1
|
Jasiewicz B, Kacki W. Caudal Regression Syndrome-A Narrative Review: An Orthopedic Point of View. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030589. [PMID: 36980147 PMCID: PMC10047641 DOI: 10.3390/children10030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Abnormalities in cellular differentiation during embryo-fetal period may lead to various malformations of the spine. Caudal regression syndrome (CRS) is a group of defects with premature growth/development termination of the vertebral column. CRS can be divided into three types: sirenomelia, complete absence of the sacrum and partial absence of the sacrum. Genitourinary and gastrointestinal anomalies are common, with neurogenic bladder and bowel incontinence. Treatment of patients with CRS is complex and multidisciplinary and should be comprehensive. The most common orthopedic problems are: spinal deformity (kyphosis and scoliosis), spinopelvic instability and lower limbs deformities.
Collapse
Affiliation(s)
- Barbara Jasiewicz
- Department of Orthopedics and Rehabilitation, Jagiellonian University Collegium Medicum, Balzera 15, 34-500 Zakopane, Poland
| | - Wojciech Kacki
- Department of Orthopedics and Rehabilitation, Jagiellonian University Collegium Medicum, Balzera 15, 34-500 Zakopane, Poland
| |
Collapse
|
2
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
3
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
4
|
A review of genetic factors contributing to the etiopathogenesis of anorectal malformations. Pediatr Surg Int 2018; 34:9-20. [PMID: 29094201 DOI: 10.1007/s00383-017-4204-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Anorectal malformation (ARM) is a common congenital anomaly with a wide clinical spectrum. Recently, many genetic and molecular studies have been conducted worldwide highlighting the contribution of genetic factors in its etiology. We summarize the current literature on such genetic factors. MATERIALS AND METHODS Literature search was done using different combinations of terms related to genetics in anorectal malformations. From 2012 to June 2017, articles published in the English literature and studies conducted on human population were included. OBSERVATIONS AND RESULTS A paradigm shift was observed from the earlier studies concentrating on genetic aberrations in specific pathways to genome wide arrays exploring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) in ARM patients. Rare CNVs (including 79 genes) and SNPs have been found to genetically contribute to ARM. Out of disrupted 79 genes one such putative gene is DKK4. Down regulation of CDX-1 gene has also been implicated in isolated ARM patients. In syndromic ARM de novo microdeletion at 17q12 and a few others have been identified. CONCLUSION Major genetic aberrations proposed in the pathogenesis of ARM affect members of the Wnt, Hox (homebox) genes, Sonic hedgehog (Shh) and Gli2, Bmp4, Fgf and CDX1 signalling pathways; probable targets of future molecular gene therapy.
Collapse
|
5
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
6
|
Sanchez-Ferras O, Bernas G, Farnos O, Touré AM, Souchkova O, Pilon N. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network. Development 2016; 143:1363-74. [PMID: 26952979 DOI: 10.1242/dev.132159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Omar Farnos
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Aboubacrine M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| |
Collapse
|
7
|
Kappen C. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype. PLoS One 2016; 11:e0146019. [PMID: 26800342 PMCID: PMC4723086 DOI: 10.1371/journal.pone.0146019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/12/2015] [Indexed: 11/24/2022] Open
Abstract
The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, Louisiana, 70808, United States of America
- * E-mail:
| |
Collapse
|
8
|
Zhang T, Tang XB, Wang LL, Bai YZ, Qiu GR, Yuan ZW, Wang WL. Mutations and down-regulation of CDX1 in children with anorectal malformations. Int J Med Sci 2013; 10:191-7. [PMID: 23329892 PMCID: PMC3547218 DOI: 10.7150/ijms.4929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anorectal malformations (ARMs) represent a variety of congenital disorders that involve abnormal termination of the anorectum. This study was to reveal relation between CDX1 and human ARMs phenotypes. METHODS 108 Chinese patients and 120 Chinese controls were included in this study. We analyzed the relation between two by PCR, qRT-PCR, western blot and immunofluorescence. RESULTS Four heterozygous mutations in CDX1 gene were identified in ARMs patients (3.7%, 4/108), no found in controls. CDX1 protein expression was significantly decreased in the ARMs compared with the control anorectum. All samples analyzed in ARMs group exhibited down-regulated CDX1 mRNA expression in comparison to matched normal group, demonstrated significant differences statistically. CONCLUSION The findings represented the relation between CDX1 mutations and CDX1 genotype. Furthermore, it was suggested that the downregulation of CDX1 might be related to the development of ARMs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, P.R. China
| | | | | | | | | | | | | |
Collapse
|
9
|
Seritrakul P, Samarut E, Lama TTS, Gibert Y, Laudet V, Jackman WR. Retinoic acid expands the evolutionarily reduced dentition of zebrafish. FASEB J 2012; 26:5014-24. [PMID: 22942074 DOI: 10.1096/fj.12-209304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | | | | | | | |
Collapse
|
10
|
Yeung TM, Chia LA, Kosinski CM, Kuo CJ. Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci 2011; 68:2513-23. [PMID: 21509540 DOI: 10.1007/s00018-011-0687-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/18/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022]
Abstract
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt-villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.
