1
|
Mok GF, Turner S, Smith EL, Mincarelli L, Lister A, Lipscombe J, Uzun V, Haerty W, Macaulay IC, Münsterberg AE. Single cell RNA-sequencing and RNA-tomography of the avian embryo extending body axis. Front Cell Dev Biol 2024; 12:1382960. [PMID: 38863942 PMCID: PMC11165230 DOI: 10.3389/fcell.2024.1382960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction: Vertebrate body axis formation initiates during gastrulation and continues within the tail bud at the posterior end of the embryo. Major structures in the trunk are paired somites, which generate the musculoskeletal system, the spinal cord-forming part of the central nervous system, and the notochord, with important patterning functions. The specification of these different cell lineages by key signalling pathways and transcription factors is essential, however, a global map of cell types and expressed genes in the avian trunk is missing. Methods: Here we use high-throughput sequencing approaches to generate a molecular map of the emerging trunk and tailbud in the chick embryo. Results and Discussion: Single cell RNA-sequencing (scRNA-seq) identifies discrete cell lineages including somites, neural tube, neural crest, lateral plate mesoderm, ectoderm, endothelial and blood progenitors. In addition, RNA-seq of sequential tissue sections (RNA-tomography) provides a spatially resolved, genome-wide expression dataset for the avian tailbud and emerging body, comparable to other model systems. Combining the single cell and RNA-tomography datasets, we identify spatially restricted genes, focusing on somites and early myoblasts. Thus, this high-resolution transcriptome map incorporating cell types in the embryonic trunk can expose molecular pathways involved in body axis development.
Collapse
Affiliation(s)
- G. F. Mok
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - S. Turner
- Earlham Institute, Norwich, United Kingdom
| | - E. L. Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - A. Lister
- Earlham Institute, Norwich, United Kingdom
| | | | - V. Uzun
- Earlham Institute, Norwich, United Kingdom
| | - W. Haerty
- Earlham Institute, Norwich, United Kingdom
| | | | - A. E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Kanda K, Iwata H. Tris(2-chloroethyl) phosphate (TCEP) exposure inhibits the epithelial-mesenchymal transition (EMT), mesoderm differentiation, and cardiovascular development in early chicken embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171242. [PMID: 38417504 DOI: 10.1016/j.scitotenv.2024.171242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is an organophosphorus flame retardant used worldwide and has been detected in the tissues and eggs of wild birds. Our previous study reported that exposure to TCEP induced developmental delay and cardiovascular dysfunction with attenuated heart rate and vasculogenesis in early chicken embryos. This study aimed to investigate the molecular mechanisms underlying the cardiovascular effects of TCEP on chicken embryos using cardiac transcriptome analysis and to examine whether TCEP exposure affects epithelial-mesenchymal transition (EMT) and mesoderm differentiation during gastrulation. Transcriptome analysis revealed that TCEP exposure decreased the expression of cardiac conduction-related genes and transcription factors on day 5 of incubation. In extraembryonic blood vessels, the expression levels of genes related to fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) were significantly reduced by TCEP exposure and vasculogenesis was suppressed. TCEP exposure also attenuated Snail family transcriptional repressor 2 (SNAI2) and T-box transcription factor T (TBXT) signaling in the chicken primitive streak, indicating that TCEP inhibits EMT and mesoderm differentiation during gastrulation at the early developmental stage. These effects on EMT and mesoderm differentiation may be related to subsequent phenotypic defects, including suppression of heart development and blood vessel formation.
Collapse
Affiliation(s)
- Kazuki Kanda
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
3
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
4
|
Martí-Solans J, Godoy-Marín H, Diaz-Gracia M, Onuma TA, Nishida H, Albalat R, Cañestro C. Massive Gene Loss and Function Shuffling in Appendicularians Stretch the Boundaries of Chordate Wnt Family Evolution. Front Cell Dev Biol 2021; 9:700827. [PMID: 34179025 PMCID: PMC8220140 DOI: 10.3389/fcell.2021.700827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023] Open
Abstract
Gene loss is a pervasive source of genetic variation that influences species evolvability, biodiversity and the innovation of evolutionary adaptations. To better understand the evolutionary patterns and impact of gene loss, here we investigate as a case study the evolution of the wingless (Wnt) family in the appendicularian tunicate Oikopleura dioica, an emergent EvoDevo model characterized by its proneness to lose genes among chordates. Genome survey and phylogenetic analyses reveal that only four of the thirteen Wnt subfamilies have survived in O. dioica—Wnt5, Wnt10, Wnt11, and Wnt16,—representing the minimal Wnt repertoire described in chordates. While the loss of Wnt4 and Wnt8 likely occurred in the last common ancestor of tunicates, representing therefore a synapomorphy of this subphylum, the rest of losses occurred during the evolution of appendicularians. This work provides the first complete Wnt developmental expression atlas in a tunicate and the first insights into the evolution of Wnt developmental functions in appendicularians. Our work highlights three main evolutionary patterns of gene loss: (1) conservation of ancestral Wnt expression domains not affected by gene losses; (2) function shuffling among Wnt paralogs accompanied by gene losses; and (3) extinction of Wnt expression in certain embryonic directly correlated with gene losses. Overall our work reveals that in contrast to “conservative” pattern of evolution of cephalochordates and vertebrates, O. dioica shows an even more radical “liberal” evolutionary pattern than that described ascidian tunicates, stretching the boundaries of the malleability of Wnt family evolution in chordates.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hector Godoy-Marín
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Cell fate decisions during the development of the peripheral nervous system in the vertebrate head. Curr Top Dev Biol 2020; 139:127-167. [PMID: 32450959 DOI: 10.1016/bs.ctdb.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sensory placodes and neural crest cells are among the key cell populations that facilitated the emergence and diversification of vertebrates throughout evolution. Together, they generate the sensory nervous system in the head: both form the cranial sensory ganglia, while placodal cells make major contributions to the sense organs-the eye, ear and olfactory epithelium. Both are instrumental for integrating craniofacial organs and have been key to drive the concentration of sensory structures in the vertebrate head allowing the emergence of active and predatory life forms. Whereas the gene regulatory networks that control neural crest cell development have been studied extensively, the signals and downstream transcriptional events that regulate placode formation and diversity are only beginning to be uncovered. Both cell populations are derived from the embryonic ectoderm, which also generates the central nervous system and the epidermis, and recent evidence suggests that their initial specification involves a common molecular mechanism before definitive neural, neural crest and placodal lineages are established. In this review, we will first discuss the transcriptional networks that pattern the embryonic ectoderm and establish these three cell fates with emphasis on sensory placodes. Second, we will focus on how sensory placode precursors diversify using the specification of otic-epibranchial progenitors and their segregation as an example.
Collapse
|
6
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
7
|
Vermillion KL, Bacher R, Tannenbaum AP, Swanson S, Jiang P, Chu LF, Stewart R, Thomson JA, Vereide DT. Spatial patterns of gene expression are unveiled in the chick primitive streak by ordering single-cell transcriptomes. Dev Biol 2018; 439:30-41. [PMID: 29678445 DOI: 10.1016/j.ydbio.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
During vertebrate development, progenitor cells give rise to tissues and organs through a complex choreography that commences at gastrulation. A hallmark event of gastrulation is the formation of the primitive streak, a linear assembly of cells along the anterior-posterior (AP) axis of the developing organism. To examine the primitive streak at a single-cell resolution, we measured the transcriptomes of individual chick cells from the streak or the surrounding tissue (the rest of the area pellucida) in Hamburger-Hamilton stage 4 embryos. The single-cell transcriptomes were then ordered by the statistical method Wave-Crest to deduce both the relative position along the AP axis and the prospective lineage of single cells. The ordered transcriptomes reveal intricate patterns of gene expression along the primitive streak.
