1
|
Sarusie MVK, Rönnbäck C, Jespersgaard C, Baungaard S, Ali Y, Kessel L, Christensen ST, Brøndum-Nielsen K, Møllgård K, Rosenberg T, Larsen LA, Grønskov K. A novel GFAP frameshift variant identified in a family with optico-retinal dysplasia and vision impairment. Hum Mol Genet 2024:ddae134. [PMID: 39471354 DOI: 10.1093/hmg/ddae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
Gain-of-function variants in GFAP leads to protein aggregation and is the cause of the severe neurodegenerative disorder Alexander Disease (AxD), while loss of GFAP function has been considered benign. Here, we investigated a six-generation family, where multiple individuals presented with gliosis of the optic nerve head and visual impairment. Whole genome sequencing (WGS) revealed a frameshift variant in GFAP (c.928dup, p.(Met310Asnfs*113)) segregating with disease. Analysis of human embryonic tissues revealed strong expression of GFAP in retinal neural progenitors. A zebrafish model verified that c.928dup does not result in extensive GFAP protein aggregation and zebrafish gfap loss-of-function mutants showed vision impairment and retinal dysplasia, characterized by a significant loss of Müller glia cells and photoreceptor cells. Our findings show how different mutational mechanisms can cause diverging phenotypes and reveal a novel function of GFAP in vertebrate eye development.
Collapse
Affiliation(s)
- Menachem V K Sarusie
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Cecilia Rönnbäck
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Cathrine Jespersgaard
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Sif Baungaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yeasmeen Ali
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Karen Brøndum-Nielsen
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Valdemar Hansens Vej 13, 2600 Glostrup, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Kennedy Center, Rigshospitalet, University of Copenhagen, Gamle Landevej 7, 2600 Glostrup, Denmark
| |
Collapse
|
2
|
Herrera ML, Silva S, Berrosteguieta I, Casanova G, Rosillo JC, Fernández AS. Rod precursors in the adult retina of the Austrolebias charrua annual fish. Tissue Cell 2023; 83:102150. [PMID: 37423033 DOI: 10.1016/j.tice.2023.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Rod photoreceptors in the adult teleost retina are produced by rod precursors located in the outer nuclear layer (ONL). Annual fishes of the genus Austrolebias exhibit extensive adult retinal cell proliferation and neurogenesis, as well as surprising adaptive strategies to their extreme and changing environment, including adult retinal plasticity. Thus, here we identify and characterize rod precursors in the ONL of the Austrolebias charrua retina. For this aim we used classical histological techniques, transmission electron microscopy, detection of cell proliferation, and immunohistochemistry. Through these complementary approaches, we describe a cell population clearly distinguishable from photoreceptors in the ONL of the adult retina of A. charrua, which we propose corresponds to the rod precursor population. These cells exhibited particular morphological and ultrastructural characteristics, uptake of cell proliferation markers (BrdU+) and expression of stem cell markers (Sox2+). Determining the existence of the population of rod precursors is crucial to understand the sequence of events related to retinal plasticity and regeneration.
Collapse
Affiliation(s)
- M L Herrera
- Departamento Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600 Montevideo, Uruguay; Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - S Silva
- Departamento Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600 Montevideo, Uruguay
| | - I Berrosteguieta
- Departamento Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600 Montevideo, Uruguay
| | - G Casanova
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - J C Rosillo
- Departamento Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600 Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay.
| | - A S Fernández
- Departamento Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
3
|
Martins RR, Zamzam M, Tracey-White D, Moosajee M, Thummel R, Henriques CM, MacDonald RB. Müller Glia maintain their regenerative potential despite degeneration in the aged zebrafish retina. Aging Cell 2022; 21:e13597. [PMID: 35315590 PMCID: PMC9009236 DOI: 10.1111/acel.13597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ageing is a significant risk factor for degeneration of the retina. Müller glia cells (MG) are key for neuronal regeneration, so harnessing the regenerative capacity of MG in the retina offers great promise for the treatment of age-associated blinding conditions. Yet, the impact of ageing on MG regenerative capacity is unclear. Here, we show that the zebrafish retina undergoes telomerase-independent, age-related neurodegeneration but that this is insufficient to stimulate MG proliferation and regeneration. Instead, age-related neurodegeneration is accompanied by MG morphological aberrations and loss of vision. Mechanistically, yes-associated protein (Yap), part of the Hippo signalling, has been shown to be critical for the regenerative response in the damaged retina, and we show that Yap expression levels decline with ageing. Despite this, morphologically and molecularly altered aged MG retain the capacity to regenerate neurons after acute light damage, therefore, highlighting key differences in the MG response to high-intensity acute damage versus chronic neuronal loss in the zebrafish retina.
Collapse
Affiliation(s)
- Raquel R Martins
- The Bateson Centre, Healthy Lifespan Institute, MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Mazen Zamzam
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,The Francis Crick Institute, London, UK
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Catarina M Henriques
- The Bateson Centre, Healthy Lifespan Institute, MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing and Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Ryan B MacDonald
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Berrosteguieta I, Rosillo JC, Herrera ML, Olivera-Bravo S, Casanova G, Herranz-Pérez V, García-Verdugo JM, Fernández AS. Plasticity of cell proliferation in the retina of Austrolebias charrua fish under light and darkness conditions. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100042. [DOI: 10.1016/j.crneur.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022] Open
|
5
|
Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. Int J Mol Sci 2021; 22:ijms222111715. [PMID: 34769146 PMCID: PMC8583983 DOI: 10.3390/ijms222111715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023] Open
Abstract
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3–4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.
Collapse
|
6
|
Vigouroux RJ, Duroure K, Vougny J, Albadri S, Kozulin P, Herrera E, Nguyen-Ba-Charvet K, Braasch I, Suárez R, Del Bene F, Chédotal A. Bilateral visual projections exist in non-teleost bony fish and predate the emergence of tetrapods. Science 2021; 372:150-156. [PMID: 33833117 DOI: 10.1126/science.abe7790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022]
Abstract
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here we show that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. We also report that the developmental program that specifies visual system laterality differs between fishes and mammals, as the Zic2 transcription factor, which specifies ipsilateral retinal ganglion cells in tetrapods, appears to be absent from fish ganglion cells. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods.
