1
|
Liu L, Zhao S, Lü Z, Pang Z, Liu B, gong L, Yinghui-Dong. Identification, expression and functional analysis of activin type I receptor in common Chinese Cuttlefish, Sepiella japonica. Anim Reprod Sci 2022; 240:106976. [DOI: 10.1016/j.anireprosci.2022.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|
2
|
Chiu APL, Bierende D, Lal N, Wang F, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity. Am J Physiol Heart Circ Physiol 2018; 314:H82-H94. [DOI: 10.1152/ajpheart.00372.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the diabetic heart, there is excessive dependence on fatty acid (FA) utilization to generate ATP. Lipoprotein lipase (LPL)-mediated hydrolysis of circulating triglycerides is suggested to be the predominant source of FA for cardiac utilization during diabetes. In the heart, the majority of LPL is synthesized in cardiomyocytes and secreted onto cell surface heparan sulfate proteoglycan (HSPG), where an endothelial cell (EC)-releasable β-endoglycosidase, heparanase cleaves the side chains of HSPG to liberate LPL for its onward movement across the EC. EC glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) captures this released enzyme at its basolateral side and shuttles it across to its luminal side. We tested whether the diabetes-induced increase of transforming growth factor-β (TGF-β) can influence the myocyte and EC to help transfer LPL to the vascular lumen to generate triglyceride-FA. In response to high glucose and EC heparanase secretion, this endoglycosidase is taken up by the cardiomyocyte (Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Diabetes 63: 2643–2655, 2014) to stimulate matrix metalloproteinase-9 expression and the conversion of latent to active TGF-β. In the cardiomyocyte, TGF-β activation of RhoA enhances actin cytoskeleton rearrangement to promote LPL trafficking and secretion onto cell surface HSPG. In the EC, TGF-β signaling promotes mesodermal homeobox 2 translocation to the nucleus, which increases the expression of GPIHBP1, which facilitates movement of LPL to the vascular lumen. Collectively, our data suggest that in the diabetic heart, TGF-β actions on the cardiomyocyte promotes movement of LPL, whereas its action on the EC facilitates LPL shuttling. NEW & NOTEWORTHY Endothelial cells, as first responders to hyperglycemia, release heparanase, whose subsequent uptake by cardiomyocytes amplifies matrix metalloproteinase-9 expression and activation of transforming growth factor-β. Transforming growth factor-β increases lipoprotein lipase secretion from cardiomyocytes and promotes mesodermal homeobox 2 to enhance glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-dependent transfer of lipoprotein lipase across endothelial cells, mechanisms that accelerate fatty acid utilization by the diabetic heart.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. JOURNAL OF ONCOLOGY 2015; 2015:587193. [PMID: 25883652 PMCID: PMC4389829 DOI: 10.1155/2015/587193] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
Retaining the delicate balance in cell signaling activity is a prerequisite for the maintenance of physiological tissue homeostasis. Transforming growth factor-beta (TGFβ) signaling is an essential pathway that plays crucial roles during embryonic development as well as in adult tissues. Aberrant TGFβ signaling activity regulates tumor progression in a cancer cell-autonomous or non-cell-autonomous fashion and these effects may be tumor suppressing or tumor promoting depending on the cellular context. The fundamental role of this pathway in promoting cancer progression in multiple stages of the metastatic process, including epithelial-to-mesenchymal transition (EMT), is also becoming increasingly clear. In this review, we discuss the latest advances in the effort to unravel the inherent complexity of TGFβ signaling and its role in cancer progression and metastasis. These findings provide important insights into designing personalized therapeutic strategies against advanced cancers.
Collapse
|
4
|
Kain KH, Miller JWI, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn 2013; 243:216-28. [PMID: 24357262 DOI: 10.1002/dvdy.24093] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022] Open
Abstract
A long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template. With new molecular and genetic tools applied to the avian genome, the chick embryo is accelerating the discovery of normal development and elusive disease processes. Moreover, progress in imaging and chick culture technologies is advancing real-time visualization of dynamic biological events, such as tissue morphogenesis, angiogenesis, and cancer metastasis. A rich background of information, coupled with new technologies and relative ease of maintenance, suggest an expanding utility for the chick embryo in cardiac biology and cancer research.
Collapse
|
5
|
Kruithof BPT, Duim SN, Moerkamp AT, Goumans MJ. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 2012; 84:89-102. [PMID: 22656450 DOI: 10.1016/j.diff.2012.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 02/01/2023]
Abstract
Cardiac cushion formation is crucial for both valvular and septal development. Disruption in this process can lead to valvular and septal malformations, which constitute the largest part of congenital heart defects. One of the signaling pathways that is important for cushion formation is the TGFβ superfamily. The involvement of TGFβ and BMP signaling pathways in cardiac cushion formation has been intensively studied using chicken in vitro explant assays and in genetically modified mice. In this review, we will summarize and discuss the role of TGFβ and BMP signaling components in cardiac cushion formation.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Lencinas A, Tavares ALP, Barnett JV, Runyan RB. Collagen gel analysis of epithelial-mesenchymal transition in the embryo heart: an in vitro model system for the analysis of tissue interaction, signal transduction, and environmental effects. ACTA ACUST UNITED AC 2012; 93:298-311. [PMID: 22271679 DOI: 10.1002/bdrc.20222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular process of epithelial-mesenchymal cell transition (EMT) is a critical event in development that is reiterated in adult pathologies of metastasis and organ fibrosis. An initial understanding of the cellular and molecular events of this process emerged from an in vitro examination of heart valve development. Explants of the chick atrioventricular valve-forming region were placed on collagen gels and removed to show that EMT was regulated by a tissue interaction. Subsequent studies showed that specific TGFβ isoforms and receptors were required and steps of activation and invasion could be distinguished. The assay was modified for mouse hearts and has been used to explore signal transduction and gene expression in both species. The principle advantages of the system are a defined temporal window, when EMT takes place and the ability to isolate cells at various stages of the EMT process. These advantages are largely unavailable in other developmental or adult models. As the mesenchymal cells produced by EMT in the heart are involved in defects found in congenital heart disease, there is also a direct relevance of cardiac EMT to human birth defects. This relationship has been explored in relation to environmental exposures and in a number of genetic models. This review provides both an overview of the findings developed from the assay and protocols to enable the use of the assay by other laboratories. The assay provides a versatile platform to explore roles of specific gene products, drugs, and environmental agents on a critical cellular process.
Collapse
Affiliation(s)
- Alejandro Lencinas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
7
|
de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slaugenhaupt SA, Hagège A, Chester AH, Markwald RR, Norris RA. Atrioventricular valve development: new perspectives on an old theme. Differentiation 2012; 84:103-16. [PMID: 22579502 DOI: 10.1016/j.diff.2012.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/19/2022]
Abstract
Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.
Collapse
Affiliation(s)
- Annemarieke de Vlaming
- Department of Regenerative Medicine and Cell Biology, School of Medicine, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sánchez NS, Barnett JV. TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Cell Signal 2012; 24:539-548. [PMID: 22033038 PMCID: PMC3237859 DOI: 10.1016/j.cellsig.2011.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/19/2023]
Abstract
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3(-/-) mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3(+/+) cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3(-/-) epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3(-/-) cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.
Collapse
Affiliation(s)
- Nora S Sánchez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| |
Collapse
|
9
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
10
|
Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Cell Signal 2011; 24:247-56. [PMID: 21945156 DOI: 10.1016/j.cellsig.2011.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022]
Abstract
An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT.
