1
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
2
|
Lanoizelet M, Elkhoury Youhanna C, Roure A, Darras S. Molecular control of cellulosic fin morphogenesis in ascidians. BMC Biol 2024; 22:74. [PMID: 38561802 PMCID: PMC10986139 DOI: 10.1186/s12915-024-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.
Collapse
Affiliation(s)
- Maxence Lanoizelet
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
- Present address: Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Louvain, Belgium.
| | - Christel Elkhoury Youhanna
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
- Present address: Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, 34090, France
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
| |
Collapse
|
3
|
Henriet S, Aasjord A, Chourrout D. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy. Front Zool 2022; 19:26. [PMID: 36307829 PMCID: PMC9617304 DOI: 10.1186/s12983-022-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A fascinating variety of adult body plans can be found in the Tunicates, the closest existing relatives of vertebrates. A distinctive feature of the larvacean class of pelagic tunicates is the presence of a highly specialized surface epithelium that produces a cellulose test, the “larvacean house”. While substantial differences exist between the anatomy of larvacean families, most of the ontogeny is derived from the observations of a single genus, Oikopleura. We present the first study of Fritillaria development based on the observation of individuals reproduced in the laboratory. Like the other small epipelagic species Oikopleura dioica, the larvae of Fritillaria borealis grow rapidly in the laboratory, and they acquire the adult form within a day. We could show that major morphological differences exhibited by Fritillaria and Oikopleura adults originate from a key developmental stage during larval organogenesis. Here, the surface epithelium progressively retracts from the posterior digestive organs of Fritillaria larvae, and it establishes house-producing territories around the pharynx. Our results show that the divergence between larvacean genera was associated with a profound rearrangement of the mechanisms controlling the differentiation of the larval ectoderm.
Collapse
|
4
|
Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Zhou L, Huang X, Wang L, Guo S, Wang Y, Song CP, Qian W, Li Y. The UBP14-CDKB1;1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. THE PLANT CELL 2022; 34:1308-1325. [PMID: 34999895 PMCID: PMC8972217 DOI: 10.1093/plcell/koac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 05/31/2023]
Abstract
Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinwei Wei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
5
|
Ma X, Øvrebø JI, Thompson EM. Evolution of CDK1 Paralog Specializations in a Lineage With Fast Developing Planktonic Embryos. Front Cell Dev Biol 2022; 9:770939. [PMID: 35155443 PMCID: PMC8832800 DOI: 10.3389/fcell.2021.770939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
The active site of the essential CDK1 kinase is generated by core structural elements, among which the PSTAIRE motif in the critical αC-helix, is universally conserved in the single CDK1 ortholog of all metazoans. We report serial CDK1 duplications in the chordate, Oikopleura. Paralog diversifications in the PSTAIRE, activation loop substrate binding platform, ATP entrance site, hinge region, and main Cyclin binding interface, have undergone positive selection to subdivide ancestral CDK1 functions along the S-M phase cell cycle axis. Apparent coevolution of an exclusive CDK1d:Cyclin Ba/b pairing is required for oogenic meiosis and early embryogenesis, a period during which, unusually, CDK1d, rather than Cyclin Ba/b levels, oscillate, to drive very rapid cell cycles. Strikingly, the modified PSTAIRE of odCDK1d shows convergence over great evolutionary distance with plant CDKB, and in both cases, these variants exhibit increased specialization to M-phase.
Collapse
Affiliation(s)
- Xiaofei Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
- Sars International Centre, University of Bergen, Bergen, Norway
| | - Jan Inge Øvrebø
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Bliznina A, Masunaga A, Mansfield MJ, Tan Y, Liu AW, West C, Rustagi T, Chien HC, Kumar S, Pichon J, Plessy C, Luscombe NM. Telomere-to-telomere assembly of the genome of an individual Oikopleura dioica from Okinawa using Nanopore-based sequencing. BMC Genomics 2021; 22:222. [PMID: 33781200 PMCID: PMC8008620 DOI: 10.1186/s12864-021-07512-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background The larvacean Oikopleura dioica is an abundant tunicate plankton with the smallest (65–70 Mbp) non-parasitic, non-extremophile animal genome identified to date. Currently, there are two genomes available for the Bergen (OdB3) and Osaka (OSKA2016) O. dioica laboratory strains. Both assemblies have full genome coverage and high sequence accuracy. However, a chromosome-scale assembly has not yet been achieved. Results Here, we present a chromosome-scale genome assembly (OKI2018_I69) of the Okinawan O. dioica produced using long-read Nanopore and short-read Illumina sequencing data from a single male, combined with Hi-C chromosomal conformation capture data for scaffolding. The OKI2018_I69 assembly has a total length of 64.3 Mbp distributed among 19 scaffolds. 99% of the assembly is contained within five megabase-scale scaffolds. We found telomeres on both ends of the two largest scaffolds, which represent assemblies of two fully contiguous autosomal chromosomes. Each of the other three large scaffolds have telomeres at one end only and we propose that they correspond to sex chromosomes split into a pseudo-autosomal region and X-specific or Y-specific regions. Indeed, these five scaffolds mostly correspond to equivalent linkage groups in OdB3, suggesting overall agreement in chromosomal organization between the two populations. At a more detailed level, the OKI2018_I69 assembly possesses similar genomic features in gene content and repetitive elements reported for OdB3. The Hi-C map suggests few reciprocal interactions between chromosome arms. At the sequence level, multiple genomic features such as GC content and repetitive elements are distributed differently along the short and long arms of the same chromosome. Conclusions We show that a hybrid approach of integrating multiple sequencing technologies with chromosome conformation information results in an accurate de novo chromosome-scale assembly of O. dioica’s highly polymorphic genome. This genome assembly opens up the possibility of cross-genome comparison between O. dioica populations, as well as of studies of chromosomal evolution in this lineage. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07512-6.
