1
|
De Ornelas B, Sucato V, Vadalà G, Buono A, Galassi AR. Myocardial Bridge and Atherosclerosis, an Intimal Relationship. Curr Atheroscler Rep 2024; 26:353-366. [PMID: 38822987 DOI: 10.1007/s11883-024-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review investigates the relationship between myocardial bridges (MBs), intimal thickening in coronary arteries, and Atherosclerotic cardiovascular disease. It focuses on the role of mechanical forces, such as circumferential strain, in arterial wall remodeling and aims to clarify how MBs affect coronary artery pathology. REVIEW FINDINGS MBs have been identified as influential in modulating coronary artery intimal thickness, demonstrating a protective effect against thickening within the MB segment and an increase in thickness proximal to the MB. This is attributed to changes in mechanical stress and hemodynamics. Research involving arterial hypertension models and vein graft disease has underscored the importance of circumferential strain in vascular remodeling and intimal hyperplasia. Understanding the complex dynamics between MBs, mechanical strain, and vascular remodeling is crucial for advancing our knowledge of coronary artery disease mechanisms. This could lead to improved management strategies for cardiovascular diseases, highlighting the need for further research into MB-related vascular changes.
Collapse
Affiliation(s)
- Benjamin De Ornelas
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Vincenzo Sucato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Vadalà
- Division of Cardiology, University Hospital "P. Giaccone", Palermo, Italy
| | - Andrea Buono
- Interventional Cardiology Unit, Cardiovascular Department, Fondazione Poliambulanza Institute, Brescia, Italy
| | - Alfredo Ruggero Galassi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Liu Q, Jiang HJ, Wu YD, Li JD, Sun XH, Xiao C, Xu JY, Lin ZY. Carrageenan maintains the contractile phenotype of vascular smooth muscle cells by increasing macromolecular crowding in vitro. Eur J Med Res 2024; 29:249. [PMID: 38650027 PMCID: PMC11036678 DOI: 10.1186/s40001-024-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The contractile phenotype of vascular smooth muscle cells (VSMCs) results in good diastolic and contractile capacities, and its altered function is the main pathophysiological basis for diseases such as hypertension. VSMCs exist as a synthetic phenotype in vitro, making it challenging to maintain a contractile phenotype for research. It is widely recognized that the common medium in vitro is significantly less crowded than in the in vivo environment. Additionally, VSMCs have a heightened sense for detecting changes in medium crowding. However, it is unclear whether macromolecular crowding (MMC) helps maintain the VSMCs contractile phenotype. PURPOSE This study aimed to explore the phenotypic, behavioral and gene expression changes of VSMCs after increasing the crowding degree by adding carrageenan (CR). METHODS The degree of medium crowding was examined by a dynamic light scattering assay; VSMCs survival and activity were examined by calcein/PI cell activity and toxicity and CCK-8 assays; VSMCs phenotypes and migration were examined by WB and wound healing assays; and gene expression was examined by transcriptomic analysis and RT-qPCR. RESULTS Notably, 225 μg/mL CR significantly increased the crowding degree of the medium and did not affect cell survival. Simultaneously, CR significantly promoted the contraction phenotypic marker expression in VSMCs, shortened cell length, decreased cell proliferation, and inhibited cell migration. CR significantly altered gene expression in VSMCs. Specifically, 856 genes were upregulated and 1207 genes were downregulated. These alterations primarily affect the cellular ion channel transport, microtubule movement, respiratory metabolism, amino acid transport, and extracellular matrix synthesis. The upregulated genes were primarily involved in the cytoskeleton and contraction processes of VSMCs, whereas the downregulated genes were mainly involved in extracellular matrix synthesis. CONCLUSIONS The in vitro study showed that VSMCs can maintain the contractile phenotype by sensing changes in the crowding of the culture environment, which can be maintained by adding CR.
Collapse
Affiliation(s)
- Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yin-Di Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Dong Li
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhan-Yi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
van Rijt A, Stefanek E, Valente K. Preclinical Testing Techniques: Paving the Way for New Oncology Screening Approaches. Cancers (Basel) 2023; 15:4466. [PMID: 37760435 PMCID: PMC10526899 DOI: 10.3390/cancers15184466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Prior to clinical trials, preclinical testing of oncology drug candidates is performed by evaluating drug candidates with in vitro and in vivo platforms. For in vivo testing, animal models are used to evaluate the toxicity and efficacy of drug candidates. However, animal models often display poor translational results as many drugs that pass preclinical testing fail when tested with humans, with oncology drugs exhibiting especially poor acceptance rates. The FDA Modernization Act 2.0 promotes alternative preclinical testing techniques, presenting the opportunity to use higher complexity in vitro models as an alternative to in vivo testing, including three-dimensional (3D) cell culture models. Three-dimensional tissue cultures address many of the shortcomings of 2D cultures by more closely replicating the tumour microenvironment through a combination of physiologically relevant drug diffusion, paracrine signalling, cellular phenotype, and vascularization that can better mimic native human tissue. This review will discuss the common forms of 3D cell culture, including cell spheroids, organoids, organs-on-a-chip, and 3D bioprinted tissues. Their advantages and limitations will be presented, aiming to discuss the use of these 3D models to accurately represent human tissue and as an alternative to animal testing. The use of 3D culture platforms for preclinical drug development is expected to accelerate as these platforms continue to improve in complexity, reliability, and translational predictivity.
Collapse
Affiliation(s)
- Antonia van Rijt
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Evan Stefanek
- VoxCell BioInnovation Inc., Victoria, BC V8T 5L2, Canada;
| | - Karolina Valente
- Biomedical Engineering Program, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
4
|
Veerabagu U, Palza H, Quero F. Review: Auxetic Polymer-Based Mechanical Metamaterials for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:2798-2824. [PMID: 35709523 DOI: 10.1021/acsbiomaterials.2c00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last three decades but more particularly during the last 5 years, auxetic mechanical metamaterials constructed from precisely architected polymer-based materials have attracted considerable attention due to their fascinating mechanical properties. These materials present a negative Poisson's ratio and therefore unusual mechanical behavior, which has resulted in enhanced static modulus, energy adsorption, and shear resistance, as compared with the bulk properties of polymers. Novel advanced polymer processing and fabrication techniques, and in particular additive manufacturing, allow one to design complex and customizable polymer architectures that are particularly relevant to fabricate auxetic mechanical metamaterials. Although these metamaterials exhibit exotic mechanical properties with potential applications in several engineering fields, biomedical applications seem to be one of the most relevant with a growing number of articles published over recent years. As a result, special focus is needed to understand the potential of these structures and foster theoretical and experimental investigations on the potential benefits of the unusual mechanical properties of these materials on the way to high performance biomedical applications. The present Review provides up to date information on the recent progress of polymer-based auxetic mechanical metamaterials mainly fabricated using additive manufacturing methods with a special focus toward biomedical applications including tissue engineering as well as medical devices including stents and sensors.