Collapse
Affiliation(s)
- Todd A Townsend
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Anderton MJ, Mellor HR, Bell A, Sadler C, Pass M, Powell S, Steele SJ, Roberts RRA, Heier A. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol Pathol 2011; 39:916-24. [PMID: 21859884 DOI: 10.1177/0192623311416259] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aberrant signaling by transforming growth factor-β (TGF-β) and its type I (ALK5) receptor has been implicated in a number of human diseases and this pathway is considered a potential target for therapeutic intervention. Transforming growth factor-β signaling via ALK5 plays a critical role during heart development, but the role of ALK5 in the adult heart is poorly understood. In the current study, the preclinical toxicology of ALK5 inhibitors from two different chemistry scaffolds was explored. Ten-week-old female Han Wistar rats received test compounds by the oral route for three to seven days. Both compounds induced histopathologic heart valve lesions characterized by hemorrhage, inflammation, degeneration, and proliferation of valvular interstitial cells. The pathology was observed in all animals, at all doses tested, and occurred in all four heart valves. Immunohistochemical analysis of ALK5 in rat hearts revealed expression in the valves, but not in the myocardium. Compared to control animals, protein levels of ALK5 were unchanged in the heart valves of treated animals. We also observed a physeal dysplasia in the femoro-tibial joint of rats treated with ALK5 inhibitors, a finding consistent with a pharmacological effect described previously with ALK5 inhibitors. Overall, these findings suggest that TGF-β signaling via ALK5 plays a critical role in maintaining heart valve integrity.
Collapse
Affiliation(s)
- Mark J Anderton
- Department of General Toxicology Sciences, AstraZeneca R&D, Mereside, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Todorovic V, Finnegan E, Freyer L, Zilberberg L, Ota M, Rifkin DB. Long form of latent TGF-β binding protein 1 (Ltbp1L) regulates cardiac valve development. Dev Dyn 2011; 240:176-87. [PMID: 21181942 DOI: 10.1002/dvdy.22521] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is crucial for valve development and homeostasis. The long form of Latent TGF-β binding protein 1 (LTBP1L) covalently binds all TGF-β isoforms and regulates their bioavailability. Ltbp1L expression analysis during valvulogenesis revealed two patterns of Ltbp1L production: an early one (E9.5-11.5) associated with endothelial-to-mesenchymal transformation (EMT); and a late one (E12.5 to birth) contemporaneous with valve remodeling. Similarly, histological analysis of Ltbp1L(-/-) developing valves identified two different pathologies: generation of hypoplastic endocardial cushions in early valvulogenesis, followed by development of hyperplastic valves in late valvulogenesis. Ltbp1L promotes valve EMT, as Ltbp1L absence yields hypoplastic endocardial cushions in vivo and attenuated EMT in vitro. Ltbp1L(-/-) valve hyperplasia in late valvuogenesis represents a consequence of prolonged EMT. We demonstrate that Ltbp1L is a major regulator of Tgf-β activity during valvulogenesis since its absence results in a perturbed Tgf-β pathway that causes all Ltbp1L(-/-) valvular defects.
Collapse
Affiliation(s)
- Vesna Todorovic
- Department of Cell Biology, NYU Langone Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
13
|
DeLaughter DM, Saint-Jean L, Baldwin HS, Barnett JV. What chick and mouse models have taught us about the role of the endocardium in congenital heart disease. ACTA ACUST UNITED AC 2011; 91:511-25. [PMID: 21538818 DOI: 10.1002/bdra.20809] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 12/16/2022]
Abstract
Specific cell and tissue interactions drive the formation and function of the vertebrate cardiovascular system. Although much attention has been focused on the muscular components of the developing heart, the endocardium plays a key role in the formation of a functioning heart. Endocardial cells exhibit heterogeneity that allows them to participate in events such as the formation of the valves, septation of the outflow tract, and trabeculation. Here we review, the contributions of the endocardium to cardiovascular development and outline useful approaches developed in the chick and mouse that have revealed endocardial cell heterogeneity, the signaling molecules that direct endocardial cell behavior, and how these insights have contributed to our understanding of cardiovascular development and disease.
Collapse
Affiliation(s)
- Daniel M DeLaughter
- Departments of Cell & Developmental Biology, Vanderbilt University Medical Center, 2220 Pierce Ave., Nashville, TN 37232-6600, USA
| | | | | | | |
Collapse
|
14
|
Townsend TA, Robinson JY, Deig CR, Hill CR, Misfeldt A, Blobe GC, Barnett JV. BMP-2 and TGFβ2 shared pathways regulate endocardial cell transformation. Cells Tissues Organs 2011; 194:1-12. [PMID: 21212630 DOI: 10.1159/000322035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 01/15/2023] Open
Abstract
Valvular heart disease is a major cause of mortality and morbidity. Revealing the cellular processes and molecules that regulate valve formation and remodeling is required to develop effective therapies. A key step in valve formation during heart development is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endocardial cells in the atrioventricular cushion (AVC). The type III transforming growth factor-β receptor (TGFβR3) regulates AVC endocardial cell EMT in vitro and mesenchymal cell differentiation in vivo. Little is known concerning the signaling mechanisms downstream of TGFβR3. Here we use endocardial cell EMT in vitro to determine the role of 2 well-characterized downstream TGFβ signaling pathways in TGFβR3-dependent endocardial cell EMT. Targeting of Smad4, the common mediator Smad, demonstrated that Smad signaling is required for EMT in the AVC and TGFβR3-dependent EMT stimulated by TGFβ2 or BMP-2. Although we show that Smads 1, 2, 3, and 5 are required for AVC EMT, overexpression of Smad1 or Smad3 is not sufficient to induce EMT. Consistent with the activation of the Par6/Smurf1 pathway downstream of TGFβR3, targeting ALK5, Par6, or Smurf1 significantly inhibited EMT in response to either TGFβ2 or BMP-2. The requirement for ALK5 activity, Par6, and Smurf1 for TGFβR3-dependent endocardial cell EMT is consistent with the documented role of this pathway in the dissolution of tight junctions. Taken together, our data demonstrate that TGFβR3-dependent endocardial cell EMT stimulated by either TGFβ2 or BMP-2 requires Smad4 and the activation of the Par6/Smurf1 pathway.
Collapse
Affiliation(s)
- Todd A Townsend
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tenn., USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med 2010; 16:1400-6. [PMID: 21102460 DOI: 10.1038/nm.2252] [Citation(s) in RCA: 548] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/30/2010] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells can give rise to several cell types, but varying results depending on isolation methods and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an activin-like kinase-2 (ALK2) receptor-dependent mechanism. In lesions from individuals with fibrodysplasia ossificans progressiva (FOP), a disease in which heterotopic ossification occurs as a result of activating ALK2 mutations, or from transgenic mice expressing constitutively active ALK2, chondrocytes and osteoblasts expressed endothelial markers. Lineage tracing of heterotopic ossification in mice using a Tie2-Cre construct also suggested an endothelial origin of these cell types. Expression of constitutively active ALK2 in endothelial cells caused endothelial-to-mesenchymal transition and acquisition of a stem cell-like phenotype. Similar results were obtained by treatment of untransfected endothelial cells with the ligands transforming growth factor-β2 (TGF-β2) or bone morphogenetic protein-4 (BMP4) in an ALK2-dependent manner. These stem-like cells could be triggered to differentiate into osteoblasts, chondrocytes or adipocytes. We suggest that conversion of endothelial cells to stem-like cells may provide a new approach to tissue engineering.
