1
|
Muramatsu B, Suzuki DG, Suzuki M, Higashiyama H. Gross anatomy of the Pacific hagfish, Eptatretus burgeri, with special reference to the coelomic viscera. Anat Rec (Hoboken) 2024; 307:155-171. [PMID: 36958942 DOI: 10.1002/ar.25208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Hagfish (Myxinoidea) are a deep-sea taxon of cyclostomes, the extant jawless vertebrates. Many researchers have examined the anatomy and embryology of hagfish to shed light on the early evolution of vertebrates; however, the diversity within hagfish is often overlooked. Hagfish have three lineages, Myxininae, Eptatretinae, and Rubicundinae. Usually, textbook illustrations of hagfish anatomy reflect the morphology of the Myxininae lineage, especially Myxine glutinosa, with its single pair of external branchial pores. Here, we instead report the gross anatomy of an Eptatretinae, Eptatretus burgeri, which has six pairs of branchial pores, especially focusing on the coelomic organs. Dissections were performed on fixed and unfixed specimens to provide a guide for those doing organ- or tissue-specific molecular experiments. Our dissections revealed that the ventral aorta is Y-branched in E. burgeri, which differs from the unbranched morphology of Myxine. Otherwise, there were no differences in the morphology of the lingual apparatus or heart in the pharyngeal domain. The thyroid follicles were scattered around the ventral aorta, as has been reported for adult lampreys. The hepatobiliary system more closely resembled those of jawed vertebrates than those of adult lampreys, with the liver having two lobes and a bile duct connecting the gallbladder to each lobe. Overall, the visceral morphology of E. burgeri does not differ significantly from that of the known Myxine at the level of gross anatomy, although the branchial morphology is phylogenetically ancestral compared to Myxine.
Collapse
Affiliation(s)
- Banri Muramatsu
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Daichi G Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, 305-8572, Japan
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Onai T, Adachi N, Urakubo H, Sugahara F, Aramaki T, Matsumoto M, Ohno N. Ultrastructure of the lamprey head mesoderm reveals evolution of the vertebrate head. iScience 2023; 26:108338. [PMID: 38187188 PMCID: PMC10767164 DOI: 10.1016/j.isci.2023.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 01/09/2024] Open
Abstract
The cranial muscle is a critical component in the vertebrate head for a predatory lifestyle. However, its evolutionary origin and possible segmental nature during embryogenesis have been controversial. In jawed vertebrates, the presence of pre-otic segments similar to trunk somites has been claimed based on developmental observations. However, evaluating such arguments has been hampered by the paucity of research on jawless vertebrates. Here, we discovered different cellular arrangements in the head mesoderm in lamprey embryos (Lethenteron camtschaticum) using serial block-face scanning electron and laser scanning microscopies. These cell populations were morphologically and molecularly different from somites. Furthermore, genetic comparison among deuterostomes revealed that mesodermal gene expression domains were segregated antero-posteriorly in vertebrates, whereas such segregation was not recognized in invertebrate deuterostome embryos. These findings indicate that the vertebrate head mesoderm evolved from the anteroposterior repatterning of an ancient mesoderm and developmentally diversified before the split of jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, University of Fukui, School of Medical Sciences, 23-3, Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, Japan
- Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji, Yoshida, Fukui, Japan
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Campus De Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Hidetoshi Urakubo
- Section of Electron Microscopy, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, 1-1, Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho, Nagoya, Aichi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, 38, Nishigonaka, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
3
|
Horackova A, Pospisilova A, Stundl J, Minarik M, Jandzik D, Cerny R. Pre-mandibular pharyngeal pouches in early non-teleost fish embryos. Proc Biol Sci 2023; 290:20231158. [PMID: 37700650 PMCID: PMC10498051 DOI: 10.1098/rspb.2023.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
The vertebrate pharynx is a key embryonic structure with crucial importance for the metameric organization of the head and face. The pharynx is primarily built upon progressive formation of paired pharyngeal pouches that typically develop in post-oral (mandibular, hyoid and branchial) domains. However, in the early embryos of non-teleost fishes, we have previously identified pharyngeal pouch-like outpocketings also in the pre-oral domain of the cranial endoderm. This pre-oral gut (POG) forms by early pouching of the primitive gut cavity, followed by the sequential formation of typical (post-oral) pharyngeal pouches. Here, we tested the pharyngeal nature of the POG by analysing expression patterns of selected core pharyngeal regulatory network genes in bichir and sturgeon embryos. Our comparison revealed generally shared expression patterns, including Shh, Pax9, Tbx1, Eya1, Six1, Ripply3 or Fgf8, between early POG and post-oral pharyngeal pouches. POG thus shares pharyngeal pouch-like morphogenesis and a gene expression profile with pharyngeal pouches and can be regarded as a pre-mandibular pharyngeal pouch. We further suggest that pre-mandibular pharyngeal pouches represent a plesiomorphic vertebrate trait inherited from our ancestor's pharyngeal metameric organization, which is incorporated in the early formation of the pre-chordal plate of vertebrate embryos.
