1
|
Villageliu DN, Cunningham KC, Smith DR, Knoell DL, Mandolfo M, Wyatt TA, Samuelson DR. Natural killer cell effector function is critical for host defense against alcohol-associated bacterial pneumonia. NPJ Biofilms Microbiomes 2024; 10:79. [PMID: 39227647 PMCID: PMC11372167 DOI: 10.1038/s41522-024-00558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
Affiliation(s)
- Daniel N Villageliu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly C Cunningham
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mason Mandolfo
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
2
|
Triantafillidis JK, Konstadoulakis MM, Papalois AE. Immunotherapy of gastric cancer: Present status and future perspectives. World J Gastroenterol 2024; 30:779-793. [PMID: 38516237 PMCID: PMC10950642 DOI: 10.3748/wjg.v30.i8.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
In this editorial, we comment on the article entitled "Advances and key focus areas in gastric cancer immunotherapy: A comprehensive scientometric and clinical trial review (1999-2023)," which was published in the recent issue of the World Journal of Gastroenterology. We focused on the results of the authors' bibliometric analysis concerning gastric cancer immunotherapy, which they analyzed in depth by compiling the relevant publications of the last 20 years. Before that, we briefly describe the most recent data concerning the epidemiological parameters of gastric cancer (GC) in different countries, attempting to give an interpretation based on the etiological factors involved in the etiopathogenesis of the neoplasm. We then briefly discuss the conservative treatment (chemotherapy) of the various forms of this malignant neoplasm. We describe the treatment of resectable tumors, locally advanced neoplasms, and unresectable (advanced) cases. Special attention is given to modern therapeutic approaches with emphasis on immunotherapy, which seems to be the future of GC treatment, especially in combination with chemotherapy. There is also a thorough analysis of the results of the study under review in terms of the number of scientific publications, the countries in which the studies were conducted, the authors, and the scientific centers of origin, as well as the clinical studies in progress. Finally, an attempt is made to draw some con-clusions and to point out possible future directions.
Collapse
Affiliation(s)
- John K Triantafillidis
- Inflammatory Bowel Disease Unit, “Metropolitan General” Hospital, Holargos 15562, Attica, Greece. Hellenic Society for Gastrointestinal Oncology, 354 Iera Odos, Chaidari 12461, Attica, Greece
| | - Manousos M Konstadoulakis
- Second Department of Surgery, University of Athens School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| | - Apostolos E Papalois
- Unit of Surgical Research and Training, Second Department of Surgery, University of Athens, School of Medicine, Aretaieion Hospital, Athens 11528, Attica, Greece
| |
Collapse
|
3
|
Samuelson D, Villageliu D, Cunningham K, Smith D, Knoell D, Mandolfo M, Wyatt T. Regulation of Natural Killer Cell TGF-β and AhR Signaling Pathways Via the Intestinal Microbiota is Critical for Host Defense Against Alcohol-Associated Bacterial Pneumonia. RESEARCH SQUARE 2023:rs.3.rs-3328953. [PMID: 37886455 PMCID: PMC10602187 DOI: 10.21203/rs.3.rs-3328953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromises NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent of aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling, while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
|
4
|
Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front Immunol 2022; 13:934617. [PMID: 36105802 PMCID: PMC9464604 DOI: 10.3389/fimmu.2022.934617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.