Collapse
Affiliation(s)
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | | | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell&Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Molecular, Cellular,&Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
8
|
Hosseini-Farahabadi S, Gignac S, Danescu A, Fu K, Richman J. Abnormal WNT5A Signaling Causes Mandibular Hypoplasia in Robinow Syndrome. J Dent Res 2017; 96:1265-1272. [DOI: 10.1177/0022034517716916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The study of rare genetic diseases provides valuable insights into human gene function. Here, we investigate dominant Robinow syndrome (RS), which affects the WNT5A signaling pathway. Autosomal dominant RS is caused by missense mutations in WNT5A or nonsense mutations in the adaptor protein DVL1 or DVL3. The recessive form of the disease is caused by loss-of-function mutations in the receptor ROR2. RS is characterized by hypertelorism, midface, and mandibular hypoplasia. Here, we focus on the missense mutations in WNT5A, since the impact on function is difficult to predict from in silico analysis. We used chicken embryo to express wild-type or 2 mutant versions of human WNT5A in the mandible and then examined the morphologic, cellular, and molecular effects. The 3 experimental viruses—wt WNT5A, WNT5AC83S, or WNT5AC182R—all caused shortening of the mandible on the injected side as compared with GFP controls. Although the phenotypes initially appeared similar, we uncovered specific disruption of chondrocyte polarity and shape, inhibition of cell migration, differences in target gene expression, and absence of JNK signaling only in the presence of mutant viruses. In addition, the missense mutations do not appear to block receptor binding, since in paracrine experiments, the mutant protein inhibits cell migration. In this study, we ruled out a straightforward gain or loss of function caused by the WNT5A missense mutations. Instead, the mutations are likely redirecting WNT signaling away from JNK-PCP toward other noncanonical pathways. We conclude that in RS, WNT5A missense mutations have dominant neomorphic effects that interfere with the function of the wild-type protein.
Collapse
Affiliation(s)
- S. Hosseini-Farahabadi
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S.J. Gignac
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - A. Danescu
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - K. Fu
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J.M. Richman
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Cell adhesion properties of neural stem cells in the chick embryo. In Vitro Cell Dev Biol Anim 2014; 51:507-14. [PMID: 25487674 DOI: 10.1007/s11626-014-9851-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
The nervous system of vertebrates is derived from an early embryonic region referred to as the neural plate. In the chick embryo, the neural plate is populated by neural stem cells specified from the epiblast shortly after the onset of gastrulation. Accompanying the formation of the plate, chondroitin sulfate glycosaminoglycans are expressed in the basal extracellular matrix. We describe in vitro experiments measuring cell adhesion of epiblast cells during the formation of the neural plate. Our findings may suggest that neural stem cells are set apart from non-neural epiblast by changes in relative cell-cell and cell-substrate adhesion. Specifically, changes in cell adhesion separating neural stem cells from the non-neural epiblast may be augmented by the presence of exogenous chondroitin-6-sulfate in the epiblast basal lamina at the time neural progenitors are specified in the epiblast.
Collapse
|
10
|
Yin L, Coelho SG, Ebsen D, Smuda C, Mahns A, Miller SA, Beer JZ, Kolbe L, Hearing VJ. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp Dermatol 2014; 23:731-5. [DOI: 10.1111/exd.12518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Lanlan Yin
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Sergio G. Coelho
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Dominik Ebsen
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | | | - Andre Mahns
- R&D Skin Research; Beiersdorf AG; Hamburg Germany
| | - Sharon A. Miller
- Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD USA
| | - Janusz Z. Beer
- Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD USA
| | - Ludger Kolbe
- R&D Skin Research; Beiersdorf AG; Hamburg Germany
| | - Vincent J. Hearing
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
11
|
Galli LM, Munji RN, Chapman SC, Easton A, Li L, Onguka O, Ramahi JS, Suriben R, Szabo LA, Teng C, Tran B, Hannoush RN, Burrus LW. Frizzled10 mediates WNT1 and WNT3A signaling in the dorsal spinal cord of the developing chick embryo. Dev Dyn 2014; 243:833-843. [PMID: 24599775 DOI: 10.1002/dvdy.24123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WNT1 and WNT3A drive a dorsal to ventral gradient of β-catenin-dependent Wnt signaling in the developing spinal cord. However, the identity of the receptors mediating downstream functions remains poorly understood. RESULTS In this report, we show that the spatiotemporal expression patterns of FZD10 and WNT1/WNT3A are highly correlated. We further show that in the presence of LRP6, FZD10 promotes WNT1 and WNT3A signaling using an 8xSuperTopFlash reporter assay. Consistent with a functional role for FZD10, we demonstrate that FZD10 is required for proliferation in the spinal cord. Finally, by using an in situ proximity ligation assay, we observe an interaction between FZD10 and WNT1 and WNT3A proteins. CONCLUSIONS Together, our results identify FZD10 as a receptor for WNT1 and WNT3A in the developing chick spinal cord.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Roeben N Munji
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Susan C Chapman
- Clemson University, Biological Sciences, Long Hall, Clemson, SC, 29634, USA
| | - Ann Easton
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Lydia Li
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Ouma Onguka
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Joseph S Ramahi
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Rowena Suriben
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Linda A Szabo
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Camilla Teng
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Baouyen Tran
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Laura W Burrus
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
12
|
Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development 2012; 139:1931-40. [PMID: 22569553 DOI: 10.1242/dev.069377] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development.
Collapse
Affiliation(s)
- Ethan David Cohen
- Department of Medicine, Division of Endocrinology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
13
|
Wnt signaling and cardiac differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:153-74. [PMID: 22917230 DOI: 10.1016/b978-0-12-398459-3.00007-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Wnt family of secreted glycoproteins participates in a wide array of biological processes, including cellular differentiation, proliferation, survival, apoptosis, adhesion, angiogenesis, hypertrophy, and aging. The canonical Wnt signaling primarily utilizes β-catenin-mediated activation of transcription, while the noncanonical mechanisms involve a calcium-dependent protein kinase C-mediated Wnt/Ca(2+) pathway and a dishevelled-dependent c-Jun N-terminal kinase-mediated planar cell polarity pathway. Although both canonical and noncanonical Wnts have been implicated in cardiac specification, morphogenesis, and differentiation; the molecular events remain unclear and often depend on the cell type and biological context. In this regard, growing evidence indicates that Wnt11 is able to induce cardiogenesis not only during embryonic development but also in adult cells. The cardiogenic properties of Wnt11 may prove useful for preprogramming adult stem cells before myocardial transplantation. Further, elucidation of the molecular steps in Wnt11-induced cardiac differentiation will be necessary to enhance the outcomes of cardiac cell therapy.
Collapse
|
14
|
Duband JL. Diversity in the molecular and cellular strategies of epithelium-to-mesenchyme transitions: Insights from the neural crest. Cell Adh Migr 2010; 4:458-82. [PMID: 20559020 DOI: 10.4161/cam.4.3.12501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although epithelial to mesenchymal transitions (EMT) are often viewed as a unique event, they are characterized by a great diversity of cellular processes resulting in strikingly different outcomes. They may be complete or partial, massive or progressive, and lead to the complete disruption of the epithelium or leave it intact. Although the molecular and cellular mechanisms of EMT are being elucidated owing chiefly from studies on transformed epithelial cell lines cultured in vitro or from cancer cells, the basis of the diversity of EMT processes remains poorly understood. Clues can be collected from EMT occuring during embryonic development and which affect equally tissues of ectodermal, endodermal or mesodermal origins. Here, based on our current knowledge of the diversity of processes underlying EMT of neural crest cells in the vertebrate embryo, we propose that the time course and extent of EMT do not depend merely on the identity of the EMT transcriptional regulators and their cellular effectors but rather on the combination of molecular players recruited and on the possible coordination of EMT with other cellular processes.
Collapse
|
15
|
Chalpe AJ, Prasad M, Henke AJ, Paulson AF. Regulation of cadherin expression in the chicken neural crest by the Wnt/β-catenin signaling pathway. Cell Adh Migr 2010; 4:431-8. [PMID: 20523111 DOI: 10.4161/cam.4.3.12138] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a were studied using real-time RT-PCR and immunostaining. Statistically significant upregulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.