Collapse
Affiliation(s)
- Trevor M Yeung
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Center for Clinical Sciences Research 1155, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
11
|
Lengerke C, Wingert R, Beeretz M, Grauer M, Schmidt AG, Konantz M, Daley GQ, Davidson AJ. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev Biol 2011; 354:134-42. [PMID: 21466798 DOI: 10.1016/j.ydbio.2011.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 02/04/2023]
Abstract
Cdx transcription factors regulate embryonic positional identities and have crucial roles in anteroposterior patterning (AP) processes of all three germ layers. Previously we have shown that the zebrafish homologues cdx1a and cdx4 redundantly regulate posterior mesodermal derivatives inducing embryonic blood cell fate specification and patterning of the embryonic kidney. Here we hypothesize that cdx factors restrict formation of anterior mesodermal derivatives such as cardiac cells by imposing posterior identity to developing mesodermal cells. We show that ectopic expression of Cdx1 or Cdx4 applied during the brief window of mesoderm patterning in differentiating murine embryonic stem cell (ESC) strongly suppresses cardiac development as assayed by expression of cardiac genes and formation of embryoid bodies (EB) containing "beating" cell clusters. Conversely, in loss-of-function studies performed in cdx-deficient zebrafish embryos, we observed a dose-dependent expansion of tbx5a(+) anterior-lateral plate mesoderm giving rise to cardiac progenitors. However, further cardiac development of these mesodermal cells required additional suppression of the retinoic acid (RA) pathway, possibly due to differential activity of inhibitory RA signals in cdx mutants. Together, our data suggest that cdx proteins affect cardiogenesis by regulating the formation of cardiogenic mesoderm and together with the RA pathway control the early development of cardiac precursor cells.
Collapse
Affiliation(s)
- Claudia Lengerke
- Department of Hematology and Oncology, University of Tuebingen Medical Center II, Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
13
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Lee YJ, McPherron A, Choe S, Sakai Y, Chandraratna RA, Lee SJ, Oh SP. Growth differentiation factor 11 signaling controls retinoic acid activity for axial vertebral development. Dev Biol 2010; 347:195-203. [PMID: 20801112 DOI: 10.1016/j.ydbio.2010.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 11/17/2022]
Abstract
Mice deficient in growth differentiation factor 11 (GDF11) signaling display anterior transformation of axial vertebrae and truncation of caudal vertebrae. However, the in vivo molecular mechanisms by which GDF11 signaling regulates the development of the vertebral column have yet to be determined. We found that Gdf11 and Acvr2b mutants are sensitive to exogenous RA treatment on vertebral specification and caudal vertebral development. We show that diminished expression of Cyp26a1, a retinoic acid inactivating enzyme, and concomitant elevation of retinoic acid activity in the caudal region of Gdf11(-/-) embryos may account for this phenomenon. Reduced expression or function of Cyp26a1 enhanced anterior transformation of axial vertebrae in wild-type and Acvr2b mutants. Furthermore, a pan retinoic acid receptor antagonist (AGN193109) could lessen the anterior transformation phenotype and rescue the tail truncation phenotype of Gdf11(-/-) mice. Taken together, these results suggest that GDF11 signaling regulates development of caudal vertebrae and is involved in specification of axial vertebrae in part by maintaining Cyp26a1 expression, which represses retinoic acid activity in the caudal region of embryos during the somitogenesis stage.
Collapse
Affiliation(s)
- Young Jae Lee
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2010; 25:431-56. [PMID: 19575673 DOI: 10.1146/annurev.cellbio.042308.113423] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Segmentation is an important process that is frequently used during development to segregate groups of cells with distinct features. Segmental compartments provide a mechanism for generating and organizing regional properties along an embryonic axis and within tissues. In vertebrates the development of two major systems, the hindbrain and the paraxial mesoderm, displays overt signs of compartmentalization and depends on the process of segmentation for their functional organization. The hindbrain plays a key role in regulating head development, and it is a complex coordination center for motor activity, breathing rhythms, and many unconscious functions. The paraxial mesoderm generates somites, which give rise to the axial skeleton. The cellular processes of segmentation in these two systems depend on ordered patterns of Hox gene expression as a mechanism for generating a combinatorial code that specifies unique identities of the segments and their derivatives. In this review, we compare and contrast the signaling inputs and transcriptional mechanisms by which Hox gene regulatory networks are established during segmentation in these two different systems.
Collapse
Affiliation(s)
- Tara Alexander
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
16
|
Savory JGA, Bouchard N, Pierre V, Rijli FM, De Repentigny Y, Kothary R, Lohnes D. Cdx2 regulation of posterior development through non-Hox targets. Development 2009; 136:4099-110. [PMID: 19906845 DOI: 10.1242/dev.041582] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeodomain transcription factors Cdx1, Cdx2 and Cdx4 play essential roles in anteroposterior vertebral patterning through regulation of Hox gene expression. Cdx2 is also expressed in the trophectoderm commencing at E3.5 and plays an essential role in implantation, thus precluding assessment of the cognate-null phenotype at later stages. Cdx2 homozygous null embryos generated by tetraploid aggregation exhibit an axial truncation indicative of a role for Cdx2 in elaborating the posterior embryo through unknown mechanisms. To better understand such roles, we developed a conditional Cdx2 floxed allele in mice and effected temporal inactivation at post-implantation stages using a tamoxifen-inducible Cre. This approach yielded embryos that were devoid of detectable Cdx2 protein and exhibited the axial truncation phenotype predicted from previous studies. This phenotype was associated with attenuated expression of genes encoding several key players in axial elongation, including Fgf8, T, Wnt3a and Cyp26a1, and we present data suggesting that T, Wnt3a and Cyp26a1 are direct Cdx2 targets. We propose a model wherein Cdx2 functions as an integrator of caudalizing information by coordinating axial elongation and somite patterning through Hox-independent and -dependent pathways, respectively.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 2009; 332:223-33. [PMID: 19497318 DOI: 10.1016/j.ydbio.2009.05.571] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.