Collapse
Affiliation(s)
- Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK
| | - Tanmay Rustagi
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hsiao-Chiao Chien
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saurabh Kumar
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Julien Pichon
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Francis Crick Institute, London, UK.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
7
|
Nishida H, Ohno N, Caicci F, Manni L. 3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Sci Rep 2021; 11:4833. [PMID: 33649401 PMCID: PMC7921577 DOI: 10.1038/s41598-021-83706-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and an emerging model organism with a short life cycle of 5 days that belongs toTunicata (Urochordata), the sister clade of vertebrates. It is characterized by the rapid development of a tadpole-shaped body. Organ formation in the trunk proceeds within 7 h after the hatching of the tailbud larvae at 3 h after fertilization (hpf) and is completed at 10 hpf, giving rise to fully functional juveniles as miniature adult form. Serial block face scanning electron microscopy was used to acquire ~ 2000 serial transverse section images of a 3 hpf larva and a 10 hpf juvenile to characterize the structures and cellular composition of the trunk and organs using 3D images and movies. Germ cells were found to fuse and establish a central syncytial cell in the gonad as early as 10 hpf. Larval development gave rise to functional organs after several rounds of cell division through trunk morphogenesis. The feature would make O. dioica ideal for analyzing cellular behaviors during morphogenetic processes using live imaging. The detailed descriptions of the larvae and juveniles provided in this study can be utilized as the start and end points of organ morphogenesis in this rapidly developing organism.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
8
|
Liu AW, Tan Y, Masunaga A, Bliznina A, West C, Plessy C, Luscombe NM. Centromere-specific antibody-mediated karyotyping of Okinawan Oikopleura dioica suggests the presence of three chromosomes. F1000Res 2020; 9:780. [PMID: 33728042 PMCID: PMC7941098 DOI: 10.12688/f1000research.25019.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 04/01/2024] Open
Abstract
Oikopleura dioica is a ubiquitous marine tunicate of biological interest due to features that include dioecious reproduction, short life cycle, and vertebrate-like dorsal notochord while possessing a relatively compact genome. The use of tunicates as model organisms, particularly with these characteristics, offers the advantage of facilitating studies in evolutionary development and furthering understanding of enduring attributes found in the more complex vertebrates. At present, we are undertaking an initiative to sequence the genomes of Oikopleura individuals in populations found among the seas surrounding the Ryukyu Islands in southern Japan. To facilitate and validate genome assemblies, karyotyping was employed to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. New imaging data of embryos and oocytes stained with two different antibodies were obtained; interpretation of these data lead us to conclude that the Okinawan Oikopleura dioica has three pairs of chromosomes, akin to previous results from genomic assemblies in Atlantic populations. The imaging data have been deposited to the open-access EBI BioImage Archive for reuse while additionally providing representative images of two commercially available anti-H3S28P antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.
Collapse
Affiliation(s)
- Andrew W. Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
9
|
Liu AW, Tan Y, Masunaga A, Bliznina A, West C, Plessy C, Luscombe NM. H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes. F1000Res 2020; 9:780. [PMID: 33728042 PMCID: PMC7941098 DOI: 10.12688/f1000research.25019.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals' chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies' staining properties for use in epifluorescent and confocal based fluorescent microscopy.
Collapse
Affiliation(s)
- Andrew W. Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa, 904-0324, Japan
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
10
|
DeBiasse MB, Colgan WN, Harris L, Davidson B, Ryan JF. Inferring Tunicate Relationships and the Evolution of the Tunicate Hox Cluster with the Genome of Corella inflata. Genome Biol Evol 2020; 12:948-964. [PMID: 32211845 PMCID: PMC7337526 DOI: 10.1093/gbe/evaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, "inflated" atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta, are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| | - William N Colgan
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Lincoln Harris
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| |
Collapse
|
11
|
Feng H, Raasholm M, Moosmann A, Campsteijn C, Thompson EM. Switching of INCENP paralogs controls transitions in mitotic chromosomal passenger complex functions. Cell Cycle 2019; 18:2006-2025. [PMID: 31306061 PMCID: PMC6681789 DOI: 10.1080/15384101.2019.1634954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023] Open
Abstract
A single inner centromere protein (INCENP) found throughout eukaryotes modulates Aurora B kinase activity and chromosomal passenger complex (CPC) localization, which is essential for timely mitotic progression. It has been proposed that INCENP might act as a rheostat to regulate Aurora B activity through mitosis, with successively higher activity threshold levels for chromosome alignment, the spindle checkpoint, anaphase spindle transfer and finally spindle elongation and cytokinesis. It remains mechanistically unclear how this would be achieved. Here, we reveal that the urochordate, Oikopleura dioica, possesses two INCENP paralogs, which display distinct localizations and subfunctionalization in order to complete M-phase. INCENPa was localized on chromosome arms and centromeres by prometaphase, and modulated Aurora B activity to mediate H3S10/S28 phosphorylation, chromosome condensation, spindle assembly and transfer of the CPC to the central spindle. Polo-like kinase (Plk1) recruitment to CDK1 phosphorylated INCENPa was crucial for INCENPa-Aurora B enrichment on centromeres. The second paralog, INCENPb was enriched on centromeres from prometaphase, and relocated to the central spindle at anaphase onset. In the absence of INCENPa, meiotic spindles failed to form, and homologous chromosomes did not segregate. INCENPb was not required for early to mid M-phase events but became essential for the activity and localization of Aurora B on the central spindle and midbody during cytokinesis in order to allow abscission to occur. Together, our results demonstrate that INCENP paralog switching on centromeres modulates Aurora B kinase localization, thus chronologically regulating CPC functions during fast embryonic divisions in the urochordate O. dioica. Abbreviations: CCAN: constitutive centromere-associated network; CENPs: centromere proteins; cmRNA: capped messenger RNA; CPC: chromosomal passenger complex; INCENP: inner centromere protein; Plk1: polo-like kinase 1; PP1: protein phosphatase 1; PP2A: protein phosphatase 2A; SAC: spindle assembly checkpoint; SAH: single α-helix domain.