Collapse
Affiliation(s)
- Abha J Chalpe
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | | | | | | |
Collapse
|
16
|
Chittka A, Volff J, Wizenmann A. Identification of genes differentially expressed in dorsal and ventral chick midbrain during early development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:29. [PMID: 19397791 PMCID: PMC2686707 DOI: 10.1186/1471-213x-9-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 04/27/2009] [Indexed: 11/20/2022]
Abstract
Background During the development of the central nervous system (CNS), patterning processes along the dorsoventral (DV) axis of the neural tube generate different neuronal subtypes. As development progresses these neurons are arranged into functional units with varying cytoarchitecture, such as laminae or nuclei for efficient relaying of information. Early in development ventral and dorsal regions are similar in size and structure. Different proliferation rates and cell migration patterns are likely to result in the formation of laminae or nuclei, eventually. However, the underlying molecular mechanisms that establish these different structural arrangements are not well understood. We undertook a differential display polymerase chain reaction (DD-PCR) screen to identify genes with distinct expression patterns between dorsal and ventral regions of the chick midbrain in order to identify genes which regulate the sculpturing of such divergent neuronal organisation. We focused on the DV axis of the early chick midbrain since mesencephalic alar plate and basal plate develop into laminae and nuclei, respectively. Results We identified 53 differentially expressed bands in our initial screen. Twenty-six of these could be assigned to specific genes and we could unambiguously show the differential expression of five of the isolated cDNAs in vivo by in situ mRNA expression analysis. Additionally, we verified differential levels of expression of a selected number of genes by using reverse transcriptase (RT) PCR method with gene-specific primers. One of these genes, QR1, has been previously cloned and we present here a detailed study of its early developmental time course and pattern of expression providing some insights into its possible function. Our phylogenetic analysis of QR1 shows that it is the chick orthologue of Sparc-like 1/Hevin/Mast9 gene in mice, rats, dogs and humans, a protein involved in cell adhesion. Conclusion This study reveals some possible networks, which might be involved in directing the difference in neuronal specification and cytoarchitecture observed in the brain.
Collapse
Affiliation(s)
- A Chittka
- Junior Research Group, Biozentrum, Am Hubland, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
17
|
Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, Pratt R, Dzau VJ. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 2008; 46:370-7. [PMID: 19109969 DOI: 10.1016/j.yjmcc.2008.11.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
We have demonstrated that mesenchymal stem cells overexpressing the survival gene Akt can confer paracrine protection to ischemic myocytes both in vivo and in vitro through the release of secreted frizzled related protein 2 (Sfrp2). However, the mechanisms mediating these effects of Sfrp2 have not been fully elucidated. In this study, we studied rat cardiomyoblasts subjected to hypoxia reoxygenation (HR) injury to test the hypothesis that Sfrp2 exerts anti-apoptotic effect by antagonizing pro-apoptotic properties of specific Wnt ligands. We examined the effect of Wnt3a and Sfrp2 on HR-induced apoptosis. Wnt3a significantly increased cellular caspase activities and TUNEL staining in response to HR. Sfrp2 attenuated significantly Wnt3a-induced caspase activities in a concentration dependent fashion. Using a solid phase binding assay, our data demonstrates that Sfrp2 physically binds to Wnt3a. In addition, we observed that Sfrp2 dramatically inhibits the beta-catenin/TCF transcriptional activities induced by Wnt3a. Impressively, Dickkopf-1, a protein that binds to the Wnt coreceptor LRP, significantly inhibited the Wnt3a-activated caspase and transcriptional activities. Similarly, siRNA against beta-catenin markedly inhibited the Wnt3a-activated caspase activities. Consistent with this, significantly fewer TUNEL positive cells were observed in siRNA transfected cells than in control cells. Together, our data provide strong evidence to support the notion that Wnt3a is a canonical Wnt with pro-apoptotic action whose cellular activity is prevented by Sfrp2 through, at least in part, the direct binding of these molecules. These results can explain the in vivo protective effect of Sfrp2 and highlight its therapeutic potential for the ischemic heart.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Edna and Fred L. Mandel, Jr. Center for Hypertension and Atherosclerosis Research, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Inestrosa NC, Toledo EM. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol Neurodegener 2008; 3:9. [PMID: 18652670 PMCID: PMC2515306 DOI: 10.1186/1750-1326-3-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/24/2008] [Indexed: 01/10/2023] Open
Abstract
Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD). In fact, a relationship between amyloid-beta-peptide (Abeta)-induced neurotoxicity and a decrease in the cytoplasmic levels of beta-catenin has been observed. Apparently Abeta binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz) inhibiting Wnt/beta-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/beta-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR alpha, gamma agonists, nicotine and some antioxidants, results in neuroprotection against Abeta. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Abeta-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V. Luco" (CRCP), MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
- CARE & CRCP Biomedical Center, Faculty of Biological Sciences, P. Catholic University of Chile, P.O. Box 114-D, Santiago, Chile
| | - Enrique M Toledo
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V. Luco" (CRCP), MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
19
|
Deb A, Davis BH, Guo J, Ni A, Huang J, Zhang Z, Mu H, Dzau VJ. SFRP2 regulates cardiomyogenic differentiation by inhibiting a positive transcriptional autofeedback loop of Wnt3a. Stem Cells 2007; 26:35-44. [PMID: 17916803 DOI: 10.1634/stemcells.2007-0475] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wnts comprise a family of 20 lipid-modified glycoproteins in mammals and play critical roles during embryological development and organogenesis of several organ systems, including the heart. They are required for mesoderm formation and have been implicated in promoting cardiomyogenic differentiation of mammalian embryonic stem cells, but the underlying mechanisms regulating Wnt signaling during cardiomyogenesis remain poorly understood. In this report, we show that in a pluripotent mouse embryonal carcinoma stem cell line, SFRP2 inhibits cardiomyogenic differentiation by regulating Wnt3a transcription. SFRP2 inhibited early stages of cardiomyogenesis, preventing mesoderm specification and maintaining the cells in the undifferentiated state. Using a gain- and loss-of-function approach, we demonstrate that although addition of recombinant SFRP2 decreased Wnt3a transcription and cardiomyogenic differentiation, silencing of Sfrp2 led to enhanced Wnt3a transcription, mesoderm formation, and increased cardiomyogenesis. We show that the inhibitory effects of SFRP2 on Wnt transcription are secondary to interruption of a positive feedback effect of Wnt3a on its own transcription. Wnt3a increased its own transcription via the canonical pathway and TCF4 family of transcription factors, and the inhibitory effects of SFRP2 on Wnt3a transcription were associated with disruption of downstream canonical Wnt signaling. The inhibitory effects of Sfrp2 on Wnt3a expression identify Sfrp2 as a "checkpoint gene," which exerts its control on cardiomyogenesis through regulation of Wnt3a transcription.
Collapse
Affiliation(s)
- Arjun Deb
- Division of Cardiovascular Diseases and Mandel Center for Hypertension & Atherosclerosis Research, Department of Medicine, GSRB 2, Box 3178, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Varga M, Maegawa S, Bellipanni G, Weinberg ES. Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish embryo. Mech Dev 2007; 124:775-91. [PMID: 17686615 PMCID: PMC2156153 DOI: 10.1016/j.mod.2007.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited. chordin expression during zebrafish gastrulation has been previously shown in both axial and paraxial domains, but is excluded from ventrolateral domains. We show that this gene is expressed in paraxial territories adjacent to the domain of ventrolateral beta-catenin-activated transcription, with only slight overlap, consistent with the now well-known inhibitory effects of Wnt8 on dorsal gene expression. Eliminating both Wnt8/beta-catenin signaling and organizer activity by inhibition of expression of the two beta-catenins results in massive ectopic circumferential expression of chordin and later, by formation of a distinctive embryonic phenotype ('ciuffo') that expresses trunk and anterior neural markers with correct relative anteroposterior patterning. We show that chordin expression is required for this neural gene expression. The Nodal gene squint has been shown to be necessary for optimal expression of chordin and is sufficient in some contexts for its expression. However, chordin is not normally expressed in the ventrolateral germ-ring despite robust expression of squint in this domain. We show the ectopic circumferential expression of chordin and other dorsal genes to be completely dependent on Nodal and FGF signaling, and to be independent of a functional organizer. We propose that whereas the axial domain of chordin expression is formed by cells that are derived from the organizer, the paraxial domain is the result of axial-derived anti-Wnt signals, which relieve the repression that otherwise is set by the Wnt8/beta-catenin/vox,vent pathway on latent germ-ring Nodal/FGF-activated expression.