Collapse
Affiliation(s)
- Agata Horackova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Jan Stundl
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - Martin Minarik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| | - David Jandzik
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 12844 Prague, Czech Republic
| |
Collapse
|
4
|
Kusakabe R, Tanaka M, Kuratani S. Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Front Cell Dev Biol 2021; 9:760366. [PMID: 34650989 PMCID: PMC8505881 DOI: 10.3389/fcell.2021.760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution. Lampreys, extant jawless vertebrates, lack many of derived traits characteristic of the gnathostomes, such as jaws, paired fins and epaxial/hypaxial distinction of the trunk skeletal musculatures. However, these animals possess the primitive form of the hypobranchial muscle. Of the gnathostomes, the elasmobranchs exhibit developmental mode of hypaxial muscles that is not identical to that of other gnathostomes in that the muscle primordia relocate as coherent cell aggregates. Comparison of expression of developmental genes, including Lbx genes, has delineated the temporal order of differentiation of various skeletal muscles, such as the hypobranchial, posterior pharyngeal and cucullaris (trapezius) muscles. We have proposed that the sequential addition of distal muscles, associated with expression of duplicated Lbx genes, promoted the elaboration of skeletal musculature. These analyses have revealed the framework of an evolutionary pathway that gave rise to the morphological complexity and diversity of vertebrate body patterns.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| |
Collapse
|
5
|
Kuroda S, Adachi N, Kusakabe R, Kuratani S. Developmental fates of shark head cavities reveal mesodermal contributions to tendon progenitor cells in extraocular muscles. ZOOLOGICAL LETTERS 2021; 7:3. [PMID: 33588955 PMCID: PMC7885385 DOI: 10.1186/s40851-021-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/27/2021] [Indexed: 05/09/2023]
Abstract
Vertebrate extraocular muscles (EOMs) function in eye movements. The EOMs of modern jawed vertebrates consist primarily of four recti and two oblique muscles innervated by three cranial nerves. The developmental mechanisms underlying the establishment of this complex and the evolutionarily conserved pattern of EOMs are unknown. Chondrichthyan early embryos develop three pairs of overt epithelial coeloms called head cavities (HCs) in the head mesoderm, and each HC is believed to differentiate into a discrete subset of EOMs. However, no direct evidence of these cell fates has been provided due to the technical difficulty of lineage tracing experiments in chondrichthyans. Here, we set up an in ovo manipulation system for embryos of the cloudy catshark Scyliorhinus torazame and labeled the epithelial cells of each HC with lipophilic fluorescent dyes. This experimental system allowed us to trace the cell lineage of EOMs with the highest degree of detail and reproducibility to date. We confirmed that the HCs are indeed primordia of EOMs but showed that the morphological pattern of shark EOMs is not solely dependent on the early pattern of the head mesoderm, which transiently appears as tripartite HCs along the simple anteroposterior axis. Moreover, we found that one of the HCs gives rise to tendon progenitor cells of the EOMs, which is an exceptional condition in our previous understanding of head muscles; the tendons associated with head muscles have generally been supposed to be derived from cranial neural crest (CNC) cells, another source of vertebrate head mesenchyme. Based on interspecies comparisons, the developmental environment is suggested to be significantly different between the two ends of the rectus muscles, and this difference is suggested to be evolutionarily conserved in jawed vertebrates. We propose that the mesenchymal interface (head mesoderm vs CNC) in the environment of developing EOM is required to determine the processes of the proximodistal axis of rectus components of EOMs.
Collapse
Affiliation(s)
- Shunya Kuroda
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501 Japan
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | - Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
- Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
6
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
7
|
Maddin HC, Piekarski N, Reisz RR, Hanken J. Development and evolution of the tetrapod skull-neck boundary. Biol Rev Camb Philos Soc 2020; 95:573-591. [PMID: 31912655 PMCID: PMC7318664 DOI: 10.1111/brv.12578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
The origin and evolution of the vertebrate skull have been topics of intense study for more than two centuries. Whereas early theories of skull origin, such as the influential vertebral theory, have been largely refuted with respect to the anterior (pre-otic) region of the skull, the posterior (post-otic) region is known to be derived from the anteriormost paraxial segments, i.e. the somites. Here we review the morphology and development of the occiput in both living and extinct tetrapods, taking into account revised knowledge of skull development by augmenting historical accounts with recent data. When occipital composition is evaluated relative to its position along the neural axis, and specifically to the hypoglossal nerve complex, much of the apparent interspecific variation in the location of the skull-neck boundary stabilizes in a phylogenetically informative way. Based on this criterion, three distinct conditions are identified in (i) frogs, (ii) salamanders and caecilians, and (iii) amniotes. The position of the posteriormost occipital segment relative to the hypoglossal nerve is key to understanding the evolution of the posterior limit of the skull. By using cranial foramina as osteological proxies of the hypoglossal nerve, a survey of fossil taxa reveals the amniote condition to be present at the base of Tetrapoda. This result challenges traditional theories of cranial evolution, which posit translocation of the occiput to a more posterior location in amniotes relative to lissamphibians (frogs, salamanders, caecilians), and instead supports the largely overlooked hypothesis that the reduced occiput in lissamphibians is secondarily derived. Recent advances in our understanding of the genetic basis of axial patterning and its regulation in amniotes support the hypothesis that the lissamphibian occipital form may have arisen as the product of a homeotic shift in segment fate from an amniote-like condition.