Collapse
Affiliation(s)
- Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Karine Duroure
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Peter Kozulin
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Eloisa Herrera
- Instituto de Neurociencias, Av. Ramón y Cajal s/n, San Juan de Alicante, 03550 Spain
| | - Kim Nguyen-Ba-Charvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Building 79, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
| |
Collapse
|
7
|
Zupanc GKH. Adult neurogenesis in the central nervous system of teleost fish: from stem cells to function and evolution. J Exp Biol 2021; 224:258585. [PMID: 33914040 DOI: 10.1242/jeb.226357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult neurogenesis, the generation of functional neurons from adult neural stem cells in the central nervous system (CNS), is widespread, and perhaps universal, among vertebrates. This phenomenon is more pronounced in teleost fish than in any other vertebrate taxon. There are up to 100 neurogenic sites in the adult teleost brain. New cells, including neurons and glia, arise from neural stem cells harbored both in neurogenic niches and outside these niches (such as the ependymal layer and parenchyma in the spinal cord, respectively). At least some, but not all, of the stem cells are of astrocytic identity. Aging appears to lead to stem cell attrition in fish that exhibit determinate body growth but not in those with indeterminate growth. At least in some areas of the CNS, the activity of the neural stem cells results in additive neurogenesis or gliogenesis - tissue growth by net addition of cells. Mathematical and computational modeling has identified three factors to be crucial for sustained tissue growth and correct formation of CNS structures: symmetric stem cell division, cell death and cell drift due to population pressure. It is hypothesized that neurogenesis in the CNS is driven by continued growth of corresponding muscle fibers and sensory receptor cells in the periphery to ensure a constant ratio of peripheral versus central elements. This 'numerical matching hypothesis' can explain why neurogenesis has ceased in most parts of the adult CNS during the evolution of mammals, which show determinate growth.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Nagashima M, Hitchcock PF. Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells 2021; 10:cells10040783. [PMID: 33916186 PMCID: PMC8066466 DOI: 10.3390/cells10040783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to regenerate tissues varies between species and between tissues within a species. Mammals have a limited ability to regenerate tissues, whereas zebrafish possess the ability to regenerate almost all tissues and organs, including fin, heart, kidney, brain, and retina. In the zebrafish brain, injury and cell death activate complex signaling networks that stimulate radial glia to reprogram into neural stem-like cells that repair the injury. In the retina, a popular model for investigating neuronal regeneration, Müller glia, radial glia unique to the retina, reprogram into stem-like cells and undergo a single asymmetric division to generate multi-potent retinal progenitors. Müller glia-derived progenitors then divide rapidly, numerically matching the magnitude of the cell death, and differentiate into the ablated neurons. Emerging evidence reveals that inflammation plays an essential role in this multi-step process of retinal regeneration. This review summarizes the current knowledge of the inflammatory events during retinal regeneration and highlights the mechanisms whereby inflammatory molecules regulate the quiescence and division of Müller glia, the proliferation of Müller glia-derived progenitors and the survival of regenerated neurons.
Collapse
|
9
|
Sabry DA, El-Badry D. Altered retina and cornea of Clarias gariepinus (Siluriformes: Clariidae) under the effect of bright and dim lights. ZOOLOGIA 2020. [DOI: 10.3897/zoologia.37.e51603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study was to investigate the influence of constant bright light on the cornea and retina of Clarias gariepinus (Burchell, 1822) and to examine whether it can change after constant exposure to dim light. Twenty-one adult individuals of C. gariepinus were divided into three groups (n = 7). The first group was maintained under normal light (NL). The second group was exposed to the intense bright light (BL) (3020 Lux) of white light lamps for seven days. The third group was exposed to dim light for seven days (DL) following the previous exposure to intense bright light for seven days. The eyes of each fish group were removed and fixed. The following aspects of the eye were investigated: histopathological, immunohistochemical (GFAP and BAX) staining and biochemical study for lactic dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA) and glucose-6-phosphate-dehydrogenase (G6PDH). Also, isoenzyme electrophoresis of LDH, G6PDH and SOD were performed. The present study found that, seven-days BL exposure caused damage to both cornea and retina. However, after exposure to dim-light after bright light there was partial improvement in corneal and retinal structure and an increase in the assayed SOD and G6PDH levels, along with a reduction in MDA content and activity of LDH. These findings demonstrate a plasticity that may help C. gariepinus survive disturbances in the aquatic environment.
Collapse
|
10
|
Midkine-a functions as a universal regulator of proliferation during epimorphic regeneration in adult zebrafish. PLoS One 2020; 15:e0232308. [PMID: 32530962 PMCID: PMC7292404 DOI: 10.1371/journal.pone.0232308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Zebrafish have the ability to regenerate damaged cells and tissues by activating quiescent stem and progenitor cells or reprogramming differentiated cells into regeneration-competent precursors. Proliferation among the cells that will functionally restore injured tissues is a fundamental biological process underlying regeneration. Midkine-a is a cytokine growth factor, whose expression is strongly induced by injury in a variety of tissues across a range of vertebrate classes. Using a zebrafish Midkine-a loss of function mutant, we evaluated regeneration of caudal fin, extraocular muscle and retinal neurons to investigate the function of Midkine-a during epimorphic regeneration. In wildtype zebrafish, injury among these tissues induces robust proliferation and rapid regeneration. In Midkine-a mutants, the initial proliferation in each of these tissues is significantly diminished or absent. Regeneration of the caudal fin and extraocular muscle is delayed; regeneration of the retina is nearly completely absent. These data demonstrate that Midkine-a is universally required in the signaling pathways that convert tissue injury into the initial burst of cell proliferation. Further, these data highlight differences in the molecular mechanisms that regulate epimorphic regeneration in zebrafish.
Collapse
|
11
|
Abstract
In humans, various genetic defects or age-related diseases, such as diabetic retinopathies, glaucoma, and macular degeneration, cause the death of retinal neurons and profound vision loss. One approach to treating these diseases is to utilize stem and progenitor cells to replace neurons in situ, with the expectation that new neurons will create new synaptic circuits or integrate into existing ones. Reprogramming non-neuronal cells in vivo into stem or progenitor cells is one strategy for replacing lost neurons. Zebrafish have become a valuable model for investigating cellular reprogramming and retinal regeneration. This review summarizes our current knowledge regarding spontaneous reprogramming of Müller glia in zebrafish and compares this knowledge to research efforts directed toward reprogramming Müller glia in mammals. Intensive research using these animal models has revealed shared molecular mechanisms that make Müller glia attractive targets for cellular reprogramming and highlighted the potential for curing degenerative retinal diseases from intrinsic cellular sources.
Collapse
Affiliation(s)
- Manuela Lahne
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; ,
| | - David R Hyde
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA; , .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA; , .,Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
12
|
Hussein MNA, Cao X, Elokil AA, Huang S. Characterisation of stem and proliferating cells on the retina and lens of loach Misgurnus anguillicaudatus. JOURNAL OF FISH BIOLOGY 2020; 96:102-110. [PMID: 31674006 DOI: 10.1111/jfb.14189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The eye of the fish has a lifelong persistent neurogenesis unlike eye of mammals, so it's highly interesting to study retinal neurogenesis and its genetic control to give complete knowledge about the cause of this property in fish in comparison to mammals. We performed fluorescent in situ hybridisation for loach Misgurnus anguillicaudatus bmi1, msi1 and sox2 genes, which are used as an indicator of the sites of multipotent stem cells. Proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BRDU) and KI67 markers were used as indicators of proliferating cells and glial fibrillary acidic protein (GFAP) immunofluorescence was used for detection of the glial property of cells, as well as, immunohistochemistry detected the role of peroxisome proliferator-activated receptor (PPAR)α and γ in retinal neurogenesis. Our results determined that the lens and the retina of loach M. anguillicaudatus contain proliferative and pluripotent stem cells that have both glial and neuroepithelial properties, which add new cells continuously throughout life even without injury-induced proliferation. The PPARα has an essential function in providing energy supply for retinal neurogenesis more than PPARγ.