Collapse
|
18
|
Savory JG, Pilon N, Grainger S, Sylvestre JR, Béland M, Houle M, Oh K, Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev Biol 2009; 330:114-22. [DOI: 10.1016/j.ydbio.2009.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/27/2022]
|
19
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoic acid receptors during embryonic development. NUCLEAR RECEPTOR SIGNALING 2009; 7:e002. [PMID: 19381305 PMCID: PMC2670431 DOI: 10.1621/nrs.07002] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/13/2009] [Indexed: 12/31/2022]
Abstract
Retinoids, the active metabolites of vitamin A, regulate complex gene networks involved in vertebrate morphogenesis, growth, cellular differentiation and homeostasis. Studies performed in vitro, using either acellular systems or transfected cells, have shown that retinoid actions are mediated through heterodimers between the RAR and RXR nuclear receptors. However, in vitro studies indicate what is possible, but not necessarily what is actually occurring in vivo, because they are performed under non-physiological conditions. Therefore, genetic approaches in the animal have been be used to determine the physiological functions of retinoid receptors. Homologous recombination in embryonic stem cells has been used to generate germline null mutations of the RAR- and RXR-coding genes in the mouse. As reviewed here, the generation of such germline mutations, combined with pharmacological approaches to block the RA signalling pathway, has provided genetic evidence that RAR/RXR heterodimers are indeed the functional units transducing the RA signal during prenatal development. However, due to (i) the complexity in “hormonal” signalling through transduction by the multiple RARs and RXRs, (ii) the functional redundancies (possibly artefactually generated by the mutations) within receptor isotypes belonging to a given family, and (iii) in utero or early postnatal lethality of certain germline null mutations, these genetic studies have failed to reveal all the physiological functions of RARs and RXRs, notably in adults. Spatio-temporally-controlled somatic mutations generated in given cell types/tissues and at chosen times during postnatal life, will be required to reveal all the functions of RAR and RXR throughout the lifetime of the mouse.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Cellulaire and Développement, Strasbourg, France
| | | | | |
Collapse
|
20
|
Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 2008; 46:640-56. [PMID: 19003929 DOI: 10.1002/dvg.20444] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florent Campo-Paysaa
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242-INRA 1288-ENS-UCBL, IFR128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
21
|
Su D, Gudas LJ. Gene expression profiling elucidates a specific role for RARgamma in the retinoic acid-induced differentiation of F9 teratocarcinoma stem cells. Biochem Pharmacol 2008; 75:1129-60. [PMID: 18164278 PMCID: PMC2988767 DOI: 10.1016/j.bcp.2007.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/09/2007] [Accepted: 11/15/2007] [Indexed: 12/27/2022]
Abstract
The biological effects of all-trans-retinoic acid (RA), a major active metabolite of retinol, are mainly mediated through its interactions with retinoic acid receptor (RARs alpha, beta, gamma) and retinoid X receptor (RXRs alpha, beta, gamma) heterodimers. RAR/RXR heterodimers activate transcription by binding to RA-response elements (RAREs or RXREs) in the promoters of primary target genes. Murine F9 teratocarcinoma stem cells have been widely used as a model for cellular differentiation and RA signaling during embryonic development. We identified and characterized genes that are differentially expressed in F9 wild type (Wt) and F9 RARgamma-/- cells, with and without RA treatment, through the use of oligonucleotide-based microarrays. Our data indicate that RARgamma, in the absence of exogenous RA, modulates gene expression. Genes such as Sfrp2, Tie1, Fbp2, Emp1, and Emp3 exhibited higher transcript levels in RA-treated Wt, RARalpha-/- and RARbeta2-/- lines than in RA-treated RARgamma-/- cells, and represent specific RARgamma targets. Other genes, such as Runx1, were expressed at lower levels in both F9 RARbeta2-/- and RARgamma-/- cell lines than in F9 Wt and RARalpha-/-. Genes specifically induced by RA at 6h with the protein synthesis inhibitor cycloheximide in F9 Wt, but not in RARgamma-/- cells, included Hoxa3, Hoxa5, Gas1, Cyp26a1, Sfrp2, Fbp2, and Emp1. These genes represent specific primary RARgamma targets in F9 cells. Several genes in the Wnt signaling pathway were regulated by RARgamma. Delineation of the receptor-specific actions of RA with respect to cell proliferation and differentiation should result in more effective therapies with this drug.