Collapse
Affiliation(s)
- Hillary C. Maddin
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
- Department of Earth SciencesCarleton University, 1125 Colonel By DriveOttawaOntarioK1S 5B6Canada
| | - Nadine Piekarski
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| | - Robert R. Reisz
- Department of BiologyUniversity of Toronto Mississauga3359 Mississauga Road, MississaugaOntarioL5L 1C6Canada
| | - James Hanken
- Museum of Comparative ZoologyHarvard University, 26 Oxford StreetCambridgeMA02138U.S.A.
| |
Collapse
|
8
|
|
9
|
Aldea D, Subirana L, Keime C, Meister L, Maeso I, Marcellini S, Gomez-Skarmeta JL, Bertrand S, Escriva H. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 2019; 3:1233-1240. [PMID: 31263232 DOI: 10.1038/s41559-019-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.
Collapse
Affiliation(s)
- Daniel Aldea
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
10
|
Ferran JL, Puelles L. Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anat Rec (Hoboken) 2018; 302:452-462. [PMID: 29659196 DOI: 10.1002/ar.23824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 12/23/2022]
Abstract
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 302:452-462, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia - IMIB, Group of Brain Regionalization and genes of development; Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Onai T. The evolutionary origin of chordate segmentation: revisiting the enterocoel theory. Theory Biosci 2018; 137:1-16. [PMID: 29488055 DOI: 10.1007/s12064-018-0260-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/10/2018] [Indexed: 11/28/2022]
Abstract
One of the definitive characteristics of chordates (cephalochordates, vertebrates) is the somites, which are a series of paraxial mesodermal blocks exhibiting segmentation. The presence of somites in the basal chordate amphioxus and in vertebrates, but not in tunicates (the sister group of vertebrates), suggests that the tunicates lost the somites secondarily. Somites are patterned from anterior to posterior during embryogenesis. How such a segmental pattern evolved from deuterostome ancestors is mysterious. The classic enterocoel theory claims that chordate mesoderm evolved from the ancestral deuterostome mesoderm that organizes the trimeric body parts seen in extant hemichordates. Recent progress in molecular embryology has been tremendous, which has enabled us to test this classic theory. In this review, the history of the study on the evolution of the chordate mesoderm is summarized. This is followed by a review of the current understanding of genetic mapping on anterior/posterior (A/P) mesodermal patterning between chordates (cephalochordates, vertebrates) and a direct developing hemichordate (Saccoglossus kowalevskii). Finally, a possible scenario about the evolution of the chordate mesoderm from deuterostome ancestors is discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, School of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan. .,Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| |
Collapse
|
13
|
Ziermann JM, Clement AM, Ericsson R, Olsson L. Cephalic muscle development in the Australian lungfish,Neoceratodus forsteri. J Morphol 2017; 279:494-516. [DOI: 10.1002/jmor.20784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059
| | - Alice M. Clement
- Department of Organismal Biology; Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A; Uppsala 752 36 Sweden
- School of Biological Sciences, College of Science and Engineering; Flinders University; Adelaide South Australia 5042 Australia
| | - Rolf Ericsson
- Laboratory for the Study of Craniofacial Evolution & Development, Vinicna 7; Charles University in Prague; Prague 128 44 Czech Republic
| | - Lennart Olsson
- Institut für Zoologie und Evolutionsforschung; Friedrich-Schiller-Universität Jena; Jena Germany
| |
Collapse
|
14
|
Ziermann JM, Freitas R, Diogo R. Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Front Zool 2017; 14:31. [PMID: 28649268 PMCID: PMC5480186 DOI: 10.1186/s12983-017-0216-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. RESULTS Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. CONCLUSION Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates.