Collapse
Affiliation(s)
- Mona N A Hussein
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Abdelmotaleb A Elokil
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Productions Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
13
|
DeOliveira-Mello L, Lara JM, Arevalo R, Velasco A, Mack AF. Sox2 expression in the visual system of two teleost species. Brain Res 2019; 1722:146350. [DOI: 10.1016/j.brainres.2019.146350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
14
|
Lessieur EM, Song P, Nivar GC, Piccillo EM, Fogerty J, Rozic R, Perkins BD. Ciliary genes arl13b, ahi1 and cc2d2a differentially modify expression of visual acuity phenotypes but do not enhance retinal degeneration due to mutation of cep290 in zebrafish. PLoS One 2019; 14:e0213960. [PMID: 30970040 PMCID: PMC6457629 DOI: 10.1371/journal.pone.0213960] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 01/11/2023] Open
Abstract
Mutations in the gene Centrosomal Protein 290 kDa (CEP290) result in multiple ciliopathies ranging from the neonatal lethal disorder Meckel-Gruber Syndrome to multi-systemic disorders such as Joubert Syndrome and Bardet-Biedl Syndrome to nonsyndromic diseases like Leber Congenital Amaurosis (LCA) and retinitis pigmentosa. Results from model organisms and human genetics studies, have suggest that mutations in genes encoding protein components of the transition zone (TZ) and other cilia-associated proteins can function as genetic modifiers and be a source for CEP290 pleiotropy. We investigated the zebrafish cep290fh297/fh297 mutant, which encodes a nonsense mutation (p.Q1217*). This mutant is viable as adults, exhibits scoliosis, and undergoes a slow, progressive cone degeneration. The cep290fh297/fh297 mutants showed partial mislocalization of the transmembrane protein rhodopsin but not of the prenylated proteins rhodopsin kinase (GRK1) or the rod transducin subunit GNB1. Surprisingly, photoreceptor degeneration did not trigger proliferation of Müller glia, but proliferation of rod progenitors in the outer nuclear layer was significantly increased. To determine if heterozygous mutations in other cilia genes could exacerbate retinal degeneration, we bred cep290fh297/fh297 mutants to arl13b, ahi1, and cc2d2a mutant zebrafish lines. While cep290fh297/fh297 mutants lacking a single allele of these genes did not exhibit accelerated photoreceptor degeneration, loss of one alleles of arl13b or ahi1 reduced visual performance in optokinetic response assays at 5 days post fertilization. Our results indicate that the cep290fh297/fh297 mutant is a useful model to study the role of genetic modifiers on photoreceptor degeneration in zebrafish and to explore how progressive photoreceptor degeneration influences regeneration in adult zebrafish.
Collapse
Affiliation(s)
- Emma M. Lessieur
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Gabrielle C. Nivar
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ellen M. Piccillo
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Richard Rozic
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian D. Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
15
|
Grigoryan EN. Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041901003x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Lahne M, Piekos SM, O'Neill J, Ackerman KM, Hyde DR. Photo-regulation of rod precursor cell proliferation. Exp Eye Res 2018; 178:148-159. [PMID: 30267656 DOI: 10.1016/j.exer.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 11/29/2022]
Abstract
Teleosts are unique in their ability to undergo persistent neurogenesis and to regenerate damaged and lost retinal neurons in adults. This contrasts with the human retina, which is incapable of replacing lost retinal neurons causing vision loss/blindness in the affected individuals. Two cell populations within the adult teleost retina generate new retinal neurons throughout life. Stem cells within the ciliary marginal zone give rise to all retinal cell types except for rod photoreceptors, which are produced by the resident Müller glia that are located within the inner nuclear layer of the entire retina. Understanding the mechanisms that regulate the generation of photoreceptors in the adult teleost retina may ultimately aid developing strategies to overcome vision loss in diseases such as retinitis pigmentosa. Here, we investigated whether photic deprivation alters the proliferative capacity of rod precursor cells, which are generated from Müller glia. In dark-adapted retinas, rod precursor cell proliferation increased, while the number of proliferating Müller glia and their derived olig2:EGFP-positive neuronal progenitor cells was not significantly changed. Cell death of rod photoreceptors was excluded as the inducer of rod precursor cell proliferation, as the number of TUNEL-positive cells and l-plastin-positive microglia in both the outer (ONL) and inner nuclear layer (INL) remained at a similar level throughout the dark-adaptation timecourse. Rod precursor cell proliferation in response to dark-adaptation was characterized by an increased number of EdU-positive cells, i.e. cells that were undergoing DNA replication. These proliferating rod precursor cells in dark-adapted zebrafish differentiated into rod photoreceptors at a comparable percentage and in a similar time frame as those maintained under standard light conditions suggesting that the cell cycle did not stall in dark-adapted retinas. Inhibition of IGF1-receptor signaling reduced the dark-adaptation-mediated proliferation response; however, caloric restriction which has been suggested to be integrated by the IGF1/growth hormone signaling axis did not influence rod precursor cell proliferation in dark-adapted retinas, as similar numbers were observed in starved and normal fed zebrafish. In summary, photic deprivation induces cell cycle entry of rod precursor cells via IGF1-receptor signaling independent of Müller glia proliferation.
Collapse
Affiliation(s)
- Manuela Lahne
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha M Piekos
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - John O'Neill
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kristin M Ackerman
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David R Hyde
- Department of Biological Sciences, The Center for Stem Cells and Regenerative Medicine and The Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
17
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Saha A, Tiwari S, Dharmarajan S, Otteson DC, Belecky-Adams TL. Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr Patterns 2018; 30:37-48. [PMID: 30179675 DOI: 10.1016/j.gep.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The acetylation state of histones has been used as an indicator of the developmental state of progenitor and differentiating cells. The goal of this study was to determine the nuclear localization patterns of Class I histone deacetylases (HDACs) in retinal progenitor cells (RPCs) and retinal ganglion cells (RGCs), as the first step in understanding their potential importance in cell fate determination within the murine retina. RESULTS The only HDAC to label RPC nuclei at E16 and P5 was HDAC1. In contrast, there was generally increased nuclear localization of all Class I HDACs in differentiating RGCs. Between P5 and P30, SOX2 expression becomes restricted to Müller glial, cholinergic amacrine cells, and retinal astrocytes. Cholinergic amacrine showed a combination of changes in nuclear localization of Class I HDACs. Strikingly, although Müller glia and retinal astrocytes express many of the same genes, P30 Müller glial cells showed nuclear localization only of HDAC1, while retinal astrocytes were positive for HDACs 1, 2, and 3. CONCLUSION These results indicate there may be a role for one or more of the Class I HDACs in retinal cell type-specific differentiation.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Sarika Tiwari
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Subramanian Dharmarajan
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| | - Deborah C Otteson
- University of Houston College of Optometry, 4901 Calhoun Rd. Rm 2195, Houston, TX, 77204-2020, USA.
| | - Teri L Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA; Center for Developmental and Regenerative Biology, Indiana University- Purdue University Indianapolis, 723 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
19
|
Sun C, Galicia C, Stenkamp DL. Transcripts within rod photoreceptors of the Zebrafish retina. BMC Genomics 2018; 19:127. [PMID: 29422031 PMCID: PMC5806438 DOI: 10.1186/s12864-018-4499-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/28/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The purpose of this study was to identify transcripts of retinal rod photoreceptors of the zebrafish. The zebrafish is an important animal model for vision science due to rapid and tractable development, persistent neurogenesis of rods throughout the lifespan, and capacity for functional retinal regeneration. RESULTS Zebrafish rods, and non-rod retinal cells of the xops:eGFP transgenic line, were separated by cell dissociation and fluorescence-activated cell sorting (FACS), followed by RNA-seq. At a false discovery rate of < 0.01, 597 transcripts were upregulated ("enriched") in rods vs. other retinal cells, and 1032 were downregulated ("depleted"). Thirteen thousand three hundred twenty four total transcripts were detected in rods, including many not previously known to be expressed by rods. Forty five transcripts were validated by qPCR in FACS-sorted rods vs. other retinal cells. Transcripts enriched in rods from adult retinas were also enriched in rods from larval and juvenile retinas, and were also enriched in rods sorted from retinas subjected to a neurotoxic lesion and allowed to regenerate. Many transcripts enriched in rods were upregulated in retinas of wildtype retinas vs. those of a zebrafish model for rod degeneration. CONCLUSIONS We report the generation and validation of an RNA-seq dataset describing the rod transcriptome of the zebrafish, which is now available as a resource for further studies of rod photoreceptor biology and comparative transcriptomics.