Collapse
Affiliation(s)
- Udayakumar Veerabagu
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Humberto Palza
- Laboratorio de Ingeniería de Polímeros, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Beauchef 851, Santiago 8370456, Chile.,Millennium Nucleus on Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago 8370456, Chile.,Millennium Nucleus on Smart Soft Mechanical Metamaterials, Avenida Beauchef 851, Santiago 8370456, Chile
| |
Collapse
|
5
|
Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021; 132:114-128. [PMID: 33652164 PMCID: PMC7611653 DOI: 10.1016/j.actbio.2021.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Many cardiovascular diseases (CVD) are driven by pathological remodelling of blood vessels, which can lead to aneurysms, myocardial infarction, ischaemia and strokes. Aberrant remodelling is driven by changes in vascular cell behaviours combined with degradation, modification, or abnormal deposition of extracellular matrix (ECM) proteins. The underlying mechanisms that drive the pathological remodelling of blood vessels are multifaceted and disease specific; however, unravelling them may be key to developing therapies. Reductionist models of blood vessels created in vitro that combine cells with biomaterial scaffolds may serve as useful analogues to study vascular disease progression in a controlled environment. This review presents the main considerations for developing such in vitro models. We discuss how the design of blood vessel models impacts experimental readouts, with a particular focus on the maintenance of normal cellular phenotypes, strategies that mimic normal cell-ECM interactions, and approaches that foster intercellular communication between vascular cell types. We also highlight how choice of biomaterials, cellular arrangements and the inclusion of mechanical stimulation using fluidic devices together impact the ability of blood vessel models to mimic in vivo conditions. In the future, by combining advances in materials science, cell biology, fluidics and modelling, it may be possible to create blood vessel models that are patient-specific and can be used to develop and test therapies. STATEMENT OF SIGNIFICANCE: Simplified models of blood vessels created in vitro are powerful tools for studying cardiovascular diseases and understanding the mechanisms driving their progression. Here, we highlight the key structural and cellular components of effective models and discuss how including mechanical stimuli allows researchers to mimic native vessel behaviour in health and disease. We discuss the primary methods used to form blood vessel models and their limitations and conclude with an outlook on how blood vessel models that incorporate patient-specific cells and flows can be used in the future for personalised disease modelling.
Collapse
Affiliation(s)
- Suzette T Lust
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom; School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Rebecca J Shipley
- Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom.
| |
Collapse
|
6
|
Natural and Synthetic Polymeric Scaffolds. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Budak K, Sogut O, Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02187-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Chen Y, Guo C, Manousiouthakis E, Wang X, Cairns DM, Roh TT, Du C, Kaplan DL. Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000543. [PMID: 33692658 PMCID: PMC7938961 DOI: 10.1002/adfm.202000543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 05/09/2023]
Abstract
Designing biomimetic scaffolds with in vivo-like microenvironments using biomaterials is an essential component of successful tissue engineering approaches. The intestinal smooth muscle layers exhibit a complex tubular structure consisting of two concentric muscle layers in which the inner circular layer is orthogonally oriented to the outer longitudinal layer. Here, we present a three-dimensional (3D) bi-layered tubular scaffold based on flexible, mechanically robust and well aligned silk protein microfibers to mimic native human intestinal smooth muscle structure. The scaffolds were seeded with primary human intestinal smooth muscle cells to replicate human intestinal muscle tissues in vitro. Characterization of the tissue constructs revealed good biocompatibility and support for cell alignment and elongation in the different scaffold layers to enhance cell differentiation and functions. Furthermore, the engineered smooth muscle constructs supported oriented neurite outgrowth, a requisite step to achieve functional innervation. These results suggested these microfiber scaffolds as functional templates for in vitro regeneration of human intestinal smooth muscle systems. The scaffolding provides a crucial step toward engineering functional human intestinal tissue in vitro, as well as for the engineering of many other types of smooth muscles in terms of their similar phenotypes. Such utility may lead to a better understanding of smooth muscle associated diseases and treatments.
Collapse
Affiliation(s)
| | | | - Eleana Manousiouthakis
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Xiuli Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Dana M. Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Terrence T. Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St.
Medford, Massachusetts 02155, USA
| |
Collapse
|
9
|
Chan JP, Battiston KG, Santerre JP. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Acta Biomater 2019; 96:161-174. [PMID: 31254683 DOI: 10.1016/j.actbio.2019.06.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022]
Abstract
Tissue scaffolds need to be engineered to be cell compatible, have timely biodegradable character, be functional with respect to providing niche cell support for tissue repair and regeneration, readily accommodate multiple cell types, and have mechanical properties that enable the simulation of the native tissue. In this study, electrospun degradable polar hydrophobic ionic polyurethane (D-PHI) scaffolds were generated in order to yield an extracellular matrix-like structure for tissue engineering applications. D-PHI oligomers were synthesized, blended with a degradable linear polycarbonate polyurethane (PCNU), and electrospun with simultaneous in situ UV cross-linking in order to generate aligned nanofibrous scaffolds in the form of elastomeric composite materials. The D-PHI/PCNU scaffold fibre morphology, cross-linking efficiency, surface nature, mechanical properties, in vivo degradation and integration, as well as in vitro cell compatibility were characterized. The results showed that D-PHI/PCNU scaffolds had a high cross-linking efficiency, stronger polar nature, and lower stiffness relative to PCNU scaffolds. In vivo, the D-PHI/PCNU scaffold degraded relatively slowly, thereby enabling new tissue time to form and yielding very good integration with the latter tissue. Based on a study with A10 vascular smooth muscle cells, the D-PHI/PCNU scaffold was able to support high cell viability, adhesion, and expression of typical smooth muscle cell markers after a 7-day culture period, which was comparable to PCNU scaffolds. These characterization results demonstrate that the unique properties of a D-PHI/PCNU scaffold, combined with the benefits of electrospinning, could allow for the generation of a tissue engineered scaffold that mimics important aspects of the native extracellular matrix and could be used for functional tissue regeneration. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds should recapitulate native extracellular matrix features. This study investigates the processing of a classical polycarbonate polyurethane (PCNU) with a cross-linked and degradable ionomeric polyurethane (D-PHI), polymerized via in situ rapid light curing to yield a 3-dimensional co-electrospun nanofibre matrix with chemical diversity and low modulus character. This research advances the use of D-PHI for tissue engineering applications by providing a facile means of changing physical and chemical properties in classical PCNUs without the need to adjust spinning viscosities of the base polymer. Further, the in vivo and cell culture findings set the stage for introducing unique elastic materials which inherently support wound healing, repair, and regeneration in tissues, for applications that require the recapitulation of native extracellular matrix physical features.