Collapse
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy, Howard University College of Medicine, 520 W St NW, Washington, DC 20059 USA
| | - Renata Freitas
- IBMC—Institute for Molecular and Cell Biology, Oporto, Portugal
- I3S, Institute for Innovation and Health Research, University of Oporto, Oporto, Portugal
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059 USA
| |
Collapse
|
15
|
Dupret V, Sanchez S, Goujet D, Ahlberg PE. The internal cranial anatomy of Romundina stellina Ørvig, 1975 (Vertebrata, Placodermi, Acanthothoraci) and the origin of jawed vertebrates-Anatomical atlas of a primitive gnathostome. PLoS One 2017; 12:e0171241. [PMID: 28170434 PMCID: PMC5295682 DOI: 10.1371/journal.pone.0171241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
Placoderms are considered as the first jawed vertebrates and constitute a paraphyletic group in the stem-gnathostome grade. The acanthothoracid placoderms are among the phylogenetically most basal and morphologically primitive gnathostomes, but their neurocranial anatomy is poorly understood. Here we present a near-complete three-dimensional skull of Romundina stellina, a small Early Devonian acanthothoracid from the Canadian Arctic Archipelago, scanned with propagation phase contrast microtomography at a 7.46 μm isotropic voxel size at the European Synchrotron Radiation Facility, Grenoble, France. This is the first model of an early gnathostome skull produced using this technique, and as such represents a major advance in objectivity compared to past descriptions of placoderm neurocrania on the basis of grinding series. Despite some loss of material along an oblique crack, most of the internal structures are remarkably preserved, and most of the missing structures can be reconstructed by symmetry. This virtual approach offers the possibility to connect with certainty all the external foramina to the blood and nerve canals and the central structures, and thus identify accurate homologies without destroying the specimen. The high level of detail enables description of the main arterial, venous and nerve canals of the skull, and other perichondrally ossified endocranial structures such as the palatoquadrate articulations, the endocranial cavity and the inner ear cavities. The braincase morphology appears less extreme than that of Brindabellaspis, and is in some respects more reminiscent of a basal arthrodire such as Kujdanowiaspis.
Collapse
Affiliation(s)
- Vincent Dupret
- Science for Life Laboratory and Uppsala University, Department of Organismal Biology, Subdepartment of Evolution and Development, Norbyvägen, SE Uppsala, Sweden
- * E-mail: (VD); (PEA)
| | - Sophie Sanchez
- Science for Life Laboratory and Uppsala University, Department of Organismal Biology, Subdepartment of Evolution and Development, Norbyvägen, SE Uppsala, Sweden
- European Synchrotron Radiation Facility, Grenoble, France
| | - Daniel Goujet
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, CNRS, UPMC-Paris 6, Muséum National d’Histoire Naturelle, Paris, France
| | - Per Erik Ahlberg
- Science for Life Laboratory and Uppsala University, Department of Organismal Biology, Subdepartment of Evolution and Development, Norbyvägen, SE Uppsala, Sweden
- * E-mail: (VD); (PEA)
| |
Collapse
|
16
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Kuratani S, Oisi Y, Ota KG. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoolog Sci 2016; 33:229-38. [DOI: 10.2108/zs150187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Yasuhiro Oisi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458-2906, USA
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| |
Collapse
|
18
|
Kuratani S, Adachi N. What are Head Cavities? — A History of Studies on Vertebrate Head Segmentation. Zoolog Sci 2016; 33:213-28. [DOI: 10.2108/zs150181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, Kobe 650-0047, Japan
| | - Noritaka Adachi
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago IL 60637, USA
| |
Collapse
|
19
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Suzuki DG, Fukumoto Y, Yoshimura M, Yamazaki Y, Kosaka J, Kuratani S, Wada H. Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. ZOOLOGICAL LETTERS 2016; 2:10. [PMID: 27081572 PMCID: PMC4831119 DOI: 10.1186/s40851-016-0046-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/06/2016] [Indexed: 05/16/2023]
Abstract
The ancestral configuration of the vertebrate head has long been an intriguing topic in comparative morphology and evolutionary biology. One peculiar component of the vertebrate head is the presence of extra-ocular muscles (EOMs), the developmental mechanism and evolution of which remain to be determined. The head mesoderm of elasmobranchs undergoes local epithelialization into three head cavities, precursors of the EOMs. In contrast, in avians, these muscles appear to develop mainly from the mesenchymal head mesoderm. Importantly, in the basal vertebrate lamprey, the head mesoderm does not show overt head cavities or signs of segmental boundaries, and the development of the EOMs is not well described. Furthermore, the disposition of the lamprey EOMs differs from those the rest of vertebrates, in which the morphological pattern of EOMs is strongly conserved. To better understand the evolution and developmental origins of the vertebrate EOMs, we explored the development of the head mesoderm and EOMs of the lamprey in detail. We found that the disposition of lamprey EOM primordia differed from that in gnathostomes, even during the earliest period of development. We also found that three components of the paraxial head mesoderm could be distinguished genetically (premandibular mesoderm: Gsc+/TbxA-; mandibular mesoderm: Gsc-/TbxA-; hyoid mesoderm: Gsc-/TbxA+), indicating that the genetic mechanisms of EOMs are conserved in all vertebrates. We conclude that the tripartite developmental origin of the EOMs is likely to have been possessed by the latest common ancestor of the vertebrates. This ancestor's EOM developmental pattern was also suggested to have resembled more that of the lamprey, and the gnathostome EOMs' disposition is likely to have been established by a secondary modification that took place in the common ancestor of crown gnathostomes.