Collapse
Affiliation(s)
- Chi Sun
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Carlos Galicia
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051 USA
| |
Collapse
|
20
|
Wan J, Goldman D. Opposing Actions of Fgf8a on Notch Signaling Distinguish Two Muller Glial Cell Populations that Contribute to Retina Growth and Regeneration. Cell Rep 2018; 19:849-862. [PMID: 28445734 DOI: 10.1016/j.celrep.2017.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 01/04/2023] Open
Abstract
The teleost retina grows throughout life and exhibits a robust regenerative response following injury. Critical to both these events are Muller glia (or, Muller glial cells; MGs), which produce progenitors for retinal growth and repair. We report that Fgf8a may be an MG niche factor that acts through Notch signaling to regulate spontaneous and injury-dependent MG proliferation. Remarkably, forced Fgf8a expression inhibits Notch signaling and stimulates MG proliferation in young tissue but increases Notch signaling and suppresses MG proliferation in older tissue. Furthermore, cessation of Fgf8a signaling enhances MG proliferation in both young and old retinal tissue. Our study suggests that multiple MG populations contribute to retinal growth and regeneration, and it reveals a previously unappreciated role for Fgf8a and Notch signaling in regulating MG quiescence, activation, and proliferation.
Collapse
Affiliation(s)
- Jin Wan
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Schweikert LE, Grace MS. Altered environmental light drives retinal change in the Atlantic Tarpon (Megalops atlanticus) over timescales relevant to marine environmental disturbance. BMC Ecol 2018; 18:1. [PMID: 29347979 PMCID: PMC5774114 DOI: 10.1186/s12898-018-0157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background For many fish species, retinal function changes between life history stages as part of an encoded developmental program. Retinal change is also known to exhibit plasticity because retinal form and function can be influenced by light exposure over the course of development. Aside from studies of gene expression, it remains largely unknown whether retinal plasticity can provide functional responses to short-term changes in environmental light quality. The aim of this study was to determine whether the structure and function of the fish retina can change in response to altered light intensity and spectrum—not over the course of a developmental regime, but over shorter time periods relevant to marine habitat disturbance. Results The effects of light environment on sensitivity of the retina, as well as on cone photoreceptor distribution were examined in the Atlantic tarpon (Megalops atlanticus) on 2- and 4-month timescales. In a spectral experiment, juvenile M. atlanticus were placed in either ‘red’ or ‘blue’ light conditions (with near identical irradiance), and in an intensity experiment, juveniles were placed in either ‘bright’ or ‘dim’ light conditions (with near identical spectra). Analysis of the retina by electroretinography and anti-opsin immunofluorescence revealed that relative to fish held in the blue condition, those in the red condition exhibited longer-wavelength peak sensitivity and greater abundance of long-wavelength-sensitive (LWS) cone photoreceptors over time. Following pre-test dark adaption of the retina, fish held in the dim light required less irradiance to produce a standard retinal response than fish held in bright light, developing a greater sensitivity to white light over time. Conclusions The results show that structure and function of the M. atlanticus retina can rapidly adjust to changes in environmental light within a given developmental stage, and that such changes are dependent on light quality and the length of exposure. These findings suggest that the fish retina may be resilient to disturbances in environmental light, using retinal plasticity to compensate for changes in light quality over short timescales. Electronic supplementary material The online version of this article (10.1186/s12898-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorian E Schweikert
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.,Department of Biology, Duke University, 130 Science Dr. Durham, Durham, NC, 27583, USA
| | - Michael S Grace
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL, 32901, USA.
| |
Collapse
|
22
|
Medrano MP, Bejarano CA, Battista AG, Venera GD, Bernabeu RO, Faillace MP. Injury-induced purinergic signalling molecules upregulate pluripotency gene expression and mitotic activity of progenitor cells in the zebrafish retina. Purinergic Signal 2017; 13:443-465. [PMID: 28710541 PMCID: PMC5714835 DOI: 10.1007/s11302-017-9572-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Damage in fish activates retina repair that restores sight. The purinergic signalling system serves multiple homeostatic functions and has been implicated in cell cycle control of progenitor cells in the developing retina. We examined whether changes in the expression of purinergic molecules were instrumental in the proliferative phase after injury of adult zebrafish retinas with ouabain. P2RY1 messenger RNA (mRNA) increased early after injury and showed maximal levels at the time of peak progenitor cell proliferation. Extracellular nucleotides, mainly ADP, regulate P2RY1 transcriptional and protein expression. The injury-induced upregulation of P2RY1 is mediated by an autoregulated mechanism. After injury, the transcriptional expression of ecto-nucleotidases and ecto-ATPases also increased and ecto-ATPase activity inhibitors decreased Müller glia-derived progenitor cell amplification. Inhibition of P2RY1 endogenous activation prevented progenitor cell proliferation at two intervals after injury: one in which progenitor Müller glia mitotically activates and the second one in which Müller glia-derived progenitor cells amplify. ADPβS induced the expression of lin28a and ascl1a genes in mature regions of uninjured retinas. The expression of these genes, which regulate multipotent Müller glia reprogramming, was significantly inhibited by blocking the endogenous activation of P2RY1 early after injury. We consistently observed that the number of glial fibrillary acidic protein-BrdU-positive Müller cells after injury was larger in the absence than in the presence of the P2RY1 antagonist. Ecto-ATPase activity inhibitors or P2RY1-specific antagonists did not modify apoptotic cell death at the time of peak progenitor cell proliferation. The results suggested that ouabain injury upregulates specific purinergic signals which stimulates multipotent progenitor cell response.
