exponential enrichment), is a method that can generate DNA aptamers that can bind specifically to a cell type of interest. Commonly, a cancer cell line is used as the target to generate aptamers that can differentiate that cell type from other cancers or normal cells. A single-stranded DNA (ssDNA) library pool is incubated with the target cells. Nonbinding sequences are washed off and bound sequences are recovered from the cells by heating cell-DNA complexes at 95 degrees C, followed by centrifugation. The recovered pool is incubated with the control cell line to filter out the sequences that bind to common molecules on both the target and the control, leading to the enrichment of specific binders to the target. Binding sequences are amplified by PCR using fluorescein isothiocyanate-labeled sense and biotin-labeled antisense primers. This is followed by removal of antisense strands to generate an ssDNA pool for subsequent rounds of selection. The enrichment of the selected pools is monitored by flow cytometry binding assays, with selected pools having increased fluorescence compared with the unselected DNA library. The procedure, from design of oligonucleotides to enrichment of the selected pools, takes approximately 3 months.
Collapse
|
40
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
41
|
Gopinath SCB. Mapping of RNA-protein interactions. Anal Chim Acta 2009; 636:117-28. [PMID: 19264161 DOI: 10.1016/j.aca.2009.01.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
RNA-protein interactions are important biological events that perform multiple functions in all living organisms. The wide range of RNA interactions demands diverse conformations to provide contacts for the selective recognition of proteins. Various analytical procedures are presently available for quantitative analyses of RNA-protein complexes, but analytical-based mapping of these complexes is essential to probe specific interactions. In this overview, interactions of functional RNAs and RNA-aptamers with target proteins are discussed by means of mapping strategies.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Institute for Biological Resources and Functions & Center for Applied Near Field Optics Research (CAN-FOR), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba City 305-8562, Ibaraki, Japan
| |
Collapse
|
42
|
Jeong YY, Kim SH, Jang SI, You JC. Examination of specific binding activity of aptamer RNAs to the HIV-NC by using a cell-based in vivo assay for protein-RNA interaction. BMB Rep 2008; 41:511-5. [PMID: 18682034 DOI: 10.5483/bmbrep.2008.41.7.511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid (NC) protein of the Human Immunodeficiency Virus-1 plays a key role in viral genomic packaging by specifically recognizing the Psi(Psi) RNA sequence within the HIV-1 genome RNA. Recently, a novel cell-based assay was developed to probe the specific interactions in vivo between the NC and Psi-RNA using E.coli cells (J. Virol. 81: 6151-55, 2007). In order to examine the extendibility of this cell-based assay to RNAs other than Psi-RNA, this study tested the RNA aptamers isolated in vitro using the SELEX method, but whose specific binding ability to NC in a living cellular environment has not been established. The results demonstrate for the first time that each of those aptamer RNAs can bind specifically to NC in a NC zinc finger motif dependent manner within the cell. This confirms that the cell-based assay developed for NC-Psi interaction can be further extended and applied to NC-binding RNAs other than Psi-RNA.
Collapse
Affiliation(s)
- Yu Young Jeong
- National Research Laboratory for Molecular Virology, Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
43
|
Win MN, Smolke CD. RNA as a versatile and powerful platform for engineering genetic regulatory tools. Biotechnol Genet Eng Rev 2008; 24:311-46. [PMID: 18059640 DOI: 10.1080/02648725.2007.10648106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maung Nyan Win
- Department of Chemical Engineering, MC 210-41, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | | |
Collapse
|
44
|
Abstract
Aptamers are rare nucleic acid ligands, which can be concocted in the laboratory from the randomized pool of molecules by affinity and amplification processes. Aptamers have several properties as they can be applied complementarily to antibodies and have several advantages over antibodies. In the past, several aptamers have been selected with a view to develop antiviral agents for therapeutic applications. This review summarizes potent antiviral aptamers and their strategies to prevent the viral replication.
