1
|
Li L, Medina-Menéndez C, García-Corzo L, Córdoba-Beldad CM, Quiroga AC, Calleja Barca E, Zinchuk V, Muñoz-López S, Rodríguez-Martín P, Ciorraga M, Colmena I, Fernández S, Vicario C, Nicolis SK, Lefebvre V, Mira H, Morales AV. SoxD genes are required for adult neural stem cell activation. Cell Rep 2022; 38:110313. [PMID: 35108528 DOI: 10.1016/j.celrep.2022.110313] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/20/2021] [Accepted: 01/07/2022] [Indexed: 01/17/2023] Open
Abstract
The adult neurogenic niche in the hippocampus is maintained through activation of reversibly quiescent neural stem cells (NSCs) with radial glia-like morphology (RGLs). Here, we show that the expression of SoxD transcription factors Sox5 and Sox6 is enriched in activated RGLs. Using inducible deletion of Sox5 or Sox6 in the adult mouse brain, we show that both genes are required for RGL activation and the generation of new neurons. Conversely, Sox5 overexpression in cultured NSCs interferes with entry in quiescence. Mechanistically, expression of the proneural protein Ascl1 (a key RGL regulator) is severely downregulated in SoxD-deficient RGLs, and Ascl1 transcription relies on conserved Sox motifs. Additionally, loss of Sox5 hinders the RGL activation driven by neurogenic stimuli such as environmental enrichment. Altogether, our data suggest that SoxD genes are key mediators in the transition of adult RGLs from quiescence to an activated mitotic state under physiological situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Carlos Vicario
- Instituto Cajal, CSIC, 28002 Madrid, Spain; CIBERNED-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | | - Helena Mira
- Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain
| | | |
Collapse
|
2
|
Abstract
The vertebrate eye is derived from the neuroepithelium, surface ectoderm, and extracellular mesenchyme. The neuroepithelium forms an optic cup in which the spatial separation of three domains is established, namely, the region of multipotent retinal progenitor cells (RPCs), the ciliary margin zone (CMZ)-which possesses both a neurogenic and nonneurogenic potential-and the optic disk (OD), the interface between the optic stalk and the neuroretina. Here, we show by genetic ablation in the developing optic cup that Meis1 and Meis2 homeobox genes function redundantly to maintain the retinal progenitor pool while they simultaneously suppress the expression of genes characteristic of CMZ and OD fates. Furthermore, we demonstrate that Meis transcription factors bind regulatory regions of RPC-, CMZ-, and OD-specific genes, thus providing a mechanistic insight into the Meis-dependent gene regulatory network. Our work uncovers the essential role of Meis1 and Meis2 as regulators of cell fate competence, which organize spatial territories in the vertebrate eye.
Collapse
|
3
|
Onset of atonal expression in Drosophila retinal progenitors involves redundant and synergistic contributions of Ey/Pax6 and So binding sites within two distant enhancers. Dev Biol 2013; 386:152-64. [PMID: 24247006 DOI: 10.1016/j.ydbio.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
Abstract
Proneural transcription factors drive the generation of specialized neurons during nervous system development, and their dynamic expression pattern is critical to their function. The activation of the proneural gene atonal (ato) in the Drosophila eye disc epithelium represents a critical step in the transition from retinal progenitor cell to developing photoreceptor neuron. We show here that the onset of ato transcription depends on two distant enhancers that function differently in subsets of retinal progenitor cells. A detailed analysis of the crosstalk between these enhancers identifies a critical role for three binding sites for the Retinal Determination factors Eyeless (Ey) and Sine oculis (So). We show how these sites interact to induce ato expression in distinct regions of the eye field and confirm them to be occupied by endogenous Ey and So proteins in vivo. Our study suggests that Ey and So operate differently through the same 3' cis-regulatory sites in distinct populations of retinal progenitors.