Collapse
Affiliation(s)
- Dan Su
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, and Weill Graduate School of Biomedical Sciences of Cornell University
| |
Collapse
|
22
|
Pilon N, Oh K, Sylvestre JR, Savory JGA, Lohnes D. Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 2007; 134:2315-23. [PMID: 17537796 DOI: 10.1242/dev.001206] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the mouse, Cdx1 is essential for normal anteroposterior vertebral patterning through regulation of a subset of Hox genes. Retinoic acid (RA) and certain Wnts have also been implicated in vertebral patterning, although the relationship between these signaling pathways and the regulation of mesodermal Hox gene expression is not fully understood. Prior work has shown that Cdx1 is a direct target of both Wnt and retinoid signaling pathways,and might therefore act to relay these signals to the Hox genes. Wnt and RA are believed to impact on Cdx1 through an atypical RA-response element (RARE) and Lef/Tcf-response elements (LRE), respectively, in the proximal promoter. To address the roles of these regulatory motifs and pathways, we derived mice mutated for the LRE or the LRE plus the RARE. In contrast to RARE-null mutants, which exhibit limited vertebral defects,LRE-null and LRE+RARE-null mutants exhibited vertebral malformations affecting the entire cervical region that closely phenocopied the malformations seen in Cdx1-null mutants. Mutation of the LRE also greatly reduced induction of Cdx1 by RA, demonstrating a requirement for Wnt signaling in the regulation of this gene by retinoids. LRE and LRE+RARE mutants also exhibited vertebral fusions, suggesting a defect in somitogenesis. As Wnt signaling is implicated in somitogenesis upstream of the Notch pathway, it is conceivable that Cdx1 might play a role in this process. However, none of the Notch pathway genes assessed was overtly affected.
Collapse
Affiliation(s)
- Nicolas Pilon
- Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
23
|
Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 2006; 46:451-80. [PMID: 16402912 DOI: 10.1146/annurev.pharmtox.46.120604.141156] [Citation(s) in RCA: 454] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) is involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. The use of in vitro systems initially led to the identification of nuclear receptor RXR/RAR heterodimers as possible transducers of the RA signal. To unveil the physiological functions of RARs and RXRs, genetic and pharmacological studies have been performed in the mouse. Together, their results demonstrate that (a) RXR/RAR heterodimers in which RXR is either transcriptionally active or silent are involved in the transduction of the RA signal during prenatal development, (b) specific RXRalpha/RAR heterodimers are required at many distinct stages during early embryogenesis and organogenesis, (c) the physiological role of RA and its receptors cannot be extrapolated from teratogenesis studies using retinoids in excess. Additional cell type-restricted and temporally controlled somatic mutagenesis is required to determine the functions of RARs and RXRs during postnatal life.
Collapse
Affiliation(s)
- Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut Clinique de la Souris, Centre National de la Recherche Scientifique/INSERM, Université Louis Pasteur de Strasbourg, Collège de France, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
24
|
Pilon N, Oh K, Sylvestre JR, Bouchard N, Savory J, Lohnes D. Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol 2005; 289:55-63. [PMID: 16309666 DOI: 10.1016/j.ydbio.2005.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 12/22/2022]
Abstract
There is considerable evidence that the Cdx gene products impact on vertebral patterning by direct regulation of Hox gene expression. Data from a number of vertebrate model systems also suggest that Cdx1, Cdx2 and Cdx4 are targets of caudalizing signals such as RA, Wnt and FGF. These observations have lead to the hypothesis that Cdx members serve to relay information from signaling pathways involved in posterior patterning to the Hox genes. Regulation of Cdx1 expression by RA and Wnt in the mouse has been well characterized; however, the means by which Cdx2 and Cdx4 are regulated is less well understood. In the present study, we present data suggesting that Cdx4 is a direct target of the canonical Wnt pathway. We found that Cdx4 responds to exogenous Wnt3a in mouse embryos ex vivo, and conversely, that its expression is down-regulated in Wnt3a(vt/vt) embryos and in embryos cultured in the presence of Wnt inhibitors. We also found that the Cdx4 promoter responds to Wnt signaling in P19 embryocarcinoma cells and have identified several putative LEF/TCF response elements mediating this effect. Consistent with these data, chromatin immunoprecipitation assays from either embryocarcinoma cells or from the tail bud of embryos revealed that LEF1 and beta-catenin co-localize with the Cdx4 promoter. Taken together, these results suggest that Cdx4, like Cdx1, is a direct Wnt target.