Collapse
Affiliation(s)
- Matías P Medrano
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro Paladini, UBA-CONICET, Buenos Aires, Argentina
| | - Claudio A Bejarano
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ariadna G Battista
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro Paladini, UBA-CONICET, Buenos Aires, Argentina
| | - Graciela D Venera
- Instituto Universitario Italiano de Rosario (IUNIR), Santa Fe, Argentina
| | - Ramón O Bernabeu
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
- IFIBIO-Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155 7° piso, C1121ABG, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
23
|
Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res 2017; 161:174-192. [PMID: 28577895 DOI: 10.1016/j.exer.2017.05.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 01/01/2023]
Abstract
Sox2 is a well-established neuronal stem cell-associated transcription factor that regulates neural development and adult neurogenesis in vertebrates, and is one of the critical genes used to reprogram differentiated cells into induced pluripotent stem cells. We examined if Sox2 was involved in the early reprogramming-like events that Müller glia undergo as they upregulate many pluripotency- and neural stem cell-associated genes required for proliferation in light-damaged adult zebrafish retinas. In the undamaged adult zebrafish retina, Sox2 is expressed in Müller glia and a subset of amacrine cells, similar to other vertebrates. Following 31 h of light damage, Sox2 expression significantly increased in proliferating Müller glia. Morpholino-mediated knockdown of Sox2 expression resulted in decreased numbers of proliferating Müller glia, while induced overexpression of Sox2 stimulated Müller glia proliferation in the absence of retinal damage. Thus, Sox2 is necessary and sufficient for Müller glia proliferation. We investigated the role of Wnt/β-catenin signaling, which is a known regulator of sox2 expression during vertebrate retinal development. While β-catenin 2, but not β-catenin 1, was necessary for Müller glia proliferation, neither β-catenin paralog was required for sox2 expression following retinal damage. Sox2 expression was also necessary for ascl1a (neurogenic) and lin28a (reprogramming) expression, but not stat3 expression following retinal damage. Furthermore, Sox2 was required for Müller glial-derived neuronal progenitor cell amplification and expression of the pro-neural marker Tg(atoh7:EGFP). Finally, loss of Sox2 expression prevented complete regeneration of cone photoreceptors. This study is the first to identify a functional role for Sox2 during Müller glial-based regeneration of the vertebrate retina.
Collapse
Affiliation(s)
- Ryne A Gorsuch
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Manuela Lahne
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Clare E Yarka
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Michael E Petravick
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jingling Li
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, and the Center for Stem Cells and Regenerative Medicine, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
24
|
Walsh CE, Hitchcock PF. Progranulin regulates neurogenesis in the developing vertebrate retina. Dev Neurobiol 2017; 77:1114-1129. [PMID: 28380680 PMCID: PMC5568971 DOI: 10.1002/dneu.22499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
We evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017
Collapse
Affiliation(s)
- Caroline E Walsh
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| | - Peter F Hitchcock
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| |
Collapse
|
25
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Talkin' about my (re)generation: The who of intrinsic retinal stem cells. Neuroscience 2017; 346:447-449. [PMID: 28131621 DOI: 10.1016/j.neuroscience.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022]
Abstract
World-wide, two degenerative retinal diseases, glaucoma and age-related macular degeneration, are estimated to affect more than 12% of individuals over the age of 40 (Tham et al., 2014; Wong et al., 2014). Current therapies can slow progression, but cannot restore lost neurons or vision. Thus, there is increasing interest in developing strategies for therapeutic retinal regeneration. Nearly 50years of research on retinal neurogenesis and regeneration has identified Müller glia as intrinsic retinal stem cells in teleost fish. In the mammalian retina, there is no de novo neurogenesis in adults and only very limited injury-induced regeneration has been induced using exogenous growth factors. The study by (Webster et al., 2017) (Evidence of BrdU Positive Retinal Neurons after Application of an Alpha7 Nicotinic Acetylcholine Receptor Agonist, this issue) is the first to show robust, retinal neurogenesis in an adult, mammalian retina in the absence of overt injury and provides evidence that the source of the new neurons is likely to be the Müller glia. This exciting finding has the potential to be a game-changer in the field of retinal regeneration.
Collapse
|
27
|
Ail D, Perron M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. CURRENT PATHOBIOLOGY REPORTS 2017; 5:67-78. [PMID: 28255526 PMCID: PMC5309292 DOI: 10.1007/s40139-017-0127-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Retinal degenerative diseases have immense socio-economic impact. Studying animal models that recapitulate human eye pathologies aids in understanding the pathogenesis of diseases and allows for the discovery of novel therapeutic strategies. Some non-mammalian species are known to have remarkable regenerative abilities and may provide the basis to develop strategies to stimulate self-repair in patients suffering from these retinal diseases. RECENT FINDINGS Non-mammalian organisms, such as zebrafish and Xenopus, have become attractive model systems to study retinal diseases. Additionally, many fish and amphibian models of retinal cell ablation and cell lineage analysis have been developed to study regeneration. These investigations highlighted several cellular sources for retinal repair in different fish and amphibian species. Moreover, major differences in repair mechanisms have been reported in these animal models. SUMMARY This review aims to emphasize first on the importance of zebrafish and Xenopus models in studying the pathogenesis of retinal diseases and, second, on the different modes of regeneration processes in these model organisms.
Collapse
Affiliation(s)
- Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
28
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
29
|
Sukeena JM, Galicia CA, Wilson JD, McGinn T, Boughman JW, Robison BD, Postlethwait JH, Braasch I, Stenkamp DL, Fuerst PG. Characterization and Evolution of the Spotted Gar Retina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:403-421. [PMID: 27862951 DOI: 10.1002/jez.b.22710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 12/17/2022]
Abstract
In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-quality genome sequence make it a uniquely useful species to understand how genome duplication sculpted features of the teleost visual system, including photoreceptor diversity. We developed reagents to characterize the cellular organization of the spotted gar retina, including representative markers for all major classes of retinal neurons and Müller glia. We report that the gar has a preponderance of predicted short-wavelength shifted (SWS) opsin genes, including a duplicated set of SWS1 (ultraviolet) sensitive opsin encoding genes, a SWS2 (blue) opsin encoding gene, and two rod opsin encoding genes, all of which were expressed in retinal photoreceptors. We also report that gar SWS1 cones lack the geometric organization of photoreceptors observed in teleost fish species, consistent with the crystalline photoreceptor mosaic being a teleost innovation. Of note the spotted gar expresses both exo-rhodopsin (RH1-1) and rhodopsin (RH1-2) in rods. Exo-rhodopsin is an opsin that is not expressed in the retina of zebrafish and other teleosts, but rather is expressed in regions of the brain. This study suggests that exo-rhodopsin is an ancestral actinopterygian (ray finned fish) retinal opsin, and in teleosts its expression has possibly been subfunctionalized to the pineal gland.
Collapse
Affiliation(s)
- Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Carlos A Galicia
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | | | - Tim McGinn
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Janette W Boughman
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | - Barrie D Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - John H Postlethwait
- Department of Evolution, Development, and Genetics, University of Oregon, Eugene, Oregon
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | | | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho
| |
Collapse
|
30
|
Valen R, Eilertsen M, Edvardsen RB, Furmanek T, Rønnestad I, van der Meeren T, Karlsen Ø, Nilsen TO, Helvik JV. The two-step development of a duplex retina involves distinct events of cone and rod neurogenesis and differentiation. Dev Biol 2016; 416:389-401. [PMID: 27374844 DOI: 10.1016/j.ydbio.2016.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022]
Abstract
Unlike in mammals, persistent postembryonic retinal growth is a characteristic feature of fish, which includes major remodeling events that affect all cell types including photoreceptors. Consequently, visual capabilities change during development, where retinal sensitivity to different wavelengths of light (photopic vision), -and to limited photons (scotopic vision) are central capabilities for survival. Differently from well-established model fish, Atlantic cod has a prolonged larval stage where only cone photoreceptors are present. Rods do not appear until juvenile transition (metamorphosis), a hallmark of indirect developing species. Previously we showed that whole gene families of lws (red-sensitive) and sws1 (UV-sensitive) opsins have been lost in cod, while rh2a (green-sensitive) and sws2 (blue-sensitive) genes have tandem duplicated. Here, we provide a comprehensive characterization of a two-step developing duplex retina in Atlantic cod. The study focuses on cone subtype dynamics and delayed rod neurogenesis and differentiation in all cod life stages. Using transcriptomic and histological approaches we show that different opsins disappear in a topographic manner during development where central to peripheral retina is a key axis of expressional change. Early cone differentiation was initiated in dorso-temporal retina different from previously described in fish. Rods first appeared during initiation of metamorphosis and expression of the nuclear receptor transcription factor nr2e3-1, suggest involvement in rod specification. The indirect developmental strategy thus allows for separate studies of cones and rods development, which in nature correlates with visual changes linked to habitat shifts. The clustering of key retinal genes according to life stage, suggests that Atlantic cod with its sequenced genome may be an important resource for identification of underlying factors required for development and function of photopic and scotopic vision.