Collapse
|
5
|
Sun J, Tang Q, Zhang J, Chen G, Peng J, Chen L. Possible Immunotherapeutic Strategies Based on Carcinogen-Dependent Subgroup Classification for Oral Cancer. Front Mol Biosci 2021; 8:717038. [PMID: 34497832 PMCID: PMC8419237 DOI: 10.3389/fmolb.2021.717038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The oral cavity serves as an open local organ of the human body, exposed to multiple external factors from the outside environment. Coincidentally, initiation and development of oral cancer are attributed to many external factors, such as smoking and drinking, to a great extent. This phenomenon was partly explained by the genetic abnormalities traditionally induced by carcinogens. However, more and more attention has been attracted to the influence of carcinogens on the local immune status. On the other hand, immune heterogeneity of cancer patients is a huge obstacle for enhancing the clinical efficacy of tumor immunotherapy. Thus, in this review, we try to summarize the current opinions about variant genetic changes and multiple immune alterations induced by different oral cancer carcinogens and discuss the prospects of targeted immunotherapeutic strategies based on specific immune abnormalities caused by different carcinogens, as a predictive way to improve clinical outcomes of immunotherapy-treated oral cancer patients.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Schank JR, Lee S, Gonzalez-Islas CE, Nennig SE, Fulenwider HD, Chang J, Li JM, Kim Y, Jeffers LA, Chung J, Lee JK, Jin Z, Aalkjaer C, Boedtkjer E, Choi I. Increased Alcohol Consumption in Mice Lacking Sodium Bicarbonate Transporter NBCn1. Sci Rep 2020; 10:11017. [PMID: 32620847 PMCID: PMC7335059 DOI: 10.1038/s41598-020-67291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
The previous reports on an addiction vulnerability marker in the human SLC4A7 gene encoding the Na/HCO3 transporter NBCn1 suggest that this pH-regulating protein may affect alcohol-related behavior and response. Here, we examined alcohol consumption and sensitivity to the sedative effects of alcohol in male NBCn1 knockout mice. These mice displayed lower pH in neurons than wildtype controls, determined by intracellular pH in hippocampal neuronal cultures. Neurons from knockout mice had a higher action potential threshold and a more depolarized membrane potential, thus reducing membrane excitability. In a two-bottle free choice procedure, knockout mice consumed more alcohol than controls and consistently increased alcohol consumption after repeated alcohol deprivation periods. Quinine and sucrose preference was similar between genotypes. Knockout mice showed increased propensity for alcohol-induced conditioned place preference. In loss of righting reflex assessment, knockout mice revealed increased sensitivity to alcohol-induced sedation and developed tolerance to the sedation after repeated alcohol administrations. Furthermore, chronic alcohol consumption caused NBCn1 downregulation in the hippocampus and striatum of mice and humans. These results demonstrate an important role of NBCn1 in regulation of alcohol consumption and sensitivity to alcohol-induced sedation.
Collapse
Affiliation(s)
- Jesse R Schank
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Sadie E Nennig
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Hannah D Fulenwider
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jun Ming Li
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yejin Kim
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lauren A Jeffers
- Department of Medicine, Pulmonary Division, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jaegwon Chung
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Jae-Kyung Lee
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, 75124, Sweden
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Neveu WA, Staitieh BS, Mills ST, Guidot DM, Sueblinvong V. Alcohol-Induced Interleukin-17 Expression Causes Murine Lung Fibroblast-to-Myofibroblast Transdifferentiation via Thy-1 Down-Regulation. Alcohol Clin Exp Res 2019; 43:1427-1438. [PMID: 31081931 DOI: 10.1111/acer.14110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol exposure induces TGFβ1 and renders the lung susceptible to injury and disrepair. We determined that TGFβ1 regulates myofibroblast differentiation through the loss of Thy-1 expression and consequent induction of α-SMA. TGFβ1 is important for T helper 17 (Th17) differentiation and IL-17 secretion, which in turn participates in tissue repair. We hypothesized that alcohol induces Th17 differentiation via TGFβ1 and that IL-17 produced by these cells contributes to the development of profibrotic lung myofibroblasts. METHODS Primary lung fibroblasts (PLFs) were treated with alcohol, TGFβ1, and IL-17 and then analyzed for Thy-1 expression and cell morphology. Naïve and Th17-polarized CD4+ T cells were exposed to alcohol and assessed for IL-17 expression. CD4+ T cells from alcohol-fed mice were analyzed for Th17 and IL-17 expression. Lungs of control-fed, bleomycin-treated and alcohol-fed, bleomycin-treated mice were analyzed for IL-17 protein expression. RESULTS Alcohol-treated PLFs expressed lower levels of Thy-1 than untreated cells. TGFβ1 or IL-17 exposure suppressed PLF Thy-1 expression. When administered together, TGFβ1 and IL-17 additively down-regulated Thy-1 expression. Exposure of naïve and Th17-polarized CD4+ T cells to alcohol induced the Th17 phenotype and augmented their production of IL-17. CD4+ Th17+ levels are elevated in the peripheral compartment but not in the lungs of alcohol-fed animals. Treatment of the PLFs with IL-17 and alcohol induced α-SMA expression. Induction of α-SMA and myofibroblast morphology by IL-17 occurred selectively in a Thy-1- fibroblast subpopulation. Chronic alcohol ingestion augmented lung-specific IL-17 expression following bleomycin-induced lung injury. CONCLUSIONS Alcohol exposure skews T cells toward a Th17 immune response that in turn primes the lung for fibroproliferative disrepair through loss of Thy-1 expression and induction of myofibroblast differentiation. These effects suggest that IL-17 and TGFβ1 contribute to fibroproliferative disrepair in the lung and targeting these proteins could limit morbidity and mortality following lung injury in alcoholic individuals.