Collapse
Affiliation(s)
- Daichi G. Suzuki
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuma Fukumoto
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Sumitomo Besshi Hospital, 3-1 Oji-cho, Niihama, Ehime 792-8543 Japan
| | - Miho Yoshimura
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yuji Yamazaki
- />Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan
| | - Jun Kosaka
- />Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
- />Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501 Japan
| | - Shigeru Kuratani
- />Laboratory for Evolutionary Morphology, RIKEN, Kobe, 650-0047 Japan
| | - Hiroshi Wada
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
21
|
Matsui H, Dorigo A, Buchberger A, Hocking JC, Distel M, Köster RW. Zebrafishjam-b2Gal4-enhancer trap line recapitulates endogenousjam-b2expression in extraocular muscles. Dev Dyn 2015; 244:1574-80. [DOI: 10.1002/dvdy.24347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/26/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hideaki Matsui
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
- Department of Neuroscience, Section of Integrative Physiology, Faculty of Medicine; University of Miyazaki; Miyazaki Japan
| | - Alessandro Dorigo
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
| | - Astrid Buchberger
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
| | - Jennifer C. Hocking
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
| | - Martin Distel
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
| | - Reinhard W. Köster
- Division of Molecular and Cellular Neurobiology, Zoological Institute; Technical University Braunschweig; Braunschweig Germany
| |
Collapse
|
22
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
23
|
Ziermann JM, Miyashita T, Diogo R. Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and holocephalans): comparative anatomy and early evolution of the vertebrate head muscles. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| | - Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton AB T6E 2N4 Canada
| | - Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC 20059 USA
| |
Collapse
|
24
|
Onai T, Irie N, Kuratani S. The evolutionary origin of the vertebrate body plan: the problem of head segmentation. Annu Rev Genomics Hum Genet 2014; 15:443-59. [PMID: 24898038 DOI: 10.1146/annurev-genom-091212-153404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).
Collapse
Affiliation(s)
- Takayuki Onai
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; , ,
| | | | | |
Collapse
|
25
|
Lours-Calet C, Alvares LE, El-Hanfy AS, Gandesha S, Walters EH, Sobreira DR, Wotton KR, Jorge EC, Lawson JA, Kelsey Lewis A, Tada M, Sharpe C, Kardon G, Dietrich S. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures. Dev Biol 2014; 390:231-46. [PMID: 24662046 PMCID: PMC4010675 DOI: 10.1016/j.ydbio.2014.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 12/13/2022]
Abstract
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface. At the vertebrate head–trunk interface, all tissues engage in stereotype cell movements. A ventrally–rostrally directed stream of cells leads along the floor of the pharynx to the developing jaw and outflow tract of the heart. The cell movements are spearheaded by the lateral mesoderm and surface ectoderm; muscle precursors for throat and tongue muscles (hypopharyngeal muscles); neural crest cells and outgrowing axons of the hypoglossal nerve follow. Hypopharyngeal muscle precursors follow the trajectory set by the lateral mesoderm and ectoderm, even when challenged with ectopic attractants or when rendered non-migratory. The newly discovered cell movements are the likely ground state for cell transport and organ assembly at the head–trunk interface before actively migrating muscle precursors evolved in “bony” (osteichthyan) vertebrates.
Collapse
Affiliation(s)
- Corinne Lours-Calet
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; GReD - Génétique Reproduction et Développement, UMR CNRS 6247, INSERM U931, Clermont Université, 24, Avenue des Landais, BP 80026, 63171 Aubiere Cedex, France
| | - Lucia E Alvares
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Department of Histology and Embryology, University of Campinas (UNICAMP), Rua Charles Darwin s/n, Cx. Postal 6109, CEP 13083-863 Campinas, São Paulo, Brazil
| | - Amira S El-Hanfy
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK
| | - Saniel Gandesha
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; College Road Dental Practice, 2 College Road, Bromsgrove, B60 2NE
| | - Esther H Walters
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK
| | - Débora Rodrigues Sobreira
- Department of Histology and Embryology, University of Campinas (UNICAMP), Rua Charles Darwin s/n, Cx. Postal 6109, CEP 13083-863 Campinas, São Paulo, Brazil; Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Karl R Wotton
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Erika C Jorge
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jennifer A Lawson
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - A Kelsey Lewis
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Masazumi Tada
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Colin Sharpe
- Institute for Biomedical and Biomolecular Science (IBBS), School of Biology, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Susanne Dietrich
- School of Biomedical & Health Sciences, King׳s College London, Hodgkin Building G43S/44S, Guy׳s Campus, London SE1 1UL, UK; Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael׳s Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
26
|
Dupret V, Sanchez S, Goujet D, Tafforeau P, Ahlberg PE. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 2014; 507:500-3. [DOI: 10.1038/nature12980] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/30/2013] [Indexed: 11/09/2022]
|
27
|
Yasui K, Kaji T, Morov AR, Yonemura S. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J Morphol 2013; 275:465-77. [PMID: 24301696 DOI: 10.1002/jmor.20228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/24/2013] [Accepted: 10/27/2013] [Indexed: 11/12/2022]
Abstract
The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern.