Collapse
Affiliation(s)
- Ragnhild Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | | | | | - Tomasz Furmanek
- Institute of Marine Research, Nordnes, NO-5005 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Terje van der Meeren
- Institute of Marine Research, Austevoll Research station and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | - Ørjan Karlsen
- Institute of Marine Research, Austevoll Research station and Hjort Centre for Marine Ecosystem Dynamics, NO-5392 Storebø, Norway
| | | | - Jon Vidar Helvik
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
31
|
Alarcón MV, Lloret PG, Martín-Partido G, Salguero J. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:105-10. [PMID: 26905196 DOI: 10.1016/j.jplph.2016.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/06/2016] [Accepted: 02/07/2016] [Indexed: 05/03/2023]
Abstract
The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells.
Collapse
Affiliation(s)
- M Victoria Alarcón
- Departamento de Hortofruticultura, Centro de Investigación La Orden (CICYTEX), Gobierno de Extremadura, 06187 Badajoz, Spain
| | - Pedro G Lloret
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Gervasio Martín-Partido
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, 06007 Badajoz, Spain.
| |
Collapse
|
32
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
33
|
Wilson SG, Wen W, Pillai-Kastoori L, Morris AC. Tracking the fate of her4 expressing cells in the regenerating retina using her4:Kaede zebrafish. Exp Eye Res 2015; 145:75-87. [PMID: 26616101 DOI: 10.1016/j.exer.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
The Basic-Helix-Loop-Helix-Orange (bHLH-O) transcription factor Hairy-related 4 (her4) is a downstream effector of Notch-Delta signaling that represses expression of typically pro-neural genes in proliferative domains of the central nervous system. Notch-Delta signaling in the retina has been shown to increase in response to injury and influences neuroprotective properties of Müller glia. In contrast to mammals, teleost fish are able to regenerate retinal neurons in response to injury. In zebrafish, her4 is upregulated in the regenerating neural retina in response to both acute and chronic photoreceptor damage, but the contribution of her4 expressing cells to neurogenesis following acute or chronic retinal damage has remained unexplored. Here we investigate the role of her4 in the regenerating retina in a background of chronic, rod-specific degeneration as well as following acute light damage. We demonstrate that her4 is expressed in the persistently neurogenic ciliary marginal zone (CMZ), as well as in small subsets of slowly proliferating Müller glia in the inner nuclear layer (INL) of the central retina. We generated a transgenic line of zebrafish that expresses the photoconvertible Kaede reporter driven by a her4 promoter and validated that expression of the transgene faithfully recapitulates endogenous her4 expression. Lineage tracing analysis revealed that her4-expressing cells in the INL contribute to the rod lineage, and her4 expressing cells in the CMZ are capable of generating any retinal cell type except rod photoreceptors. Our results indicate that her4 is involved in a replenishing pathway that maintains populations of stem cells in the central retina, and that the magnitude of the her4-associated proliferative response mirrors the extent of retinal damage.
Collapse
Affiliation(s)
- Stephen G Wilson
- Department of Biology, University of Kentucky, Lexington, 40506-0225, KY, USA
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, 40506-0225, KY, USA
| | | | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, 40506-0225, KY, USA.
| |
Collapse
|
34
|
Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, Funderburgh J, Watkins S, Johnson JW, Schuman JS, Liu H. Lgr5⁺ amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell 2015; 14:635-43. [PMID: 25990970 PMCID: PMC4531077 DOI: 10.1111/acel.12346] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2015] [Indexed: 01/16/2023] Open
Abstract
Current knowledge indicates that the adult mammalian retina lacks regenerative capacity. Here, we show that the adult stem cell marker, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), is expressed in the retina of adult mice. Lgr5+ cells are generated at late stages of retinal development and exhibit properties of differentiated amacrine interneurons (amacrine cells). Nevertheless, Lgr5+ amacrine cells contribute to regeneration of new retinal cells in the adult stage. The generation of new retinal cells, including retinal neurons and Müller glia from Lgr5+ amacrine cells, begins in early adulthood and continues as the animal ages. Together, these findings suggest that the mammalian retina is not devoid of regeneration as previously thought. It is rather dynamic, and Lgr5+ amacrine cells function as an endogenous regenerative source. The identification of such cells in the mammalian retina may provide new insights into neuronal regeneration and point to therapeutic opportunities for age-related retinal degenerative diseases.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Microbiology and Molecular Genetics University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Shenghe Tian
- Department of Ophthalmology and Visual Science Research Center University of Pittsburgh School of Medicine Pittsburgh PA USA
- Louis J. Fox Center for Vision Restoration of UPMC and the University of Pittsburgh Pittsburgh PA USA
| | - Nathan G. Glasgow
- Department of Neuroscience and Center for Neuroscience University of Pittsburgh Pittsburgh PA USA
| | - Gregory Gibson
- Center for Biologic Imaging University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Xiaoling Yang
- Department of Ophthalmology and Visual Science Research Center University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Christen E. Shiber
- Department of Neuroscience and Center for Neuroscience University of Pittsburgh Pittsburgh PA USA
| | - James Funderburgh
- Department of Ophthalmology and Visual Science Research Center University of Pittsburgh School of Medicine Pittsburgh PA USA
- Louis J. Fox Center for Vision Restoration of UPMC and the University of Pittsburgh Pittsburgh PA USA
- UPMC Eye Center Eye and Ear Institute Pittsburgh PA USA
| | - Simon Watkins
- Center for Biologic Imaging University of Pittsburgh School of Medicine Pittsburgh PA USA
- Department of Cell Biology and Physiology University of Pittsburgh School of Medicine Pittsburgh PA USA
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience University of Pittsburgh Pittsburgh PA USA
| | - Joel S. Schuman
- Department of Ophthalmology and Visual Science Research Center University of Pittsburgh School of Medicine Pittsburgh PA USA
- Louis J. Fox Center for Vision Restoration of UPMC and the University of Pittsburgh Pittsburgh PA USA
- UPMC Eye Center Eye and Ear Institute Pittsburgh PA USA
- Department of Bioengineering Swanson School of Engineering University of Pittsburgh Pittsburgh PA USA
| | - Hongjun Liu
- Department of Microbiology and Molecular Genetics University of Pittsburgh School of Medicine Pittsburgh PA USA
- Department of Ophthalmology and Visual Science Research Center University of Pittsburgh School of Medicine Pittsburgh PA USA
- Louis J. Fox Center for Vision Restoration of UPMC and the University of Pittsburgh Pittsburgh PA USA
- UPMC Eye Center Eye and Ear Institute Pittsburgh PA USA
| |
Collapse
|
35
|
Stenkamp DL. Development of the Vertebrate Eye and Retina. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:397-414. [PMID: 26310167 DOI: 10.1016/bs.pmbts.2015.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mature, functional, and healthy eye is generated by the coordinated regulatory interaction of numerous and diverse developing tissues. The neural retina of the eye must undergo the neurogenesis of multiple retinal cell types in the correct ratios and spatial patterns. This chapter provides an overview of retinal development, and includes a summary of the process of eye organogenesis, a discussion of major principles of retinal neurogenesis, and describes some of the key molecular factors critical for retinal development. Defects in many of these factors underlie diseases of the eye, and an understanding of the process of retinal development will be critical for successful future applications of regenerative therapies for eye disease.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
36
|
Muralidharan P, Sarmah S, Marrs JA. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 2015; 49:149-63. [PMID: 25541501 DOI: 10.1016/j.alcohol.2014.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/01/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
37
|
Abstract
Müller glia are the major glial component of the retina. They are one of the last retinal cell types to be born during development, and they function to maintain retinal homeostasis and integrity. In mammals, Müller glia respond to retinal injury in various ways that can be either protective or detrimental to retinal function. Although these cells can be coaxed to proliferate and generate neurons under special circumstances, these responses are meagre and insufficient for repairing a damaged retina. By contrast, in teleost fish (such as zebrafish), the response of Müller glia to retinal injury involves a reprogramming event that imparts retinal stem cell characteristics and enables them to produce a proliferating population of progenitors that can regenerate all major retinal cell types and restore vision. Recent studies have revealed several important mechanisms underlying Müller glial cell reprogramming and retina regeneration in fish that may lead to new strategies for stimulating retina regeneration in mammals.