Collapse
Affiliation(s)
- Wendy A Neveu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen T Mills
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VAMC, Decatur, Georgia
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Front Pharmacol 2018; 9:81. [PMID: 29487525 PMCID: PMC5816804 DOI: 10.3389/fphar.2018.00081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Alcohol is one of the most commonly abused substances in the United States. Chronic consumption of ethanol has been responsible for numerous chronic diseases and conditions globally. The underlying mechanism of liver injury has been studied in depth, however, far fewer studies have examined other organs especially the heart and the central nervous system (CNS). The authors conducted a narrative review on the relationship of alcohol with heart disease and dementia. With that in mind, a complex relationship between inflammation and cardiovascular disease and dementia has been long proposed but inflammatory biomarkers have gained more attention lately. In this review we examine some of the consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver. The article reviews the potential role of inflammatory markers such as TNF-α in predicting dementia and/or cardiovascular disease. It was found that TNF-α could promote and accelerate local inflammation and damage through autocrine/paracrine mechanisms. Unraveling the mechanisms linking chronic alcohol consumption with proinflammatory cytokine production and subsequent inflammatory signaling pathways activation in the heart and CNS, is essential to improve our understanding of the disease and hopefully facilitate the development of new remedies.
Collapse
Affiliation(s)
| | | | | | | | - Sima T. Tarzami
- Department of Physiology and Biophysics, Howard University, Washington, DC, United States
| |
Collapse
|
9
|
Boule LA, Kovacs EJ. Alcohol, aging, and innate immunity. J Leukoc Biol 2017; 102:41-55. [PMID: 28522597 DOI: 10.1189/jlb.4ru1016-450r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/24/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery (GITES), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; .,The Mucosal Inflammation Program (MIP), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,The Investigations in Metabolism, Aging, Gender and Exercise (IMAGE) Research Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; and.,The Immunology Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Wyatt TA, Canady K, Heires AJ, Poole JA, Bailey KL, Nordgren TM, Romberger DJ. Alcohol Inhibits Organic Dust-induced ICAM-1 Expression on Bronchial Epithelial Cells. SAFETY 2017; 3:5. [PMID: 29082234 PMCID: PMC5658133 DOI: 10.3390/safety3010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aims: Exposure to dusts/bioaerosols in concentrated animal feeding operations (CAFOs) results in inflammatory lung diseases in workers. Hog CAFOs dust extract (HDE) increases expression of intercellular adhesion molecule-1 (ICAM-1), neutrophil adhesion, and TNFα release in bronchial epithelial cells. Alcohol consumption is increasingly recognized to impair lung immunity. We hypothesized that alcohol impairs HDE-induced TNFα, ICAM-1 expression and neutrophil adhesion by directly inhibiting TNFα converting enzyme (TACE) activity. METHODS Bronchial epithelial cells (BEAS-2B) and primary human bronchial epithelial cells were pretreated with ethanol (EtOH) or TACE inhibitor. ICAM-1 surface expression, TNFα release, and TACE activity were analyzed following HDE stimulation. The effect of alcohol and TACE inhibition on HDE-regulated epithelial cell/neutrophil adhesion interactions was investigated. Finally, utilizing an established animal model, C57BL/6 mice were fed ad libitum ethanol (20%) in drinking water for 8 wk followed by daily intranasal inhalation of HDE or saline during the final two weeks. Mice were sacrificed and lung sections immunostained for ICAM-1. RESULTS Pretreatment with alcohol or TACE inhibitor significantly decreased HDE-induced ICAM-1 expression and TNFα release. HDE augmented neutrophil adhesion to epithelial cells, which was decreased with alcohol (32% decrease) or TACE inhibitor (55% decrease) pretreatment. TACE activity increased following HDE exposure, but TACE activity was inhibited following alcohol pretreatment. Alcohol-fed mice demonstrated decreased HDE-induced airway epithelium ICAM-1 expression. CONCLUSIONS Alcohol diminishes HDE-induced ICAM-1 expression, TNFα release, and neutrophil adhesion via inhibition of TACE activity. These results suggest that alcohol may be an important modulator of lung innate immune responses following CAFO exposure.