Collapse
|
16
|
Smith KA, Joziasse IC, Chocron S, van Dinther M, Guryev V, Verhoeven MC, Rehmann H, van der Smagt JJ, Doevendans PA, Cuppen E, Mulder BJ, Ten Dijke P, Bakkers J. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 2009; 119:3062-9. [PMID: 19506109 DOI: 10.1161/circulationaha.108.843714] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Serious congenital heart defects occur as a result of improper atrioventricular septum (AVS) development during embryogenesis. Despite extensive knowledge of the genetic control of AVS development, few genetic lesions have been identified that are responsible for AVS-associated congenital heart defects. METHODS AND RESULTS We sequenced 32 genes known to be important in AVS development in patients with AVS defects and identified 11 novel coding single-nucleotide polymorphisms that are predicted to impair protein function. We focused on variants identified in the bone morphogenetic protein receptor, ALK2, and subjected 2 identified variants to functional analysis. The coding single-nucleotide polymorphisms R307L and L343P are heterozygous missense substitutions and were each identified in single individuals. The L343P allele had impaired functional activity as measured by in vitro kinase and bone morphogenetic protein-specific transcriptional response assays and dominant-interfering activity in vivo. In vivo analysis of zebrafish embryos injected with ALK2 L343P RNA revealed improper atrioventricular canal formation. CONCLUSIONS These data identify the dominant-negative allele ALK2 L343P in a patient with AVS defects.
Collapse
Affiliation(s)
- Kelly A Smith
- Associate Professor, Cardiac Development and Genetics Group, Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jelliffe-Pawlowski LL, Walton-Haynes L, Currier RJ. Identification of second trimester screen positive pregnancies at increased risk for congenital heart defects. Prenat Diagn 2009; 29:570-7. [DOI: 10.1002/pd.2239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Yamagishi T, Ando K, Nakamura H. Roles of TGFβ and BMP during valvulo–septal endocardial cushion formation. Anat Sci Int 2009; 84:77-87. [DOI: 10.1007/s12565-009-0027-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/05/2008] [Indexed: 01/01/2023]
|
19
|
Jelliffe-Pawlowski LL, Walton-Haynes L, Currier RJ. Using second trimester ultrasound and maternal serum biomarker data to help detect congenital heart defects in pregnancies with positive triple-marker screening results. Am J Med Genet A 2008; 146A:2455-67. [DOI: 10.1002/ajmg.a.32513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Sakabe M, Sakata H, Matsui H, Ikeda K, Yamagishi T, Nakajima Y. ROCK1 expression is regulated by TGFbeta3 and ALK2 during valvuloseptal endocardial cushion formation. Anat Rec (Hoboken) 2008; 291:845-57. [PMID: 18461597 DOI: 10.1002/ar.20708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During early heart development at the looped heart stage, endothelial cells in the outflow tract and atrioventricular (AV) regions transform into mesenchyme to generate endocardial cushion tissue. This endocardial epithelial-mesenchymal transition (EMT) is regulated by several regulatory pathways, including the transforming growth factor-beta (TGFbeta), bone morphogenetic protein (BMP), and Rho-ROCK pathways. Here, we investigated the spatiotemporal expression pattern of ROCK1 mRNA during EMT in chick and examined whether TGFbeta or BMP could induce the expression of ROCK1. At the onset of EMT, ROCK1 expression was up-regulated in endothelial/mesenchymal cells. A three-dimensional collagen gel assay was used to examine the mechanisms regulating the expression of ROCK1. In AV endocardium co-cultured with associated myocardium, ROCK1 expression was inhibited by either anti-TGFbeta3 antibody, anti-ALK2 antibody or noggin, but not SB431542 (ALK5 inhibitor). In cultured preactivated AV endocardium, TGFbeta3 protein induced the expression of ROCK1, but BMP did not. AV endothelial cells that were cultured in medium supplemented with TGFbeta3 plus anti-ALK2 antibody failed to express ROCK1. These results suggest that the expression of ROCK1 is up-regulated at the onset of EMT and that signaling mediated by TGFbeta3/ALK2 together with BMP is involved in the expression of ROCK1.
Collapse
Affiliation(s)
- Masahide Sakabe
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol 2008; 322:208-18. [PMID: 18718461 DOI: 10.1016/j.ydbio.2008.07.038] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Trophic factors secreted both from the endocardium and epicardium regulate appropriate growth of the myocardium during cardiac development. Epicardially-derived cells play also a key role in development of the coronary vasculature. This process involves transformation of epithelial (epicardial) cells to mesenchymal cells (EMT). Similarly, a subset of endocardial cells undergoes EMT to form the mesenchyme of endocardial cushions, which function as primordia for developing valves and septa. While it has been suggested that transforming growth factor-betas (Tgf-beta) play an important role in induction of EMT in the avian epi- and endocardium, the function of Tgf-betas in corresponding mammalian tissues is still poorly understood. In this study, we have ablated the Tgf-beta type I receptor Alk5 in endo-, myo- and epicardial lineages using the Tie2-Cre, Nkx2.5-Cre, and Gata5-Cre driver lines, respectively. We show that while Alk5-mediated signaling does not play a major role in the myocardium during mouse cardiac development, it is critically important in the endocardium for induction of EMT both in vitro and in vivo. Moreover, loss of epicardial Alk5-mediated signaling leads to disruption of cell-cell interactions between the epicardium and myocardium resulting in a thinned myocardium. Furthermore, epicardial cells lacking Alk5 fail to undergo Tgf-beta-induced EMT in vitro. Late term mutant embryos lacking epicardial Alk5 display defective formation of a smooth muscle cell layer around coronary arteries, and aberrant formation of capillary vessels in the myocardium suggesting that Alk5 is controlling vascular homeostasis during cardiogenesis. To conclude, Tgf-beta signaling via Alk5 is not required in myocardial cells during mammalian cardiac development, but plays an irreplaceable cell-autonomous role regulating cellular communication, differentiation and proliferation in endocardial and epicardial cells.
Collapse
Affiliation(s)
- Somyoth Sridurongrit
- University of Michigan, Department of Biologic and Materials Sciences, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Valvulogenesis is an extremely complex process by which a fragile gelatinous matrix is populated and remodelled during embryonic development into thin fibrous leaflets capable of maintaining unidirectional flow over a lifetime. This process occurs during exposure to constantly changing haemodynamic forces, with a success rate of approximately 99%. Defective valvulogenesis results in impaired cardiac function and lifelong complications. This review integrates what is known about the roles of genetics and mechanics in the development of valves and how changes in either result in impaired morphogenesis. It is hoped that appropriate developmental cues and phenotypic endpoints could help engineers and clinicians in their efforts to regenerate living valve alternatives.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
23
|
Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs 2007; 185:146-56. [PMID: 17587820 DOI: 10.1159/000101315] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epithelial-mesenchymal cell transformation (EMT) is a critical process during development of the heart valves. Transition of endothelial cells into mesenchymal cells in the atrioventricular (AV) canal and the outflow tract regions of the heart form the cardiac cushions that eventually form the heart valves. Collagen gel invasion assay has aided in the identification of molecules that regulate EMT. Among those, transforming growth factor-beta (TGF-beta) ligands and receptors demonstrate a critical role during EMT. In the chick, TGF-beta ligands and some receptors have specific functions during EMT. TGF-beta2 mediates endothelial cell-cell activation and separation, and TGF-beta3 mediates cell invasion into the extracellular matrix. Receptors involved in the EMT process include TGF-beta receptor type II (TBRII), TBRIII, endoglin and the TBRI receptors, ALK2 and ALK5. In contrast, in the mouse model, TGF-beta2 is the only ligand involved in EMT. The TGF-beta2 null mouse has either increased EMT or a mesenchymal cell proliferation after EMT. However, functional studies of TGF-beta1 in vivo and in vitro showed that TGF-beta1 functions in the EMT of the mouse AV canal. Latent TGF-beta-binding protein (LTBP-1) and endoglin have a role in the EMT process. Therefore, TGF-betas mediate cardiac EMT in both embryonic species. Further studies will reveal the identification of ligand and receptor-specific activities.