Collapse
Affiliation(s)
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Lin CT, Lin YT, Kuo TF. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos. J Reprod Dev 2007; 53:801-10. [PMID: 17495425 DOI: 10.1262/jrd.18081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.
Collapse
Affiliation(s)
- Chung-Tien Lin
- Graduate Institute of Veterinary Medicine, College of Bio-resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
22
|
Schleiffarth JR, Person AD, Martinsen BJ, Sukovich DJ, Neumann A, Baker CVH, Lohr JL, Cornfield DN, Ekker SC, Petryk A. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 2007; 61:386-91. [PMID: 17515859 DOI: 10.1203/pdr.0b013e3180323810] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lack of septation of the cardiac outflow tract (OFT) results in persistent truncus arteriosus (PTA), a form of congenital heart disease. The outflow myocardium expands through addition of cells originating from the pharyngeal mesoderm referred to as secondary/anterior heart field, whereas cardiac neural crest (CNC) cell-derived mesenchyme condenses to form an aortopulmonary septum. We show for the first time that a mutation in Wnt5a in mice leads to PTA. We provide evidence that Wnt5a is expressed in the pharyngeal mesoderm adjacent to CNC cells in both mouse and chicken embryos and in the myocardial cell layer of the conotruncus at the time when CNC cells begin to form the aortopulmonary septum in mice. Although expression domains of secondary heart field markers are not altered in Wnt5a mutant embryos, the expression of CNC cell marker PlexinA2 is significantly reduced. Stimulation of CNC cells with Wnt5a protein elicits Ca2+ transients, suggesting that CNC cells are capable of responding to Wnt5a. We propose a novel model in which Wnt5a produced in the OFT by cells originating from the pharyngeal mesoderm signals to adjacent CNC cells during formation of the aortopulmonary septum through a noncanonical pathway via localized intracellular increases in Ca2+.
Collapse
Affiliation(s)
- J Robert Schleiffarth
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Galli LM, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, Nusse R, Burrus LW. Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn 2006; 235:681-90. [PMID: 16425220 PMCID: PMC2566934 DOI: 10.1002/dvdy.20681] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secreted frizzled related proteins (Sfrps) are extracellular attenuators of Wnt signaling that play important roles in both embryogenesis and oncogenesis. Although Sfrps are generally thought to bind and sequester Wnts away from active receptor complexes, very little is known about the specificity of Sfrp family members for various Wnts. In the developing chick neural tube, sfrp-1, 2, and 3 transcripts are expressed in and adjacent to the dorsal neural tube, where Wnt-1 and Wnt-3a are expressed. To better define the possible roles of Sfrp-1, 2, and 3 in the neural tube, we first tested the ability of purified Sfrps to inhibit Wnt-3a-induced accumulation of beta-catenin in L cells. We find that both Sfrp-1 and Sfrp-2 can inhibit Wnt-3a activity while Sfrp-3 cannot. To determine where Sfrp-1 and Sfrp-2 impinge on the Wnt signaling pathway, we tested the ability of these Sfrps to inhibit Wnt signaling induced by the addition of LiCl, an inhibitor of GSK-3. Sfrp-1 and Sfrp-2 are unable to inhibit the accumulation of beta-catenin in LiCl-treated cells, suggesting that the ability of Sfrps to inhibit the accumulation of beta-catenin is GSK-3 dependent. We have further shown that Sfrp-2 inhibits the ability of ectopic Wnt-3a to stimulate proliferation in the developing chick neural tube. These results provide the framework for understanding how Sfrps function to regulate Wnt-3a activity in developing embryos and in cancer.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Eisenberg LM, Eisenberg CA. Wnt signal transduction and the formation of the myocardium. Dev Biol 2006; 293:305-15. [PMID: 16563368 DOI: 10.1016/j.ydbio.2006.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/21/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
25
|
Voigt J, Papalopulu N. A dominant-negative form of the E3 ubiquitin ligase Cullin-1disrupts the correct allocation of cell fate in the neural crest lineage. Development 2006; 133:559-68. [PMID: 16396913 DOI: 10.1242/dev.02201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selective protein degradation is an efficient and rapid way of terminating protein activity. Defects in protein degradation are associated with a number of human diseases, including potentially DiGeorge syndrome, which is characterised by abnormal development of the neural crest lineage during embryogenesis. We describe the identification of Xenopus Cullin-1, an E3 ubiquitin ligase, and show that blocking the function of endogenous Cullin-1 leads to pleiotropic defects in development. Notably, there is an increased allocation of cells to a neural crest fate and within this lineage, an increase in melanocytes at the expense of cranial ganglia neurons. Most of the observed effects can be attributed to stabilisation ofβ-catenin, a known target of Cullin-1-mediated degradation from other systems. Indeed, we show that blocking the function of Cullin-1leads to a decrease in ubiquitinated β-catenin and an increase in totalβ-catenin. Our results show that Cullin-1-mediated protein degradation plays an essential role in the correct allocation of neural crest fates during embryogenesis.
Collapse
Affiliation(s)
- Jana Voigt
- The Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge
| | | |
Collapse
|
26
|
Abstract
Our knowledge about molecular mechanisms underlying axon guidance along the antero-posterior axis in contrast to the dorso-ventral axis of the developing nervous system is very limited. During the past two years in vitro and in vivo studies have indicated that morphogens have a role in longitudinal axon guidance. Morphogens are secreted proteins that act in a concentration-dependent manner on susceptible groups of precursor cells and induce their differentiation to a specific cell fate. Thus, gradients of morphogens are responsible for the appropriate patterning of the nervous system during early phases of neural development. Therefore, it was surprising to find that gradients of two of these morphogens, Wnt4 and Shh, can be re-used for longitudinal axon guidance during later stages of nervous system development.
Collapse
Affiliation(s)
- Esther T Stoeckli
- Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Duband JL. Neural crest delamination and migration: integrating regulations of cell interactions, locomotion, survival and fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:45-77. [PMID: 17076275 DOI: 10.1007/978-0-387-46954-6_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During the entire process of neural crest development from specification till final differentiation, delamination and migration are critical steps where nascent crest cells face multiple challenges: within a relatively short period of time that does not exceed several hours, they have to change drastically their cell- and substrate-adhesion properties, lose cell polarity and activate the locomotory machinery, while keeping proliferating, surviving and maintaining a pool of precursors in the neural epithelium. Then, as soon as they are released from the neural tube, neural crest cells have to adapt to a new, rapidly-changing environment and become able to interpret multiple cues which guide them to appropriate target sites and prevent them from distributing in aberrant locations. It appears from recent studies that, behind an apparent linearity and unity, neural crest development is subdivided into several independent steps, each being governed by a multiplicity of rules and referees. Here resides probably one of the main reasons of the success of neural crest cells to accomplish their task.