Collapse
|
4
|
SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet 2013; 9:e1003288. [PMID: 23437007 PMCID: PMC3578749 DOI: 10.1371/journal.pgen.1003288] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/15/2012] [Indexed: 01/26/2023] Open
Abstract
SOX2 is a master regulator of both pluripotent embryonic stem cells (ESCs) and multipotent neural progenitor cells (NPCs); however, we currently lack a detailed understanding of how SOX2 controls these distinct stem cell populations. Here we show by genome-wide analysis that, while SOX2 bound to a distinct set of gene promoters in ESCs and NPCs, the majority of regions coincided with unique distal enhancer elements, important cis-acting regulators of tissue-specific gene expression programs. Notably, SOX2 bound the same consensus DNA motif in both cell types, suggesting that additional factors contribute to target specificity. We found that, similar to its association with OCT4 (Pou5f1) in ESCs, the related POU family member BRN2 (Pou3f2) co-occupied a large set of putative distal enhancers with SOX2 in NPCs. Forced expression of BRN2 in ESCs led to functional recruitment of SOX2 to a subset of NPC-specific targets and to precocious differentiation toward a neural-like state. Further analysis of the bound sequences revealed differences in the distances of SOX and POU peaks in the two cell types and identified motifs for additional transcription factors. Together, these data suggest that SOX2 controls a larger network of genes than previously anticipated through binding of distal enhancers and that transitions in POU partner factors may control tissue-specific transcriptional programs. Our findings have important implications for understanding lineage specification and somatic cell reprogramming, where SOX2, OCT4, and BRN2 have been shown to be key factors. In mammals, a few thousand transcription factors regulate the differential expression of more than 20,000 genes to specify ∼200 functionally distinct cell types during development. How this is accomplished has been a major focus of biology. Transcription factors bind non-coding DNA regulatory elements, including proximal promoters and distal enhancers, to control gene expression. Emerging evidence indicates that transcription factor binding at distal enhancers plays an important role in the establishment of tissue-specific gene expression programs during development. Further, combinatorial binding among groups of transcription factors can further increase the diversity and specificity of regulatory modules. Here, we report the genome-wide binding profile of the HMG-box containing transcription factor SOX2 in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs), and we show that SOX2 occupied a distinct set of binding sites with POU homeodomain family members, OCT4 in ESCs and BRN2 in NPCs. Thus, transitions in SOX2-POU partners may control tissue-specific gene networks. Ultimately, a global analysis detailing the combinatorial binding of transcription factors across all tissues is critical to understand cell fate specification in the context of the complex mammalian genome.
Collapse
|
5
|
Ariza-Cosano A, Visel A, Pennacchio LA, Fraser HB, Gómez-Skarmeta JL, Irimia M, Bessa J. Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression. BMC Genomics 2012; 13:713. [PMID: 23253453 PMCID: PMC3541358 DOI: 10.1186/1471-2164-13-713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/14/2012] [Indexed: 01/18/2023] Open
Abstract
Background Phenotypic evolution in animals is thought to be driven in large part by differences in gene expression patterns, which can result from sequence changes in cis-regulatory elements (cis-changes) or from changes in the expression pattern or function of transcription factors (trans-changes). While isolated examples of trans-changes have been identified, the scale of their overall contribution to regulatory and phenotypic evolution remains unclear. Results Here, we attempt to examine the prevalence of trans-effects and their potential impact on gene expression patterns in vertebrate evolution by comparing the function of identical human tissue-specific enhancer sequences in two highly divergent vertebrate model systems, mouse and zebrafish. Among 47 human conserved non-coding elements (CNEs) tested in transgenic mouse embryos and in stable zebrafish lines, at least one species-specific expression domain was observed in the majority (83%) of cases, and 36% presented dramatically different expression patterns between the two species. Although some of these discrepancies may be due to the use of different transgenesis systems in mouse and zebrafish, in some instances we found an association between differences in enhancer activity and changes in the endogenous gene expression patterns between mouse and zebrafish, suggesting a potential role for trans-changes in the evolution of gene expression. Conclusions In total, our results: (i) serve as a cautionary tale for studies investigating the role of human enhancers in different model organisms, and (ii) suggest that changes in the trans environment may play a significant role in the evolution of gene expression in vertebrates.