Collapse
Affiliation(s)
- Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of
Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
38
|
Protas M, Jeffery WR. Evolution and development in cave animals: from fish to crustaceans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:823-45. [PMID: 23580903 DOI: 10.1002/wdev.61] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cave animals are excellent models to study the general principles of evolution as well as the mechanisms of adaptation to a novel environment: the perpetual darkness of caves. In this article, two of the major model systems used to study the evolution and development (evo-devo) of cave animals are described: the teleost fish Astyanax mexicanus and the isopod crustacean Asellus aquaticus. The ways in which these animals match the major attributes expected of an evo-devo cave animal model system are described. For both species, we enumerate the regressive and constructive troglomorphic traits that have evolved during their adaptation to cave life, the developmental and genetic basis of these traits, the possible evolutionary forces responsible for them, and potential new areas in which these model systems could be used for further exploration of the evolution of cave animals. Furthermore, we compare the two model cave animals to investigate the mechanisms of troglomorphic evolution. Finally, we propose a few other cave animal systems that would be suitable for development as additional models to obtain a more comprehensive understanding of the developmental and genetic mechanisms involved in troglomorphic evolution.
Collapse
Affiliation(s)
- Meredith Protas
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
39
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Cid P, Doldán MJ, Rodríguez MS, Prego B, de Miguel E. Analysis of the morphogenesis and cell proliferation in the retina of a pleuronectiform fish, the turbot psetta maxima (Pleuronectiformes: Teleostei). Microsc Res Tech 2013; 76:588-97. [DOI: 10.1002/jemt.22203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Patricia Cid
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Jesús Doldán
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - María Soledad Rodríguez
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Benjamin Prego
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| | - Encarnación de Miguel
- Laboratory of Cell Biology, Department of Functional Biology; University of Vigo; 36200; Vigo; Spain
| |
Collapse
|
41
|
Distinct neurogenic potential in the retinal margin and the pars plana of mammalian eye. J Neurosci 2012; 32:12797-807. [PMID: 22973003 DOI: 10.1523/jneurosci.0118-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Unlike many other vertebrates, a healthy mammalian retina does not grow throughout life and lacks a ciliary margin zone capable of actively generating new neurons. The isolation of stem-like cells from the ciliary epithelium has led to speculation that the mammalian retina and/or surrounding tissues may retain neurogenic potential capable of responding to retinal damage. Using genetically altered mouse lines with varying degrees of retinal ganglion cell loss, we show that the retinal margin responds to ganglion cell loss by prolonging specific neurogenic activity, as characterized by increased numbers of Atoh7(LacZ)-expressing cells. The extent of neurogenic activity correlated with the degree of ganglion cell deficiency. In the pars plana, but not the retinal margin, cells remain proliferative into adulthood, marking the junction of pars plana and retinal margin as a niche capable of producing proliferative cells in the mammalian retina and a potential cellular source for retinal regeneration.
Collapse
|
42
|
Boisset G, Schorderet DF. Zebrafish hmx1 promotes retinogenesis. Exp Eye Res 2012; 105:34-42. [PMID: 23068565 DOI: 10.1016/j.exer.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022]
Abstract
Ocular development is controlled by a complex network of transcription factors, cell cycle regulators, and diffusible signaling molecules. Together, these molecules regulate cell proliferation, apoptosis and specify retinal fate. In the zebrafish (Danio rerio), hmx1 is a homeobox transcription factor implicated in eye and brain development. Hmx1 transcripts were detected in the nasal retina and lens as well as otic vesicles and pharyngeal arches by 24-32 hpf. Before this stage, transcripts were more uniformly expressed in the optic vesicle. Knockdown of hmx1 led to microphthalmia. Delayed withdrawal of retinal progenitors from the cell cycle resulting in retarded retinal differentiation was observed in morphant. The retina and brain also showed an increased cell death at 24 hpf. The polarized expression of hmx1 to the nasal part in the zebrafish retina strongly suggested an involvement in the nasal-temporal patterning. However, the key patterning genes tested so far were not regulated by hmx1. Altogether, these results suggest an important role for hmx1 in retinogenesis.