Collapse
|
24
|
Functional BMP receptor in endocardial cells is required in atrioventricular cushion mesenchymal cell formation in chick. Dev Biol 2007; 306:179-92. [PMID: 17449024 DOI: 10.1016/j.ydbio.2007.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 11/25/2022]
Abstract
Transformation of atrioventricular (AV) canal endocardium into invasive mesenchyme correlates spatially and temporally with the expression of bone morphogenetic protein (BMP)-2 in the AV myocardium. We revealed the presence of mRNA of Type I BMP receptors, BMPR-1A (ALK3), BMPR-1B (ALK6) and ALK2 in chick AV endocardium at stage-14(-), the onset of epithelial to mesenchymal transformation (EMT), by RT-PCR and localized BMPR-1B mRNA in the endocardium by in situ hybridization. To circumvent the functional redundancies among the Type I BMP receptors, we applied dominant-negative (dn) BMPR-1B-viruses to chick AV explants and whole-chick embryo cultures to specifically block BMP signaling in AV endocardium during EMT. dnBMPR-1B-virus infection of AV endocardial cells abolished BMP-2-supported AV endocardial EMT. Conversely, caBMPR-1B-virus infection promoted AV endocardial EMT in the absence of AV myocardium. Moreover, dnBMPR-1B-virus treatments significantly reduced myocardially supported EMT in AV endocardial-myocardial co-culture. AV cushion mesenchymal cell markers, alpha-smooth muscle actin (SMA), and TGFbeta3 in the endocardial cells were promoted by caBMPR-1B and reduced by dnBMPR-1B infection. Microinjection of the virus into the cardiac jelly in the AV canal at stage-13 in vivo (ovo) revealed that the dnBMPR-1B-virus-infected cells remained in the endocardial epithelium, whereas caBMPR-1B-infected cells invaded deep into the cushions. These results provide evidence that BMP signaling through the AV endocardium is required for the EMT and the activation of the BMP receptor in the endocardium can promote AV EMT in the chick.
Collapse
|
25
|
Mercado-Pimentel ME, Hubbard AD, Runyan RB. Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2006; 304:420-32. [PMID: 17250821 PMCID: PMC2001167 DOI: 10.1016/j.ydbio.2006.12.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/16/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Endoglin is an accessory receptor for TGFbeta and can associate with Alk5 or Alk2. Although prior studies indicated that endoglin and Alk5 were not directly involved in epithelial-mesenchymal transformation (EMT) in the heart, the expression pattern of endoglin prompted a re-examination. We here show that loss of endoglin expression mediated by either antisense DNA or siRNA results in a direct perturbation of EMT and reduced expression of EMT markers including slug, runx2, RhoA, and latrophilin-2. An examination of BrdU incorporation shows that, while endoglin regulates proliferation at an early stage, reduced endothelial cell proliferation does not account for the loss of mesenchyme. As Alk5 interacts with endoglin, we utilized siRNA and a specific inhibitor, HTS466284 (HTS), to perturb this receptor as well. Alk5 inhibition produced similar effects to the inhibition of endoglin. There was a reduction in mesenchymal cell formation and loss of EMT marker expression similar to that seen with endoglin. Alk5 kinase inhibition produced a similar loss of EMT marker expression but showed a contrasting upregulation of the proliferation and remodeling markers, Cyclin B2 and beta-catenin. Alk5 and endoglin both mediate endothelial cell proliferation in younger explants but, by stage 16, loss of endoglin no longer alters proliferation rates. These data show that both Alk5 and endoglin are directly involved in the process of EMT, that they interact with both TGFbeta-regulated activation and invasion pathways and that the roles of these receptors change during cardiac development.
Collapse
Affiliation(s)
- Melania E Mercado-Pimentel
- Department of Cell Biology and Anatomy, University of Arizona, 1501 N. Campbell Ave., P.O. Box 245044, Tucson, AZ 85724-5044, USA
| | | | | |
Collapse
|
26
|
Abstract
Transforming growth factor-beta (TGFbeta) signalling regulates cancer through mechanisms that function either within the tumour cell itself or through host-tumour cell interactions. Studies of tumour-cell-autonomous TGFbeta effects show clearly that TGFbeta signalling has a mechanistic role in tumour suppression and tumour promotion. In addition, factors in the tumour microenvironment, such as fibroblasts, immune cells and the extracellular matrix, influence the ability of TGFbeta to promote or suppress carcinoma progression and metastasis. The complex nature of TGFbeta signalling and crosstalk in the tumour microenvironment presents a unique challenge, and an opportunity to develop therapeutic intervention strategies for targeting cancer.
Collapse
Affiliation(s)
- Brian Bierie
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
27
|
Olivey HE, Mundell NA, Austin AF, Barnett JV. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn 2006; 235:50-9. [PMID: 16245329 PMCID: PMC3160345 DOI: 10.1002/dvdy.20593] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proepicardium (PE) migrates over the heart and forms the epicardium. A subset of these PE-derived cells undergoes epithelial-mesenchymal transformation (EMT) and gives rise to cardiac fibroblasts and components of the coronary vasculature. We report that transforming growth factor-beta (TGFbeta) 1 and TGFbeta2 increase EMT in PE explants as measured by invasion into a collagen gel, loss of cytokeratin expression, and redistribution of ZO1. The type I TGFbeta receptors ALK2 and ALK5 are both expressed in the PE. However, only constitutively active (ca) ALK2 stimulates PE-derived epithelial cell activation, the first step in transformation, whereas caALK5 stimulates neither activation nor transformation in PE explants. Overexpression of Smad6, an inhibitor of ALK2 signaling, inhibits epithelial cell activation, whereas BMP7, a known ligand for ALK2, has no effect. These data demonstrate that TGFbeta stimulates transformation in the PE and suggest that ALK2 partially mediates this effect.
Collapse
Affiliation(s)
- Harold E. Olivey
- Department of Pharmacology, Vanderbilt University Medical Center Nashville, TN, 37232
| | - Nathan A. Mundell
- Department of Pharmacology, Vanderbilt University Medical Center Nashville, TN, 37232
| | - Anita F. Austin
- Department of Pharmacology, Vanderbilt University Medical Center Nashville, TN, 37232
| | - Joey V. Barnett
- Department of Pharmacology, Vanderbilt University Medical Center Nashville, TN, 37232
- Department of Microbiology & Immunology, and Medicine, Vanderbilt University Medical Center Nashville, TN, 37232
- Address correspondence to: Joey V. Barnett, Ph.D., Department of Pharmacology, Vanderbilt University Medical Center, Room 476 RRB, 2220 Pierce Ave, Nashville, TN 37232-6600; Tel 615 936-1723; Fax: 615 343-6532; E-mail:
| |
Collapse
|
28
|
Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, Epstein JA, Kaartinen V. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol 2005; 286:299-310. [PMID: 16140292 PMCID: PMC1361261 DOI: 10.1016/j.ydbio.2005.07.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/29/2005] [Accepted: 07/31/2005] [Indexed: 01/01/2023]
Abstract
Developmental abnormalities in endocardial cushions frequently contribute to congenital heart malformations including septal and valvular defects. While compelling evidence has been presented to demonstrate that members of the TGF-beta superfamily are capable of inducing endothelial-to-mesenchymal transdifferentiation in the atrioventricular canal, and thus play a key role in formation of endocardial cushions, the detailed signaling mechanisms of this important developmental process, especially in vivo, are still poorly known. Several type I receptors (ALKs) for members of the TGF-beta superfamily are expressed in the myocardium and endocardium of the developing heart, including the atrioventricular canal. However, analysis of their functional role during mammalian development has been significantly complicated by the fact that deletion of the type I receptors in mouse embryos often leads to early embryonal lethality. Here, we used the Cre/loxP system for endothelial-specific deletion of the type I receptor Alk2 in mouse embryos. The endothelial-specific Alk2 mutant mice display defects in atrioventricular septa and valves, which result from a failure of endocardial cells to appropriately transdifferentiate into the mesenchyme in the AV canal. Endocardial cells deficient in Alk2 demonstrate decreased expression of Msx1 and Snail, and reduced phosphorylation of BMP and TGF-beta Smads. Moreover, we show that endocardial cells lacking Alk2 fail to delaminate from AV canal explants. Collectively, these results indicate that the BMP type I receptor ALK2 in endothelial cells plays a critical non-redundant role in early phases of endocardial cushion formation during cardiac morphogenesis.