Collapse
Affiliation(s)
- Ana Ariza-Cosano
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Ctra. Utrera Km 1, Seville 41013, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
McGaughey DM, McCallion AS. Efficient discovery of ASCL1 regulatory sequences through transgene pooling. Genomics 2010; 95:363-9. [PMID: 20206680 PMCID: PMC2904508 DOI: 10.1016/j.ygeno.2010.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Zebrafish transgenesis is a powerful and increasingly common strategy to assay vertebrate transcriptional regulatory control. Several challenges remain, however, to the broader application of this technique; they include increasing the rate with which transgenes can be analyzed and maximizing the informational value of the data generated. Presently, many rely on the injection of individual constructs and the analysis of resulting reporter expression in mosaic G0 embryos. Here, we contrast these approaches, examining whether injecting pooled transgene constructs can increase the efficiency with which regulatory sequences can be assayed, restricting analysis to the offspring of germ line transmitting transgenic zebrafish in an effort to reduce potential subjectivity. We selected a 64kb interval encompassing the human ASCL1 locus as our model interval and report the analysis of 9 highly conserved putative enhancers therein. We identified 32 transgene-positive zebrafish, transmitting one or more independent constructs displaying ASCL1-like regulatory control. Through examination of embryos harboring one or more transgenes, we demonstrate that five of the nine sequences account for the observed control and describe their likely roles in ASCL1 regulation. These data demonstrate the utility of this approach and its potential for further adaptation and higher throughput application.
Collapse
Affiliation(s)
- David M. McGaughey
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA
| | - Andrew S. McCallion
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Ho BC, Epping E, Wang K, Andreasen NC, Librant A, Wassink TH. Basic helix-loop-helix transcription factor NEUROG1 and schizophrenia: effects on illness susceptibility, MRI brain morphometry and cognitive abilities. Schizophr Res 2008; 106:192-9. [PMID: 18799289 PMCID: PMC2597152 DOI: 10.1016/j.schres.2008.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p<or=.0018). Approximately 80% of the sample also underwent high-resolution, multi-spectral magnetic resonance brain imaging and standardized neuropsychological assessment. There were significant rs2344484 genotype main effects on total cerebral gray matter (GM) and temporal GM volumes (p<or=.05). C-allele-carrier patients and healthy volunteers had smaller total cerebral GM and temporal GM volumes than their respective T-homozygous counterparts. rs2344484-C-allele was further associated with generalized cognitive deficits among schizophrenia patients but not in healthy volunteers. Our findings replicate previous association between NEUROG1 and schizophrenia. More importantly, this is the first study to examine brain morphological and neurocognitive correlates of NEUROG1. rs2344484-C-allele may affect NEUROG1's role in transcription regulation such that brain morphology and cognitive abilities are altered resulting in increased susceptibility to develop schizophrenia.
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA.
| | - Eric Epping
- Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health Iowa City, Iowa, USA
| | | | - Amy Librant
- Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Thomas H. Wassink
- Department of Psychiatry, University of Iowa Carver College of Medicine
| |
Collapse
|
8
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2008; 326:471-81. [PMID: 19059393 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Williams RRE, Azuara V, Perry P, Sauer S, Dvorkina M, Jørgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher AG. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 2006; 119:132-40. [PMID: 16371653 DOI: 10.1242/jcs.02727] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Determining how genes are epigenetically regulated to ensure their correct spatial and temporal expression during development is key to our understanding of cell lineage commitment. Here we examined epigenetic changes at an important proneural regulator gene Mash1 (Ascl1), as embryonic stem (ES) cells commit to the neural lineage. In ES cells where the Mash1 gene is transcriptionally repressed, the locus replicated late in S phase and was preferentially positioned at the nuclear periphery with other late-replicating genes (Neurod, Sprr2a). This peripheral location was coupled with low levels of histone H3K9 acetylation at the Mash1 promoter and enhanced H3K27 methylation but surprisingly location was not affected by removal of the Ezh2/Eed HMTase complex or several other chromatin-silencing candidates (G9a, SuV39h-1, Dnmt-1, Dnmt-3a and Dnmt-3b). Upon neural induction however, Mash1 transcription was upregulated (>100-fold), switched its time of replication from late to early in S phase and relocated towards the interior of the nucleus. This spatial repositioning was selective for neural commitment because Mash1 was peripheral in ES-derived mesoderm and other non-neural cell types. A bidirectional analysis of replication timing across a 2 Mb region flanking the Mash1 locus showed that chromatin changes were focused at Mash1. These results suggest that Mash1 is regulated by changes in chromatin structure and location and implicate the nuclear periphery as an important environment for maintaining the undifferentiated state of ES cells.