Collapse
Affiliation(s)
- Todd A. Wyatt
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
- Department of Environmental, Agricultural, & Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198-5910
- Resereach Service, VA Omaha-Western Iowa Health Care System, Omaha, NE, 68105
| | - Kerry Canady
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
| | - Art J. Heires
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
| | - Jill A. Poole
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
| | - Kristina L. Bailey
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
- Resereach Service, VA Omaha-Western Iowa Health Care System, Omaha, NE, 68105
| | - Tara M. Nordgren
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
| | - Debra J. Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division of the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198; USA
- Resereach Service, VA Omaha-Western Iowa Health Care System, Omaha, NE, 68105
| |
Collapse
|
11
|
Sueblinvong V, Mills ST, Neujahr DC, Go YM, Jones DP, Guidot DM. Nuclear Thioredoxin-1 Overexpression Attenuates Alcohol-Mediated Nrf2 Signaling and Lung Fibrosis. Alcohol Clin Exp Res 2016; 40:1846-56. [PMID: 27436123 PMCID: PMC5108489 DOI: 10.1111/acer.13148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/07/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Alcohol abuse, which impairs antioxidant defenses and promotes acute lung injury, increases Nrf2 nuclear translocation but nevertheless inhibits its activation of the antioxidant response element (ARE). Thioredoxin-1 (Trx1) is required for optimal Nrf2 binding and activation of the ARE, and we hypothesized that its inhibition contributes to impaired Nrf2-ARE signaling in the alcoholic lung. METHODS Lung tissue and primary lung fibroblasts (PLFs) were isolated from C57/BL6 wild-type (WT) and transgenic mice overexpressing the human Trx1 gene with a nuclear localizing sequence (NLS-Tg); some mice consumed alcohol in water prior to lung tissue and PLF isolation; in some mice, acute lung injury was induced with intratracheal bleomycin. In other experiments, PLFs were isolated from WT and NLS-Tg mice and then exposed to alcohol. Finally, PLF isolated from WT mice were transfected with Trx1 expression vector containing either a cytosolic localized sequence (NES) or a nuclear localized sequence (NLS) prior to alcohol exposure. RESULTS Alcohol treatment in vivo or in vitro decreased Trx1 expression, and bleomycin-treated alcohol-fed mice had fibrotic disrepair in their lungs. In parallel, whereas alcohol exposure in vitro increased TGFβ1 expression and decreased Nrf2-ARE activity in PLF from WT mice, these effects were not observed in PLF from NLS-Tg mice. Finally, selective overexpression of Trx1 in the nucleus but not in the cytosol preserved Nrf2-ARE activity during alcohol exposure. CONCLUSIONS Although alcohol-induced redox stress actually promotes Nrf2 nuclear translocation, the coincident suppression of Trx1 impairs Nrf2-ARE activity within the nuclear compartment. Nuclear overexpression of Trx1 restored Nrf2-ARE activity and attenuated alcohol-induced TGFβ1 expression and alcohol-induced exaggerate response to bleomycin-induced acute lung injury.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia
| | - Stephen T Mills
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia
| | - David C Neujahr
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia.,McKelvey Lung Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Young-Mi Go
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia
| | - Dean P Jones
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia
| | - David M Guidot
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, Atlanta, Georgia.,Atlanta VAMC, Decatur, Georgia
| |
Collapse
|
12
|
Dietary diallyl disulfide supplementation attenuates ethanol-mediated pulmonary vitamin D speciate depletion in C57Bl/6 mice. BMC Nutr 2015; 1. [PMID: 27536382 PMCID: PMC4985026 DOI: 10.1186/s40795-015-0012-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Slightly more than 5 % of the United States population heavily consumes ethanol, i.e., more than 14 drinks for men and 7 drinks for women a week. Chronic ethanol consumption can result in increased liver disease, reduced recovery from burn injury, and more frequent and severe respiratory infections. Chronic ethanol over-consumption also leads to vitamin D dysmetabolism and depletion. Vitamin D is a fat-soluble pro-hormone that regulates musculoskeletal health, cellular proliferation/differentiation, and innate and adaptive immune response. Methods In this study, C57BL/6 mice were fed 20 % ethanol in their water ad libitum for 7 weeks. Some mice were fed either a standard chow or a modified diet containing 0.15 μg/day of diallyl disulfide (DADS). Whole blood, lung tissue, and bronchial alveolar lavage fluid (BALF) were collected at sacrifice and analyzed for 25(OH) D3, 1,25 (OH)2D3, vitamin D receptor VDR, CYP2E1, and CYP27B1 levels. Results Ethanol reduced 25(OH) D3 and 1,25 (OH)2D3 in lung tissue and BALF on average 31 %. The largest ethanol-mediated reduction was in the 1,25 (OH)2D3 (42 %) measured in the BALF. Dietary supplementation of DADS restored BALF and lung tissue protein of 25(OH) D3 and 1,25(OH)2D3 to control levels. Chronic ethanol consumption also resulted in tissue increases of vitamin D response (VDR) protein, Cyp2E1, and reductions in vitamin D-activating enzyme CYP27B1. All three of these effects were attenuated by dietary supplementation of DADS. Conclusions In conclusion, the pulmonary metabolic disturbances mediated by chronic ethanol consumption as measured by 1,25(OH)2D3 protein levels, epithelial lining fluid, and lung tissue can be ameliorated by dietary supplementation of DADS in C57BL/6 mice.