Collapse
Affiliation(s)
- Jean-Loup Duband
- Laboratoire de Biologie du Développement Centre National de la Recherche Scientifique et Université Pierre et Marie Curie 9 quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
28
|
Puelles L, Fernández-Garre P, Sánchez-Arrones L, García-Calero E, Rodríguez-Gallardo L. Correlation of a chicken stage 4 neural plate fate map with early gene expression patterns. ACTA ACUST UNITED AC 2005; 49:167-78. [PMID: 16111547 DOI: 10.1016/j.brainresrev.2004.12.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/09/2004] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
A number of gene markers are currently claimed to allow positive or negative visualization of the early chick neural plate at stages 3d/4, when its fate becomes determined. Some markers labeled by various authors as either "neural" or "non-neural" indeed show ectodermal expression patterns roughly correlative with widespread yet vague ideas on the shape and size of the early neural plate, based on previous fate maps. However, for technical reasons, it is not clear how precisely these expression patterns correlate with any experimentally determined fate boundaries. An eventual mismatch between fate and marker interpretation might bear importantly on ideas about gene functions and causal hypotheses in issues such as the establishment of the neural/non-neural border or the earliest mechanisms of neural regionalization. In this review, we correlated a set of epiblastic and mesendodermal gene expression patterns with the novel neuroectoderm proportions suggested by our recent fate map of the chick neural plate at stages HH 3d/4 [P. Fernández-Garre, L. Rodriguez-Gallardo, V. Gallego-Diaz, I.S. Alvarez, L. Puelles, Fate map of the chicken neural plate at stage 4, Development 129 (2002) 2807-2822.]. This analysis suggests the existence of various nested subregions of the epiblast with boundaries codefined by given sets of gene patterns. No gene expression studied reproduces exactly or even approximately the entire neural plate shape, leading to a combinatorial hypothesis on its specification. This kind of analysis (fate and molecular maps), jointly with competence maps, provides the basis for understanding gene functions and the mechanisms of neural induction, specification and regionalization. Several gene patterns observed are consistent with precocious incipient regionalization of the neural plate along the dorsoventral and anteroposterior axes.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia (Campus Espinardo), Murcia E30100, Spain.
| | | | | | | | | |
Collapse
|
29
|
Wang B, He L, Ehehalt F, Geetha-Loganathan P, Nimmagadda S, Christ B, Scaal M, Huang R. The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 2005; 287:11-8. [PMID: 16202988 DOI: 10.1016/j.ydbio.2005.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 07/26/2005] [Accepted: 08/09/2005] [Indexed: 12/21/2022]
Abstract
The avian scapula is a long bone located dorsally on the thorax. The cranial part that articulates with the upper limb is derived from the somatopleure of the forelimb field, while the caudal part, the scapula blade, originates from the dermomyotomes of brachial and thoracic somites. In previous studies, we have shown that scapula blade formation is intrinsically controlled by segment-specific information as well as extrinsically by ectoderm-derived signals. Here, we addressed the role of signals derived from the lateral plate mesoderm on scapula development. Chick-quail chimera experiments revealed that scapula precursor cells are located within the hypaxial domain of the dermomyotome adjacent to somatopleural cells. Barrier implantation between these two cell populations inhibited scapula blade formation. Furthermore, we identified BMPs as scapula-inducing signals from the somatopleure using injection of Noggin-producing cells into the hypaxial domain of scapula-forming dermomyotomes. We found that inhibition of BMP activity interfered with scapula-specific Pax1 expression and scapula blade formation. Taken together, we demonstrate that the scapula-forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure for their specification and differentiation.
Collapse
Affiliation(s)
- Baigang Wang
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79001 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Wnt signaling is a complex process that requires the interplay of several different proteins. In addition to a large cohort of Wnt ligands, and frizzled receptors, some Wnt pathways also require the presence of co-receptors. Wnt ligands may activate one of three pathways, the canonical pathway, involving beta -catenin, the planar cell polarity pathway and the Wnt/ calcium pathway. All three pathways have different results for the cells in which they signal. Aberrant activation of these pathways can lead to the development and progression of several cancers. In this review we will discuss the different Wnt pathways, and their contribution to melanoma progression.
Collapse
Affiliation(s)
- Ashani T Weeraratna
- Laboratory of Immunology, The National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
31
|
Bourikas D, Pekarik V, Baeriswyl T, Grunditz A, Sadhu R, Nardó M, Stoeckli ET. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat Neurosci 2005; 8:297-304. [PMID: 15746914 DOI: 10.1038/nn1396] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 01/10/2005] [Indexed: 11/09/2022]
Abstract
Dorsal commissural axons in the developing spinal cord cross the floor plate, then turn rostrally and grow along the longitudinal axis, close to the floor plate. We used a subtractive hybridization approach to identify guidance cues responsible for the rostral turn in chicken embryos. One of the candidates was the morphogen Sonic hedgehog (Shh). Silencing of the gene SHH (which encodes Shh) by in ovo RNAi during commissural axon navigation demonstrated a repulsive role in post-commissural axon guidance. This effect of Shh was not mediated by Patched (Ptc) and Smoothened (Smo), the receptors that mediate effects of Shh in morphogenesis and commissural axon growth toward the floor plate. Rather, functional in vivo studies showed that the repulsive effect of Shh on postcommissural axons was mediated by Hedgehog interacting protein (Hip).
Collapse
Affiliation(s)
- Dimitris Bourikas
- University of Zurich, Institute of Zoology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Basch ML, García-Castro MI, Bronner-Fraser M. Molecular mechanisms of neural crest induction. ACTA ACUST UNITED AC 2005; 72:109-23. [PMID: 15269886 DOI: 10.1002/bdrc.20015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The neural crest is an embryonic cell population that originates at the border between the neural plate and the prospective epidermis. Around the time of neural tube closure, neural crest cells emigrate from the neural tube, migrate along defined paths in the embryo and differentiate into a wealth of derivatives. Most of the craniofacial skeleton, the peripheral nervous system, and the pigment cells of the body originate from neural crest cells. This cell type has important clinical relevance, since many of the most common craniofacial birth defects are a consequence of abnormal neural crest development. Whereas the migration and differentiation of the neural crest have been extensively studied, we are just beginning to understand how this tissue originates. The formation of the neural crest has been described as a classic example of embryonic induction, in which specific tissue interactions and the concerted action of signaling pathways converge to induce a multipotent population of neural crest precursor cells. In this review, we summarize the current status of knowledge on neural crest induction. We place particular emphasis on the signaling molecules and tissue interactions involved, and the relationship between neural crest induction, the formation of the neural plate and neural plate border, and the genes that are upregulated as a consequence of the inductive events.
Collapse
Affiliation(s)
- Martín L Basch
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
33
|
Häusler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ, Rubin JS, Gillespie MT. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 2004; 19:1873-81. [PMID: 15476588 DOI: 10.1359/jbmr.040807] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 04/06/2004] [Accepted: 05/27/2004] [Indexed: 12/25/2022]
Abstract
UNLABELLED We determined that sFRP-1 mRNA was differentially expressed by osteoblast/stromal cell lines and that sFRP-1 neutralizing antibodies and siRNA complementary to sFRP-1 coding sequence enhanced, while recombinant sFRP-1 inhibited, osteoclast formation. In studying the mechanism of action for sFRP-1, we found that sFRP-1 could bind recombinant RANKL. These results suggest potential cross-talk between Wnt and RANKL pathways. INTRODUCTION Osteoclast formation in normal bone remodeling requires the presence of osteoblast lineage cells that express RANKL and macrophage-colony-stimulating factor (M-CSF), which interact with their cognate receptors on the osteoclast precursor. We identified secreted Frizzled-related protein-1 (sFRP-1), which is known to bind to Wnt and inhibit the Wnt signaling pathway, as an osteoblast-derived factor that impinges on osteoclast formation and activity. MATERIALS AND METHODS Differential display of mRNA from osteoblast lineage cell lines established sFRP-1 to be highly expressed in an osteoclast supporting cell line. sFRP-1 expression in bone was determined by in situ hybridization, and the effects of sFRP-1 on osteoclast formation were determined using a neutralizing antibody, siRNA, for sFRP-1 and recombinant protein. RESULTS In situ hybridization revealed sFRP-1 mRNA expression in osteoblasts and chondrocytes in murine bone. sFRP-1 mRNA expression could be elevated in calvarial primary osteoblasts in response to prostaglandin E2 (PGE2) or interleukin (IL)-11, whereas many other osteotropic agents (e.g., IL-1, IL-6, calcitrol, parathyroid hormone) were without any effect. In vitro assays of osteoclast formation established sFRP-1 to be an inhibitor of osteoclast formation. Neutralizing antibodies against sFRP-1 enhanced TRACP+ mononuclear and multinuclear osteoclast formation (3- and 2-fold, respectively) in co-cultures of murine osteoblasts with spleen cells, whereas siRNA complementary to sFRP-1 coding sequence significantly enhanced osteoclast formation in co-cultures of KUSA O (osteoblast/stromal cell line) and bone marrow cells, cultured in the presence of PGE2 and 1,25(OH)2 vitamin D3. Recombinant sFRP-1 dose-dependently inhibited osteoclast formation in osteoblast/spleen co-cultures, RANKL + M-CSF-treated splenic cultures, and RANKL-treated RAW264.7 cell cultures, indicating a direct action of sFRP-1 on hematopoietic cells. Consistent with this, sFRP-1 was found to bind to RANKL in ELISAs. CONCLUSION sFRP-1 is expressed by osteoblasts and inhibits osteoclast formation. While sFRP-1 activity might involve the blocking of endogenous Wnt signaling, our results suggest that, alternatively, it could be because of direct binding to RANKL. This study describes a new mechanism whereby osteoblasts regulate osteoclastogenesis through the expression and release of sFRP-1.