Collapse
Affiliation(s)
- Gaëlle Boisset
- IRO, Institute for Research in Ophthalmology, Av Grand-Champsec 64, 1950 Sion, Switzerland
| | | |
Collapse
|
43
|
Khera S, Tiwari A, Srinivasan R, Gupta A, Luthra-Guptasarma M. Molecular and Morphological Evidence for Cadaver Vitreous-stimulated Transformation of Differentiation-competent Retinal Pigment Epithelial Cells into Neuron-like Cells. Curr Eye Res 2012; 37:606-16. [DOI: 10.3109/02713683.2012.664673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shagun Khera
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
44
|
Ferreiro-Galve S, Rodríguez-Moldes I, Candal E. Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:91-108. [DOI: 10.1002/jezb.21448] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Zhang Y, Yang Y, Trujillo C, Zhong W, Leung YF. The expression of irx7 in the inner nuclear layer of zebrafish retina is essential for a proper retinal development and lamination. PLoS One 2012; 7:e36145. [PMID: 22540019 PMCID: PMC3335143 DOI: 10.1371/journal.pone.0036145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/26/2012] [Indexed: 01/24/2023] Open
Abstract
Irx7, a member in the zebrafish iroquois transcription factor (TF) family, has been shown to control brain patterning. During retinal development, irx7's expression was found to appear exclusively in the inner nuclear layer (INL) as soon as the prospective INL cells withdraw from the cell cycle and during retinal lamination. In Irx7-deficient retinas, the formation of a proper retinal lamination was disrupted and the differentiation of INL cell types, including amacrine, horizontal, bipolar and Muller cells, was compromised. Despite irx7's exclusive expression in the INL, photoreceptors differentiation was also compromised in Irx7-deficient retinas. Compared with other retinal cell types, ganglion cells differentiated relatively well in these retinas, except for their dendritic projections into the inner plexiform layer (IPL). In fact, the neuronal projections of amacrine and bipolar cells into the IPL were also diminished. These indicate that the retinal lamination issue in the Irx7-deficient retinas is likely caused by the attenuation of the neurite outgrowth. Since the expression of known TFs that can specify specific retinal cell type was also altered in Irx7-deficient retinas, thus the irx7 gene network is possibly a novel regulatory circuit for retinal development and lamination.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yifan Yang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Caleb Trujillo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenxuan Zhong
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Thomas JL, Nelson CM, Luo X, Hyde DR, Thummel R. Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Exp Eye Res 2012; 97:105-16. [PMID: 22425727 DOI: 10.1016/j.exer.2012.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/16/2022]
Abstract
Zebrafish provide an attractive model to study the retinal response to photoreceptor apoptosis due to its remarkable ability to spontaneously regenerate retinal neurons following damage. There are currently two widely-used light-induced retinal degeneration models to damage photoreceptors in the adult zebrafish. One model uses constant bright light, whereas the other uses a short exposure to extremely intense ultraviolet light. Although both models are currently used, it is unclear whether they differ in regard to the extent of photoreceptor damage or the subsequent regeneration response. Here we report a thorough analysis of the photoreceptor damage and subsequent proliferation response elicited by each individual treatment, as well as by the concomitant use of both treatments. We show a differential loss of rod and cone photoreceptors with each treatment. Additionally, we show that the extent of proliferation observed in the retina directly correlates with the severity of photoreceptor loss. We also demonstrate that both the ventral and posterior regions of the retina are partially protected from light damage. Finally, we show that combining a short ultraviolet exposure followed by a constant bright light treatment largely eliminates the neuroprotected regions, resulting in widespread loss of rod and cone photoreceptors and a robust regenerative response throughout the retina.
Collapse
Affiliation(s)
- Jennifer L Thomas
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 501 E. Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
47
|
Bibliowicz J, Gross JM. Ectopic proliferation contributes to retinal dysplasia in the juvenile zebrafish patched2 mutant eye. Invest Ophthalmol Vis Sci 2011; 52:8868-77. [PMID: 22003118 DOI: 10.1167/iovs.11-8033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Patched is a well-studied tumor suppressor and negative regulator of the Hedgehog (Hh) pathway. Earlier work in this laboratory has shown that embryonic zebrafish patched2 (ptc2) mutant retinas possess an expanded ciliary marginal zone (CMZ) and phenotypes similar to those in human patients with basal cell naevus syndrome (BCNS), a congenital disorder linked to mutations in the human PTCH gene. This study extends the analysis of retinal structure and homeostasis in ptc2-/- mutants to juvenile stages, to determine whether Patched 2 function is essential in the postembryonic eye. METHODS Histologic, immunohistochemical, and molecular analyses were used to characterize retinal defects in the 6-week-old juvenile ptc2-/- retina. RESULTS Juvenile ptc2-/- mutants exhibited peripheral retinal dysplasias that included the presence of ectopic neuronal clusters in the inner nuclear layer (INL) and regions of disrupted retinal lamination. Retinal dysplasias were locally associated with ectopic proliferation. BrdU/EdU labeling and immunohistochemistry assays demonstrated that a population of ectopically proliferating cells gave rise to the ectopic neuronal clusters in the INL of ptc2-/- mutants and that this contributed to retinal dysplasia in the mutant eye. CONCLUSIONS These results demonstrate a direct link between overproliferation and retinal dysplasia in the ptc2-/- juvenile retina and establish ectopic proliferation as the likely cellular underpinning of retinal dysplasia in juvenile ptc2-/- mutants.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
48
|
FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Exp Eye Res 2011; 93:726-34. [PMID: 21945172 DOI: 10.1016/j.exer.2011.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/22/2022]
Abstract
Fgf signaling is required for many biological processes involving the regulation of cell proliferation and maintenance, including embryonic patterning, tissue homeostasis, wound healing, and cancer progression. Although the function of Fgf signaling is suggested in several different regeneration models, including appendage regeneration in amphibians and fin and heart regeneration in zebrafish, it has not yet been studied during zebrafish photoreceptor cell regeneration. Here we demonstrate that intravitreal injections of FGF-2 induced rod precursor cell proliferation and photoreceptor cell neuroprotection during intense light damage. Using the dominant-negative Tg(hsp70:dn-fgfr1) transgenic line, we found that Fgf signaling was required for homeostasis of rod, but not cone, photoreceptors. Even though fgfr1 is expressed in both rod and cone photoreceptors, we found that Fgf signaling differentially affected the regeneration of cone and rod photoreceptors in the light-damaged retina, with the dominant-negative hsp70:dn-fgfr1 transgene significantly repressing rod photoreceptor regeneration without affecting cone photoreceptors. These data suggest that rod photoreceptor homeostasis and regeneration is Fgf-dependent and that rod and cone photoreceptors in adult zebrafish are regulated by different signaling pathways.
Collapse
|
49
|
Stevens CB, Cameron DA, Stenkamp DL. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC DEVELOPMENTAL BIOLOGY 2011; 11:51. [PMID: 21878117 PMCID: PMC3189157 DOI: 10.1186/1471-213x-11-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022]
Abstract
Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor mediates the effects of endogenous, as well as exogenous RA, on rod development.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | |
Collapse
|
50
|
The rod photoreceptor lineage of teleost fish. Prog Retin Eye Res 2011; 30:395-404. [PMID: 21742053 DOI: 10.1016/j.preteyeres.2011.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
The retinas of postembryonic teleost fish continue to grow for the lifetime of the fish. New retinal cells are added continuously at the retinal margin, by stem cells residing at the circumferential germinal zone. Some of these retinal cells differentiate as Müller glia with cell bodies that reside within the inner nuclear layer. These glia retain some stem cell properties in that they carry out asymmetric cell divisions and continuously generate a population of transit-amplifying cells--the rod photoreceptor lineage--that are committed to rod photoreceptor neurogenesis. These rod progenitors progress through a stereotyped sequence of changes in gene expression as they continue to divide and migrate to the outer nuclear layer. Now referred to as rod precursors, they undergo terminal mitoses and then differentiate as rods, which are inserted into the existing array of rod and cone photoreceptors. The rod lineage displays developmental plasticity, as rod precursors can respond to the loss of rods through increased proliferation, resulting in rod replacement. The stem cells of the rod lineage, Müller glia, respond to acute damage of other retinal cell types by increasing their rate of proliferation. In addition, the Müller glia in an acutely damaged retina dedifferentiate and become multipotent, generating new, functional neurons. This review focuses on the cells of the rod lineage and includes discussions of experiments over the last 30 years that led to their identification and characterization, and the discovery of the stem cells residing at the apex of the lineage. The plasticity of cells of the rod lineage, their relationships to cone progenitors, and the applications of this information for developing future treatments for human retinal disorders will also be discussed.
Collapse
|