Collapse
Affiliation(s)
- Haiyang Feng
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Martina Raasholm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Alexandra Moosmann
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Coen Campsteijn
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Mikhaleva Y, Skinnes R, Sumic S, Thompson EM, Chourrout D. Development of the house secreting epithelium, a major innovation of tunicate larvaceans, involves multiple homeodomain transcription factors. Dev Biol 2018; 443:117-126. [DOI: 10.1016/j.ydbio.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
|
13
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Kishi K, Hayashi M, Onuma TA, Nishida H. Patterning and morphogenesis of the intricate but stereotyped oikoplastic epidermis of the appendicularian, Oikopleura dioica. Dev Biol 2017; 428:245-257. [DOI: 10.1016/j.ydbio.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
|
15
|
Navratilova P, Danks GB, Long A, Butcher S, Manak JR, Thompson EM. Sex-specific chromatin landscapes in an ultra-compact chordate genome. Epigenetics Chromatin 2017; 10:3. [PMID: 28115992 PMCID: PMC5240408 DOI: 10.1186/s13072-016-0110-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background In multicellular organisms, epigenome dynamics are associated with transitions in the cell cycle, development, germline specification, gametogenesis and inheritance. Evolutionarily, regulatory space has increased in complex metazoans to accommodate these functions. In tunicates, the sister lineage to vertebrates, we examine epigenome adaptations to strong secondary genome compaction, sex chromosome evolution and cell cycle modes. Results Across the 70 MB Oikopleura dioica genome, we profiled 19 histone modifications, and RNA polymerase II, CTCF and p300 occupancies, to define chromatin states within two homogeneous tissues with distinct cell cycle modes: ovarian endocycling nurse nuclei and mitotically proliferating germ nuclei in testes. Nurse nuclei had active chromatin states similar to other metazoan epigenomes, with large domains of operon-associated transcription, a general lack of heterochromatin, and a possible role of Polycomb PRC2 in dosage compensation. Testis chromatin states reflected transcriptional activity linked to spermatogenesis and epigenetic marks that have been associated with establishment of transgenerational inheritance in other organisms. We also uncovered an unusual chromatin state specific to the Y-chromosome, which combined active and heterochromatic histone modifications on specific transposable elements classes, perhaps involved in regulating their activity. Conclusions Compacted regulatory space in this tunicate genome is accompanied by reduced heterochromatin and chromatin state domain widths. Enhancers, promoters and protein-coding genes have conserved epigenomic features, with adaptations to the organization of a proportion of genes in operon units. We further identified features specific to sex chromosomes, cell cycle modes, germline identity and dosage compensation, and unusual combinations of histone PTMs with opposing consensus functions. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0110-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavla Navratilova
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Gemma Barbara Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Abby Long
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - John Robert Manak
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway.,Department of Biology, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
16
|
Internal and external morphology of adults of the appendicularian, Oikopleura dioica: an SEM study. Cell Tissue Res 2016; 367:213-227. [DOI: 10.1007/s00441-016-2524-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
17
|
Øvrebø JI, Campsteijn C, Kourtesis I, Hausen H, Raasholm M, Thompson EM. Functional specialization of chordate CDK1 paralogs during oogenic meiosis. Cell Cycle 2015; 14:880-93. [PMID: 25714331 DOI: 10.1080/15384101.2015.1006000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.
Collapse
Key Words
- CDK, Cyclin Dependent Kinase
- DMYPT, Drosophila myosin phosphatase
- GVBD, germinal vesicle breakdown
- MAPK, Mitogen-Activated Protein Kinase
- MTOC
- MTOC, microtubule organizing center
- NEBD, nuclear envelope breakdown
- NPC, Nuclear Pore Complex
- OC, Organizing Center
- Plk1, Polo-like kinase 1
- aurora kinase
- centrosome
- cmRNA, capped messenger RNA
- dsRNA, double-stranded RNA
- endocycle
- polo-like kinase
- syncytium
- urochordate
Collapse
Affiliation(s)
- Jan Inge Øvrebø
- a Department of Biology ; University of Bergen ; Bergen , Norway
| | | | | | | | | | | |
Collapse
|
18
|
Neiman M, Beaton MJ, Hessen DO, Jeyasingh PD, Weider LJ. Endopolyploidy as a potential driver of animal ecology and evolution. Biol Rev Camb Philos Soc 2015; 92:234-247. [PMID: 26467853 DOI: 10.1111/brv.12226] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/20/2023]
Abstract
Endopolyploidy - the existence of higher-ploidy cells within organisms that are otherwise of a lower ploidy level (generally diploid) - was discovered decades ago, but remains poorly studied relative to other genomic phenomena, especially in animals. Our synthetic review suggests that endopolyploidy is more common in animals than often recognized and probably influences a number of fitness-related and ecologically important traits. In particular, we argue that endopolyploidy is likely to play a central role in key traits such as gene expression, body and cell size, and growth rate, and in a variety of cell types, including those responsible for tissue regeneration, nutrient storage, and inducible anti-predator defences. We also summarize evidence for intraspecific genetic variation in endopolyploid levels and make the case that the existence of this variation suggests that endopolyploid levels are likely to be heritable and thus a potential target for natural selection. We then discuss why, in light of evident benefits of endopolyploidy, animals remain primarily diploid. We conclude by highlighting key areas for future research such as comprehensive evaluation of the heritability of endopolyploidy and the adaptive scope of endopolyploid-related traits, the extent to which endopolyploid induction incurs costs, and characterization of the relationships between environmental variability and endopolyploid levels.
Collapse
Affiliation(s)
- Maurine Neiman
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA 52242, U.S.A
| | - Margaret J Beaton
- Biology Department, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Dag O Hessen
- Department of Biosciences, University of Oslo, Box 1066, Blindern, 0316 Oslo, Norway
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, U.S.A
| | - Lawrence J Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, 730 Van Vleet Oval, Room 304, Norman, OK 73019, U.S.A
| |
Collapse
|
19
|
Danks G, Thompson EM. Trans-splicing in metazoans: A link to translational control? WORM 2015; 4:e1046030. [PMID: 26430567 DOI: 10.1080/21624054.2015.1046030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The trans-splicing of a spliced-leader RNA to a subset of mRNAs is a phenomenon that occurs in many species, including Caenorhabditis elegans, and yet the driving force for its evolution in disparate groups of animals remains unclear. Polycistronic mRNA resulting from the transcription of operons is resolved via trans-splicing, but operons comprise only a sub-set of trans-spliced genes. Using the marine chordate, Oikopleura dioica, we recently tested the hypothesis that metazoan operons accelerate recovery from growth arrest. We found no supporting evidence for this in O. dioica. Instead we found a striking relationship between trans-splicing and maternal mRNA in O. dioica, C. elegans and the ascidian, Ciona intestinalis. Furthermore, in O. dioica and C. elegans, we found evidence to suggest a role for mTOR signaling in the translational control of growth-related, trans-spliced maternal mRNAs. We propose that this may be a mechanism for adjusting egg number in response to nutrient levels in these species.
Collapse
Affiliation(s)
- Gemma Danks
- Sars International Centre for Marine Molecular Biology; University of Bergen ; Bergen, Norway
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology; University of Bergen ; Bergen, Norway ; Department of Biology; University of Bergen ; Bergen, Norway
| |
Collapse
|
20
|
Subramaniam G, Campsteijn C, Thompson EM. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium. Cell Cycle 2015; 14:2129-41. [PMID: 25928155 DOI: 10.1080/15384101.2015.1041690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.
Collapse
Key Words
- CAK, CDK Activating Kinase
- CDK, Cyclin-Dependent Kinase
- CKI, CDK inhibitor
- CREB, CRE Binding protein
- CRM, Chromosome Region Maintenance
- ERK, Extracellular signal-regulated kinases
- G-phase, Gap phase
- GA, Growth Arrest
- GFP, Green Fluorescent Protein
- GSC, Germline Stem Cell
- IdU, 5-Iodo-2′-deoxyuridine.