Collapse
Affiliation(s)
- Nicolas Pilon
- Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Mukhopadhyay P, Greene RM, Zacharias W, Weinrich MC, Singh S, Young WW, Pisano MM. Developmental gene expression profiling of mammalian, fetal orofacial tissue. ACTA ACUST UNITED AC 2005; 70:912-26. [PMID: 15578713 DOI: 10.1002/bdra.20095] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The embryonic orofacial region is an excellent developmental paradigm that has revealed the centrality of numerous genes encoding proteins with diverse and important biological functions in embryonic growth and morphogenesis. DNA microarray technology presents an efficient means of acquiring novel and valuable information regarding the expression, regulation, and function of a panoply of genes involved in mammalian orofacial development. METHODS To identify differentially expressed genes during mammalian orofacial ontogenesis, the transcript profiles of GD-12, GD-13, and GD-14 murine orofacial tissue were compared utilizing GeneChip arrays from Affymetrix. Changes in gene expression were verified by TaqMan quantitative real-time PCR. Cluster analysis of the microarray data was done with the GeneCluster 2.0 Data Mining Tool and the GeneSpring software. RESULTS Expression of >50% of the approximately 12,000 genes and expressed sequence tags examined in this study was detected in GD-12, GD-13, and GD-14 murine orofacial tissues and the expression of several hundred genes was up- and downregulated in the developing orofacial tissue from GD-12 to GD-13, as well as from GD-13 to GD-14. Such differential gene expression represents changes in the expression of genes encoding growth factors and signaling molecules; transcription factors; and proteins involved in epithelial-mesenchymal interactions, extracellular matrix synthesis, cell adhesion, proliferation, differentiation, and apoptosis. Following cluster analysis of the microarray data, eight distinct patterns of gene expression during murine orofacial ontogenesis were selected for graphic presentation of gene expression patterns. CONCLUSIONS This gene expression profiling study identifies a number of potentially unique developmental participants and serves as a valuable aid in deciphering the complex molecular mechanisms crucial for mammalian orofacial development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, Kentucky, KY 40292, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Oostra RJ, Hennekam RCM, de Rooij L, Moorman AFM. Malformations of the axial skeleton inMuseum Vrolik I: Homeotic transformations and numerical anomalies. Am J Med Genet A 2005; 134:268-81. [PMID: 15732082 DOI: 10.1002/ajmg.a.30639] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Museum Vrolik collection of anatomical specimens in Amsterdam, The Netherlands, comprises over 5,000 specimens of human and animal anatomy, embryology, pathology, and congenital anomalies. Recently, we rediagnosed a subset of the collection comprising dried human trunk skeletons and cranial base preparations presenting with homeotic transformations (vertebral phenotypic shifts) and numerical vertebral anomalies. We identified 11 trunk skeletons with either anterior or posterior homeotic transformations (AHT or PHT), 5 trunk skeletons with either less or more than the normal number of vertebrae, and well over a hundred cranial base preparations with either AHT (atlas-assimilation) or PHT (occipital vertebra). We found that, although homeotic transformations and numerical anomalies are distinct conditions, both can be described in terms of mismatch between homeotic patterning and morphological segmentation of the paraxial mesoderm. Therefore these two processes are perhaps not as tightly linked as they may seem on the basis of recent molecular studies. In homeotic transformations there is a constant mismatch between homeotic patterning and morphological segmentation throughout the affected region of the vertebral column. In numerical anomalies there is a variable mismatch between homeotic patterning and morphological segmentation, either because of stretching or squeezing of the homeotic pattern or because of oligo- or polysegmentation of the presomitic mesoderm (PSM). Homeotic transformations of the axial skeleton have an incidence of about 1%-5%, apart from their occurrence in malformation syndromes. Of the various etiological possibilities, explaining their frequent but mostly sporadic occurrence, maternal hyperthermia seems an attractive candidate.
Collapse
Affiliation(s)
- Roelof-Jan Oostra
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Schubert M, Yu JK, Holland ND, Escriva H, Laudet V, Holland LZ. Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 2004; 132:61-73. [PMID: 15576409 DOI: 10.1242/dev.01554] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates.
Collapse
Affiliation(s)
- Michael Schubert
- Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR5161/INRA-UMR1237, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
28
|
Béland M, Pilon N, Houle M, Oh K, Sylvestre JR, Prinos P, Lohnes D. Cdx1 autoregulation is governed by a novel Cdx1-LEF1 transcription complex. Mol Cell Biol 2004; 24:5028-38. [PMID: 15143193 PMCID: PMC416402 DOI: 10.1128/mcb.24.11.5028-5038.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Cdx1 gene product is essential for normal anterior-posterior vertebral patterning. Expression of Cdx1 is regulated by several pathways implicated in anterior-posterior patterning events, including retinoid and Wnt signaling. We have previously shown that retinoic acid plays a key role in early stages of Cdx1 expression at embryonic day 7.5 (E7.5), while both Wnt3a signaling and an autoregulatory loop, dependent on Cdx1 itself, are involved in later stages of expression (E8.5 to E9.5). This autoregulation is reflected by the ability of Cdx1 to affect expression from proximal Cdx1 promoter sequences in tissue culture. However, this region is devoid of a demonstrable Cdx response element(s). We have now found that Cdx1 and LEF1, a nuclear effector of Wnt signaling, synergize to induce expression from the Cdx1 promoter through previously documented LEF/T-cell factor response elements. We also found a direct physical interaction between the homeodomain of Cdx1 and the B box of LEF1, suggesting a basis for this synergy. Consistent with these observations, analysis of Cdx1 Wnt3a(vt) compound mutants demonstrated that Wnt and Cdx1 converged on Cdx1 expression and vertebral patterning in vivo. Further data suggest that Cdx-high-mobility group box interactions might be involved in a number of additional pathways.