Collapse
Affiliation(s)
- Kinya Yasui
- Department of Biological Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | |
Collapse
|
28
|
Oisi Y, Ota KG, Fujimoto S, Kuratani S. Development of the Chondrocranium in Hagfishes, with Special Reference to the Early Evolution of Vertebrates. Zoolog Sci 2013; 30:944-61. [DOI: 10.2108/zsj.30.944] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yasuhiro Oisi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kinya G. Ota
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - Satoko Fujimoto
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| |
Collapse
|
29
|
Adachi N, Takechi M, Hirai T, Kuratani S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 2013; 14:257-76. [PMID: 23017074 DOI: 10.1111/j.1525-142x.2012.00543.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | |
Collapse
|
30
|
Adachi N, Kuratani S. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol Dev 2013; 14:234-56. [PMID: 23017073 DOI: 10.1111/j.1525-142x.2012.00542.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | |
Collapse
|
31
|
Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F. Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 2012; 222:41-55. [PMID: 22500853 DOI: 10.1111/j.1469-7580.2012.01505.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The cephalic neural crest produces streams of migrating cells that populate pharyngeal arches and a more rostral, premandibular domain, to give rise to an extensive ectomesenchyme in the embryonic vertebrate head. The crest cells forming the trigeminal stream are the major source of the craniofacial skeleton; however, there is no clear distinction between the mandibular arch and the premandibular domain in this ectomesenchyme. The question regarding the evolution of the gnathostome jaw is, in part, a question about the differentiation of the mandibular arch, the rostralmost component of the pharynx, and in part a question about the developmental fate of the premandibular domain. We address the developmental definition of the mandibular arch in connection with the developmental origin of the trabeculae, paired cartilaginous elements generally believed to develop in the premandibular domain, and also of enigmatic cartilaginous elements called polar cartilages. Based on comparative embryology, we propose that the mandibular arch ectomesenchyme in gnathostomes can be defined as a Dlx1-positive domain, and that the polar cartilages, which develop from the Dlx1-negative premandibular ectomesenchyme, would represent merely posterior parts of the trabeculae. We also show, in the lamprey embryo, early migration of mandibular arch mesenchyme into the premandibular domain, and propose an updated version of the heterotopy theory on the origin of the jaw.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology; RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
33
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bothe I, Tenin G, Oseni A, Dietrich S. Dynamic control of head mesoderm patterning. Development 2011; 138:2807-21. [DOI: 10.1242/dev.062737] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The embryonic head mesoderm gives rise to cranial muscle and contributes to the skull and heart. Prior to differentiation, the tissue is regionalised by the means of molecular markers. We show that this pattern is established in three discrete phases, all depending on extrinsic cues. Assaying for direct and first-wave indirect responses, we found that the process is controlled by dynamic combinatorial as well as antagonistic action of retinoic acid (RA), Bmp and Fgf signalling. In phase 1, the initial anteroposterior (a-p) subdivision of the head mesoderm is laid down in response to falling RA levels and activation of Fgf signalling. In phase 2, Bmp and Fgf signalling reinforce the a-p boundary and refine anterior marker gene expression. In phase 3, spreading Fgf signalling drives the a-p expansion of MyoR and Tbx1 expression along the pharynx, with RA limiting the expansion of MyoR. This establishes the mature head mesoderm pattern with markers distinguishing between the prospective extra-ocular and jaw skeletal muscles, the branchiomeric muscles and the cells for the outflow tract of the heart.
Collapse
Affiliation(s)
- Ingo Bothe
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gennadiy Tenin
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Adelola Oseni
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
| | - Susanne Dietrich
- School of Biomedical and Health Sciences, King's College London, London SE1 1UL, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
35
|
Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development 2011; 138:2401-15. [DOI: 10.1242/dev.040972] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Collapse
Affiliation(s)
- Ramkumar Sambasivan
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Paris, F-75015, France
- CNRS URA 2578, 25 rue du Dr Roux, Paris, F-75015, France
| |
Collapse
|
36
|
Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A 2011; 108:9160-5. [PMID: 21571634 DOI: 10.1073/pnas.1014235108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FGF signaling is one of the few cell-cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head.