- M-phase, Mitotic phase
- MAPK p38
- MAPK, Mitogen Activated Protein Kinase
- MSK, Mitogen and Stress activating Kinase
- NLS, Nuclear Localization Sequence
- PCNA, Proliferating cell nuclear antigen
- Rb, Retinoblastoma protein
- S-phase, DNA Synthesis phase
- SCF complex, Skp, Cullin, F-box containing complex
- TOR signaling
- TOR:Target Of Rapamycin
- cyclin D splice variants
- cyclin-dependent kinase inhibitor
- cytoplasmic sequestration
- growth arrest
- niche
- stem cell
- syncytium
- urochordate
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- a Sars International Center for Marine Molecular Biology; University of Bergen ; Bergen , Norway
| | | | | |
Collapse
|
21
|
Orr-Weaver TL. When bigger is better: the role of polyploidy in organogenesis. Trends Genet 2015; 31:307-15. [PMID: 25921783 DOI: 10.1016/j.tig.2015.03.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Defining how organ size is regulated, a process controlled not only by the number of cells but also by the size of the cells, is a frontier in developmental biology. Large cells are produced by increasing DNA content or ploidy, a developmental strategy employed throughout the plant and animal kingdoms. The widespread use of polyploidy during cell differentiation makes it important to define how this hypertrophy contributes to organogenesis. I discuss here examples from a variety of animals and plants in which polyploidy controls organ size, the size and function of specific tissues within an organ, or the differentiated properties of cells. In addition, I highlight how polyploidy functions in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Terry L Orr-Weaver
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Danks GB, Raasholm M, Campsteijn C, Long AM, Manak JR, Lenhard B, Thompson EM. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol Biol Evol 2014; 32:585-99. [PMID: 25525214 DOI: 10.1093/molbev/msu336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caenorhabditis elegans, and a recent hypothesis proposes that operons provide an evolutionary advantage via the conservation of transcriptional machinery during recovery from growth arrested states. Using a modified cap analysis of gene expression protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica. Tiled microarrays revealed the expression dynamics of trans-spliced genes across development and during recovery from growth arrest. Operons did not facilitate recovery from growth arrest in O. dioica. Instead, we found that trans-spliced transcripts were predominantly maternal. We then analyzed data from C. elegans and Ciona intestinalis and found that an enrichment of trans-splicing and operon gene expression in maternal mRNA is shared between all three species, suggesting that this may be a driving force for operon evolution in metazoans. Furthermore, we found that the majority of known terminal oligopyrimidine (TOP) mRNAs are trans-spliced in O. dioica and that the SL contains a TOP-like motif. This suggests that the SL in O. dioica confers nutrient-dependent translational control to trans-spliced mRNAs via the TOR-signaling pathway. We hypothesize that SL-trans-splicing provides an evolutionary advantage in species that depend on translational control for regulating early embryogenesis, growth and oocyte production in response to nutrient levels.
Collapse
Affiliation(s)
- Gemma B Danks
- Computational Biology Unit, Uni Computing, Uni Research, Bergen, Norway Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Martina Raasholm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Coen Campsteijn
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - J Robert Manak
- Department of Biology, University of Iowa Carver Center for Genomics, Department of Biology, University of Iowa Department of Pediatrics, Carver College of Medicine, University of Iowa
| | - Boris Lenhard
- Computational Biology Unit, Uni Computing, Uni Research, Bergen, Norway Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Department of Molecular Sciences Imperial College London and MRC Clinical Sciences Centre, London, United Kingdom
| | - Eric M Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
24
|
Lifespan extension in a semelparous chordate occurs via developmental growth arrest just prior to meiotic entry. PLoS One 2014; 9:e93787. [PMID: 24695788 PMCID: PMC3973624 DOI: 10.1371/journal.pone.0093787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
It is proposed that the ageing process is linked to signaling from the germline such that the rate of ageing can be adjusted to the state of the reproductive system, allowing these two processes to co-evolve. Mechanistic insight into this link has been primarily derived from iteroparous reproductive models, the nematode C. elegans, and the arthropod Drosophila. Here, we examined to what extent these mechanisms are evolutionarily conserved in a semelparous chordate, Oikopleura dioica, where we identify a developmental growth arrest (GA) in response to crowded, diet-restricted conditions, which can extend its lifespan at least three-fold. Under nutritional stress, the iteroparative models sacrifice germ cells that have entered meiosis, while maintaining a reduced pool of active germline stem cells (GSCs). In contrast, O. dioica only entered GA prior to meiotic entry. Stress conditions encountered after this point led to maturation in a normal time frame but with reduced reproductive output. During GA, TOR signaling was inhibited, whereas MAPK, ERK1/2 and p38 pathways were activated, and under such conditions, activation of these pathways was shown to be critical for survival. Direct inhibition of TOR signaling alone was sufficient to prevent meiotic entry and germline differentiation. This inhibition activated the p38 pathway, but did not activate the ERK1/2 pathway. Thus, the link between reproductive status and lifespan extension in response to nutrient-limited conditions is interpreted in a significantly different manner in these iteroparative versus semelparous models. In the latter case, meiotic entry is a definitive signal that lifespan extension can no longer occur, whereas in the former, meiotic entry is not a unique chronological event, and can be largely erased during lifespan extension in response to nutrient stress, and reactivated from a pool of maintained GSCs when conditions improve.
Collapse
|
25
|
Danks G, Campsteijn C, Parida M, Butcher S, Doddapaneni H, Fu B, Petrin R, Metpally R, Lenhard B, Wincker P, Chourrout D, Thompson EM, Manak JR. OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica. Nucleic Acids Res 2012. [PMID: 23185044 PMCID: PMC3531137 DOI: 10.1093/nar/gks1159] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.
Collapse
Affiliation(s)
- Gemma Danks
- Computational Biology Unit, University of Bergen, Bergen, N-5008, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hosp J, Sagane Y, Danks G, Thompson EM. The evolving proteome of a complex extracellular matrix, the Oikopleura house. PLoS One 2012; 7:e40172. [PMID: 22792236 PMCID: PMC3390340 DOI: 10.1371/journal.pone.0040172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in “houses” or “tunics”. Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.
Collapse
Affiliation(s)
- Julia Hosp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gemma Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
27
|
Yadetie F, Butcher S, Førde HE, Campsteijn C, Bouquet JM, Karlsen OA, Denoeud F, Metpally R, Thompson EM, Manak JR, Goksøyr A, Chourrout D. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. BMC Genomics 2012; 13:55. [PMID: 22300585 PMCID: PMC3292500 DOI: 10.1186/1471-2164-13-55] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022] Open
Abstract
Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moosmann A, Campsteijn C, Jansen PW, Nasrallah C, Raasholm M, Stunnenberg HG, Thompson EM. Histone variant innovation in a rapidly evolving chordate lineage. BMC Evol Biol 2011; 11:208. [PMID: 21756361 PMCID: PMC3156773 DOI: 10.1186/1471-2148-11-208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/15/2011] [Indexed: 01/04/2023] Open
Abstract
Background Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.