Collapse
Affiliation(s)
- Mélanie Béland
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | |
Collapse
|
29
|
Shiotsugu J, Katsuyama Y, Arima K, Baxter A, Koide T, Song J, Chandraratna RAS, Blumberg B. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 2004; 131:2653-67. [PMID: 15128657 DOI: 10.1242/dev.01129] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anteroposterior (AP) patterning of the developing CNS is crucial for both regional specification and the timing of neurogenesis. Several important factors are involved in AP patterning, including members of the WNT and FGF growth factor families, retinoic acid receptors, and HOX genes. We have examined the interactions between FGF and retinoic signaling pathways. Blockade of FGF signaling downregulates the expression of members of the RAR signaling pathway, RARalpha, RALDH2 and CYP26. Overexpression of a constitutively active RARalpha2 rescues the effects of FGF blockade on the expression of XCAD3 and HOXB9. This suggests that RARalpha2 is required as a downstream target of FGF signaling for the posterior expression of XCAD3 and HOXB9. Surprisingly, we found that posterior expression of FGFR1 and FGFR4 was dependent on the expression of RARalpha2. Anterior expression was also altered with FGFR1 expression being lost, whereas FGFR4 expression was expanded beyond its normal expression domain. RARalpha2 is required for the expression of XCAD3 and HOXB9, and for the ability of XCAD3 to induce HOXB9 expression. We conclude that RARalpha2 is required at multiple points in the posteriorization pathway, suggesting that correct AP neural patterning depends on a series of mutually interactive feedback loops among FGFs, RARs and HOX genes.
Collapse
MESH Headings
- Aldehyde Dehydrogenase 1 Family
- Aldehyde Oxidase
- Aldehyde Oxidoreductases/genetics
- Aldehyde Oxidoreductases/metabolism
- Animals
- Axis, Cervical Vertebra/embryology
- Axis, Cervical Vertebra/metabolism
- Body Patterning/genetics
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Embryo, Nonmammalian
- Epistasis, Genetic
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Fibroblast Growth Factor 8
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinal Dehydrogenase
- Retinoic Acid 4-Hydroxylase
- Retinoic Acid Receptor alpha
- Signal Transduction
- Tretinoin/metabolism
- Xenopus/embryology
- Xenopus/genetics
- Xenopus/metabolism
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
Collapse
Affiliation(s)
- Jason Shiotsugu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Houle M, Sylvestre JR, Lohnes D. Retinoic acid regulates a subset of Cdx1 function in vivo. Development 2004; 130:6555-67. [PMID: 14660544 DOI: 10.1242/dev.00889] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox gene products are key players in establishing positional identity along the anteroposterior (AP) axis. In vertebrates, gain or loss of Hox expression along the AP axis often leads to inappropriate morphogenesis, typically manifesting as homeotic transformations that affect the vertebrae and/or hindbrain. Various signalling pathways are known to impact on Hox expression, including the retinoid signalling pathway. Exogenous retinoic acid (RA), disruption of enzymes involved in maintaining normal embryonic RA distribution or mutation of the retinoid receptors (RARs and RXRs) can all impact on Hox expression with concomitant effects on AP patterning. Several Hox loci have well characterized RA response elements (RAREs), which have been shown to regulate functionally relevant Hox expression in the neurectoderm. A similar crucial function for any RARE in mesodermal Hox expression has, however, not been documented. The means by which RA regulates mesodermal Hox expression could therefore be either through an undocumented direct mechanism or through an intermediary; these mechanisms are not necessarily exclusive. In this regard, we have found that Cdx1 may serve as such an intermediary. Cdx1 encodes a homeobox transcription factor that is crucial for normal somitic expression of several Hox genes, and is regulated by retinoid signalling in vivo and in vitro likely through an atypical RARE in the proximal promoter. In order to more fully understand the relationship between retinoid signalling, Cdx1 expression and AP patterning, we have derived mice in which the RARE has been functionally inactivated. These RARE-null mutants exhibit reduced expression of Cdx1 at all stages examined, vertebral homeotic transformations and altered Hox gene expression which correlates with certain of the defects seen in Cdx1-null offspring. These findings are consistent with a pivotal role for retinoid signalling in governing a subset of expression of Cdx1 crucial for normal vertebral patterning.
Collapse
Affiliation(s)
- Martin Houle
- Department of Molecular Biology, Université de Montréal, 110 ave des Pins, ouest, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
31
|
Pilbeam D. The anthropoid postcranial axial skeleton: Comments on development, variation, and evolution. ACTA ACUST UNITED AC 2004; 302:241-67. [PMID: 15211685 DOI: 10.1002/jez.b.22] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within-species phenotypic variation is the raw material on which natural selection acts to shape evolutionary change, and understanding more about the developmental genetics of intraspecific as well as interspecific phenotypic variation is an important component of the Evo-Devo agenda. The axial skeleton is a useful system to analyze from such a perspective. Its development is increasingly well understood, and between-species differences in functionally important developmental parameters are well documented. I present data on intraspecific variation in the axial postcranial skeleton of some Primates, including hominoids (apes and humans). Hominoid species are particularly valuable, because counts of total numbers of vertebrae, and hence original somite numbers, are available for large samples. Evolutionary changes in the axial skeleton of various primate lineages, including bipedal humans, are reviewed, and hypotheses presented to explain the changes in terms of developmental genetics. Further relevant experiments on model organisms are suggested in order to explore more fully the differences in developmental processes between primate species, and hence to test these hypotheses.