Collapse
Affiliation(s)
- Jikui Wang
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Somyoth Sridurongrit
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marek Dudas
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Penny Thomas
- Cardiovascular Research Programs, The Saban Research Instititute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Cardiothoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andre Nagy
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Michael D. Schneider
- Center for Cardiovascular Development, Department of Medicine, Molecular and Cellular Biology, and Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan A. Epstein
- Cardiovascular Division, Department of Medicine and the Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vesa Kaartinen
- Developmental Biology, The Saban Research Institute of Children’s Hospital Los Angeles, CA 90027, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- * Corresponding author. Department of Pathology, Mail stop #35 Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA. Fax: +1 323 671 3613. E-mail address: (V. Kaartinen)
| |
Collapse
|
29
|
Desgrosellier JS, Mundell NA, McDonnell MA, Moses HL, Barnett JV. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2005; 280:201-10. [PMID: 15766759 DOI: 10.1016/j.ydbio.2004.12.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 11/16/2004] [Accepted: 12/26/2004] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transformation (EMT) occurs during both development and tumorigenesis. Transforming growth factor beta (TGFbeta) ligands signal EMT in the atrioventricular (AV) cushion of the developing heart, a critical step in valve formation. TGFbeta signals through a complex of type I and type II receptors. Several type I receptors exist although activin receptor-like kinase (ALK) 5 mediates the majority of TGFbeta signaling. Here, we demonstrate that ALK2 is sufficient to induce EMT in the heart. Both ALK2 and ALK5 are expressed throughout the heart with ALK2 expressed abundantly in endocardial cells of the outflow tract (OFT), ventricle, and AV cushion. Misexpression of constitutively active (ca) ALK2 in non-transforming ventricular endocardial cells induced EMT, while caALK5 did not, thus demonstrating that ALK2 activity alone is sufficient to stimulate EMT. Smad6, an inhibitor of Smad signaling downstream of ALK2, but not ALK5, inhibited EMT in AV cushion endocardial cells. These data suggest that ALK2 activation may stimulate EMT in the AV cushion and that Smad6 may act downstream of ALK2 to negatively regulate EMT.
Collapse
Affiliation(s)
- Jay S Desgrosellier
- Department of Pharmacology, Vanderbilt University Medical Center, Room 476 RRB, 2220 Pierce Avenue, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
30
|
Karlsson G, Liu Y, Larsson J, Goumans MJ, Lee JS, Thorgeirsson SS, Ringnér M, Karlsson S. Gene expression profiling demonstrates that TGF-beta1 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF-beta signaling. Physiol Genomics 2005; 21:396-403. [PMID: 15769904 DOI: 10.1152/physiolgenomics.00303.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta) regulates cellular functions like proliferation, differentiation, and apoptosis. On the cell surface, TGF-beta binds to receptor complexes consisting of TGF-beta receptor type II (TbetaRII) and activin-like kinase receptor-5 (Alk5), and the downstream signaling is transduced by Smad and MAPK proteins. Recent data have shown that alternative receptor combinations aside from the classical pairing of TbetaRII/Alk5 can be relevant for TGF-beta signaling. We have screened for alternative receptors for TGF-beta and also for gene targets of TGF-beta signaling, by performing functional assays and microarray analysis in murine embryonic fibroblast (MEF) cell lines lacking Alk5. Data from TGF-beta-stimulated Alk5(-/-) cells show them to be completely unaffected by TGF-beta. Additionally, 465 downstream targets of Alk5 signaling were identified when comparing Alk5(-/-) or TGF-beta-stimulated Alk5(+/+) MEFs with unstimulated Alk5(+/+) cells. Our results demonstrate that, in MEFs, TGF-beta signals exclusively through complexes involving Alk5, and give insight to its downstream effector genes.
Collapse
Affiliation(s)
- Göran Karlsson
- Department of Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Coronary artery disease accounts for 54% of all cardiovascular disease in the United States. Understanding how coronary vessels develop is likely to uncover novel drug targets and therapeutic strategies that will be useful in directing the repair or remodeling of coronary vessels in adults. Recent insights have identified the importance of cells derived from the proepicardium and epicardium in the formation of coronary vessels. This article reviews the basic steps in coronary vessel development, the molecules implicated in these steps, and the pressing questions awaiting answers.
Collapse
Affiliation(s)
- Harold E Olivey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
32
|
Person AD, Klewer SE, Runyan RB. Cell Biology of Cardiac Cushion Development. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 243:287-335. [PMID: 15797462 DOI: 10.1016/s0074-7696(05)43005-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The valves of the heart develop in the embryo from precursor structures called endocardial cushions. After cardiac looping, endocardial cushion swellings form and become populated by valve precursor cells formed by an epithelial-mesenchymal transition (EMT). Endocardial cushions subsequently undergo directed growth and remodeling to form the valvular structures and the membranous septa of the mature heart. The developmental processes that mediate cushion formation include many prototypic cellular actions including adhesion, signaling, migration, secretion, replication, differentiation, and apoptosis. Cushion morphogenesis is unique in that these cellular possesses occur in a functioning organ where the cushions act as valves even while developing into definitive valvular structures. Cardiovascular defects are the most common congenital defects, and one of the most common causes of death during infancy. Thus, there is significant interest in understanding the mechanisms that underlie this complex developmental process. In this regard, substantial progress has been made by incorporating an understanding of cardiac morphology and cell biology with the rapidly expanding repertoire of molecular mechanisms gained through human genetics and research using animal models. This article reviews cardiac morphogenesis as it relates to heart valve formation and highlights selected growth factors, intracellular signaling mediators, and extracellular matrix components involved in the creation and remodeling of endocardial cushions into mature cardiac structures.
Collapse
Affiliation(s)
- Anthony D Person
- Department of Cell Biology and Anatomy, University of Arizona School of Medicine, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
33
|
Kaartinen V, Dudas M, Nagy A, Sridurongrit S, Lu MM, Epstein JA. Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells. Development 2004; 131:3481-90. [PMID: 15226263 DOI: 10.1242/dev.01214] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac neural crest cells are multipotent migratory cells that contribute to the formation of the cardiac outflow tract and pharyngeal arch arteries. Neural crest-related developmental defects account for a large proportion of congenital heart disorders. Recently, the genetic bases for some of these disorders have been elucidated, and signaling pathways required for induction,migration and differentiation of cardiac neural crest have emerged. Bone morphogenetic proteins comprise a family of secreted ligands implicated in numerous aspects of organogenesis, including heart and neural crest development. However, it has remained generally unclear whether BMP ligands act directly on neural crest or cardiac myocytes during cardiac morphogenesis,or function indirectly by activating other cell types. Studies on BMP receptor signaling during organogenesis have been hampered by the fact that receptor knockouts often lead to early embryonic lethality. We have used a Cre/loxP system for neural crest-specific deletion of the type I receptor, ALK2, in mouse embryos. Mutant mice display cardiovascular defects, including persistent truncus arteriosus, and abnormal maturation of the aortic arch reminiscent of common forms of human congenital heart disease. Migration of mutant neural crest cells to the outflow tract is impaired, and differentiation to smooth muscle around aortic arch arteries is deficient. Moreover, in Alk2 mutants, the distal outflow tract fails to express Msx1, one of the major effectors of BMP signaling. Thus, the type I BMP receptor ALK2 plays an essential cell-autonomous role in the development of the cardiac outflow tract and aortic arch derivatives.