Collapse
|
29
|
Campsteijn C, Ovrebo JI, Karlsen BO, Thompson EM. Expansion of Cyclin D and CDK1 Paralogs in Oikopleura dioica, a Chordate Employing Diverse Cell Cycle Variants. Mol Biol Evol 2011; 29:487-502. [DOI: 10.1093/molbev/msr136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Nakashima K, Nishino A, Horikawa Y, Hirose E, Sugiyama J, Satoh N. The crystalline phase of cellulose changes under developmental control in a marine chordate. Cell Mol Life Sci 2011; 68:1623-31. [PMID: 20972815 PMCID: PMC11114516 DOI: 10.1007/s00018-010-0556-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 10/04/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
Abstract
The native form of cellulose is a fibrillar composite of two crystalline phases, the triclinic I(α) and monoclinic I(β) allomorphs. Allomorph ratios are species-specific, and this gives rise to natural structural variations in cellulose crystals. However, the mechanisms contributing to crystal formation remain unknown. We show that the two crystalline phases of cellulose are tailored to distinct structures during different developmental stages of the tunicate chordate Oikopleura dioica. Larval cellulose consisting of I(α) allomorph constitutes the body cuticle fin, whereas adult cellulose consisting of I(β) allomorph frames a mucous filter-feeding device, the "house." Both structures are secreted from the epidermis in accordance with the mutually exclusive expression patterns of two distinct putative cellulose synthase genes. We discuss a possible linkage between structural variations of the crystalline phases of cellulose and the underlying evolutionary genetics of cellulose biosynthesis.
Collapse
Affiliation(s)
- Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0412, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Sagane Y, Zech K, Bouquet JM, Schmid M, Bal U, Thompson EM. Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans. Development 2010; 137:1483-92. [PMID: 20335363 DOI: 10.1242/dev.044503] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.
Collapse
Affiliation(s)
- Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Karin Zech
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Martina Schmid
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ugur Bal
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, PO Box 7800, N-5020 Bergen, Norway
| |
Collapse
|
32
|
Bouquet JM, Spriet E, Troedsson C, Otterå H, Chourrout D, Thompson EM. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. JOURNAL OF PLANKTON RESEARCH 2009; 31:359-370. [PMID: 19461862 PMCID: PMC2651036 DOI: 10.1093/plankt/fbn132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/09/2008] [Indexed: 05/16/2023]
Abstract
The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers.
Collapse
Affiliation(s)
- Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Endy Spriet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| | - Christofer Troedsson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Helen Otterå
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| |
Collapse
|
33
|
Oocyte selection is concurrent with meiosis resumption in the coenocystic oogenesis of Oikopleura. Dev Biol 2008; 324:266-76. [PMID: 18845138 DOI: 10.1016/j.ydbio.2008.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 09/14/2008] [Indexed: 11/22/2022]
Abstract
Oogenesis in the tunicate, Oikopleura, is unusual for a chordate, in that the thousands of nuclei comprising the entire germline are contained in a unique giant cell, the coenocyst. We examined progression through meiotic prophase I in concert with cellular mechanisms implicated in selection, growth and maturation of oocytes in this shared cytoplasm. Unlike sister vertebrates, no germinal vesicle was formed and maternal transcripts were instead synthesized by polyploid nurse nuclei present in equal numbers to transcriptionally quiescent meiotic nuclei. Meiosis resumption was concomitant with MAPK cascade activation during which pERK translocated to nurse nuclei. Simultaneously, the coenocyst partitioned into hundreds of synchronously growing oocytes. Significantly, only the subset of meiotic nuclei selected to populate maturing oocytes displayed histone H3 serine 28 phosphorylation. Disruption of the MAPK cascade, or microtubule dynamics, did not inhibit meiotic resumption but generated oocytes with multiple nurse and meiotic nuclei. As these supernumerary nuclei also became H3S28P enriched, growing oocytes defined a selective kinase environment in the common coenocyst cytoplasm. Vitellogenesis preceded the timing of oocyte selection among excess germ line nuclei in contrast to Drosophila and vertebrates. This unique feature enables late adjustment of oocyte number in accordance with the cytoplasmic volume of the germline cyst accumulated during vitellogenesis.
Collapse
|
34
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
35
|
Fu X, Adamski M, Thompson EM. Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 2008; 25:1067-80. [PMID: 18339653 DOI: 10.1093/molbev/msn060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies reveal correlation between microRNA (miRNA) innovation and increased developmental complexity. This is exemplified by dramatic expansion of the miRNA inventory in vertebrates, a lineage where genome duplication has played a significant evolutionary role. Urochordates, the closest extant group to the vertebrates, exhibit an opposite trend to genome and morphological simplification. We show that the urochordate, larvacean, Oikopleura dioica, possesses the requisite miRNA biogenic machinery. The miRNAs isolated by small RNA cloning were expressed throughout the short life cycle, a number of which were stocked as maternal determinants prior to rapid embryonic development. We identify sex-specific miRNAs that appeared as male/female gonad differentiation became apparent and were maintained throughout spermatogenesis. Whereas 80% of mammalian miRNAs are hosted in introns of protein-coding genes, the majority of O. dioica miRNA loci were located in antisense orientations to such genes. Including sister group ascidians in analysis of the urochordate miRNA repertoire, we find that 11 highly conserved bilaterian miRNA families have been lost or derived to the point they are not recognizable in urochordates and a further 4 of these families are absent in larvaceans. Subsequent to this loss/derivation, at least 29 novel miRNA families have been acquired in larvaceans. This suggests a profound reorganization of the miRNA repertoire integral to evolution in the urochordate lineage.