Collapse
Affiliation(s)
- Ruth R E Williams
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Battiste J, Helms AW, Kim EJ, Savage TK, Lagace DC, Mandyam CD, Eisch AJ, Miyoshi G, Johnson JE. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 2006; 134:285-93. [PMID: 17166924 DOI: 10.1242/dev.02727] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neural basic helix-loop-helix transcription factor Ascl1 (previously Mash1) is present in ventricular zone cells in restricted domains throughout the developing nervous system. This study uses genetic fate mapping to define the stage and neural lineages in the developing spinal cord that are derived from Ascl1-expressing cells. We find that Ascl1 is present in progenitors to both neurons and oligodendrocytes, but not astrocytes. Temporal control of the fate-mapping paradigm reveals rapid cell-cycle exit and differentiation of Ascl1-expressing cells. At embryonic day 11, Ascl1 identifies neuronal-restricted precursor cells that become dorsal horn neurons in the superficial laminae. By contrast, at embryonic day 16, Ascl1 identifies oligodendrocyte-restricted precursor cells that distribute throughout the spinal cord. These data demonstrate that sequentially generated Ascl1-expressing progenitors give rise first to dorsal horn interneurons and subsequently to late-born oligodendrocytes. Furthermore, Ascl1-null cells in the spinal cord have a diminished capacity to undergo neuronal differentiation, with a subset of these cells retaining characteristics of immature glial cells.
Collapse
Affiliation(s)
- James Battiste
- Center for Basic Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Odenwald WF, Rasband W, Kuzin A, Brody T. EVOPRINTER, a multigenomic comparative tool for rapid identification of functionally important DNA. Proc Natl Acad Sci U S A 2005; 102:14700-5. [PMID: 16203978 PMCID: PMC1239946 DOI: 10.1073/pnas.0506915102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we describe a multigenomic DNA sequence-analysis tool, evoprinter, that facilitates the rapid identification of evolutionary conserved sequences within the context of a single species. The evoprinter output identifies multispecies-conserved DNA sequences as they exist in a reference DNA. This identification is accomplished by superimposing multiple reference DNA vs. test-genome pairwise blat (blast-like alignment tool) readouts of the reference DNA to identify conserved nucleotides that are shared by all orthologous DNAs. evoprinter analysis of well characterized genes reveals that most, if not all, of the conserved sequences are essential for gene function. For example, analysis of orthologous genes that are shared by many vertebrates identifies conserved DNA in both protein-encoding sequences and noncoding cis-regulatory regions, including enhancers and mRNA microRNA binding sites. In Drosophila, the combined mutational histories of five or more species affords near-base pair resolution of conserved transcription factor DNA-binding sites, and essential amino acids are revealed by the nucleotide flexibility of their codon-wobble position(s). Conserved small peptide-encoding genes, which had been undetected by conventional gene-prediction algorithms, are identified by the codon-wobble signatures of invariant amino acids. Also, evoprinter allows one to assess the degree of evolutionary divergence between orthologous DNAs by highlighting differences between a selected species and the other test species.
Collapse
Affiliation(s)
- Ward F Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
12
|
Arvidsson Y, Sumantran V, Watt F, Uramoto H, Funa K. Neuroblastoma-specific cytotoxicity mediated by the Mash1-promoter and E. coli purine nucleoside phosphorylase. Pediatr Blood Cancer 2005; 44:77-84. [PMID: 15390277 DOI: 10.1002/pbc.20163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neuroblastoma is derived from cells of neural crest origin and often expresses the transcription factor human achaete-scute homolog 1 (HASH1). The aim of this study was to selectively kill neuroblastoma cells by expressing the suicide gene E. coli purine nucleoside phosphorylase (PNP) under the control of the Mash1 promoter, the murine homolog of HASH1. PROCEDURE The E. coli PNP gene regulated by the Mash1 promoter was cloned into an expression vector and transfected into neuroblastoma and non-neuroblastoma cell lines. After addition of the prodrug M2-fluoroadenine 9-beta-D-arabinofuranoside (F-araA) the cell-specific toxicity was examined. To optimize the cell specific activity, different sizes of the Mash1 promoter were analyzed in neuroblastoma cell lines and compared with the activity in non-neuroblastoma cells. RESULTS Estimated as the percentages of CMV enhancer-promoter, the activity was significantly higher in the neuroblastoma cells, ranging from 17 to 58% when the shortest and the most active promoter was measured. The non-neuroblastoma cells yielded only 1-6% of the CMV promoter activity. When the shortest Mash1 promoter was combined with the E. coli PNP gene the cytotoxicity was 65% in the neuroblastoma cells with low cell death in the non-neuroblastoma cell lines, relative to the cytotoxicity where the E.coli PNP gene was regulated by the strong but non-specific CMV enhancer-promoter. CONCLUSIONS We show here that the Mash1 promoter regulating the PNP gene confers a cell-type selective toxicity in neuroblastoma cell lines. These results indicate the feasibility to use the Mash1 promoter for regulating E.coli PNP expression in gene-directed enzyme prodrug therapy (GDEPT) of neuroblastoma.