Collapse
Affiliation(s)
- Vesa Kaartinen
- Developmental Biology Program, The Saban Research Institute of Childrens' Hospital Los Angeles, Departments of Pathology and Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Sugi Y, Yamamura H, Okagawa H, Markwald RR. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol 2004; 269:505-18. [PMID: 15110716 DOI: 10.1016/j.ydbio.2004.01.045] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 11/21/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Transformation of endocardial endothelial cells into invasive mesenchyme is a critical antecedent of cardiac cushion tissue formation. The message for bone morphogenetic protein (BMP)-2 is known to be expressed in myocardial cells in a manner consistent with the segmental pattern of cushion formation [Development 109(1990) 833]. In the present work, we localized BMP-2 protein in atrioventricular (AV) myocardium in mice at embryonic day (ED) 8.5 (12 somite stage) before the onset of AV mesenchymal cell formation at ED 9.5. BMP-2 protein expression was absent from ventricular myocardium throughout the stages examined. After cellularization of the AV cushion at ED 10.5, myocardial BMP-2 protein expression was diminished in AV myocardium, whereas cushion mesenchymal cells started expressing BMP protein. Expression of BMP-2 in cushion mesenchyme persisted during later stages of development, ED 13.5-16, during valuvulogenesis. Intense expression of BMP-2 persisted in the valve tissue in adult mice. Based on the expression pattern, we performed a series of experiments to test the hypothesis that BMP-2 mediates myocardial regulation of cardiac cushion tissue formation in mice. When BMP-2 protein was added to the 16-18 somite stage (ED 9.25) AV endocardial endothelium in culture, cushion mesenchymal cells were formed in the absence of AV myocardium, which invaded into collagen gels and expressed the mesenchymal marker, smooth muscle (SM) alpha-actin; whereas the endothelial marker, PECAM-1, was lost from the invaded cells. In contrast, when noggin, a specific antagonist to BMPs, was applied together with BMP-2 to the culture medium, AV endothelial cells remained as an epithelial monolayer with little expression of SM alpha-actin, and expression of PECAM-1 was retained in the endocardial cells. When noggin was added to AV endothelial cells cocultured with associated myocardium, it blocked endothelial transformation to mesenchyme. AV endothelium treated with BMP-2 expressed elevated levels of TGFbeta-2 in the absence of myocardium, as observed in the endothelium cocultured with myocardium. BMP-2-supported elevation of TGFbeta-2 expression in endocardial cells was abolished by noggin treatment. These data indicated that BMP signaling is required in and BMP-2 is sufficient for myocardial segmental regulation of AV endocardial cushion mesenchymal cell formation in mice.
Collapse
Affiliation(s)
- Yukiko Sugi
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
35
|
Dudas M, Nagy A, Laping NJ, Moustakas A, Kaartinen V. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway. Dev Biol 2004; 266:96-108. [PMID: 14729481 DOI: 10.1016/j.ydbio.2003.10.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft palate is among the most common birth defects in humans, caused by a failure in the complex multistep developmental process of palatogenesis. It has been recently shown that transforming growth factor beta3 (Tgf-beta3) is an absolute requirement for successful palatal fusion, both in mice and humans. However, very little is known about the mechanisms of Tgf-beta3 signaling during this process. Here we show that putative Tgf-beta type I receptors, Alk-1, Alk-2, and Alk-5, are all endogenously expressed in the palatal epithelium. Activation of Alk-5 in the Tgf-beta3 (-/-) palatal epithelium is able to rescue palatal fusion, whereas inactivation of Alk-5 in the wild-type palatal epithelium prevents palatal fusion. The effect of Alk-2 is similar, but less pronounced. The induction of fusion by activation of Alk-5 or Alk-2 is stronger in the posterior parts of the palates at the embryonic day 14 (E14), while their activation at E13.5 also restores anterior fusion, reflecting the natural anterior-posterior direction of palate maturation in vivo. We also show that Smad2 is endogenously activated in the palatal midline epithelial seam (MES) during the fusion process. By using a mutant Alk-5 receptor that is an active kinase but is unable to activate Smads, we show that activation of Smad-independent Tgf-beta responses is not sufficient to induce fusion of shelves deficient in Tgf-beta3. Based on these observations, we conclude that the Smad2-dependent Alk-5 signaling pathway is dominant in palatal fusion driven by Tgf-beta3.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, Department of Pathology of University of Southern California, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Mark W Majesky
- Departments of Medicine and Genetics, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
37
|
Abstract
Transforming growth factor-beta (TGF-beta) proteins regulate cell function, and have key roles in development and carcinogenesis. The intracellular effectors of TGF-beta signalling, the Smad proteins, are activated by receptors and translocate into the nucleus, where they regulate transcription. Although this pathway is inherently simple, combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smad-interacting proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF-beta family responses. Other signalling pathways further regulate Smad activation and function. In addition, TGF-beta receptors activate Smad-independent pathways that not only regulate Smad signalling, but also allow Smad-independent TGF-beta responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Growth and Development, University of California at San Francisco, San Francisco, California 94143-0640, USA.