Collapse
Affiliation(s)
- Jennifer P Chan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Kyle G Battiston
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - J Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| |
Collapse
|
10
|
Velutheril Thomas L, Nair PD. An electrospun citric acid modified polyvinyl alcohol scaffold for vascular tissue engineering. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519841390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The main aim of this study is to fabricate an electrospun citric acid modified polyvinyl alcohol polyester that is biodegradable with non-toxic by-products and can be used for the culture of vascular smooth muscle cells. In this study, we have optimized the conditions for the electrospinning process of this polyester. The fibre morphology was studied by scanning electron microscopy which indicated that the fibre diameter was optimum at a range of 200 to 700 µm at 5% concentration and flow rate of 0.3 mL/h. The membranes were characterized for the change in structural aspects at the molecular level. The results showed development of more crystalline domains on electrospinning. The surface characteristics were also explored. Cell culture studies confirmed that the electrospun scaffold supported the attachment and proliferation of smooth muscle cells, which was evident from the cell proliferation assay. Hence, the electrospun polyester scaffolds are non-toxic and biocompatible with vascular smooth muscle cells, and find promising potential as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Lynda Velutheril Thomas
- Division of Tissue Engineering and Regeneration Technologies, Bio-Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Prabha Damodaran Nair
- Division of Tissue Engineering and Regeneration Technologies, Bio-Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
11
|
Arias SL, Shetty A, Devorkin J, Allain JP. Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater 2018; 77:172-181. [PMID: 30004023 DOI: 10.1016/j.actbio.2018.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
Tissue-engineered vascular grafts (TEVG) use biologically-active cells with or without supporting scaffolds to achieve tissue remodeling and regrowth of injured blood vessels. However, this process may take several weeks because the high hemodynamic shear stress at the damaged site causes cellular denudation and impairs tissue regrowth. We hypothesize that a material with magnetic properties can provide the force required to speed up re-endothelization at the vascular defect by facilitating high cell density coverage, especially during the first 24 h after implantation. To test our hypothesis, we designed a magnetic bacterial cellulose (MBC) to locally target cells in vitro under a pulsatile fluid flow (0.514 dynes cm-2). This strategy can potentially increase cell homing at TEVG, without the need of blood cessation. The MBC was synthesized by an in situ precipitation method of Fe3+ and Fe2+ iron salts into bacterial cellulose (BC) pellicles to form Fe3O4 nanoparticles along the BC's fibrils, followed by the application of dextran coating to protect the embedded nanoparticles from oxidation. The iron salt concentration used in the synthesis of the MBC was tuned to balance the magnetic properties and cytocompatibility of the magnetic hydrogel. Our results showed a satisfactory MBC magnetization of up to 10 emu/g, which is above the value considered relevant for tissue engineering applications (0.05 emu/g). The MBC captured magnetically-functionalized cells under dynamic flow conditions in vitro. MBC magnetic properties and cytocompatibility indicated a dependence on the initial iron oxide nanoparticle concentration. STATEMENT OF SIGNIFICANCE Magnetic hydrogels represent a new class of functional materials with great potential in TVEG because they offer a platform to (1) release drugs on demand, (2) speed up tissue regrowth, and (3) provide mechanical cues to cells by its deformability capabilities. Here, we showed that a magnetic hydrogel, the MBC, was able to capture and retain magnetically-functionalized smooth muscle cells under pulsatile flow conditions in vitro. A magnetic hydrogel with this feature can be used to obtain high-density cell coverage on sites that are aggressive for cell survival such as the luminal face of vascular grafts, whereas simultaneously can support the formation of a biologically-active cell layer that protects the material from restenosis and inflammation.
Collapse
|
12
|
da Silva A, Semeano ATS, Dourado AH, Ulrich H, Cordoba de Torresi SI. Novel Conducting and Biodegradable Copolymers with Noncytotoxic Properties toward Embryonic Stem Cells. ACS OMEGA 2018; 3:5593-5604. [PMID: 30023923 PMCID: PMC6045332 DOI: 10.1021/acsomega.8b00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/08/2018] [Indexed: 06/01/2023]
Abstract
Electroactive biomaterials that are easily processed as scaffolds with good biocompatibility for tissue regeneration are difficult to design. Herein, the synthesis and characterization of a variety of novel electroactive, biodegradable biomaterials based on poly(3,4-ethylenedioxythiphene) copolymerized with poly(d,l lactic acid) (PEDOT-co-PDLLA) are presented. These copolymers were obtained using (2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methanol (EDOT-OH) as an initiator in a lactide ring-opening polymerization reaction, resulting in EDOT-PDLLA macromonomer. Conducting PEDOT-co-PDLLA copolymers (in three different proportions) were achieved by chemical copolymerization with 3,4-ethylenedioxythiophene (EDOT) monomers and persulfate oxidant. The PEDOT-co-PDLLA copolymers were structurally characterized by 1H NMR and Fourier transform infrared spectroscopy. Cyclic voltammetry confirmed the electroactive character of the materials, and conductivity measurements were performed via electrochemical impedance spectroscopy. In vitro biodegradability was evaluated using proteinase K over 35 days, showing 29-46% (w/w) biodegradation. Noncytotoxicity was assessed by adhesion, migration, and proliferation assays using embryonic stem cells (E14.tg2a); excellent neuronal differentiation was observed. These novel electroactive and biodegradable PEDOT-co-PDLLA copolymers present surface chemistry and charge density properties that make them potentially useful as scaffold materials in different fields of applications, especially for neuronal tissue engineering.
Collapse
Affiliation(s)
- Aruã
C. da Silva
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, São Paulo, Brazil
| | - Ana Teresa S. Semeano
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - André H.
B. Dourado
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Susana I. Cordoba de Torresi
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Ozawa T, Mickle DAG, Weisel RD, Matsubayashi K, Fujii T, Fedak PWM, Koyama N, Ikada Y, Li RK. Tissue-Engineered Grafts Matured in the Right Ventricular Outflow Tract. Cell Transplant 2017; 13:169-177. [DOI: 10.3727/000000004773301852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Autologous smooth muscle cell (SMC)-seeded biodegradable scaffolds could be a suitable material to repair some pediatric right ventricular outflow tract (RVOT) cardiac anomalies. Adult syngenic Lewis rat SMCs (2 × 106) were seeded onto a new biodegradable copolymer sponge made of ∊-caprolactone-co-L-lactide reinforced with poly-L-lactide fabric (PCLA). Two weeks after seeding, the patch was used to repair a surgically created RVOT defect in an adult rat. At 8 weeks after implantation the spongy copolymer component was biodegraded, and SM tissue and extracellular matrices containing elastin fibers were present in the scaffolds. By 22 weeks more fibroblasts and collagen were present (p < 0.05). The number of capillaries in the grafts also increased (p < 0.001) between 8 and 22 weeks. The fibrous poly-L-lactide component of the PCLA scaffold remained. The 22-week grafts maintained their thickness and surface area in the RVOT. The SMCs prior to implantation were in a synthetic phenotype and developed in vivo into a more contractile phenotype. By 8 weeks the patches were endothelialized on their endocardial surfaces. Future work to increase the SM tissue and elastin content in the patch will be necessary before implantation into a pediatric large-animal model is tested.