Collapse
Affiliation(s)
- Karl D Häusler
- Bone, Joint, and Cancer Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 2004; 131:5327-39. [PMID: 15456730 DOI: 10.1242/dev.01424] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with β-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug,Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification.
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
35
|
McCabe KL, Manzo A, Gammill LS, Bronner-Fraser M. Discovery of genes implicated in placode formation. Dev Biol 2004; 274:462-77. [PMID: 15385172 DOI: 10.1016/j.ydbio.2004.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/13/2004] [Accepted: 07/14/2004] [Indexed: 11/26/2022]
Abstract
The peripheral nervous system of the head is derived from cranial ectodermal placodes and neural crest cells. Placodes arise from thickenings in the cranial ectoderm that invaginate or ingress to form sensory ganglia and the paired sense organs. We have combined embryological techniques with array technology to identify genes that are expressed as a consequence of placode induction. As a secondary screen, we used whole mount in situ hybridization to determine the expression of candidate genes in various placodal domains. The results reveal 52 genes that are found in one or more placodes, including the olfactory, trigeminal, and otic placodes. Expression of some of these genes is retained in placodal derivatives. Furthermore, several genes are common to both neural crest and ectodermal placodes. This study presents the first array of candidate genes implicated in placode development, providing numerous new molecular markers for various stages of placode formation. Importantly, the results uncover previously unknown commonalities in genes expressed by multiple placodes and shared properties between placodes and other migratory cells, like neural crest cells.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
36
|
Galli LM, Willert K, Nusse R, Yablonka-Reuveni Z, Nohno T, Denetclaw W, Burrus LW. A proliferative role for Wnt-3a in chick somites. Dev Biol 2004; 269:489-504. [PMID: 15110715 DOI: 10.1016/j.ydbio.2004.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 11/30/2022]
Abstract
The proper patterning of somites to give rise to sclerotome, dermomyotome, and myotome involves the coordination of many different cellular processes, including lineage specification, cell proliferation, cell death, and differentiation, by intercellular signals. One such family of secreted signaling proteins known to influence somite patterning is the Wnt family. Although the participation of Wnt-3a in the patterning of dorsal structures in the somite is well established, no clear consensus has emerged about the cellular processes that are governed by Wnt-3a in the somite. The recent demonstration that Wnt-3a has a proliferative role in the neural tube [Development 129 (2002) 2087] suggested that Wnt-3a might also act to regulate proliferation in somites. To test this hypothesis, we first analyzed the effects of Wnt-3a on segmental plate and somite explants (from Hamburger and Hamilton stage 10 chick embryos) grown in culture. These studies indicate that Wnt-3a is capable of maintaining and/or inducing expression of both Pax-3 and Pax-7, transcription factors that have been implicated in proliferation. To directly test for a role in proliferation, explants were immunostained with antibodies against phospho-histone H3. Explants treated with Wnt-3a show an increase in the percentage of cells expressing phospho-histone H3 as compared to controls. To test the proliferative effect of Wnt-3a in vivo, we ectopically expressed Wnt-3a in chick neural tubes via electroporation. Consistent with previous studies, ectopic expression of Wnt-3a in vivo results in a mediolateral expansion of the dermomyotome and myotome. We now show that proliferation of dorsal/dermomyotomal cells is significantly enhanced by ectopic Wnt-3a. Collectively, our explant and in vivo studies indicate that an increase in proliferation plays an important role in the expansion of the dermomyotome and myotome in Wnt-3a-treated embryos. Furthermore, our results demonstrate that small changes in proliferation can dramatically influence patterning and morphogenesis.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Phillips BT, Storch EM, Lekven AC, Riley BB. A direct role for Fgf but not Wnt in otic placode induction. Development 2004; 131:923-31. [PMID: 14757644 DOI: 10.1242/dev.00978] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.
Collapse
Affiliation(s)
- Bryan T Phillips
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
38
|
Sanz-Ezquerro JJ, Tickle C. Fgf signaling controls the number of phalanges and tip formation in developing digits. Curr Biol 2004; 13:1830-6. [PMID: 14561411 DOI: 10.1016/j.cub.2003.09.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tetrapods have two pairs of limbs, each typically with five digits, each of which has a defined number of phalanges derived from an archetypal formula. Much progress has been made in understanding vertebrate limb initiation and the patterning processes that determine digit number in developing limb buds, but little is known about how phalange number is controlled. We and others previously showed that an additional phalange can be induced in a chick toe if sonic hedgehog protein is applied in between developing digit primordia. Here we show that formation of an additional phalange is associated with prolonged Fgf8 expression in the overlying apical ridge and that an Fgf Receptor inhibitor blocks its formation. The additional phalange is produced by elongation and segmentation of the penultimate phalange, suggesting that the digit tip forms when Fgf signaling ceases by a special mechanism, possibly involving Wnt signaling. Consistent with this, Fgfs inhibit tip formation whereas attenuation of Fgf signaling induces tip formation prematurely. We propose that duration of Fgf signaling from the ridge, responsible for elongation of digit primordia, coupled with a characteristic periodicity of joint formation, generates the appropriate number of phalanges in each digit. We also propose that the process that generates the digit tips is independent of that which generates more proximal phalanges. This has implications for understanding human limb congenital malformations and evolution of digit diversity.
Collapse
Affiliation(s)
- Juan José Sanz-Ezquerro
- Division of Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Building/Medical Sciences Institute complex, University of Dundee, Dow Street, DD1 5EH, Dundee, United Kingdom.