Collapse
Affiliation(s)
- Yvonne Arvidsson
- Department of Cell Biology, Institute of Anatomy and Cell Biology, Göteborg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Nakada Y, Parab P, Simmons A, Omer-Abdalla A, Johnson JE. Separable enhancer sequences regulate the expression of the neural bHLH transcription factor neurogenin 1. Dev Biol 2004; 271:479-87. [PMID: 15223348 DOI: 10.1016/j.ydbio.2004.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/05/2004] [Accepted: 04/12/2004] [Indexed: 11/25/2022]
Abstract
Ngn1 is a basic helix-loop-helix (bHLH) transcription factor expressed in specific regions within the developing brain and spinal cord, sensory ganglia, and olfactory epithelium. We have identified sequences both 5' and 3' of the mouse ngn1 gene that function in regulating ngn1 expression, and each of these sequences contains distinct regulatory cassettes for different subregions of the expression domain. Enhancers for expression in ngn1 domains of the midbrain, hindbrain, trigeminal ganglia, and ventral-neural tube appear redundant and are spread both 5' and 3' of the ngn1 coding sequence. In contrast, a single discrete dorsal-neural tube enhancer was located in the 5' sequence that is conserved among mouse, human, chick, and zebrafish ngn1 genes. Functionally, this enhancer is both necessary and sufficient for driving expression of a heterologous reporter in transgenic mice specifically to the dorsal domain of ngn1 expression in the spinal neural tube. Thus, sequences are identified that can be used to direct temporally and spatially restricted expression of heterologous genes to the developing neural tube.
Collapse
Affiliation(s)
- Yuji Nakada
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | | | | | | | | |
Collapse
|
14
|
Brunelli S, Silva Casey E, Bell D, Harland R, Lovell-Badge R. Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 2003; 36:12-24. [PMID: 12748963 DOI: 10.1002/gene.10193] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SOX3 is one of the earliest neural markers in vertebrates and is thought to play a role in specifying neuronal fate. To investigate the regulation of Sox3 expression we identified cis-regulatory regions in the Sox3 promoter that direct tissue-specific heterologous marker gene expression in transgenic mice. Our results show that an 8.3 kb fragment, comprising 3 kb upstream and 3 kb downstream of the Sox3 transcriptional unit, is sufficient in a lacZ reporter construct to reproduce most aspects of Sox3 expression during CNS development from headfold to midgestation stages. The apparently uniform expression of Sox3 in the neural tube depends, however, on the combined action of distinct regulatory modules within this 8.3 kb region. Each of these gives expression in a subdomain of the complete expression pattern. These are restricted along both the rostral-caudal and dorso-ventral axes and can be quite specific, one element giving expression largely confined to V2 interneuron precursors. We also find that at least some of the regulatory sequences are able to drive expression of the transgene in the CNS Xenopus laevis embryos in a manner that reflects the endogenous Sox3 expression pattern. These results imply that the underlying mechanism regulating early CNS patterning is conserved, despite several substantial differences in neurogenesis between mammals and amphibians.