Collapse
Affiliation(s)
- Tsukasa Ozawa
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | - Donald A. G. Mickle
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | - Richard D. Weisel
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | - Keiji Matsubayashi
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | - Takeshiro Fujii
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | - Paul W. M. Fedak
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| | | | | | - Ren-Ke Li
- Department of Surgery, Division of Cardiovascular Surgery, Toronto General Research Institute, Toronto General Hospital, University of Toronto, Canada
| |
Collapse
|
14
|
A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann Biomed Eng 2017; 45:1496-1510. [DOI: 10.1007/s10439-017-1813-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022]
|
15
|
Abstract
There is substantial need for the replacement of tissues in the craniofacial complex due to congenital defects, disease, and injury. The field of tissue engineering, through the application of engineering and biological principles, has the potential to create functional replacements for damaged or pathologic tissues. Three main approaches to tissue engineering have been pursued: conduction, induction by bioactive factors, and cell transplantation. These approaches will be reviewed as they have been applied to key tissues in the craniofacial region. While many obstacles must still be overcome prior to the successful clinical restoration of tissues such as skeletal muscle and the salivary glands, significant progress has been achieved in the development of several tissue equivalents, including skin, bone, and cartilage. The combined technologies of gene therapy and drug delivery with cell transplantation will continue to increase treatment options for craniofacial cosmetic and functional restoration.
Collapse
Affiliation(s)
- E Alsberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109-2136, USA
| | | | | |
Collapse
|
16
|
Venkataraman L, Sivaraman B, Vaidya P, Ramamurthi A. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices. J Tissue Eng Regen Med 2016; 10:1041-1056. [PMID: 24737693 PMCID: PMC4440849 DOI: 10.1002/term.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lavanya Venkataraman
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | | | - Pratik Vaidya
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
17
|
Hosseinkhani H, Hosseinkhani M, Kobayashi H. Design of Tissue-engineered Nanoscaffold Through Self-assembly of Peptide Amphiphile. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506066934] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to mimic in vivo topography of the native tissue created by extracellular matrix (ECM) components, which make up all soft tissues, the surface features of each biomaterial should be considered as a nanodimensional structure. In this study, an artificial ECM was designed to mimic the nanostructured topography created by ECM components in native tissue. The proliferation and differentiation of mesenchymal stem cells (MSCs) was investigated in a three dimensional (3-D) network of nanofibers formed by the self-assembly of peptide amphiphile (PA) molecules. PA was synthesized by standard solid phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. The sequence of arginine-glycine-aspartic acid (RGD) was included in peptide design as well. A 3-D network of nanofibers was formed by mixing MSC suspensions in a media with dilute aqueous solution of PA. The attachment, proliferation and osteogenic differentiation of MSCs were influenced by the self-assembled PA nanofibers as the cell scaffold and the values were significantly high compared with those in the static culture (2-D tissue culture plate).
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- International Center for Young Scientists (ICYS), National Institute for Materials Science, Nanobiomaterials Research Building, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Mohsen Hosseinkhani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Hisatoshi Kobayashi
- Biomaterials Center, National Institute for Materials Science, Nanobiomaterials Research Building, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
18
|
Lee JW, Soman P, Park JH, Chen S, Cho DW. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio. PLoS One 2016; 11:e0155681. [PMID: 27232181 PMCID: PMC4883790 DOI: 10.1371/journal.pone.0155681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/03/2016] [Indexed: 11/18/2022] Open
Abstract
Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR). NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene) glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45, Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Pranav Soman
- Department of Biomedical and Chemical Engineering, Syracuse University, 318 Browne Hall, Syracuse, NY, 13244, United States of America
| | - Jeong Hun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja dong, Nam-gu, Pohang, Gyeongbuk, 790-781, Republic of Korea
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, Atkinson Hall, MC-0448, La Jolla, CA, 92093, United States of America
- * E-mail: (SC); (D-WC)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja dong, Nam-gu, Pohang, Gyeongbuk, 790-781, Republic of Korea
- * E-mail: (SC); (D-WC)
| |
Collapse
|
19
|
Pashneh-Tala S, MacNeil S, Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:68-100. [PMID: 26447530 PMCID: PMC4753638 DOI: 10.1089/ten.teb.2015.0100] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented.
Collapse
Affiliation(s)
- Samand Pashneh-Tala
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| |
Collapse
|
20
|
Meghezi S, Seifu DG, Bono N, Unsworth L, Mequanint K, Mantovani D. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration. J Vis Exp 2015:e52812. [PMID: 26132527 PMCID: PMC4545069 DOI: 10.3791/52812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The "static bioreactor" provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.
Collapse
Affiliation(s)
- Sébastien Meghezi
- Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University
| | - Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University; NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University
| | - Nina Bono
- Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University; Department Electronics, Information and Bioengineering, Politecnico di Milano
| | - Larry Unsworth
- NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University; Department of Chemical and Materials Engineering, University of Alberta; National Institute for Nanotechnology, National Research Council (Canada)
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, University of Western Ontario
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University; NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University;
| |
Collapse
|
21
|
Harada K, Harada T, Ferdous T, Takenawa T, Ueyama Y. Osteogenic cell fractions isolated from mouse tongue muscle. Mol Med Rep 2015; 12:31-6. [PMID: 25684092 PMCID: PMC4438915 DOI: 10.3892/mmr.2015.3350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/07/2014] [Indexed: 01/06/2023] Open
Abstract
The use of stem cells represents a promising approach for the treatment of bone defects. However, successful treatments rely upon the availability of cells that are easily obtained and that appropriately differentiate into osteoblasts. The tongue potentially represents a source of autologous cells for such purposes. In the present study, the ability of stem cell antigen-1 (Sca-1) positive cells derived from tongue muscle to differentiate into osteoblasts was investigated. The tongue muscles were excised from Jcl-ICR mice and tongue muscle-derived Sca-1-positive cells (TDSCs) were isolated from the tongue muscle using a magnetic cell separation system with microbeads. TDSCs were cultured in plastic dishes or gelatin sponges of β-tricalcium phosphate (β-TCP) with bone differentiation-inducing medium. The expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, fibronectin, osteocalcin, osteonectin and osteopontin) was investigated in cultured TDSCs by western blot analysis. The formation of mineralized matrices was examined using alizarin red S and Von Kossa staining. Bone formation was investigated in cultured TDSCs by hematoxylin-eosin staining and immunohistochemstry. In the present study, the expression of Sca-1 in mouse tongue muscle was demonstrated and TDSCs were isolated at high purity. TDSCs differentiated into cells of osteoblast lineage, as demonstrated by the upregulation of osteoblastic marker expression. The formation of mineralized matrices was confirmed by alizarin red S or Von Kossa staining in vitro. Bone formation was observed in the gelatin sponges of β-TCP, which were subsequently implanted under the skin of the backs of nude mice. These results suggested that TDSCs retain their osteogenic differentiation potential and therefore the tongue muscle may be used as a source of stem cells for bone regeneration.