Collapse
|
13
|
Sapkota M, Hottor TK, DeVasure JM, Wyatt TA, McCaskill ML. Protective role of CYP2E1 inhibitor diallyl disulfide (DADS) on alcohol-induced malondialdehyde-deoxyguanosine (M1dG) adduct formation. Alcohol Clin Exp Res 2014; 38:1550-8. [PMID: 24891074 DOI: 10.1111/acer.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol use disorders are often associated with lung disease. Alcohol exposure leads to the production of reactive oxygen species, lipid peroxidation, and formation of malondialdehyde (MDA) as well as to induce the expression of cytochrome p450 2E1 (CYP2E1). Likewise, cigarette smoking can lead to lung lipid peroxidation and formation of MDA. MDA can bind to DNA forming MDA-deoxyguanosine (M1dG) adducts, which have been implicated in alcohol-related cancers and cardiovascular disease. Because CYP2E1 regulates MDA production, and our previous studies have shown that alcohol and cigarette smoke can lead to MDA formation, we hypothesized that CYP2E1 would modulate M1dG adduct formation and single-strand DNA damage in alcohol- and cigarette smoke-exposed lung cells and tissue. METHODS Normal human bronchial epithelial cells (HBECs) were pretreated with 10 μM diallyl disulfide (DADS) for 1 hour and treated with 80 mM ethanol (EtOH) ± 5% cigarette smoke extract (CSE) for 3 hours for comet assay and 6 hours for CYP2E1, MDA, and M1dG adduct assays. C57BL/6 mice were administered 20% EtOH ad libitum in drinking water for 8 weeks and exposed to whole-body cigarette smoke for 5 weeks. Mice were also fed a CYP2E1 inhibitor, DADS, at 1 μM/g of feed in their daily diet for 7 weeks. Whole lung tissue homogenate was used for CYP2E1, MDA, and M1dG adduct assays. RESULTS EtOH exposure significantly increased HBEC olive tail moment. DADS pretreatment of HBECs attenuated this EtOH effect. EtOH also induced MDA and M1dG adduct formation, which was also significantly reduced by DADS treatment. CSE ± EtOH did not enhance these effects. In lung tissue homogenate of 8-week alcohol-fed mice, MDA and M1dG adduct levels were significantly elevated in comparison with control mice and mice fed DADS while consuming alcohol. No increase in MDA and M1dG adduct formation was observed in 5-week cigarette smoke-exposed mice. CONCLUSIONS These findings suggest that CYP2E1 plays a pivotal role in alcohol-induced M1dG adducts, and the use of DADS as dietary supplement can reverse the effects of alcohol on M1dG formation.
Collapse
Affiliation(s)
- Muna Sapkota
- Department of Environmental, Agricultural and Occupational Health , College of Public Health, Omaha, Nebraska
| | | | | | | | | |
Collapse
|
14
|
Chronic alcohol ingestion changes the landscape of the alveolar epithelium. BIOMED RESEARCH INTERNATIONAL 2012; 2013:470217. [PMID: 23509726 PMCID: PMC3591140 DOI: 10.1155/2013/470217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023]
Abstract
Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.
Collapse
|
15
|
Alcohol exposure alters mouse lung inflammation in response to inhaled dust. Nutrients 2012; 4:695-710. [PMID: 22852058 PMCID: PMC3407989 DOI: 10.3390/nu4070695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023] Open
Abstract
Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs) are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon) activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability of the lung to activate PKCε-dependent inflammatory pathways to environmental dust exposure. These data also define alcohol as an important co-exposure agent to consider in the study of inhalation injury responses.