Collapse
|
15
|
Verzi MP, Anderson JP, Dodou E, Kelly KK, Greene SB, North BJ, Cripps RM, Black BL. N-twist, an evolutionarily conserved bHLH protein expressed in the developing CNS, functions as a transcriptional inhibitor. Dev Biol 2002; 249:174-90. [PMID: 12217327 DOI: 10.1006/dbio.2002.0753] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the basic helix-loop-helix (bHLH) transcription factor family play an essential role in multiple developmental processes. During neurogenesis, positive and negative regulation by bHLH proteins is essential for proper development. Here we report the identification and initial characterization of the bHLH gene, Neuronal twist (N-twist), named for its neural expression pattern and high sequence homology and physical linkage to the mesodermal inhibitor, M-twist. N-twist is expressed in the developing mouse central nervous system in the midbrain, hindbrain, and neural tube. This neural expression is conserved in invertebrates, as expression of the Drosophila ortholog of N-twist is also restricted to the central nervous system. Like other bHLH family members, N-Twist heterodimerizes with E protein and binds DNA at a consensus bHLH-binding site, the E box. We show that N-Twist inhibits MASH1-dependent transcriptional activation by sequestering E protein in a dominant negative fashion. Thus, these studies support the notion that N-Twist represents a novel negative regulator of neurogenesis.
Collapse
Affiliation(s)
- Michael P Verzi
- Cardiovascular Research Institute, Univerity of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001; 105:43-55. [PMID: 11301001 DOI: 10.1016/s0092-8674(01)00295-1] [Citation(s) in RCA: 687] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
Collapse
Affiliation(s)
- T Marquardt
- Max-Planck-Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, D-37077, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Timmer J, Johnson J, Niswander L. The use of in ovo electroporation for the rapid analysis of neural-specific murine enhancers. Genesis 2001; 29:123-32. [PMID: 11252053 DOI: 10.1002/gene.1015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The identification and characterization of DNA sequences necessary for proper gene expression have provided insights into gene regulation and generated tools useful for further experimentation. Studies of developmentally regulated genes have demonstrated how transcription factors interact at enhancers to generate restricted patterns of expression during embryogenesis. In vertebrates, the pursuit of such studies has relied on the generation of transgenic mice and thus has been limited by the time and expense required generating and characterizing these mice. The recently developed technique of in ovo electroporation allows the rapid introduction of exogenous DNA into developing chicken embryos. Here we have used this technique to introduce DNA containing murine enhancer/reporter constructs into cells of the chicken neural tube, resulting in appropriate expression of the reporter. This technique has the potential to greatly reduce the effort involved in the study of vertebrate enhancers. Furthermore, we have characterized factors such as timing of electroporation, concentration of DNA, and choice of basal promoters and found that they can influence the degree to which expression of enhancer constructs reflects endogenous gene expression.
Collapse
Affiliation(s)
- J Timmer
- Molecular Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
18
|
Simmons AD, Horton S, Abney AL, Johnson JE. Neurogenin2 expression in ventral and dorsal spinal neural tube progenitor cells is regulated by distinct enhancers. Dev Biol 2001; 229:327-39. [PMID: 11203697 DOI: 10.1006/dbio.2000.9984] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The basic helix-loop-helix transcription factor Neurogenin2 (NGN2) is expressed in distinct populations of neural progenitor cells within the developing central and peripheral nervous systems. Transgenic mice containing ngn2/lacZ reporter constructs were used to study the regulation of ngn2 in the developing spinal cord. ngn2/lacZ transgenic embryos containing sequence found 5' or 3' to the ngn2 coding region express lacZ in domains that reflect the spatial and temporal expression profile of endogenous ngn2. A 4.4-kb fragment 5' of ngn2 was sufficient to drive lacZ expression in the ventral neural tube, whereas a 1.0-kb fragment located 3' of ngn2 directed expression to both dorsal and ventral domains. Persistent -gal activity revealed that the NGN2 progenitor cells in the dorsal domain give rise to a subset of interneurons that send their axons to the floor plate, and the NGN2 progenitors in the ventral domain give rise to a subset of motor neurons. We identified a discrete element that is required for the activity of the ngn2 enhancer specifically in the ventral neural tube. Thus, separable regulatory elements that direct ngn2 expression to distinct neural progenitor populations have been defined.