Collapse
Affiliation(s)
- Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Toyoko Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Takanori Takenawa
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| |
Collapse
|
22
|
Sibillano T, De Caro L, Altamura D, Siliqi D, Ramella M, Boccafoschi F, Ciasca G, Campi G, Tirinato L, Di Fabrizio E, Giannini C. An optimized table-top small-angle X-ray scattering set-up for the nanoscale structural analysis of soft matter. Sci Rep 2014; 4:6985. [PMID: 25382272 PMCID: PMC4225548 DOI: 10.1038/srep06985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.
Collapse
Affiliation(s)
- T. Sibillano
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - L. De Caro
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Altamura
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Siliqi
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - M. Ramella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - F. Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - G. Ciasca
- Istituto di Fisica, Universitá Cattolica S. Cuore, L.go Francesco Vito 1 I-00168, Roma, Italy
| | - G. Campi
- Istituto di Cristallografia (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Roma, Italy
| | - L. Tirinato
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - E. Di Fabrizio
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - C. Giannini
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| |
Collapse
|
23
|
Win Z, Vrla GD, Steucke KE, Sevcik EN, Hald ES, Alford PW. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility. Integr Biol (Camb) 2014; 6:1201-10. [DOI: 10.1039/c4ib00193a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Boccafoschi F, Ramella M, Sibillano T, De Caro L, Giannini C, Comparelli R, Bandiera A, Cannas M. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis. J Biomed Mater Res A 2014; 103:1218-30. [DOI: 10.1002/jbm.a.35257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Francesca Boccafoschi
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| | - Martina Ramella
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| | - Teresa Sibillano
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | - Liberato De Caro
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | - Cinzia Giannini
- Institute of Crystallography; National Research Council; 70126 Bari Italy
| | | | | | - Mario Cannas
- Department of Health Sciences; University of Piemonte Orientale “A. Avogadro”; 28100 Novara Italy
| |
Collapse
|
25
|
Jang YJ, Chun SY, Kim GN, Kim JR, Oh SH, Lee JH, Kim BS, Song PH, Yoo ES, Kwon TG. Characterization of a novel composite scaffold consisting of acellular bladder submucosa matrix, polycaprolactone and Pluronic F127 as a substance for bladder reconstruction. Acta Biomater 2014; 10:3117-25. [PMID: 24632539 DOI: 10.1016/j.actbio.2014.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/30/2023]
Abstract
The bladder is an organ susceptible to a variety of congenital anomalies, injuries and disorders. To address the clinical limitations of existing scaffolds, we fabricated a novel scaffold that can be applied to morphological and functional bladder reconstruction. As a first step to prove the benefit of the scaffold, intensive in vitro and in vivo analyses were conducted. The novel composite scaffold was fabricated using polycaprolactone/Pluronic F127 (PCL/F127) and variable proportions (1, 3, 5 and 10wt.%) of porcine acellular bladder submucosa matrix (BSM). Physicochemical properties and biocompatibilities of the scaffolds were characterized. For cell-mediated analysis, upper-urinary-tract-derived urine stem cells were used. Observations of tensile strength, modulus, porosity, cell adhesion, viability and proliferation characteristics of scaffolds indicated that the optimum proportion of BSM in the composite scaffolds was 3 or 5 wt.%. Based on comparison of 3 and 5 wt.% BSM/PCL/F127 scaffolds with respect to degradability, hydrophilicity, surface properties and functional group presence, the 3 wt.% BSM was chosen for in vivo studies. 8 weeks after kidney-subcapsular implantation of the 3 wt.% BSM/PCL/F127 scaffold, cells remained attached to the surface and there was no evidence of teratomas. A BSM content of 3 wt.% was the optimum proportion for fabrication of the neo scaffold. We predict that the 3 wt.% BSM/PCL/F127 composite scaffold could act as an ideal matrix after cystectomy based on its favorable physicochemical properties and biocompatibilities.
Collapse
|
26
|
Vatankhah E, Prabhakaran MP, Semnani D, Razavi S, Zamani M, Ramakrishna S. Phenotypic modulation of smooth muscle cells by chemical and mechanical cues of electrospun tecophilic/gelatin nanofibers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4089-4101. [PMID: 24588215 DOI: 10.1021/am405673h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability of mature smooth muscle cells (SMCs) to modulate their phenotype in response to environmental cues is a critical issue related to vascular diseases. A tissue engineered vascular graft shall promote the contractile phenotype of vascular SMCs. To this aim, Tecophilic/gelatin (TP/gel) was electrospun at different weight ratios of TP/gelatin (100:0, 70:30, 50:50, 30:70), leading to differences in biochemical and mechanical properties of the nanofibers which in turn influenced the phenotype of SMCs. Results indicated that both the substrate with higher ligand density and lower stiffness could enhance SMC contractility and reduce cell proliferation. However, observing the highest SMCs contractility on electrospun TP(70)/gel(30) among the composite scaffolds demonstrated stiffness as the most critical parameter. Due to conflicting effects of softness versus minor fraction of gelatin (reduced ligand density) within TP(70)/gel(30) fibers, a relatively high proliferation of SMCs was still observed on TP(70)/gel(30) scaffold. The surface of TP(70)/gel(30) scaffold was further modified through physical adsorption of gelatin molecules so as to increase the ligand density on its surface, whereby a functional vascular construct that promotes the contractile behavior of SMCs with low cell proliferation was developed.