Collapse
Affiliation(s)
- David Pilbeam
- Program in Biological Anthropology, Peabody Museum, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
32
|
Gómez-Skarmeta JL, Campuzano S, Modolell J. Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci 2003; 4:587-98. [PMID: 12838333 DOI: 10.1038/nrn1142] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Luis Gómez-Skarmeta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
33
|
Gaunt SJ, Drage D, Cockley A. Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech Dev 2003; 120:573-86. [PMID: 12782274 DOI: 10.1016/s0925-4773(03)00023-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vertebrate caudal proteins, being upstream regulators of the Hox genes, play a role in establishment of the body plan. We describe analysis of two orthologous caudal genes (chick cdx-A and mouse cdx-1) by use of lacZ reporters expressed in transgenic mouse embryos. The expression patterns show many similarities to the expression of endogenous mouse cdx-1. At 8.7 days, cdx/lacZ activity within neurectoderm and mesoderm forms posterior-to-anterior gradients, and we discuss the possibility that similar gradients of cdx gene expression may function as morphogen gradients for the establishment of Hox gene expression boundaries. Our observations suggest that gradients form by decay of cdx/lacZ activity in cells that have moved anterior to the vicinity of the node. The cdx-A/lacZ expression pattern requires an intron enhancer that includes two functional control elements: a DR2-type retinoic acid response element and a Tcf/beta-catenin binding motif. These motifs are structurally conserved in mouse cdx-1.
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Development and Genetics, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
34
|
Kaiser ME, Merrill RA, Stein AC, Breburda E, Clagett-Dame M. Vitamin A deficiency in the late gastrula stage rat embryo results in a one to two vertebral anteriorization that extends throughout the axial skeleton. Dev Biol 2003; 257:14-29. [PMID: 12710954 DOI: 10.1016/s0012-1606(03)00044-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vitamin A and its metabolites are known to be involved in patterning the vertebrate embryo. Study of the effect of vitamin A on axial skeletal patterning has been hindered by the fact that deficient embryos do not survive past midgestation. In this study, pregnant vitamin A-deficient rats were maintained on a purified diet containing limiting amounts of all-trans retinoic acid (12 microg atRA/g diet) and given a daily oral bolus dose of retinol starting at embryonic day 0.5, 8.25, 8.5, 8.75, 9.25, 9.5, 9.75, or 10.5. Embryos were recovered at E21.5 for analysis of the skeleton and at earlier times for analysis of select mRNAs. Normal axial skeletal development and patterning were observed in embryos from pregnant animals receiving retinol starting on or before E8.75. Delay of retinol supplementation to E9.5 or later resulted in a marked increase in both occurrence and severity of skeletal malformations, extending from the craniocervical to sacral regions. Embryos from the groups receiving retinol starting at E9.5 and E9.75 had one-vertebral anterior transformations of the cervical, thoracic, lumbar, and sacral vertebrae. Few embryos survived in the E10.5 group, but these embryos yielded the most severe and extensive anteriorization events. The skeletal alterations seen in vitamin A deficiency are associated with posterior shifts in the mesodermal expression of Hoxa-4, Hoxb-3, Hoxd-3, Hoxd-4, and Hoxa-9 mRNAs, whereas the anterior domains of Hoxb-4 and Cdx2 expression are unaltered. This work defines a critical window of development in the late gastrula-stage embryo when vitamin A is essential for normal axial skeletal patterning and shows that vitamin A deficiency causes anterior homeotic transformations extending from the cervical to lumbosacral regions.
Collapse
Affiliation(s)
- Mary E Kaiser
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
35
|
Lickert H, Kemler R. Functional analysis of cis-regulatory elements controlling initiation and maintenance of early Cdx1 gene expression in the mouse. Dev Dyn 2003; 225:216-20. [PMID: 12242722 DOI: 10.1002/dvdy.10149] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Members of the Caudal-related homeobox gene family are implicated in anteroposterior (AP) patterning and posterior axis elongation in mammals. Previously, we found that Caudal-related homeobox gene1 (Cdx1) is directly regulated by the Wnt/beta-catenin signaling pathway, and we identified Wnt/beta-catenin responsive elements in the Cdx1 promoter. Here, we have generated a series of transgenic mouse lines to determine if the Cdx1 promoter region (-3.6 kb to -0.7 kb) sufficient to drive reporter gene expression in the normal Cdx1 expression domains. A 0.7-kb Cdx1 upstream regulatory sequence is sufficient to give the early phase of Cdx1 expression in the primitive streak. However, none of the reporter constructs was able to drive expression in the definitive endoderm at later stages of development. More detailed analysis of the cis-regulatory elements of this 0.7-kb Cdx1 promoter region revealed that two Wnt/beta-catenin responsive elements are important for initiation of Cdx1 expression in the primitive streak and one retinoic acid response element for maintenance. Our analysis demonstrates that the early Cdx1 expression is regulated through the caudalizing Wnt/beta-catenin and RA activities.