| | | |
Collapse
|
38
|
Zhang D, Schwarz EM, Rosier RN, Zuscik MJ, Puzas JE, O'Keefe RJ. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development. J Bone Miner Res 2003; 18:1593-604. [PMID: 12968668 DOI: 10.1359/jbmr.2003.18.9.1593] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Growth plate chondrocytes integrate multiple signals during normal development. The type I BMP receptor ALK2 is expressed in cartilage and expression of constitutively active (CA) ALK2 and other activated type I BMP receptors results in maturation-independent expression of Ihh in chondrocytes in vitro and in vivo. The findings suggest that BMP signaling modulates the Ihh/PTHrP signaling pathway that regulates the rate of chondrocyte differentiation. INTRODUCTION Bone morphogenetic proteins (BMPs) have an important role in vertebrate limb development. The expression of the BMP type I receptors BMPR-IA (ALK3) and BMPR-IB (ALK6) have been more completely characterized in skeletal development than ALK2. METHODS ALK2 expression was examined in vitro in isolated chick chondrocytes and osteoblasts and in vivo in the developing chick limb bud. The effect of overexpression of CA ALK2 and the other type I BMP receptors on the expression of genes involved in chondrocyte maturation was determined. RESULTS ALK2 was expressed in isolated chick osteoblasts and chondrocytes and specifically mediated BMP signaling. In the developing chick limb bud, ALK2 was highly expressed in mesenchymal soft tissues. In skeletal elements, expression was higher in less mature chondrocytes than in chondrocytes undergoing terminal differentiation. CA ALK2 misexpression in vitro enhanced chondrocyte maturation and induced Ihh. Surprisingly, although parathyroid hormone-related peptide (PTHrP) strongly inhibited CA ALK2 mediated chondrocyte differentiation, Ihh expression was minimally decreased. CA ALK2 viral infection in stage 19-23 limbs resulted in cartilage expansion with joint fusion. Enhanced periarticular expression of PTHrP and delayed maturation of the cartilage elements were observed. In the cartilage element, CA ALK2 misexpression precisely colocalized with the expression with Ihh. These findings were most evident in partially infected limbs where normal morphology was maintained. In contrast, BMP-6 had a normal pattern of differentiation-related expression. CA BMPR-IA and CA BMPR-IB overexpression similarly induced Ihh and PTHrP. CONCLUSIONS The findings show that BMP signaling induces Ihh. Although the colocalization of the activated type I receptors and Ihh suggests a direct BMP-mediated signaling event, other indirect mechanisms may also be involved. Thus, while BMPs act directly on chondrocytes to induce maturation, this effect is counterbalanced in vivo by induction of the Ihh/PTHrP signaling loop. The findings suggest that BMPs are integrated into the Ihh/PTHrP signaling loop and that a fine balance of BMP signaling is essential for normal chondrocyte maturation and skeletal development.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Animals
- Animals, Genetically Modified
- Base Sequence
- Bone Development/genetics
- Bone Development/physiology
- Bone Morphogenetic Protein Receptors, Type I
- Cartilage/abnormalities
- Cartilage/embryology
- Cartilage/metabolism
- Cell Differentiation
- Cells, Cultured
- Chick Embryo
- Chondrocytes/cytology
- Chondrocytes/metabolism
- Chondrogenesis
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Hedgehog Proteins
- In Situ Hybridization
- Parathyroid Hormone-Related Protein/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteins
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Transfection
Collapse
Affiliation(s)
- Donghui Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Congenital heart defects, the leading cause of deaths from birth defects, are estimated to occur in close to 1% of live newborns. Among these, abnormal septation of the heart and valve anomalies are the most frequent forms. Despite progress defining several genes involved in normal heart development, we still have a limited understanding of the signaling pathways involved in morphogenesis of the outflow tract (OFT) and, to date, very few genes have been identified that are responsible for defects in humans. Bone Morphogenetic Protein (BMP) signaling pathways are emerging as vital regulators of multiple aspects of cardiogenesis, including the septation of the OFT and valve maturation. Genetic and other in vivo evidence is now supporting the role for BMPs as inducers of endocardial cushion epithelial-to-mesenchymal transformation that was suggested by in vitro explant studies as well as by their patterns of expression in the developing heart. Here, we review briefly the in vitro data, and detail the novel mouse models where perturbed BMP signaling pathways result in impaired OFT septation and semilunar valvulogenesis. We propose that growth of the OFT valve cushions is regulated by the level of BMP signaling, under the control of other signaling pathways.
Collapse
Affiliation(s)
- Emmanuèle C Délot
- Department of Pediatrics, Geffen School of Medicine at UCLA, Pediatric Cardiology, MRL 3-762, 675 Charles E Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Slappey SN, Davis AJ. Expression pattern of messenger ribonucleic acid for the activin type II receptors and the inhibin/activin subunits during follicular development in broiler breeder hens. Poult Sci 2003; 82:338-44. [PMID: 12619813 DOI: 10.1093/ps/82.2.338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expression of mRNA for the activin type II receptors (ActRII and ActRIIB), follistatin, and the inhibin/activin subunits was investigated in the follicles of broiler breeder hens. Total RNA was isolated from individual granulosa and theca layers of the F1 through F5 follicles, a pool of the F6 and F7 follicles, the small yellow follicles, and from the combined granulosa and theca layers of the large white follicles from six birds. Northern blot analysis was performed, and two ActRII mRNA transcripts of 6.5 and 3.7 kb were detected in granulosa and theca samples. Both ActRII transcripts were equally expressed in the granulosa samples, but in the theca samples expression of the 3.7-kb transcript was greater than the 6.5-kb transcript. ActRIIB was not detected by Northern analysis in any of the samples. Expression of the mRNA for the activin/inhibin binding protein, follistatin, was detected in theca and granulosa samples with the greatest expression found in small yellow follicle samples for both cell layers. Expression of the inhibin alpha-subunit was detected in the granulosa layer of all the follicles, but expression was greatest in the F6 and F7 follicles. Granulosa from the large hierarchical follicles expressed the most inhibin/activin betaA-subunit, whereas expression of the inhibin/activin betaB-subunit was greatest in the granulosa of small yellow and F6 and F7 follicles. This report is the first, to our knowledge, on detection of activin type II receptor mRNA in the hen ovary and characterization of the expression pattern of the inhibin family in both the theca and granulosa layers throughout follicular development. The presence of activin receptor and follistatin mRNA in the theca and granulosa layers of the small developing follicles suggests that locally produced activin may be highly regulated and have a vital role in early follicular development.
Collapse
Affiliation(s)
- S N Slappey
- Department of Poultry Science, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
41
|
Barnett JV, Desgrosellier JS. Early events in valvulogenesis: a signaling perspective. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:58-72. [PMID: 12768658 DOI: 10.1002/bdrc.10006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper formation and function of the vertebrate heart requires a multitude of specific cell and tissue interactions. These interactions drive the early specification and assembly of components of the cardiovascular system that lead to a functioning system before the attainment of the definitive cardiac and vascular structures seen in the adult. Many of these adult structures are hypothesized to require both proper molecular and physical cues to form correctly. Unlike any other organ system in the embryo, the cardiovascular system requires concurrent function and formation for the embryo to survive. An example of this complex interaction between molecular and physical cues is the formation of the valves of the heart. Both molecular cues that regulate cell transformation, migration, and extracellular matrix deposition, and physical cues emanating from the beating heart, as well as hemodynamic forces, are required for valvulogenesis. This review will focus on molecules and emerging pathways that guide early events in valvulogenesis.
Collapse
Affiliation(s)
- Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Room 476, Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232-6600, USA.
| | | |
Collapse
|
42
|
Ward SM, Desgrosellier JS, Zhuang X, Barnett JV, Galper JB. Transforming growth factor beta (TGFbeta ) signaling via differential activation of activin receptor-like kinases 2 and 5 during cardiac development. Role in regulating parasympathetic responsiveness. J Biol Chem 2002; 277:50183-9. [PMID: 12393881 DOI: 10.1074/jbc.m209668200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known regarding factors that induce parasympathetic responsiveness during cardiac development. We demonstrated previously that in atrial cells cultured from chicks 14 days in ovo, transforming growth factor beta (TGFbeta) decreased parasympathetic inhibition of beat rate by the muscarinic agonist, carbamylcholine, by 5-fold and decreased expression of Galpha(i2). Here in atrial cells 5 days in ovo, TGFbeta increased carbamylcholine inhibition of beat rate 2.5-fold and increased expression of Galpha(i2). TGFbeta also stimulated Galpha(i2) mRNA expression and promoter activity at day 5 while inhibiting them at day 14 in ovo. Over the same time course expression of type I TGFbeta receptors, chick activin receptor-like kinase 2 and 5 increased with a 2.3-fold higher increase in activin receptor-like kinase 2. Constitutively active activin receptor-like kinase 2 inhibited Galpha(i2) promoter activity, whereas constitutively active activin receptor-like kinase 5 stimulated Galpha(i2) promoter activity independent of embryonic age. In 5-day atrial cells, TGFbeta stimulated the p3TP-lux reporter, which is downstream of activin receptor-like kinase 5 and had no effect on the activity of the pVent reporter, which is downstream of activin receptor-like kinase 2. In 14-day cells, TGFbeta stimulated both pVent and p3TP-lux. Thus TGFbeta exerts opposing effects on parasympathetic response and Galpha(i2) expression by activating different type I TGFbeta receptors at distinct stages during cardiac development.