Collapse
Affiliation(s)
- Xianghui Fu
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
36
|
Søviknes AM, Glover JC. Continued growth and cell proliferation into adulthood in the notochord of the appendicularian Oikopleura dioica. THE BIOLOGICAL BULLETIN 2008; 214:17-28. [PMID: 18258772 DOI: 10.2307/25066656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The appendicularian urochordate Oikopleura dioica retains a free-swimming chordate body plan throughout life, in contrast to ascidian urochordates, whose metamorphosis to a sessile adult form involves the loss of chordate structures such as the notochord and dorsal nerve cord. Development to adult stages in Oikopleura involves a lengthening of the tail and notochord and an elaboration of the repertoire of tail movements. To investigate the cellular basis for this lengthening, we have used confocal microscopy and BrdU labeling to examine the development of the Oikopleura notochord from hatching through adult stages. We show that as the notochord undergoes the typical urochordate transition from a stacked row of cells to a tubular structure, cell number begins to increase. Addition of new notochord cells continues into adulthood, multiplying the larval complement of 20 cells by about 8-fold by the third day of life. In parallel, the notochord lengthens by about 4-fold. BrdU incorporation and a cell-cycle marker confirm that notochord cells continue to proliferate well into adulthood. The extensive postlarval proliferation of notochord cells, together with their arrangement in four circumferentially distributed longitudinal rows, presumably provides the Oikopleura tail with the necessary mechanical support for the complex movements exhibited at adult stages.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
37
|
Troedsson C, Ganot P, Bouquet JM, Aksnes DL, Thompson EM. Endostyle cell recruitment as a frame of reference for development and growth in the Urochordate Oikopleura dioica. THE BIOLOGICAL BULLETIN 2007; 213:325-334. [PMID: 18083972 DOI: 10.2307/25066650] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In models of growth and life history, and in molecular and cell biology, there is a need for more accurate frames of reference to characterize developmental progression. In Caenorhabditis elegans, complete fate maps of cell lineage provide such a standard of reference. To be more widely applicable, reference frames should be easier to measure while still providing strong predictive capacity. Towards this aim, we have analyzed growth of the endostyle in the appendicularian Oikopleura dioica at the cellular level, and measured its response to temperature and food availability. Specifically, we test the hypothesis that age of a specific developmental stage in O. dioica can be predicted from the number of endostyle cells and temperature. We show that the endostyle grows by recruiting cells from the posterior tip into the lateral arms of the organ in an anterior-posterior orientation and that the rate of increase in lateral arm endostyle cells is temperature-dependent but unresponsive to nutritional intake. Endostyle cells therefore serve as an accurate and easily measured marker to describe developmental progression. Conceptually, such a method of characterizing developmental progression should help bridge life-history events and molecular mechanisms throughout organismal aging, facilitating cross-disciplinary understanding by providing a common experimental framework.
Collapse
Affiliation(s)
- Christofer Troedsson
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | | | | | |
Collapse
|
38
|
Søviknes AM, Glover JC. Spatiotemporal patterns of neurogenesis in the appendicularian Oikopleura dioica. Dev Biol 2007; 311:264-75. [PMID: 17915207 DOI: 10.1016/j.ydbio.2007.08.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 12/31/2022]
Abstract
Incorporation of the thymidine analog bromodeoxyuridine (BrdU) was used to assess cytogenesis in the central nervous system (CNS) of the appendicularian Oikopleura dioica. A series of timed cumulative labelings carried out from 45 minutes (min) to 8 hours (h) after fertilization provided labeling patterns that showed when neurons and support cells residing at specific sites within the 9 h CNS became postmitotic. Throughout the CNS, which includes the cerebral ganglion, caudal ganglion and caudal nerve cord, neurogenesis occurs during an earlier time window than the genesis of support cells. Neurons are first generated at about 45 min to 1 h after fertilization in all 3 CNS regions, starting in the cerebral ganglion. Support cells are generated starting at about 2 h after fertilization. In both the cerebral ganglion and the caudal ganglion, neurons born during different time epochs settle in a specific spatial pattern, following a caudal to rostral gradient in the caudal ganglion and a more complex pattern in the cerebral ganglion. No such regional pattern was seen in the caudal nerve cord, where neurons born during different epochs were evenly distributed along the length of the cord. In the cerebral ganglion a small subpopulation of cells continued to incorporate BrdU from 8 h to at least 15 h and may represent a reserve of stem cells or progenitor cells that generate additional cells seen in the adult. The results show that this simple urochordate exhibits several vertebrate features of CNS cytogenesis, including a different timing of neurogenesis and gliogenesis (support cells being the likely candidates for glial cells in Oikopleura), gradients of neuron position according to birthdate, and a maintenance of neural cell precursors beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
39
|
Clarke T, Bouquet JM, Fu X, Kallesøe T, Schmid M, Thompson EM. Rapidly evolving lamins in a chordate, Oikopleura dioica, with unusual nuclear architecture. Gene 2007; 396:159-69. [PMID: 17449201 DOI: 10.1016/j.gene.2007.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/01/2007] [Accepted: 03/12/2007] [Indexed: 01/06/2023]
Abstract
Metazoan lamins are implicated in the organization of numerous critical nuclear processes. Among chordates, the appendicularian, Oikopleura dioica, has an unusually short life cycle involving rapid growth through extensive recourse to endoreduplication, a characteristic more associated with some invertebrates. In some tissues, this is accompanied by the formation of elaborate, bilaterally symmetric nuclear morphologies associated with specific gene expression patterns. Lamin composition can mediate nuclear shape in spermiogenesis as well as during pathological and normal aging and we have analyzed the O. dioica lamin and intermediate filament (IF) complement, comparing it to that present in other deuterostomes. O. dioica has one lamin gene coding two splice variants. Both variants share with the sister class ascidians a highly reduced C-terminal tail region lacking the immunoglobulin fold, indicating this derivation occurred at the base of the urochordate lineage. The OdLamin2 variant has a unique insertion of 63 amino acids in the normally short N-terminal region and has a developmental expression profile corresponding to the occurrence of endocycling. O. dioica has 4 cytoplasmic IF proteins, IF-A, C, Dalpha, and Dbeta. No homologues to the ascidian IF-B or F proteins were identified, reinforcing the suggestion that these proteins are unique to ascidians. The degree of sequence evolution in the rod domains of O. dioica cytoplasmic IF proteins and their closest ascidian and vertebrate homologues was similar. In contrast, whereas the rate of lamin B rod domain sequence evolution has also been similar in vertebrates, cephalochordates and the sea urchin, faster rates have occurred among the urochordates, with the O. dioica lamin displaying a far greater rate than any other lamin.
Collapse
Affiliation(s)
- Thomas Clarke
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Spada F, Koch J, Sadoni N, Mitchell N, Ganot P, De Boni U, Zink D, Thompson EM. Conserved patterns of nuclear compartmentalization are not observed in the chordate Oikopleura. Biol Cell 2007; 99:273-87. [PMID: 17288541 DOI: 10.1042/bc20060124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND INFORMATION Recent results from a limited number of eukaryotic model organisms suggest that major principles governing spatial organization of the genome in functionally distinct nuclear compartments are conserved through evolution. RESULTS We examined the in situ spatial organization of major nuclear components and nuclear patterns of gene loci with strictly defined expression patterns in endocycling cells of the transparent urochordate Oikopleura dioica, a complex metazoan with a very compact genome. Endocycling cells with different functions and similar DNA content displayed distinct topologies of nuclear components. However, the generation of the diverse nuclear architectures did not involve specific local organization of active genes or their preferential amplification. Interestingly, endocycling cells lacked nuclear-envelope-associated heterochromatin and prominent splicing-factor domains, which in mammalian cells associate with transcriptionally silent and active loci respectively. In addition, no correlation was found between transcriptional activity of a locus and its association with chromatin domains rich in specific histone modifications. CONCLUSIONS Together, these findings and the absence of typical eukaryotic replication patterns reveal a surprisingly limited functional compartmentalization of O. dioica endocycling nuclei. This indicates that robust cell-type-specific gene expression does not necessarily require high levels of spatial genome organization.