Collapse
|
16
|
Meyerholz DK, Edsen-Moore M, McGill J, Coleman RA, Cook RT, Legge KL. Chronic alcohol consumption increases the severity of murine influenza virus infections. THE JOURNAL OF IMMUNOLOGY 2008; 181:641-8. [PMID: 18566431 DOI: 10.4049/jimmunol.181.1.641] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Respiratory infections with both seasonal as well as potential pandemic Influenza viruses represent a significant burden on human health. Furthermore, viruses such as Influenza are increasingly recognized as important etiologic agents in community acquired pneumonia. Within the U.S. alone, approximately 12.9 million people are heavy drinkers and chronic abuse of alcohol is known to increase the risk and severity of community acquired pneumonia. Given the lack of knowledge regarding Influenza disease in this population, we determined the effects of chronic alcohol consumption on Influenza virus infection. Herein, we report that mice exposed to chronic ethanol have sharp increases in morbidity, mortality, and pulmonary virus titers relative to controls. These increases in influenza severity correspond with inhibited pulmonary influenza-specific CD8 T cell responses. Further, chronic ethanol consumption results in an enhanced pulmonary lesion severity, similar to that recently described for pandemic influenzas. Together, our results suggest that chronic alcohol consumption may increase the risk for severe influenza virus infections by altering the pulmonary inflammatory environment and CD8 T cell response.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
17
|
Waldschmidt TJ, Cook RT, Kovacs EJ. Alcohol and inflammation and immune responses: summary of the 2006 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2008; 42:137-42. [PMID: 18358993 DOI: 10.1016/j.alcohol.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 11/29/2007] [Indexed: 01/08/2023]
Abstract
The 11th annual meeting of the Alcohol and Immunology Research Interest Group was held at Loyola University Medical Center, Maywood, Illinois on November 17, 2006. The Alcohol and Immunology Research Interest Group meeting is held annually to exchange new findings and ideas that arise from ongoing research examining the effects of alcohol intake on the immune system. The event consisted of five sessions, two of which featured plenary talks from invited speakers, two with oral presentations from selected abstracts, and a final poster session. Participants presented new data on a variety of topics including the effects of ethanol on key cells of the immune system (neutrophils, dendritic cells, NK cells), B cell responses, the capacity to clear infectious agents, and the barrier functions of skin, lung, and intestine.
Collapse
|
18
|
Zhang H, Meadows GG. Chronic alcohol consumption perturbs the balance between thymus-derived and bone marrow-derived natural killer cells in the spleen. J Leukoc Biol 2007; 83:41-7. [PMID: 17906116 DOI: 10.1189/jlb.0707472] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alcohol consumption reduces peripheral NK cell numbers and compromises NK cell cytolytic activity; however, the underlying mechanism is not understood completely. It was found recently that the peripheral NK cell pool consists largely of bone marrow (BM)-derived and thymus-derived cells, which are phenotypically and functionally different. The effects of alcohol consumption on these subpopulations have not been studied previously. Using a well-established alcohol-feeding model, we found that chronic alcohol consumption decreases the percentage and number of peripheral NK cells, especially those expressing a mature phenotype. Alcohol consumption did not alter NK cells in the thymus. NK cells in the BM were increased significantly; however, proliferation rate was not altered by alcohol consumption, which increased CD127+ and decreased Ly49D+ NK cells in the spleen but not in the BM. Chronic alcohol consumption increased IFN-gamma-producing NK cells and GATA-3 expression in splenic NK cells. Collectively, these results indicate that chronic alcohol consumption perturbs the balance between thymus-derived and BM-derived NK cells. The increased proportion of thymus-derived NK cells in the spleen likely results from impaired NK cell release from the BM.
Collapse
Affiliation(s)
- Hui Zhang
- Cancer Prevention & Research Center, Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Box 646713, 110 McCoy Office Trailer, Pullman, WA 99164-6713, USA
| | | |
Collapse
|
19
|
Waldschmidt TJ, Cook RT, Kovacs EJ. Alcohol and inflammation and immune responses: summary of the 2005 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2006; 38:121-5. [PMID: 16839859 DOI: 10.1016/j.alcohol.2006.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/13/2023]
Abstract
The 10th annual meeting of the Alcohol and Immunology Research Interest Group (AIRIG) was held at Loyola University Medical Center, Maywood, Illinois on November 18, 2005. The AIRIG meeting was held to exchange new findings and ideas regarding the profound suppressive effects of alcohol exposure on the immune system. The event consisted of five sessions, two of which featured plenary talks from invited speakers, two with oral presentations from selected abstracts, and a final poster session. Participants presented a range of novel information focused on ethanol-induced effects on innate and adaptive immunity after either acute or chronic exposure. In particular, participants offered insights into the negative effects of ethanol on the innate processes of adhesion, migration, inflammation, wound repair, and bone remodeling. Presentations also focused on the means by which ethanol disrupts activation of macrophages and dendritic cells (DC), especially stimulation mediated by Toll-like receptor ligands. Additional talks provided new data on the means by which ethanol suppresses adaptive immunity, with an emphasis on DC-mediated activation of T cells, effector T cell activity, and T cell-driven B cell responses.