Collapse
Affiliation(s)
- A D Simmons
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA
| | | | | | | |
Collapse
|
19
|
Ma L, Merenmies J, Parada LF. Molecular characterization of the TrkA/NGF receptor minimal enhancer reveals regulation by multiple cis elements to drive embryonic neuron expression. Development 2000; 127:3777-88. [PMID: 10934022 DOI: 10.1242/dev.127.17.3777] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neural development relies on stringent regulation of key genes that mediate specialized function. TrkA is primarily expressed in neural crest-derived sensory and sympathetic neurons where it transmits critical survival information. We have identified a 457 base pair sequence upstream of the murine first TrkA coding exon that is conserved in human and in chick, and is sufficient for expression in the correct cells with appropriate timing. Mutation analysis of consensus transcription factor binding domains within the minimal enhancer reveals a complex positive regulation that includes sites required for global expression and sites that are specifically required for DRG, trigeminal or sympathetic expression. These results provide a foundation for identification of the transcriptional machinery that specifies neurotrophin receptor expression.
Collapse
Affiliation(s)
- L Ma
- Center for Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | | | | |
Collapse
|
20
|
Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J Neurosci 2000. [PMID: 10934259 DOI: 10.1523/jneurosci.20-16-06095.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dentate gyrus of the hippocampus is uniquely organized with a displaced proliferative zone that continues to generate dentate granule cells throughout life. We have analyzed the expression of Notch receptors, Notch ligands, and basic helix-loop-helix (bHLH) genes during dentate gyrus development to determine whether the need to maintain a pool of undifferentiated precursors is reflected in the patterns of expression of these genes. Many of these genes are expressed diffusely throughout the cortical neuroepithelium at embryonic days 16 and 17 in the rat, just preceding the migration of newly born granule cells and dentate precursor cells into the dentate anlage. However, at this time, Mash1, Math3, and Id3 expression are all concentrated in the area that specifically gives rise to granule cells and dentate precursor cells. Two days later, at the time of migration of the first granule cells and dentate precursor cells, cells expressing Mash1 are seen in the migratory route from the subventricular zone to the developing dentate gyrus. Newly born granule cells expressing NeuroD are also present in this migratory pathway. In the first postnatal week, precursor cells expressing Mash1 reside in the dentate hilus, and by the third postnatal week they have largely taken up their final position in the subgranular zone along the hilar side of the dentate granule cell layer. After terminal differentiation, granule cells born in the hilus or the subgranular zone begin to express NeuroD followed by NeuroD2. This study establishes that the expression patterns of bHLH mRNAs evolve during the formation of the dentate gyrus, and the precursor cells resident in the mature dentate gyrus share features with precursor cells found in development. Thus, many of the same mechanisms that are known to regulate cell fate and precursor pool size in other brain regions are likely to be operative in the dentate gyrus at all stages of development.
Collapse
|
21
|
Abstract
Mash1, a neural-specific bHLH transcription factor, is essential for the formation of multiple CNS and PNS neural lineages. Transcription from the Mash1 locus is elevated in mice null for Mash1, suggesting that MASH1 normally acts to repress its own transcription. This activity is contrary to the positive autoregulation of other proneural bHLH proteins. To investigate the mechanisms involved in this process, sequences flanking the Mash1 gene were tested for the ability to mediate negative autoregulation. A Mash1/lacZ transgene containing 36 kb of cis-regulatory sequence exhibits an increase in lacZ expression in the Mash1 mutant background, which phenocopies the observation of transcriptional autoregulation at the endogenous Mash1 locus. Using Mash1/lacZ lines with progressively less cis-acting sequence, autoregulatory responsive elements were demonstrated to colocalize with a previously characterized 1.2-kb CNS enhancer. Mutations of E-box sites within this enhancer did not result in an apparent loss of autoregulation, suggesting that MASH1 does not directly repress its own transcription. Interestingly, these mutations did not indicate any underlying positive auto- or cross-regulation of Mash1. Furthermore, the loss of autoregulation in the Mash1 mutant background is reminiscent of a loss of lateral inhibitory signaling. However, mutations in HES consensus sites, the likely purveyors of Notch-mediated lateral inhibition, do not support a role for these sites in negative autoregulation. We hypothesize that MASH1 normally inhibits its own expression indirectly, possibly through a HES-mediated repression of positive regulators or through novel HES binding sites.