Collapse
|
37
|
Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 2011; 350:217-27. [DOI: 10.1016/j.ydbio.2010.10.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 01/04/2023]
|
38
|
Gillis JA, Shubin NH. The evolution of gnathostome development: Insight from chondrichthyan embryology. Genesis 2010; 47:825-41. [PMID: 19882670 DOI: 10.1002/dvg.20567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chondrichthyans (cartilaginous fishes) represent one of the two lineages of gnathostomes, the other being the osteicthyans (bony fishes). Classical studies on chondrichthyan embryology have strongly impacted our views of vertebrate body plan evolution, while recent studies highlight oviparous chondrichthyans as emerging vertebrate model systems that are amenable to experimental embryological manipulation. Here, we review three particular areas of interest in the field of chondrichthyan developmental biology-gastrulation, neural development, and appendage patterning-and we discuss recent findings within a broader chondrichthyan-osteichthyan comparative framework. In some cases, comparative studies of chondrichthyan and osteichthyan development reveal conserved patterns of gene expression in common developmental contexts. Studies of chondrichthyan gastrulation reveal conserved patterns of developmental gene expression, despite highly divergent modes of mesendoderm internalization, while molecular characterization of chondrichthyan neurogenic placodes indicates a conservation of placode transcription factor expression across gnathostome phylogeny. In other cases, comparative studies of chondrichthyan and osteichthyan development yield evidence of shared patterning mechanisms functioning in different developmental contexts. This is exemplified by studies on the development of chondrichthyan appendages-paired fins, median fins, and gill rays. These have demonstrated that a retinoic acid-responsive Shh-expressing signaling center functions to pattern the endoskeleton of gnathostome paired fins and chondrichthyan gill rays, while expression patterns of Tbx18 and HoxD family members are shared by gnathostome paired fins and chondrichthyan median fins. These findings fuel novel hypotheses of developmental genetic homology, and demonstrate how comparative studies of gnathostome development can provide insight into the evolutionary processes that underlie morphological diversity.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
39
|
Kundrát M, Janácek J, Martin S. Development of transient head cavities during early organogenesis of the Nile Crocodile (Crocodylus niloticus). J Morphol 2010; 270:1069-83. [PMID: 19291672 DOI: 10.1002/jmor.10743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three consecutive pairs of head cavities (premandibular, mandibular, and hyoid) found in elasmobranchs have been considered as remnants of preotic 'head' somites-serial homologues of the myotomic compartments of trunk somites that give rise to the extraoccular musculature. Here, we study a more derived vertebrate, and show that cavitation is more complex in the head of Crocodylus niloticus, than just the occurrence of three pairs of cavities. Apart from the premandibular cavities, paired satellite microcavities, and unpaired extrapremandibular microcavities are recognized in the prechordal region as well. We observed that several developmental phenomena occur at the same time as the formation of the head cavities (premandibular, satellite, extrapremandibular, mandibular, and hyoid) appear temporarily in the crocodile embryo. These are 1) rapid growth of the optic stalk and inflation of the optic vesicle; 2) release of the intimate topographical relationships between the neural tube, notochord and oral gut; 3) tendency of the prechordal mesenchyme to follow the curvature of the forebrain; and 4) proliferation of the prechordal mesenchyme. On the basis of volumetric characters, only the hyoid cavity and hyoid condensation is comparable to the trunk somitocoel and somite, respectively.
Collapse
Affiliation(s)
- Martin Kundrát
- Geological Institute, The Slovak Academy of Sciences, Banská Bystrica, SK-97411, Slovak Republic.
| | | | | |
Collapse
|
40
|
|
41
|
Kuratani S. Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Dev Biol 2009; 332:61-9. [DOI: 10.1016/j.ydbio.2009.05.564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 10/20/2022]
|
42
|
Abstract
The evolutionary history of the vertebrate mouth has long been an intriguing issue in comparative zoology. When the prevertebrate state was considered, the oral structure in adult lancelets (amphioxus) was traditionally referred to because of its general similarity to that of the ammocoete larva of lampreys. The larval mouth in lancelets, however, shows a peculiar developmental mode. Reflecting this, the affinity of the lancelet mouth has long been argued, but is still far from a consensus. The increase in available data from molecular biology, comparative developmental biology, paleontology, and other related fields makes it prudent to discuss morphological homology and homoplasy. Here, we review how the lancelet mouth has been interpreted in the study of evolution of the vertebrate mouth, as well as recent advances in chordate studies. With this background of increased knowledge, our innervation analysis supports the interpretation that the morphological similarity in the oral apparatus between ammocoetes and lancelets is a homoplasy caused by their similar food habits.
Collapse
Affiliation(s)
- Kinya Yasui
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, 2445 Mukaishima, Onomichi, Hiroshima 722-0073, Japan.
| | | |
Collapse
|
43
|
Brend T, Holley SA. Balancing segmentation and laterality during vertebrate development. Semin Cell Dev Biol 2008; 20:472-8. [PMID: 19084074 DOI: 10.1016/j.semcdb.2008.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 11/29/2022]
Abstract
Somites are the mesodermal segments of vertebrate embryos that become the vertebral column, skeletal muscle and dermis. Somites arise within the paraxial mesoderm by the periodic, bilaterally symmetric process of somitogenesis. However, specification of left-right asymmetry occurs in close spatial and temporal proximity to somitogenesis and involves some of the same cell signaling pathways that govern segmentation. Here, we review recent evidence that identifies cross-talk between these processes and that demonstrates a role for retinoic acid in maintaining symmetrical somitogenesis by preventing impingement of left-right patterning signals upon the paraxial mesoderm.