Collapse
Affiliation(s)
- Thomas J Waldschmidt
- Department of Pathology, The University of Iowa, Carver College of Medicine, 1038 ML, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
20
|
Zhang T, Guo CJ, Douglas SD, Metzger DS, O'Brien CP, Li Y, Wang YJ, Wang X, Ho WZ. Alcohol suppresses IL-2-induced CC chemokine production by natural killer cells. Alcohol Clin Exp Res 2005; 29:1559-67. [PMID: 16205356 PMCID: PMC4015110 DOI: 10.1097/01.alc.0000179364.32003.9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Natural killer (NK) cells are a critical component of the host innate immune system. We investigated whether alcohol impairs NK cell function, particularly production of CC chemokines induced by interleukin (IL)-2, the natural ligands for CCR5 receptor. METHODS Primary NK cells and NK cell line (YTS) were cultured with or without alcohol (10 to 80 mM) for three hours. The culture supernatants were then harvested and used to treat human peripheral blood monocyte-derived macrophages and a HeLa cell line, which expresses CD4, CCR5, and CXCR4 receptors (MAGI cells). CC chemokine expression by YTS and primary NK cells treated with or without alcohol was analyzed with the real-time RT-PCR and ELISA. [Ca(2)(+)]i and Western blot assays were used to determine calcium-mediated intracellular signaling pathway and NF-kappaB p65 expression. HIV strains (Bal and UG024) were used to infect macrophages and MAGI cells. In addition, ADA (macrophage-tropic strain) and murine leukemia virus (MLV) envelope-pseudotyped HIV infection was carried out in macrophages. HIV infectivity was determined by HIV reverse transcriptase (RT) and beta-galactosidase activity assays. RESULTS Alcohol inhibited IL-2-induced CC chemokine (CCL3 and CCL4) expression by NK cells. Functional tests demonstrated that this reduced expression of CC chemokines was associated with diminished anti-HIV ability of NK cells. Alcohol also reduced the ability of NK cells to response to CCL3-mediated chemotaxis. Alcohol inhibited IL-2-induced NF-kappaB p65 protein expression and calcium mobilization by NK cells. CONCLUSIONS Alcohol, through the inhibition of IL-2-induced NF-kappaB p65 protein expression and intracellular calcium mobilization, suppressed NK cell production of CC chemokines. This suppression of CC chemokine production was associated with diminished anti-HIV activity of NK cells. Thus, by inhibiting NK cell-mediated innate immunity against HIV, alcohol consumption may have a cofactor role in the immunopathogenesis of HIV disease.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pediatrics, Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at The Children's Hospital of Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dokur M, Boyadjieva NI, Sarkar DK. Reduction of perforin, granzyme B, and cytokine interferon gamma by ethanol in male Fischer 344 rats. Alcohol Clin Exp Res 2003; 27:670-6. [PMID: 12711929 DOI: 10.1097/01.alc.0000060528.53113.5c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic alcohol consumption can impair the immune system and predispose individuals to an increased risk of cancer and infection. Natural killer (NK) cells are the first line of defense against viral, bacterial, and fungal infections and play an important role in cellular resistance to malignancy and tumor metastasis. We have shown previously that ethanol administration suppresses NK cell cytolytic activity in male Fischer rats. This study analyzed the effects of ethanol on perforin, granzyme B, and the cytokine interferon (IFN)-gamma, factors that modulate NK cell cytolytic activity, to understand the molecular mechanism involved in ethanol's suppression of NK cell activity. METHODS A group of male Fischer rats was fed an ethanol-containing diet (8.7% v/v), whereas a control group was pair-fed an isocaloric diet. At the end of 2 weeks, animals were decapitated, and spleen tissues were immediately removed and used for analysis of NK cell cytolytic activity, perforin, granzyme B, and IFN-gamma messenger RNA (mRNA) or protein levels. The mRNA levels of perforin, granzyme B, and IFN-gamma were evaluated by quantitative real-time polymerase chain reaction, and protein levels of these factors were analyzed by Western blot, enzyme-linked immunosorbent assay, or enzymatic activity assay. RESULTS Ethanol reduced the NK cell cytolytic activity and decreased the mRNA expression of perforin, granzyme B, and IFN-gamma in ethanol-fed animals when compared with pair-fed animals. Ethanol also significantly reduced the protein levels of perforin and IFN-gamma and the enzyme activity of granzyme B in alcohol-fed animals as compared with pair-fed animals. CONCLUSIONS These data suggest that chronic ethanol consumption may suppress NK cell cytolytic activity in male Fischer rats by decreasing the production, activity, or both of granzyme B, perforin, and IFN-gamma.
Collapse
Affiliation(s)
- Madhavi Dokur
- Endocrinology Program, Center of Alcohol Studies, Rutgers, The State University of New Jersey, New Brunswick, USA
| | | | | |
Collapse
|
22
|
Dokur M, Boyadjieva NI, Sarkar DK. Reduction of Perforin, Granzyme B, and Cytokine Interferon gamma by Ethanol in Male Fischer 344 Rats. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04403.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
Impaired health caused by alcohol abuse has been known throughout recorded history. Over the past century, alcohol abuse has been clearly linked to host susceptibility to infectious disease, particularly bacterial pneumonia. Recently, both acute and chronic alcohol intake have been shown to result in specific defects in innate and adaptive immunity; these could, in principle, be subjected to specific modulation to overcome the immunosuppressive effects of the most commonly abused substance in the Western world.