Collapse
Affiliation(s)
- Elham Vatankhah
- Department of Textile Engineering, Isfahan University of Technology , Isfahan 84156-83111, Iran
| | | | | | | | | | | |
Collapse
|
27
|
German SJ, Behbahani M, Miettinen S, Grijpma DW, Haimi SP. Proliferation and Differentiation of Adipose Stem Cells Towards Smooth Muscle Cells on Poly(trimethylene carbonate) Membranes. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/masy.201300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salvador Jimenez German
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Mehdi Behbahani
- Institute of Bioengineering, Biomaterials Laboratory; Aachen University of Applied Sciences; Jülich Germany
| | - Susanna Miettinen
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- University of Groningen, University Medical Centre Groningen; Department of Biomedical Engineering; Groningen The Netherlands
| | - Suvi P. Haimi
- Department of Biomaterials Science and Technology; University of Twente; Enschede The Netherlands
- Institute for Biomedical Technology; University of Tampere; Tampere Finland
| |
Collapse
|
28
|
Bailey BM, Nail LN, Grunlan MA. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration. Acta Biomater 2013; 9:8254-61. [PMID: 23707502 DOI: 10.1016/j.actbio.2013.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/21/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another.
Collapse
Affiliation(s)
- Brennan M Bailey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | | | | |
Collapse
|
29
|
Simulated microgravity combined with polyglycolic acid scaffold culture conditions improves the function of pancreatic islets. BIOMED RESEARCH INTERNATIONAL 2013; 2013:150739. [PMID: 24024182 PMCID: PMC3758870 DOI: 10.1155/2013/150739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/01/2013] [Accepted: 06/16/2013] [Indexed: 01/13/2023]
Abstract
The in vitro culture of pancreatic islets reduces their immunogenicity and prolongs their availability for transplantation. Both simulated microgravity (sMG) and a polyglycolic acid scaffold (PGA) are believed to confer advantages to cell culture. Here, we evaluated the effects of sMG combined with a PGA on the viability, insulin-producing activity and morphological alterations of pancreatic islets. Under PGA-sMG conditions, the purity of the islets was ≥85%, and the islets had a higher survival rate and an increased ability to secrete insulin compared with islets cultured alone in the static, sMG, or PGA conditions. In addition, morphological analysis under scanning electron microscopy (SEM) revealed that the PGA-sMG treatment preserved the integral structure of the islets and facilitated islet adhesion to the scaffolds. These results suggest that PGA-sMG coculture has the potential to improve the viability and function of islets in vitro and provides a promising method for islet transplantation.
Collapse
|
30
|
Abstract
Background: 3D matrices are widely used as cell growth supports in basic research, regenerative medicine or cell-based drug assays. In order to genetically manipulate cells cultured within 3D matrices, two novel non-viral transfection reagents allowing preparation of matrices for in situ cell transfection were evaluated. Results: Two lipidic formulations, 3D-Fect™ and 3D-FectIN™, were assessed for their ability to transfect cells cultured within 3D solid scaffolds and 3D hydrogels, respectively. These reagents showed good compatibility with the most widespread types of matrices and enabled transfection of a wide range of mammalian cells of various origins. Classical cell lines, primary cells and stem cells were thus genetically modified while colonizing their growth support. Importantly, this in situ strategy alleviated the need to manipulate cells before seeding them. Conclusion: Results presented here demonstrated that 3D-Fect and 3D-FectIN reagents for 3D transfection are totally compatible with cells and do not impair matrix properties. 3D-Fect and 3D-FectIN, therefore, provide valuable tools for achieving localized and sustained transgene expression and should find versatile applications in fundamental research, regenerative medicine and cell-based drug assays.
Collapse
|
31
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|
32
|
Bashur CA, Rao RR, Ramamurthi A. Perspectives on stem cell-based elastic matrix regenerative therapies for abdominal aortic aneurysms. Stem Cells Transl Med 2013; 2:401-8. [PMID: 23677642 DOI: 10.5966/sctm.2012-0185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are potentially fatal conditions that are characterized by decreased flexibility of the aortic wall due to proteolytic loss of the structural matrix. This leads to their gradual weakening and ultimate rupture. Drug-based inhibition of proteolytic enzymes may provide a nonsurgical treatment alternative for growing AAAs, although it might at best be sufficient to slow their growth. Regenerative repair of disrupted elastic matrix is required if regression of AAAs to a healthy state is to be achieved. Terminally differentiated adult and diseased vascular cells are poorly capable of affecting such regenerative repair. In this context, stem cells and their smooth muscle cell-like derivatives may represent alternate cell sources for regenerative AAA cell therapies. This article examines the pros and cons of using different autologous stem cell sources for AAA therapy, the requirements they must fulfill to provide therapeutic benefit, and the current progress toward characterizing the cells' ability to synthesize elastin, assemble elastic matrix structures, and influence the regenerative potential of diseased vascular cell types. The article also provides a detailed perspective on the limitations, uncertainties, and challenges that will need to be overcome or circumvented to translate current strategies for stem cell use into clinically viable AAA therapies. These therapies will provide a much needed nonsurgical treatment option for the rapidly growing, high-risk, and vulnerable elderly demographic.
Collapse
MESH Headings
- Aged
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/rehabilitation
- Aortic Aneurysm, Abdominal/therapy
- Becaplermin
- Elasticity/drug effects
- Elasticity/physiology
- Elastin/biosynthesis
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Humans
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Regeneration/drug effects
- Regeneration/physiology
- Stem Cell Transplantation/methods
- Stem Cell Transplantation/trends
- Stem Cells/cytology
- Stem Cells/metabolism
- Transforming Growth Factor beta/pharmacology
- Transplantation, Autologous
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
33
|
Bailey BM, Fei R, Munoz-Pinto D, Hahn MS, Grunlan MA. PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater 2012; 8:4324-33. [PMID: 22842033 DOI: 10.1016/j.actbio.2012.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 07/10/2012] [Accepted: 07/20/2012] [Indexed: 12/20/2022]
Abstract
Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane (PDMS(star)-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced phase separation (SIPS). The macromers were combined in a dichloromethane precursor solution and sequentially photopolymerized, dried and hydrated. The chemical and physical properties of the hydrogels were further tailored by varying the number average molecular weight (M(n)) of PEG-DA (M(n)=3.4k and 6k gmol(-1)) as well as the weight percent ratio of PDMS(star)-MA (M(n)=7k gmol(-1)) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels fabricated from aqueous precursor solutions, SIPS produced hydrogels with a macroporous morphology, a more even distribution of PDMS(star)-MA, increased modulus and enhanced degradation rates. The morphology, swelling ratio, mechanical properties, bioactivity, non-specific protein adhesion, controlled introduction of cell adhesion, and cytocompatibility of the hydrogels were characterized. As a result of their tunable properties, this library of hydrogels is useful to study material-guided cell behavior and ultimate tissue regeneration.