| | | |
Collapse
|
39
|
de Melker AA, Desban N, Duband JL. Cellular localization and signaling activity of ?-catenin in migrating neural crest cells. Dev Dyn 2004; 230:708-26. [PMID: 15254905 DOI: 10.1002/dvdy.20091] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the vertebrate embryo, development of the neural crest is accompanied by sequential changes in cellular adhesiveness, allowing cells to delaminate from the neural epithelium, to undergo migration through extracellular matrix material, and to coalesce into ganglia of the peripheral nervous system. Because of its dual role in cell adhesion, as a link between cadherins and the actin cytoskeleton, and in cell signaling, as a key mediator of the Wnt-signaling pathway, beta-catenin is a good candidate to play a central role in the control of neural crest cell development. In the present study, we analyzed, by using an in vitro culture system, whether the cellular localization and the signaling activity of beta-catenin are regulated in conjunction with cell migration during ontogeny of trunk neural crest cells in the avian embryo. beta-Catenin molecules were found primarily in association with N-cadherin in the regions of intercellular contacts in most migrating neural crest cells, and only early-migrating cells situated in proximity with the dorsal side of the neural tube showed detectable beta-catenin in their nuclei. This finding indicates that beta-catenin may be recruited for signaling in neural crest cells only transiently at the onset of migration and that sustained beta-catenin signals are not necessary for the progression of migration. The nuclear distribution of beta-catenin within crest cells was not affected upon modification of the N-cadherin-mediated cell-cell contacts, revealing that recruitment of beta-catenin for signaling is not driven by changes in intercellular cohesion during migration. Overstimulation of beta-catenin signals in neural crest cells at the time of their migration, using LiCl treatment or coculture with Wnt-1-producing cells, induced nuclear translocation of beta-catenin and Lef-1 up-regulation in neural crest cells and provoked a marked inhibition of cell delamination and migration. The effect of LiCl and exogenous Wnt-1 on neural crest cells could be essentially attributed to a dramatic decrease in integrin-mediated cell-matrix adhesion as well as a massive reduction of cell proliferation. In addition, although it apparently did not affect expression of neural crest markers, Wnt-1 exposure dramatically affected signaling events involving Notch-Delta, presumably also accounting for the strong reduction in cell delamination. In conclusion, our data indicate that beta-catenin functions primarily in cell adhesion events during migration and may be recruited transiently for signaling during delamination possibly to regulate the balance between cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Annemieke A de Melker
- Laboratoire de Biologie du Développement, CNRS et Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
40
|
Chapman SC, Brown R, Lees L, Schoenwolf GC, Lumsden A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn 2004; 229:668-76. [PMID: 14991722 DOI: 10.1002/dvdy.10491] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wnt signaling is an important component in patterning the early embryo and specifically the neural plate. Studies in Xenopus, mouse, and zebrafish have shown that signaling by members of the Wnt family of secreted signaling factors, their Frizzled receptors and several inhibitors (sFRP1, sFRP2, sFRP3/Frzb1, Crescent/Frzb2, Dkk1, and Cerberus) are involved. However, very little is known about the expression of genes in the Wnt signaling pathway during early anterior neural patterning in chick. We have performed an expression analysis at neural plate stages of several Wnts, Frizzled genes, and Wnt signaling pathway inhibitors using in situ hybridization. The gene expression patterns of these markers are extremely dynamic. We have identified two candidate molecules for anterior patterning of the neural plate, Wnt1 and Wnt8b, which are expressed in the rostral ectoderm at these stages. Further functional studies on the roles of these markers are underway.
Collapse
Affiliation(s)
- Susan C Chapman
- MRC Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guy's Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Polesskaya A, Seale P, Rudnicki MA. Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 2003; 113:841-52. [PMID: 12837243 DOI: 10.1016/s0092-8674(03)00437-9] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The observation that CD45(+) stem cells injected into the circulation participate in muscle regeneration raised the question of whether CD45(+) stem cells resident in muscle play a physiological role during regeneration. We found that CD45(+) cells cultured from uninjured muscle were uniformly nonmyogenic. However, CD45(+) cells purified from regenerating muscle readily gave rise to determined myoblasts. The number of CD45(+) cells in muscle rapidly expanded following injury, and a high proportion entered the cell cycle. Investigation of candidate pathways involved in embryonic myogenesis revealed that Wnt signaling was sufficient to induce the myogenic specification of muscle-derived CD45(+) stem cells. Moreover, injection of the Wnt antagonists sFRP2/3 into regenerating muscle markedly reduced CD45(+) stem cell proliferation and myogenic specification. Our data therefore suggest that mobilization of resident CD45(+) stem cells is an important factor in regeneration after injury and highlight the Wnt pathway as a potential therapeutic target for degenerative neuromuscular disease.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Differentiation/genetics
- Cell Division/genetics
- Cell Lineage/genetics
- Cells, Cultured
- Cytoskeletal Proteins/metabolism
- Frizzled Receptors
- Gene Expression Regulation, Developmental/genetics
- Leukocyte Common Antigens/immunology
- Lithium/pharmacology
- Membrane Proteins
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myoblasts/immunology
- Myoblasts/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Regeneration/genetics
- Signal Transduction/genetics
- Stem Cells/immunology
- Stem Cells/metabolism
- Trans-Activators/metabolism
- Wnt Proteins
- Zebrafish Proteins
- beta Catenin
Collapse
Affiliation(s)
- Anna Polesskaya
- Ottawa Health Research Institute, Molecular Medicine Program, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | |
Collapse
|
42
|
Abstract
Wnt signal transduction has emerged as an increasingly complex pathway due to the numerous ligands, receptors, and modulators identified in multiple developmental systems. Wnt signaling has been implicated in the renewal of the intestinal epithelium within adult animals and the progression of cancer in the colon. The Wnt family, however, has not been explored for function during embryonic gut development. Thus, to dissect the role of Wnt signaling in the developing gastrointestinal tract, it is necessary to first obtain a complete picture of the spatiotemporal expression of the Wnt signaling factors with respect to the different tissue layers of the gut. Here, we offer an in depth in situ gene expression study of Wnt ligands, frizzled receptors, and frizzled related modulators over several days of chicken gut development. These data show some expected locations of Wnt signaling as well as a surprising lack of expression of factors in the hindgut. This paper describes the first comprehensive characterization of the dynamic expression of Wnt signaling molecules during gut development. These data form the basis for future studies to determine the role of Wnt signaling in the developing gastrointestinal tract.
Collapse
Affiliation(s)
- Helen J McBride
- California Institute of Technology, Division of Biology, Beckman Institute, MC:139-74, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
44
|
Abstract
Inner ear induction, like induction of other tissues examined in recent years, is likely to be comprised of several stages. The process begins during gastrulation when the ectoderm is competent to respond to induction. It appears that a signal from the endomesoderm underlying the otic area during gastrulation initiates induction complemented by a signal from presumptive neural tissue. By the neural plate stage, a region of ectoderm outside the neural plate is "biased" toward ear formation; this process may be part of a more general "placodal" bias shared by several sensory tissues. Induction continues during neurulation when a signal from neural tissue (possibly augmented by mesoderm underlying the otic area) results in ectoderm committed to otic vesicle formation at the time of neural tube closure. Studies on several gene families implicate them in the ear determination process. Fibroblast Growth Factor (FGF) family members are clearly involved in induction: FGFs are appropriately expressed for such a role, and have been shown to be essential for inner ear development. FGFs also have inductive activity, although it is not clear if they are sufficient for ear induction. Activation of transcription factors in the otic ectoderm, for example, by Pax gene family members, provides evidence for important changes in the responding ectoderm beginning during gastrulation and continuing through specification at the end of neurulation, although few functional tests have defined the role of these genes in determination. The challenge remains to merge embryologic data with gene function studies to develop a clear model for the molecular basis of inner ear induction.
Collapse
Affiliation(s)
- Selina Noramly
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
45
|
Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu C, Kanatani N, Koike T, Okada H, Komori T, Yoneda T, Church V, Francis-West PH, Kurisu K, Nohno T, Pacifici M, Iwamoto M. The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 2002; 251:142-56. [PMID: 12413904 DOI: 10.1006/dbio.2002.0802] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wnt antagonist Frzb-1 is expressed during limb skeletogenesis, but its roles in this complex multistep process are not fully understood. To address this issue, we determined Frzb-1 gene expression patterns during chick long bone development and carried out gain- and loss-of-function studies by misexpression of Frzb-1, Wnt-8 (a known Frzb-1 target), or different forms of the intracellular Wnt mediator LEF-1 in developing limbs and cultured chondrocytes. Frzb-1 expression was quite strong in mesenchymal prechondrogenic condensations and then characterized epiphyseal articular chondrocytes and prehypertrophic chondrocytes in growth plates. Virally driven Frzb-1 misexpression caused shortening of skeletal elements, joint fusion, and delayed chondrocyte maturation, with consequent inhibition of matrix mineralization, metalloprotease expression, and marrow/bone formation. In good agreement, misexpression of Frzb-1 or a dominant-negative form of LEF-1 in cultured chondrocytes maintained the cells at an immature stage. Instead, misexpression of Wnt-8 or a constitutively active LEF-1 strongly promoted chondrocyte maturation, hypertrophy, and calcification. Immunostaining revealed that the distribution of endogenous Wnt mediator beta-catenin changes dramatically in vivo and in vitro, from largely cytoplasmic in immature proliferating and prehypertrophic chondrocytes to nuclear in hypertrophic mineralizing chondrocytes. Misexpression of Frzb-1 prevented beta-catenin nuclear relocalization in chondrocytes in vivo or in vitro. The data demonstrate that Frzb-1 exerts a strong influence on limb skeletogenesis and is a powerful and direct modulator of chondrocyte maturation, phenotype, and function. Phases of skeletogenesis, such as terminal chondrocyte maturation and joint formation, appear to be particularly dependent on Wnt signaling and thus very sensitive to Frzb-1 antagonistic action.