Collapse
Affiliation(s)
- A Meredith
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas, 75235-9111, USA
| | | |
Collapse
|
22
|
Murray RC, Tapscott SJ, Petersen JW, Calof AL, McCormick MB. A fragment of the Neurogenin1 gene confers regulated expression of a reporter gene in vitro and in vivo. Dev Dyn 2000; 218:189-94. [PMID: 10822270 DOI: 10.1002/(sici)1097-0177(200005)218:1<189::aid-dvdy16>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basic helix-loop-helix transcription factor neurogenin1 is required for proper nervous system development in vertebrates. It is expressed in neuronal precursors during embryonic development and is thought to play a role in specifying neuronal fate. To investigate the regulation of neurogenin1 expression, the transcriptional start site of the gene was identified and a 2.7-kb fragment ending in the first exon was shown to possess basal promoter activity. This 2.7-kb fragment was able to promote expression of reporter genes in P19 cells under conditions in which expression of endogenous neurogenin1 was induced. Importantly, the 2.7-kb fragment was able to drive expression of a lacZ reporter gene in transgenic mice in most tissues in which neurogenin1 is normally expressed, including those peripheral ganglia that fail to develop in neurogenin1 "knockout" mice. These findings identify a regulatory region containing elements responsible for appropriate expression of a gene with a crucial role in generating the vertebrate nervous system.
Collapse
Affiliation(s)
- R C Murray
- Department of Anatomy and Neurobiology, University of California, Irvine, College of Medicine, 92697-1275, USA
| | | | | | | | | |
Collapse
|
23
|
Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 2000; 127:1185-96. [PMID: 10683172 DOI: 10.1242/dev.127.6.1185] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the vertebrate nervous system requires the actions of transcription factors that establish regional domains of gene expression, which results in the generation of diverse neuronal cell types. MATH1, a transcription factor of the bHLH class, is expressed during development of the nervous system in multiple neuronal domains, including the dorsal neural tube, the EGL of the cerebellum and the hair cells of the vestibular and auditory systems. MATH1 is essential for proper development of the granular layer of the cerebellum and the hair cells of the cochlear and vestibular systems, as shown in mice carrying a targeted disruption of Math1. Previously, we showed that 21 kb of sequence flanking the Math1-coding region is sufficient for Math1 expression in transgenic mice. Here we identify two discrete sequences within the 21 kb region that are conserved between mouse and human, and are sufficient for driving a lacZ reporter gene in these domains of Math1 expression in transgenic mice. The two identified enhancers, while dissimilar in sequence, appear to have redundant activities in the different Math1 expression domains except the spinal neural tube. The regulatory mechanisms for each of the diverse Math1 expression domains are tightly linked, as separable regulatory elements for any given domain of Math1 expression were not found, suggesting that a common regulatory mechanism controls these apparently unrelated domains of expression. In addition, we demonstrate a role for autoregulation in controlling the activity of the Math1 enhancer, through an essential E-box consensus binding site.
Collapse
Affiliation(s)
- A W Helms
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
24
|
Torii MA, Matsuzaki F, Osumi N, Kaibuchi K, Nakamura S, Casarosa S, Guillemot F, Nakafuku M. Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 1999; 126:443-56. [PMID: 9876174 DOI: 10.1242/dev.126.3.443] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like other tissues and organs in vertebrates, multipotential stem cells serve as the origin of diverse cell types during genesis of the mammalian central nervous system (CNS). During early development, stem cells self-renew and increase their total cell numbers without overt differentiation. At later stages, the cells withdraw from this self-renewal mode, and are fated to differentiate into neurons and glia in a spatially and temporally regulated manner. However, the molecular mechanisms underlying this important step in cell differentiation remain poorly understood. In this study, we present evidence that the expression and function of the neural-specific transcription factors Mash-1 and Prox-1 are involved in this process. In vivo, Mash-1- and Prox-1-expressing cells were defined as a transient proliferating population that was molecularly distinct from self-renewing stem cells. By taking advantage of in vitro culture systems, we showed that induction of Mash-1 and Prox-1 coincided with an initial step of differentiation of stem cells. Furthermore, forced expression of Mash-1 led to the down-regulation of nestin, a marker for undifferentiated neuroepithelial cells, and up-regulation of Prox-1, suggesting that Mash-1 positively regulates cell differentiation. In support of these observations in vitro, we found specific defects in cellular differentiation and loss of expression of Prox-1 in the developing brain of Mash-1 mutant mice in vivo. Thus, we propose that induction of Mash-1 and Prox-1 is one of the critical molecular events that control early development of the CNS.
Collapse
Affiliation(s)
- M a Torii
- Division of Neurobiology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | | | | | | | |
Collapse
|