Collapse
Affiliation(s)
- Heiko Lickert
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | |
Collapse
|
36
|
Cdx homeodomain proteins in vertebral patterning. MURINE HOMEOBOX GENE CONTROL OF EMBRYONIC PATTERNING AND ORGANOGENESIS 2003. [DOI: 10.1016/s1569-1799(03)13003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Bel-Vialar S, Itasaki N, Krumlauf R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxBgenes in two distinct groups. Development 2002; 129:5103-15. [PMID: 12399303 DOI: 10.1242/dev.129.22.5103] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of Hox genes requires interactions between numerous factors and signaling pathways in order to establish their precise domain boundaries in the developing nervous system. There are distinct differences in the expression and regulation of members of Hox genes within a complex suggesting that multiple competing mechanisms are used to initiate their expression domains in early embryogenesis. In this study, by analyzing the response ofHoxB genes to both RA and FGF signaling in neural tissue during early chick embryogenesis (HH stages 7-15), we have defined two distinct groups of Hox genes based on their reciprocal sensitivity to RA or FGF during this developmental period. We found that the expression domain of 5′ members from the HoxB complex (Hoxb6-Hoxb9) can be expanded anteriorly in the chick neural tube up to the level of the otic vesicle following FGF treatment and that these same genes are refractory to RA treatment at these stages. Furthermore, we showed that the chickcaudal-related genes, cdxA and cdxB, are also responsive to FGF signaling in neural tissue and that their anterior expansion is also limited to the level of the otic vesicle. Using a dominant negative form of a Xenopus Cdx gene (XcadEnR) we found that the effect of FGF treatment on 5′ HoxB genes is mediated in part through the activation and function of CDX activity. Conversely, the 3′HoxB genes (Hoxb1 and Hoxb3-Hoxb5) are sensitive to RA but not FGF treatments at these stages. We demonstrated by in ovo electroporation of a dominant negative retinoid receptor construct(dnRAR) that retinoid signaling is required to initiate expression. Elevating CDX activity by ectopic expression of an activated form of aXenopus Cdx gene (XcadVP16) in the hindbrain ectopically activates and anteriorly expands Hoxb4 expression. In a similar manner, when ectopic expression of XcadVP16 is combined with FGF treatment, we found that Hoxb9 expression expands anteriorly into the hindbrain region. Our findings suggest a model whereby, over the window of early development we examined, all HoxB genes are actually competent to interpret an FGF signal via a CDX-dependent pathway. However, mechanisms that axially restrict the Cdx domains of expression, serve to prevent 3′ genes from responding to FGF signaling in the hindbrain. FGF may have a dual role in both modulating the accessibility of the HoxB complex along the axis and in activating the expression of Cdx genes. The position of the shift in RA or FGF responsiveness of Hox genes may be time dependent. Hence, the specific Hox genes in each of these complementary groups may vary in later stages of development or other tissues. These results highlight the key role of Cdx genes in integrating the input of multiple signaling pathways, such as FGFs and RA, in controlling initiation of Hox expression during development and the importance of understanding regulatory events/mechanisms that modulate Cdx expression.
Collapse
Affiliation(s)
- Sophie Bel-Vialar
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
38
|
Fisher KRS, Wilson MS, Partlow GD. Abdominal situs inversus in a Holstein calf. THE ANATOMICAL RECORD 2002; 267:47-51. [PMID: 11984791 DOI: 10.1002/ar.10086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Situs inversus is a rare congenital anomaly wherein the normal, left-right organ location is inverted. The anatomical inversion (heterotaxy) is usually detected in routine radiography or other medical interventions. A 5-month-old Holstein heifer calf was identified as a suspected situs inversus totalis during abdominal surgery. Following surgery the calf did not gain weight. On admission to the Ontario Veterinary Hospital, it was given a routine clinical examination and a detailed cardiovascular, Doppler ultrasound examination, which appeared normal. Because of declining health and chronic bloating in the heifer, euthanasia was performed. A detailed post-mortem dissection was carried out. No heart or lung anomalies were detected. Other thoracic organs were normal, except for a helical coil of the esophagus as it traversed the diaphragm. The rumen was located entirely on the right side of the abdomen and had a large area of adhesion to the parietal peritoneal wall. The left kidney was abnormally placed: retroperitoneal and cranial to the right. There were two spleens. The caudal vena cava was distended and twisted to the left. Thus the calf was situs inversus abdominalis. This suggests that the development of laterality in the early embryo may include both timing and positional regulation.
Collapse
Affiliation(s)
- K R S Fisher
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
39
|
Amador AG, Esquifino AI, Bartke A, Chandrashekar V, Fernández-Ruiz JJ, Steger RW, Hodges SL. Effects of diethylstilboestrol on testicular function and luteinizing hormone receptors. REVISTA ESPANOLA DE FISIOLOGIA 1989; 55:843-855. [PMID: 2515561 DOI: 10.1016/j.molcel.2014.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/13/2014] [Accepted: 07/17/2014] [Indexed: 01/01/2023]
Abstract
Adult male Fisher-344 rats were implanted with DES-filled or empty Silastic capsules. After 14 weeks, capsules were removed and a second group of rats received DES capsules. Seven weeks later, all the rats were sacrificed. DES treatment decreased body, testes and seminal vesicle weights, and removal of the capsules partially restored the weight of these organs. The concentration of testicular LH receptors was increased by DES treatment. Circulating PRL levels were increased and gonadotropin levels were reduced in all animals having received DES at anytime. Plasma testosterone (T) levels were similar in all groups, but testicular T levels were reversibly decreased by DES. Similarly, whereas basal incubation media T levels were unchanged by DES treatment, the steroidogenic response in vitro to hCG was abolished by the presence of DES, and removal of the capsules restored this response. It appears that in this animal model DES and PRL exert opposing effects on testicular LH receptor.
Collapse
Affiliation(s)
- A G Amador
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901-6512
| | | | | | | | | | | | | |
Collapse
|