Collapse
Affiliation(s)
- Brennan M Bailey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | | | | | | | | |
Collapse
|
34
|
Bourget JM, Gauvin R, Larouche D, Lavoie A, Labbé R, Auger FA, Germain L. Human fibroblast-derived ECM as a scaffold for vascular tissue engineering. Biomaterials 2012; 33:9205-13. [PMID: 23031531 DOI: 10.1016/j.biomaterials.2012.09.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
The self-assembly approach is based on the capability of mesenchymal cells to secrete and organize their own extracellular matrix (ECM). This tissue engineering method allows for the fabrication of autologous living tissues, such as tissue-engineered blood vessels (TEBV) and skin. However, the secretion of ECM by smooth muscle cells (SMCs), required to produce the vascular media, may represent a long process in vitro. The aim of this work was to reduce the time required to produce a tissue-engineered vascular media (TEVM) and extend the production of TEVM with SMCs from all patients without compromising its mechanical and functional properties. Therefore, we developed a decellularized matrix scaffold (dMS) produced from dermal fibroblasts (DF) or saphenous vein fibroblasts (SVF), in which SMCs were seeded to produce a TEVM. Mechanical and contractile properties of these TEVM (referred to as nTEVM) were compared to standard self-assembled TEVM (sTEVM). This approach reduced the production time from 6 to 4 weeks. Moreover, nTEVM were more resistant to tensile load than sTEVM and their vascular reactivity was also improved. This new fabrication technique allows for the production of a vascular media using SMCs isolated from any patient, regardless of their capacity to synthesize ECM. Moreover, these scaffolds can be stored to be available when needed, in order to accelerate the production of the vascular substitute using autologous vascular cells.
Collapse
Affiliation(s)
- Jean-Michel Bourget
- LOEX-Centre de Recherche FRQS du Centre Hospitalier Affilié Universitaire de Québec, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Hussain A, Bessho K, Takahashi K, Tabata Y. Magnesium calcium phosphate/β-tricalcium phosphate incorporation into gelatin scaffold: an in vitro comparative study. J Tissue Eng Regen Med 2012; 8:919-24. [PMID: 22945793 DOI: 10.1002/term.1596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 11/11/2022]
Abstract
Gelatin scaffolds incorporating or not 50 wt% of magnesium calcium phosphate (MCP) or β-tricalcium phosphate (βTCP) were prepared and the in vitro osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs) in the scaffolds was investigated. The pore sizes of the scaffolds were in the range 123.8 ± 47.2-153 ± 60.72 µm in diameter, while the porosity was 33.3 ± 2-44.9 ± 3.4%. The compression modulus of the sponges was about 2.04-2.24 mPa. There was no significant difference among groups regarding the physical and mechanical properties. When seeded into the sponges by an agitation method, the MSCs were distributed throughout the scaffold. Higher MSC proliferation was observed for scaffolds incorporating minerals. Following the incubation of MSCs in scaffolds incorporating MCP, the alkaline phosphatase activity was significantly higher at weeks 2, 3 and 4 in comparison with other scaffolds; however, the osteocalcin levels of MSCs did not show significant differences among groups. These findings indicate that MSCs seeded in scaffolds incorporating MCP showed significantly superior biological results in terms of proliferation and osteogenic differentiation in comparison with other scaffold types.
Collapse
Affiliation(s)
- Ahmed Hussain
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
36
|
Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012; 56:495-520. [PMID: 22835534 PMCID: PMC3494412 DOI: 10.1016/j.cden.2012.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
This review summarizes approaches used in tissue engineering and regenerative medicine, with a focus on dental applications. Dental caries and periodontal disease are the most common diseases resulting in tissue loss. To replace or regenerate new tissues, various sources of stem cells have been identified such as somatic stem cells from teeth and peridontium. Advances in biomaterial sciences including microfabrication, self-assembled biomimetic peptides, and 3-dimensional printing hold great promise for whole-organ or partial tissue regeneration to replace teeth and periodontium.
Collapse
Affiliation(s)
- Orapin V. Horst
- Division of Endodontics, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, Box 0758, 521 Parnassus Avenue, Clinical Science Building 627, San Francisco, CA 94143-0758, USA
| | - Miquella G. Chavez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Andrew H. Jheon
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Physiology, University of California, San Francisco, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA 94158-2330, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Department of Pediatrics, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Corresponding author. Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442.
| |
Collapse
|
37
|
Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res 2012; 352:123-31. [DOI: 10.1007/s00441-012-1441-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/25/2012] [Indexed: 01/05/2023]
|
38
|
Thomas LV, Nair PD. Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2012; 23:2069-87. [PMID: 22104760 DOI: 10.1163/092050611x607148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vascular regeneration in the area of small diameter (<6 mm) vessels via the tissue-engineering approach has been in focus for some time now. In this study, we report the development and evaluation of a tissue-engineered medial equivalent using gelatin-g-vinyl acetate co-polymer (GeVAc) as the scaffold material. GeVAc was synthesized by co-polymerizing gelatin and vinyl acetate monomer in the presence of AIBN as the initiator and subjected to physico-chemical characterization. A porous 3-D scaffold with open interconnected pores was then produced from GeVAc. The scaffold is non-cytotoxic with good smooth muscle cell proliferative capacity and high cell viability. Influence of smooth muscle cell phenotype in response to these scaffolds has been studied under mechanical stimulation. It was found that the cell-seeded tubular GeVAc constructs under mechanical stimulation preferentially supported the contractile phenotype of smooth muscle cells, as evidenced by the elevated expression of contractile protein markers such as alpha-SMA, calponin and SM22α. The mechanical properties and the ECM secretion were also increased on applying the mechanical stimulation. Hence, the results showed the promising potential of the GeVAc scaffolds in the regeneration of the medial equivalent tissue-engineered vascular construct.
Collapse
Affiliation(s)
- Lynda V Thomas
- a Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology , Poojapurra , Trivandrum , 695012 , Kerala , India
| | | |
Collapse
|
39
|
Takamoto T, Ichinohe N, Tabata Y. Proliferation of rat mesenchymal stem cells in collagen sponges reinforced with poly(ethylene terephthalate) fibers by stirring culture method. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1741-53. [PMID: 21943688 DOI: 10.1163/156856211x598184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study is to investigate the effect of medium stirring conditions on the proliferation of rat mesenchymal stem cells (MSC) in collagen sponges reinforced by the incorporation of poly(ethylene terephthalate) (PET) fibers. A collagen solution with PET fibers homogeneously dispersed was freeze-dried, followed by dehydrothermal cross-linking to obtain a collagen sponge incorporating PET fibers. MSC were proliferated in the sponge by a stirring culture method. The PET fibers reinforcement significantly suppressed the sponge deformation in culture. The MSC proliferation was enhanced by the stirring culture to a significantly higher extent than that of a static one. Homogeneous distribution of cells proliferated was observed at the stirring rate of 50 rpm and compared with that at lower and higher rates. Combination of the PET fiber-reinforced sponge with the stirring culture method is a promising way to allow cells to homogeneously proliferate in the sponge.