Collapse
Affiliation(s)
- Simone M Ward
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Transforming growth factor-betas (TGF-betas) regulate pivotal cellular processes such as proliferation, differentiation and apoptosis. After ligand binding, the signals are transmitted by two types of transmembrane serine/threonine kinase receptors. The type I receptor phosphorylates Smad proteins, intracellular effectors which upon oligomerization enter the nucleus to regulate transcription following assembly with transcriptional co-factors and co-modulators. The cellular distribution of TGF-beta receptors along with their oligomerization mode and their complex formation with different cell surface receptors represent crucial steps in determining the initiation of distinct signalling cascades. In addition, the broad array of intracellular proteins that influence the TGF-beta pathway demonstrates that signal transduction does not proceed in a linear fashion but rather comprises a complex network of cascades that mutually influence each other. The present review describes the intricate control of TGF-beta signal transduction on various levels of the cascade with particular focus (i) on the assembly of different receptor subtypes and (ii) on the multitude of crosstalk with signal transducers from other pathways. Integration of the TGF-beta/Smad pathway into the signalling network has taken on added importance as it substantially contributes to elicit the plethora of cell- and tissue-specific effects of TGF-beta.
Collapse
Affiliation(s)
- Marion Lutz
- Department of Physiological Chemistry II, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
44
|
Camenisch TD, Molin DGM, Person A, Runyan RB, Gittenberger-de Groot AC, McDonald JA, Klewer SE. Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 2002; 248:170-81. [PMID: 12142029 DOI: 10.1006/dbio.2002.0731] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of endocardial cushions in the atrioventricular (AV) canal of the rudimentary heart requires epithelial-to-mesenchymal cell transformation (EMT). This is a complex developmental process regulated by multiple extracellular signals and transduction pathways. A collagen gel assay, long used to examine endocardial cushion development in avian models, is now being employed to investigate genetically engineered mouse models with abnormal heart morphogenesis. In this study, we determine interspecies variations for avian and mouse cultured endocardial cushion explants. Considering these observed morphologic differences, we also define the temporal requirements for TGFbeta2 and TGFbeta3 during mouse endocardial cushion morphogenesis. TGFbeta2 and TGFbeta3 blocking antibodies inhibit endothelial cell activation and transformation, respectively, in avian explants. In contrast, neutralizing TGFbeta2 inhibits cell transformation in the mouse, while TGFbeta3 antibodies have no effect on activation or transformation events. This functional requirement for TGFbeta2 is concomitant with expression of TGFbeta2, but not TGFbeta3, within mouse endocardial cushions at a time coincident with transformation. Thus, both TGFbeta2 and TGFbeta3 appear necessary for the full morphogenetic program of EMT in the chick, but only TGFbeta2 is expressed and obligatory for mammalian endocardial cushion cell transformation.
Collapse
Affiliation(s)
- Todd D Camenisch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ 85259, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gaussin V, Van de Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer RR, Schneider MD. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A 2002; 99:2878-83. [PMID: 11854453 PMCID: PMC122441 DOI: 10.1073/pnas.042390499] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Receptors for bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGFbeta) superfamily, are persistently expressed during cardiac development, yet mice lacking type II or type IA BMP receptors die at gastrulation and cannot be used to assess potential later roles in creation of the heart. Here, we used a Cre/lox system for cardiac myocyte-specific deletion of the type IA BMP receptor, ALK3. ALK3 was specifically required at mid-gestation for normal development of the trabeculae, compact myocardium, interventricular septum, and endocardial cushion. Cardiac muscle lacking ALK3 was specifically deficient in expressing TGFbeta2, an established paracrine mediator of cushion morphogenesis. Hence, ALK3 is essential, beyond just the egg cylinder stage, for myocyte-dependent functions and signals in cardiac organogenesis.
Collapse
Affiliation(s)
- Vinciane Gaussin
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Roberts AB, Derynck R. Meeting report: signaling schemes for TGF-beta. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:pe43. [PMID: 11752631 DOI: 10.1126/stke.2001.113.pe43] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of signaling molecules regulates many developmental processes in a range of organisms from worms to humans. Understanding the mechanisms by which they exert their repertoire of effects has required identification of the components of signaling pathways that they control. Roberts and Derynck focus on this aspect of TGF-beta biology in their review of a recent Federation of American Societies for Experimental Biology (FASEB) meeting on TGF-beta signaling and development and summarize current signaling paradigms and future prospects in TGF-beta signaling from the cell surface to the nucleus.
Collapse
Affiliation(s)
- A B Roberts
- The Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892-5055, USA.
| | | |
Collapse
|
48
|
Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 2001; 235:449-66. [PMID: 11437450 DOI: 10.1006/dbio.2001.0284] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mature heart valves and septa are derived from the cardiac cushions which initially form as local outgrowths of mesenchymal cells within the outflow tract and atrioventricular regions. Endocardial cells respond to signals from the overlying myocardium and undergo an epithelial-to-mesenchymal transformation to invade the intervening extracellular matrix. The molecules that can induce and maintain these cell populations are not known, but many candidates, including several TGFbetas and BMPs, have been proposed based on their expression patterns and activities in other systems. In the present study, we describe the expression of Bmp6 and Bmp7 in overlapping and adjacent sites, including the cardiac cushions during mouse embryonic development. Previous analyses demonstrate that neither of these BMPs is required during cardiogenesis, but analysis of Bmp6;Bmp7 double mutants uncovers a marked delay in the formation of the outflow tract endocardial cushions. A proportion of Bmp6;Bmp7 mutants also display defects in valve morphogenesis and chamber septation, and the embryos die between 10.5 and 15.5 dpc due to cardiac insufficiency. These data provide the first genetic evidence that BMPs are involved in the formation of the cardiac cushions.
Collapse
Affiliation(s)
- R Y Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
49
|
Dünker N, Krieglstein K. Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6982-8. [PMID: 11106407 DOI: 10.1046/j.1432-1327.2000.01825.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factors-beta (TGF-beta) are multifunctional molecules with profound biological effects in many developmental processes including regulation of cell proliferation, differentiation, cell adhesion, skeletal development, haematopoiesis, inflammatory responses, and wound healing. To learn about the role of TGF-beta in vivo, phenotypes of targeted mutations of molecules within the TGF-beta signalling pathway, TGF-beta1, -beta2, -beta3, TGF-beta receptor (TbetaR-II) and the signalling molecules SMAD2, SMAD3 and SMAD4, are discussed in this review. The three individual TGF-beta mutants show distinct and only partially overlapping phenotypes. In mice, targeted disruption of the TGF-beta1 gene results in diffuse and lethal inflammation about 3 weeks after birth, suggesting a prominent role of TGF-beta in the regulation of immune cell proliferation and extravasation into tissues. However, just half of the TGF-beta1 (-/-) conceptuses actually reach partuition due to defective haematopoiesis and endothelial differentiation. Targeted disruption of both TGF-beta2 and TGF-beta3 genes results in perinatal lethality. TGF-beta2 null mice exhibit a broad range of developmental defects, including cardiac, lung, craniofacial, limb, eye, ear and urogenital defects, whereas TGF-beta3 gene ablation results exclusively in defective palatogenesis and delayed pulmonary development. The TbetaR-II null phenotype closely resembles that of TGF-beta1 (-/-) conceptuses, which die in utero by E10.5. Loss of SMAD2 or SMAD4 results in related phenotypes: the mutants fail to form an organized egg cylinder, lack mesoderm required for gastrulation and die prior to E8.5. Together, gene ablation within the TGF-beta signalling pathway supports the notion of a prominent role of TGF-beta during development.
Collapse
Affiliation(s)
- N Dünker
- University of Saarland, Department of Anatomy, Homburg/Saar, Germany
| | | |
Collapse
|