Collapse
Affiliation(s)
- Tim Brend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
44
|
Kuratani S. Is the vertebrate head segmented?-evolutionary and developmental considerations. Integr Comp Biol 2008; 48:647-57. [PMID: 20607133 PMCID: PMC2895337 DOI: 10.1093/icb/icn015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because of its basal position on the phylogenetic tree of vertebrates, the lamprey embryo would be expected to exhibit segmental head mesoderm. Recent observations, however, show that the lamprey does not have any somite-like segments in the head. Coelomic head cavities that are most conspicuous in elasmobranch embryos, do not appear to represent universal vertebrate traits. From the perspective of generative constraint, segmental structures in the vertebrate body can be classified into primary segments, which arise as segmental embryonic primordia such as somites and pharyngeal pouches, and secondary segments whose patterns are determined by the presence of primary segments. Secondary segments include neural crest derivatives and epibranchial placodes that are not initially segmented. The head mesoderm of vertebrates is secondarily regionalized into several domains that do not impose any secondary segmental patterns on other structures. Thus, the vertebrate head is characterized by a lack of segmental generative constraint in its mesoderm. Classical segmental theories are now refuted because they attempted to equate the vertebrate head with that of the amphioxus, whose rostral somites are considered primary segments, which are absent from vertebrates.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Chuo, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
45
|
Abstract
Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze.
Collapse
Affiliation(s)
- Shigeru Kuratani
- *Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Chuo, Kobe, Hyogo 650-0047, JAPAN; Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300
- E-mail:
| | - Thomas Schilling
- *Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Chuo, Kobe, Hyogo 650-0047, JAPAN; Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300
| |
Collapse
|
46
|
Wotton KR, Mazet F, Shimeld SM. Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for Fox genes in vertebrate development. Dev Dyn 2008; 237:1590-603. [PMID: 18498098 DOI: 10.1002/dvdy.21553] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. Here we characterize all four gene families in the dogfish Scyliorhinus canicula, a member of the cartilaginous fish lineage that diverged before the radiation of osteichthyan vertebrates. We identify two FoxC genes, two FoxF genes, and single FoxQ1 and FoxL1 genes, demonstrating cluster duplication preceded the radiation of gnathostomes. The expression of all six genes was analyzed by in situ hybridization. The results show conserved expression of FoxL1, FoxF, and FoxC genes in different compartments of the mesoderm and of FoxQ1 in pharyngeal endoderm and its derivatives, confirming these as ancient sites of Fox gene expression, and also illustrate multiple cases of lineage-specific expression domains. Comparison to invertebrate chordates shows that the majority of conserved vertebrate expression domains mark tissues that are part of the primitive chordate body plan.
Collapse
Affiliation(s)
- Karl R Wotton
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, United Kingdom
| | | | | |
Collapse
|
47
|
Kuratani S. Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Dev Growth Differ 2008; 50 Suppl 1:S189-94. [DOI: 10.1111/j.1440-169x.2008.00985.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Holland LZ, Holland ND, Gilland E. Amphioxus and the evolution of head segmentation. Integr Comp Biol 2008; 48:630-46. [DOI: 10.1093/icb/icn060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Lacalli TC. Head organization and the head/trunk relationship in protochordates: problems and prospects. Integr Comp Biol 2008; 48:620-9. [PMID: 21669821 DOI: 10.1093/icb/icn012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fossil record has been an invaluable aid for reconstructing the major events of vertebrate evolution. There is no comparable record for protochordates, however, which severely limits our knowledge of their ancestral morphology, habits, and mode of life. The alternative is inference based on an interpretation of living protochordates but this is fraught with problems, not least being our own biases of what we think an ancestral chordate ought to look like. Relevant to the present symposium is the problem of head/trunk relationships and whether or not the myotomes of the trunk originally extended into the head in vertebrates. I will review what is currently known of patterns of innervation in tunicates and amphioxus in relation to Romer's somaticovisceral concept of the vertebrate body to show how little progress has been made in resolving this problem. There are, in contrast, surprisingly good prospects for solving some other puzzles concerning chordate origins. Dorsoventral inversion provides a good example. A consensus is now emerging, based largely on molecular data from hemichordates that casts new light on the asymmetry of the head in amphioxus. Specifically, the morphogenetic growth process that reestablishes symmetry in late-stage larvae can now be seen, at least in part, as a recapitulation of past evolutionary events, and this has important implications for the origin and basic organization of the brain.
Collapse
Affiliation(s)
- Thurston C Lacalli
- Biology Department, University of Victoria, Victoria, BC, Canada, V8W-3N5
| |
Collapse
|
50
|
Osório J, Rétaux S. The lamprey in evolutionary studies. Dev Genes Evol 2008; 218:221-35. [PMID: 18274775 DOI: 10.1007/s00427-008-0208-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/22/2008] [Indexed: 12/13/2022]
Abstract
Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate's phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|