Collapse
Affiliation(s)
- Fabio Spada
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgt 55, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schulmeister A, Schmid M, Thompson EM. Phosphorylation of the histone H3.3 variant in mitosis and meiosis of the urochordate Oikopleura dioica. Chromosome Res 2007; 15:189-201. [PMID: 17333540 DOI: 10.1007/s10577-006-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Mammalian histone variant H3.3 differs from replication-dependent histone H3.1 by five amino acids, including replacement of alanine 31 by serine. H3.3 is expressed throughout the cell cycle, primarily deposited at transcriptionally active loci independent of S-phase. Data from mammalian cells suggest that phosphorylation of serine 31 (H3.3S31P) plays a role in mitosis. Here we show that H3.3S31P also occurs during mitosis of the urochordate Oikopleura dioica, suggesting this histone modification and its function in mitosis is already present at the invertebrate-vertebrate transition. The spatial pattern differed from that of H3 phosphorylation at serine 28 (H3S28P). H3S28P was enriched near telomeric regions, but H3.3S31P differed both temporally and spatially from the mammalian pattern, being more widely distributed throughout prophase, prometaphase and metaphase chromosomes. We also identified an important role for H3.3S31P during oogenic meiosis in the semelparous O. dioica. H3.3S31P initiated together with H3S28P in all meiotic nuclei in late diplotene, after H3S10P. However, H3.3S31P was retained only on the subset of meiotic nuclei that seeded maturing oocytes and proceeded through meiosis to arrest in metaphase I. Thus, this epigenetic mark is part of a regulatory circuitry that enables O. dioica to numerically adjust oocyte production over two orders of magnitude.
Collapse
Affiliation(s)
- Alexandra Schulmeister
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | | | | |
Collapse
|
42
|
Ganot P, Bouquet JM, Kallesøe T, Thompson EM. The Oikopleura coenocyst, a unique chordate germ cell permitting rapid, extensive modulation of oocyte production. Dev Biol 2007; 302:591-600. [PMID: 17126826 DOI: 10.1016/j.ydbio.2006.10.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/25/2006] [Accepted: 10/14/2006] [Indexed: 10/24/2022]
Abstract
The ability to adjust reproductive output to environmental conditions is important to the fitness of a species. The semelparous, chordate, Oikopleura dioica, is particularly adept in producing a highly variable number of oocytes in its short life cycle. Here we show that this entails an original reproductive strategy in which the entire female germline is contained in a single multinucleate cell, the "coenocyst". After an initial phase of syncytial nuclear proliferation half of the nuclei entered meiosis whereas the other half became highly polyploid. The inner F-actin network, with associated plasma membranes, formed a highly ramified infrastructure in which each meiotic nucleus was contained in a pseudo-compartmentalized pro-oocyte linked to the common cytoplasm via ring canals. At a set developmental time, a subset of the pro-oocytes was selected for synchronous growth and the common coenocyst cytoplasm was equally partitioned by transfer through the ring canals. Examination of related species indicated that the coenocyst arrangement is a conserved feature of Appendicularian oogenesis allowing efficient numerical adjustment of oocyte production. As Appendicularia are the second most abundant class of zooplankton, with a world-wide distribution, the coenocyst is clearly a common and successful reproductive strategy on a global scale.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
43
|
Ganot P, Bouquet JM, Thompson EM. Comparative organization of follicle, accessory cells and spawning anlagen in dynamic semelparous clutch manipulators, the urochordate Oikopleuridae. Biol Cell 2006; 98:389-401. [PMID: 16478443 DOI: 10.1042/bc20060005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The urochordate appendicularians play a key trophic role in marine ecosystems and are the second largest component of zooplankton after copepods. Part of their success is due to their ability to undergo rapid population blooms in response to changes in primary productivity. Nonetheless, the reproductive biology of this important group remains poorly understood. RESULTS In the present study, we investigated the organization of male and female germ and accessory somatic cells in the Oikopleuridae. We found that the structure of the ovary had been previously misconstrued as consisting of germ and accessory 'cells' interspersed together, whereas, in fact, the germline exists as a giant transparent syncytium. Somatic follicle cells, integral to regulation of the temporal progression of gametogenesis, could be classified into three types in females and two in males, and we characterized functional gap junctions between follicle cells and the germline syncytium in both sexes. The number of follicle cells per oocyte produced was much reduced in comparison with many commonly studied model organisms. We further identified a novel anlagen that permits spawning of the animal via rupture of the gonad wall, which is obligatory for the release of oocytes, but optional for the release of sperm that usually occurs via the spermiduct. CONCLUSIONS The organization of the female germline in the Oikopleuridae shares some features of meroistic oogenesis with the arthropod Drosophila, but the process of synchronous oogenesis in these semelparous organisms remains quite distinctive with respect to that previously characterized in the animal kingdom and certainly within the chordate phylum.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
44
|
Lozano E, Sáez AG, Flemming AJ, Cunha A, Leroi AM. Regulation of growth by ploidy in Caenorhabditis elegans. Curr Biol 2006; 16:493-8. [PMID: 16527744 DOI: 10.1016/j.cub.2006.01.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/11/2006] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
Some animals, such as the larvae of Drosophila melanogaster, the larvae of the Appendicularian chordate Oikopleura, and the adults of the nematode Caenorhabditis elegans, are unusual in that they grow largely by increases in cell size. The giant cells of such species are highly polyploid, having undergone repeated rounds of endoreduplication. Since germline polyploid strains tend to have large cells, it is often assumed that endoreduplication drives cell growth, but this remains controversial. We have previously shown that adult growth in C. elegans is associated with the endoreduplication of nuclei in the epidermal syncitium, hyp 7. We show here that this relationship is causal. Manipulation of somatic ploidy both upwards and downwards increases and decreases, respectively, adult body size. We also establish a quantitative relationship between ploidy and body size. Finally, we find that TGF-beta (DBL-1) and cyclin E (CYE-1) regulate body size via endoreduplication. To our knowledge, this is the first experimental evidence establishing a cause-and-effect relationship between somatic polyploidization and body size in a metazoan.