Collapse
Affiliation(s)
- Motomi Enomoto-Iwamoto
- Department of Molecular, Cell and Tumor Biology, Osaka University Faculty of Dentistry, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 24:811-20. [PMID: 12210517 DOI: 10.1002/bies.10136] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secreted Frizzled-related proteins (SFRPs) are modulators of the intermeshing pathways in which signals are transduced by Wnt ligands through Frizzled (Fz) membrane receptors. The Wnt networks influence biological processes ranging from developmental cell fate, cell polarity and adhesion to tumorigenesis and apoptosis. In the five or six years since their discovery, the SFRPs have emerged as dynamically expressed proteins able to bind both Wnts and Fz, with distinctive structural properties in which cysteine-rich domains from Fz- and from netrin-like proteins are juxtaposed. The abundant expression of SFRP genes in the early embryo, altered expression patterns in disease states, and potential significance in the evolution of the vertebrate body plan, make these intriguing molecules relevant to investigations in diverse fields of biology and biomedical sciences.
Collapse
Affiliation(s)
- Steve E Jones
- Retinitis Pigmentosa Research Unit, Division of Pharmacology and Theraputics, GKT School of Biomedical Sciences, The Rayne Institute, St Thomas' Hospital, London UK.
| | | |
Collapse
|
47
|
Chimal-Monroy J, Montero JA, Gañan Y, Macias D, Garcia-Porrero JA, Hurle JM. Comparative analysis of the expression and regulation of Wnt5a, Fz4, and Frzb1 during digit formation and in micromass cultures. Dev Dyn 2002; 224:314-20. [PMID: 12112461 DOI: 10.1002/dvdy.10110] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous studies have shown that three members of the Wnt signaling pathway, the ligand WNT5A, the receptor FZ4, and the Wnt antagonist FRZB1, are implicated in the formation and differentiation of the digits. In this study, we have attempted to establish a functional correlation between them by comparing their expression patterns and their regulation by the signals controlling proliferation and differentiation of the limb mesoderm during formation of the avian digits in vivo and in micromass cultures. In vivo Wnt5a and Fz4 are expressed in the undifferentiated mesoderm of the autopod and in the differentiating digit cartilages. In the undifferentiated mesoderm, the expression of both genes is regulated positively by FGFs and negatively by bone morphogenetic proteins (BMPs). As chondrogenic differentiation starts, Fz4 becomes intensely up-regulated in the aggregate and in the developing perichondrium, whereas transcripts of Wnt5a are excluded from the core of the aggregate but maintained in the surrounding mesenchyme and perichondrium. In addition, at this stage, the expression of both genes become positively regulated by BMPs. These changes in expression and regulation are coincident with the induction of Frzb1 in the chondrogenic aggregate, which is expressed under the positive control of BMPs. Our findings fit with a role of Wnt5a/Fz4 negatively regulating in vivo the initiation and progression of cartilage differentiation. In vitro, only Frzb1 is expressed and regulated in a manner resembling that observed in vivo. Wnt5a and Fz4 are both expressed in the differentiating mesenchyme of micromass cultures, but their expression is not significantly regulated by the addition of FGF-2 or BMP-7 to the culture medium.
Collapse
Affiliation(s)
- J Chimal-Monroy
- Departamento de Biología Celular y Fisiología. Instituto de Investigaciones Biomédicas, UNAM, México, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Fernández-Garre P, Rodríguez-Gallardo L, Gallego-Díaz V, Alvarez IS, Puelles L. Fate map of the chicken neural plate at stage 4. Development 2002; 129:2807-22. [PMID: 12050131 DOI: 10.1242/dev.129.12.2807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A detailed fate map was obtained for the early chick neural plate (stages 3d/4). Numerous overlapping plug grafts were performed upon New-cultured chick embryos, using fixable carboxyfluorescein diacetate succinimidyl ester to label donor chick tissue. The specimens were harvested 24 hours after grafting and reached in most cases stages 9-11 (early neural tube). The label was detected immunocytochemically in wholemounts, and cross-sections were later obtained. The positions of the graft-derived cells were classified first into sets of purely neural, purely non-neural and mixed grafts. Comparisons between these sets established the neural plate boundary at stages 3d/4. Further analysis categorized graft contributions to anteroposterior and dorsoventral subdivisions of the early neural tube, including data on the floor plate and the eye field. The rostral boundary of the neural plate was contained within the earliest expression domain of the Ganf gene, and the overall shape of the neural plate was contrasted and discussed with regard to the expression patterns of the genes Plato, Sox2, Otx2 and Dlx5 (and others reported in the literature) at stages 3d/4.
Collapse
Affiliation(s)
- Pedro Fernández-Garre
- Department of Morphological Sciences, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | | | | | | | | |
Collapse
|
49
|
Nordström U, Jessell TM, Edlund T. Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 2002; 5:525-32. [PMID: 12006981 DOI: 10.1038/nn0602-854] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early in differentiation, all neural cells have a rostral character. Only later do posteriorly positioned neural cells acquire characteristics of caudal forebrain, midbrain and hindbrain cells. Caudalization of neural tissue in the chick embryo apparently involves the convergent actions of (i) fibroblast growth factor (FGF) signaling and (ii) signaling from the caudal paraxial mesoderm, or 'PMC activity', which has not yet been defined molecularly. Here we report evidence that Wnt signaling underlies PMC activity, and show that Wnt signals act directly and in a graded manner on anterior neural cells to induce their progressive differentiation into caudal forebrain, midbrain and hindbrain cells.
Collapse
Affiliation(s)
- Ulrika Nordström
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
50
|
Healy KH, Schoenwolf GC, Darnell DK. Cell interactions underlying notochord induction and formation in the chick embryo. Dev Dyn 2001; 222:165-77. [PMID: 11668595 DOI: 10.1002/dvdy.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development of the notochord in the chick is traditionally associated with Hensen's node (the avian equivalent of the organizer). However, recent evidence has shown that two areas outside the node (called the inducer and responder) are capable of interacting after ablation of Hensen's node to form a notochord. It was not clear from these studies what effect (if any) signals from these areas had on normal notochord formation. A third area, the postnodal region, may also contribute to notochord formation, although this has also been questioned. Using transection and grafting experiments, we have evaluated the timing and cellular interactions involved in notochord induction and formation in the chick embryo. Our results indicate that the rostral primitive streak, including the node, is not required for formation of the notochord in rostral blastoderm isolates transected at stages 3a/b. In addition, neither the postnodal region nor the inducer is required for the induction and formation of the most rostral notochordal cells. However, inclusion of the inducer results in considerable elongation of the notochord in this experimental paradigm. Our results also demonstrate that the responder per se is not required for notochord formation, provided that at least the inducer and postnodal region are present, although in the absence of the responder, formation of the notochord occurs far less frequently. We also show that the node is not specified to form notochord until stage 4 and concomitant with this, the inducer loses its ability to induce notochord from the responder. The coincident timing of these changes in the node and inducer suggests that notochord specification and the activity of the inducer are regulated through a negative feedback loop. We propose a model relating our results to the induction of head and trunk organizer activity in the node.
Collapse
Affiliation(s)
- K H Healy
- Department of Biology, Lake Forest College, 555 N. Sheridan Road, Lake Forest, IL 60045, USA
| | | | | |
Collapse
|