Collapse
Affiliation(s)
- Steve Nelson
- LSU Health Sciences Center Alcohol Research Center, and Section of Pulmonary Critical Care, LSU Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
24
|
Obradovic T, Meadows GG. Chronic Ethanol Consumption Increases Plasma Leptin Levels and Alters Leptin Receptors in the Hypothalamus and the Perigonadal Fat of C57BL/6 Mice. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02532.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Guo TL, Zhang LX, Chen JP, Nguyen VA, White KL, Gao B. Differential STAT5 activation and phenotypic marker expression by immune cells following low levels of ethanol consumption in mice. Immunopharmacol Immunotoxicol 2002; 24:121-38. [PMID: 12022440 DOI: 10.1081/iph-120003408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ethanol has been recognized as an immunosuppressive agent for many years. Effects of high levels of ethanol consumption on immune functions have been extensively studied, but little is known about the effects of low levels (scuh as 5% ethanol) of ethanol consumption. Herein we report that exposure of mice to 5% ethanol for 4-8 weeks decreases IL-2-augmented splenic NK cell activity, decreases the numbers of NK cells in spleen and liver, decreases the number of granulocytes (Gr-l+) in bone marrow and spleen, and decreases the percentages of B cells in liver. In contrast, the percentages of CD4+CD8+ thymocytes, CD4+CD8- splenocytes, CD4+CD8- liver nonparenchymal cells, CD3+ splenocytes, and CD3+ bone marrow cells were increased. Furthermore, exposure to 5% ethanol increases STAT5 activation in T cells and liver cells while decreases STAT5 activation in NK cells. Taken together, these findings suggest that low levels of ethanol consumption can differentially modulate immune cells in thymus, spleen, bone marrow and liver, which may be due to differential regulation of STAT5 activation by ethanol.
Collapse
Affiliation(s)
- Tai L Guo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond 23298-0613, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abe Y, Matsumoto S, Kito K, Ueda N. Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem 2000; 275:21525-31. [PMID: 10781613 DOI: 10.1074/jbc.m909629199] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel protein kinase, TOPK (T-LAK cell-originated protein kinase), was isolated from a lymphokine-activated killer T (T-LAK) cell subtraction cDNA fragment library. The open reading frame of the TOPK gene encodes a protein of 322 amino acids, possessing a protein kinase domain profile. The cap site analysis of the 5'-end of TOPK mRNA revealed two forms, a major full-length form and a minor spliced form at the 5'-site, both encoding the same protein. A BLAST homology search and phylogenetic analysis indicated that TOPK is related to dual specific mitogen-activated protein kinase kinase (MAPKK). The transfection of the TOPK gene to COS-7 cells up-regulated a phosphorylation of p38 MAPK but not ERK1/2 or SAPK/JNK. Gel precipitation study indicated that TOPK protein can be associated with p38 in vitro. Tissue distribution of TOPK mRNA expression was specific for the testis, T-LAK cells, activated lymphoid cells, and lymphoid tumors. On the other hand, deactivated T-LAK cells did not show TOPK mRNA expression. These data suggest that TOPK is a newly identified member of a novel MEK3/6-related MAPKK that may be enrolled in the activation of lymphoid cells and support testicular functions.
Collapse
Affiliation(s)
- Y Abe
- First Department of Pathology, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan.
| | | | | | | |
Collapse
|
27
|
Abstract
We have previously reported that ethanol (EtOH) decreases polyinosinic-polycytidylic acid (poly I:C) and interleukin-2 (IL-2)-induced upregulation of natural killer (NK) cell lytic activity in mice. The present study was designed to determine if decreased production of or response to interferon-alpha (IFN-alpha) is involved and if this is associated with inhibited upregulation of perforin or granzyme B. Treatment of mice with poly I:C upregulated IFN-alpha and granzyme B, but not perforin, in the spleen. Administration of EtOH before poly I:C prevented the upregulation of IFN-alpha and granzyme B and decreased perforin levels. EtOH exposure in vivo rendered splenocytes less able to respond to IFN-alpha upon in vitro exposure to poly I:C. Exogenous IFN-alpha only partially prevented this decreased response. Thus, decreased production of and response to IFN-alpha as well as decreased levels of granzyme B and perforin are implicated in the diminished activation of NK cell lytic function in EtOH-treated mice.
Collapse
Affiliation(s)
- S D Collier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Sheveport, LA 71130, USA
| | | |
Collapse
|