Collapse
Affiliation(s)
- S C B Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions and Center for Applied Near Field Optics Research, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| |
Collapse
|
45
|
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 2007; 107:3715-43. [PMID: 17715981 DOI: 10.1021/cr0306743] [Citation(s) in RCA: 673] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael Famulok
- LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
46
|
Stoltenburg R, Reinemann C, Strehlitz B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. ACTA ACUST UNITED AC 2007; 24:381-403. [PMID: 17627883 DOI: 10.1016/j.bioeng.2007.06.001] [Citation(s) in RCA: 956] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
SELEX stands for systematic evolution of ligands by exponential enrichment. This method, described primarily in 1990 [Ellington, A.D., Szostak, J.W., 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822; Tuerk, C., Gold, L., 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510] aims at the development of aptamers, which are oligonucleotides (RNA or ssDNA) binding to their target with high selectivity and sensitivity because of their three-dimensional shape. Aptamers are all new ligands with a high affinity for considerably differing molecules ranging from large targets as proteins over peptides, complex molecules to drugs and organic small molecules or even metal ions. Aptamers are widely used, including medical and pharmaceutical basic research, drug development, diagnosis, and therapy. Analytical and separation tools bearing aptamers as molecular recognition and binding elements are another big field of application. Moreover, aptamers are used for the investigation of binding phenomena in proteomics. The SELEX method was modified over the years in different ways to become more efficient and less time consuming, to reach higher affinities of the aptamers selected and for automation of the process. This review is focused on the development of aptamers by use of SELEX and gives an overview about technologies, advantages, limitations, and applications of aptamers.
Collapse
Affiliation(s)
- Regina Stoltenburg
- UFZ, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | |
Collapse
|
47
|
Abstract
Aptamers are artificial nucleic acid ligands that can be generated in vitro against a wide range of molecules, including the gene products of viruses. Aptamers are isolated from complex libraries of synthetic nucleic acids by an iterative, cell-free process that involves repetitively reducing the complexity of the library by partitioning on the basis of selective binding to the target molecule, followed by reamplification. For virologists, aptamers have potential uses as tools to help to analyse the molecular biology of virus replication, as a complement to the more familiar monoclonal antibodies. They also have potential applications as diagnostic biosensors and in the development of antiviral agents. In recent years, these two promising avenues have been explored increasingly by virologists; here, the progress that has been made is reviewed.
Collapse
Affiliation(s)
- William James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX2 3RE, UK
| |
Collapse
|
48
|
Jang SI, Kim YH, Paik SY, You JC. Development of a cell-based assay probing the specific interaction between the human immunodeficiency virus type 1 nucleocapsid and psi RNA in vivo. J Virol 2007; 81:6151-5. [PMID: 17360755 PMCID: PMC1900288 DOI: 10.1128/jvi.00414-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe a cell-based in vivo assay that probes the specific interaction between nucleocapsid (NC) protein and Psi (Psi) RNA, the human immunodeficiency virus (HIV) packaging signal. The results demonstrate for the first time a specific NC-Psi interaction within living cells. The specificity and applicability of the assay were confirmed by mutational studies of NC and deletion-mapping analyses of Psi-RNA as well as by testing the in vivo NC-binding effects of NC-aptamer RNAs identified previously in vitro. This assay system would facilitate further detailed studies of the NC-Psi interaction in vivo and the screening of various anti-HIV molecules targeting NC and the specific interaction.
Collapse
Affiliation(s)
- Soo In Jang
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu Banpo-dong 505, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
49
|
Gopinath SCB. Methods developed for SELEX. Anal Bioanal Chem 2006; 387:171-82. [PMID: 17072603 DOI: 10.1007/s00216-006-0826-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 02/07/2023]
Abstract
SELEX (systematic evolution of ligands by exponential enrichment) is a process that involves the progressive purification from a combinatorial library of nucleic acid ligands with a high affinity for a particular target by repeated rounds of partitioning and amplification. With the development of aptamer technology over the last decade, various modified SELEX processes have arisen that allow various aptamers to be developed against a wide variety of molecules, irrespective of the target size. In the present review, the separation methods used in such SELEX processes are reviewed.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
50
|
Buchegger F, Perillo-Adamer F, Dupertuis YM, Delaloye AB. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 2006; 33:1352-63. [PMID: 16896663 DOI: 10.1007/s00259-006-0187-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/29/2006] [Accepted: 06/09/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of alpha particles. In contrast to alpha radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. DISCUSSION Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided alpha and beta radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation.
Collapse
Affiliation(s)
- Franz Buchegger
- Service of Nuclear Medicine, University Hospital of Lausanne CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|