Collapse
Affiliation(s)
- Encarnación Lozano
- Division of Biology, Silwood Park Campus, Imperial College London, Ascot, Berks SL5-7PY, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Spada F, Chioda M, Thompson EM. Histone H4 post-translational modifications in chordate mitotic and endoreduplicative cell cycles. J Cell Biochem 2005; 95:885-901. [PMID: 15937898 DOI: 10.1002/jcb.20416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone post-translational modifications mark distinct structural and functional chromatin states but little is known of their involvement in the progression of different cell cycle types across phylogeny. We compared temporal and spatial dynamics of histone H4 post-translational modifications during both mitotic and endoreduplicative cycles of the urochordate, Oikopleura dioica, and proliferating mammalian cells. Endocycling cells showed no signs of chromosome condensation or entry into mitosis. They exhibited an evolution of replication patterns indicative of reduced chromatin compartmentalization relative to proliferating mammalian cells. In the latter cells, published cell cycle profiles of histone H4 acetylated at lysine 16 (H4AcK16) or dimethylated at lysine 20 (H4Me2K20) are disputed. Our results, using different, widely used H4AcK16 antibodies, revealed significant antibody-specific discrepancies in spatial and temporal cell cycle regulation of this modification, with repercussions for interpretation of previous immunofluorescence and immunoprecipitation data based on these reagents. On the other hand, three different antibodies to H4Me2K20 revealed similar cell cycle profiles of this modification that were conserved throughout the mitotic cell cycle in urochordate and mammalian cells, with accumulation at mitosis and a decrease during S-phase. H4Me2K20 also cycled in endocycles, indicating that dynamics of this modification are not strictly constrained by the mitotic phase of the cell cycle and suggesting additional roles during G- and S-phase progression. This article contains Supplementary Material available at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/2005/95/spada.html.
Collapse
Affiliation(s)
- Fabio Spada
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormølensgt. 55, N-5008 Bergen, Norway.
| | | | | |
Collapse
|
46
|
Spada F, Vincent M, Thompson EM. Plasticity of histone modifications across the invertebrate to vertebrate transition: histone H3 lysine 4 trimethylation in heterochromatin. Chromosome Res 2005; 13:57-72. [PMID: 15791412 DOI: 10.1007/s10577-005-6845-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
Histone posttranslational modifications mediate establishment of structurally and functionally distinct chromatin compartments of eukaryotic nuclei. The association of different histone modifications with euchromatic and heterochromatic compartments is relatively conserved in highly divergent model organisms such as Drosophila and mammals. However, some differences between these model systems have been uncovered while limited data are available from organisms nearer the invertebrate-vertebrate transition. We identified a chromatin compartment in both diploid and endocycling cells of the urochordate, Oikopleura dioica, enriched in heterochromatic histone modifications and DNA methylation. Surprisingly, this compartment also contained high levels of histone H3 trimethylated at lysine 4 (H3 Me(3)K4), a modification thus far associated with actively transcribed sequences. Although in Drosophila and mouse cells, H3 Me(3)K4 was prevalently associated with euchromatin, we also detected it in their pericentromeric heterochromatin. We further showed that H3 Me(3)K4 abundance was not necessarily proportional to local levels of transcriptional activity in either euchromatin or heterochromatin. Our data indicate greater plasticity across evolution in the association of histone lysine methylation with functionally distinct chromatin domains than previously thought and suggest that H3 Me(3)K4 participates in additional processes beyond marking transcriptionally active chromatin.
Collapse
Affiliation(s)
- Fabio Spada
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt, 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
47
|
Nakayama A, Satoh N, Sasakura Y. Tissue-Specific Profile of DNA Replication in the Swimming Larvae of Ciona intestinalis. Zoolog Sci 2005; 22:301-9. [PMID: 15795492 DOI: 10.2108/zsj.22.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.
Collapse
Affiliation(s)
- Akie Nakayama
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|
48
|
Chioda M, Spada F, Eskeland R, Thompson EM. Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica. Mol Cell Biol 2004; 24:5391-403. [PMID: 15169902 PMCID: PMC419869 DOI: 10.1128/mcb.24.12.5391-5403.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated transcripts lack the stem-loop, and they are expressed at low levels throughout the cell cycle. During early development of some organisms with rapid cleavage cycles, replication-dependent mRNAs are not fully S phase restricted until complete cell cycle regulation is achieved. The accumulation of polyadenylated transcripts during this period has been considered incompatible with metazoan development. We show here that histone metabolism in the urochordate Oikopleura dioica does not accord with some key tenets of the replication-dependent/replacement variant paradigm. During the premetamorphic mitotic phase of development, expressed variants shared characteristics of replication-dependent histones, including the 3' stem-loop, but, in contrast, were extensively polyadenylated. After metamorphosis, when cells in many tissues enter endocycles, there was a global downregulation of histone transcript levels, with most variant transcripts processed at the stem-loop. Contrary to the 30-fold S-phase upregulation of histone transcripts described in common metazoan model organisms, we observed essentially constant histone transcript levels throughout both mitotic and endoreduplicative cell cycles.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
49
|
Cupit PM, Hansen JD, McCarty AS, White G, Chioda M, Spada F, Smale ST, Cunningham C. Ikaros family members from the agnathan Myxine glutinosa and the urochordate Oikopleura dioica: emergence of an essential transcription factor for adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2004; 171:6006-13. [PMID: 14634112 DOI: 10.4049/jimmunol.171.11.6006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ikaros multigene family encodes a number of zinc finger transcription factors that play key roles in vertebrate hemopoietic stem cell differentiation and the generation of B, T, and NK cell lineages. In this study, we describe the identification and characterization of an Ikaros family-like (IFL) protein from the agnathan hagfish Myxine glutinosa and the marine urochordate Oikopleura dioica, both of which lie on the evolutionary boundary between the vertebrates and invertebrates. The IFL molecules identified in these animals displayed high conservation in the zinc finger motifs critical for DNA binding and dimerization in comparison with those of jawed vertebrates. Expression of the IFL gene in hagfish was strongest in blood, intestine, and gills. In O. dioica, transcription from the IFL gene was initiated at or around the time of hatching and maintained throughout the life span of the animal. In situ hybridization localized O. dioica IFL expression to the Fol cells, which are responsible for generating the food filter of the house. Biochemical analysis of the DNA binding and dimerization domains from M. glutinosa and O. dioici IFLs showed that M. glutinosa behaves as a true Ikaros family member. Taken together, these results indicate that the properties associated with the Ikaros family preceded the emergence of the jawed vertebrates and thus adaptive immunity.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, High Technology Centre, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|