Collapse
Affiliation(s)
- Tomoaki Takamoto
- a Department of Biomaterials , Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University , 53 Kawara-cho Shogoin , Sakyo-ku Kyoto , 606-8507 , Japan
| | | | | |
Collapse
|
40
|
Şaşmazel HT, Manolache S, Gümüşderelioğlu M. Water/O2-Plasma-Assisted Treatment of PCL Membranes for Biosignal Immobilization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1137-62. [DOI: 10.1163/156856209x444475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hilal Türkoğlu Şaşmazel
- a Atılım University, Department of Materials Engineering, Incek, Gölbaşı, 06836 Ankara, Turkey
| | - Sorin Manolache
- b University of Wisconsin-Madison, Center for Plasma-Aided Manufacturing, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Min S, Gao X, Liu L, Tian L, Zhu L, Zhang H, Yao J. Fabrication and Characterization of Porous Tubular Silk Fibroin Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1961-74. [DOI: 10.1163/156856208x396056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Sijia Min
- a College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, P. R. China.
| | - Xin Gao
- b College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, P. R. China
| | - Lin Liu
- c The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Li Tian
- d College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, P. R. China
| | - Liangjun Zhu
- e College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, P. R. China
| | - Haiping Zhang
- f College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, P. R. China
| | - Juming Yao
- g The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
42
|
Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:41-57. [PMID: 15027842 DOI: 10.1163/156856204322752228] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) was investigated in three-dimensional non-woven fabrics prepared from polyethylene terephthalate (PET) fiber with different diameters. When seeded into the fabrics of cell scaffold, more MSC attached in the fabric of thicker PET fibers than that of thinner ones, irrespective of the fabric porosity. The morphology of cells attached became more spreaded with an increase in the fiber diameter of fabrics. The rate of MSC proliferation depended on the PET fiber diameter and porosity of fabrics: the bigger the fiber diameter of fabrics with higher porosity, the higher their proliferation rate. When the alkaline phosphatase (ALP) activity and osteocalcin content of MSC cultured in different types of fabrics was measured to evaluate the ostegenic differentiation, they became maximum for the non-woven fabrics with a fiber diameter of 9.0 microm, although the values of low-porous fabrics were significantly high compared with those of high porous fabrics. We concluded that the attachment, proliferation and bone differentiation of MSC was influenced by the fiber diameter and porosity of non-woven fabrics as the scaffold.
Collapse
Affiliation(s)
- Yoshitake Takahashi
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
43
|
Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:203-17. [PMID: 22224468 DOI: 10.1089/ten.teb.2011.0521] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular tissues exhibit architecturally complex extracellular matrices, of which the elastic matrix forms a major component. The elastic matrix critically maintains native structural configurations of vascular tissues, determines their ability to recoil after stretch, and regulates cell signaling pathways involved in morphogenesis, injury response, and inflammation via biomechanical transduction. The ability to tissue engineer vascular replacements that incorporate elastic matrix superstructures unique to cardiac and vascular tissues is thus important to maintaining vascular homeostasis. However, the vascular elastic matrix is particularly difficult to tissue engineer due to the inherently poor ability of adult vascular cells to synthesize elastin precursors and organize them into mature structures in a manner that replicates the biocomplexity of elastic matrix assembly during development. This review discusses current tissue engineering materials (e.g., growth factors and scaffolds) and methods (e.g., dynamic stretch and contact guidance) used to promote cellular synthesis and assembly of elastic matrix superstructures, and the limitations of these approaches when applied to smooth muscle cells, the primary elastin-generating cell type in vascular tissues. The potential application of these methods for in situ regeneration of disrupted elastic matrix at sites of proteolytic vascular disease (e.g., abdominal aortic aneurysms) is also discussed. Finally, the review describes the potential utility of alternative cell types to elastic tissue engineering and regenerative matrix repair. Future progress in the field is contingent on developing a thorough understanding of developmental elastogenesis and then mimicking the spatiotemporal changes in the cellular microenvironment that occur during that phase. This will enable us to tissue engineer clinically applicable elastic vascular tissue replacements and to develop elastogenic therapies to restore homeostasis in de-elasticized vessels.
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
44
|
Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 2012; 24:7-19. [PMID: 22188325 PMCID: PMC3248673 DOI: 10.1111/j.1365-2982.2011.01843.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional tissue engineering of the gastrointestinal (GI) tract is a complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic enteric neuronal plexuses, specialized mucosa, and epithelial cells as well as interstitial cells. The final tissue-engineered construct is intended to mimic the native GI tract anatomically and physiologically. Physiological functionality of tissue-engineered constructs is of utmost importance while considering clinical translation. The construct comprises of cellular components as well as biomaterial scaffolding components. Together, these determine the immune response a tissue-engineered construct would elicit from a host upon implantation. Over the last decade, significant advances have been made to mitigate adverse host reactions. These include a quest for identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived cells, neural crest-derived cells, and muscle derived-stem cells. Scaffolding biomaterials have been fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have advanced to allow for precise spatial architecture of scaffolds to mimic in vivo milieu closely and achieve neovascularization. This review will focus on the current concepts and the future vision of functional tissue engineering of the diverse neuromuscular structures of the GI tract from the esophagus to the internal anal sphincter.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Address Correspondence to: Khalil N. Bitar, PhD., AGAF, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem NC 27101, Phone: (336) 713-1470, FAX: (336) 713-7290,
| | | |
Collapse
|
45
|
Hussain A, Bessho K, Takahashi K, Tabata Y. Magnesium calcium phosphate as a novel component enhances mechanical/physical properties of gelatin scaffold and osteogenic differentiation of bone marrow mesenchymal stem cells. Tissue Eng Part A 2011; 18:768-74. [PMID: 21995670 DOI: 10.1089/ten.tea.2011.0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biodegradable gelatin sponges incorporating various amounts of magnesium calcium phosphate (MCP) were introduced and the in vitro osteogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs) in the sponges was investigated. The MCP was added to the gelatin sponges at 0, 25, 50, 75, and 90 wt%. The pore sizes of the gelatin sponges ranged from 143 to 154.3 μm in diameter and the porosity percentage was 34.3-50.1%. The compression modulus of the sponges and the resistance to the volume change significantly increased with increases in the amount of MCP. When seeded into the sponges by an agitating method, MSCs were distributed throughout the sponges. Following the incubation of MSCs in the gelatin sponges, a significantly higher cellular proliferation and alkaline phosphatase activity was observed in the gelatin sponges incorporating higher MCP contents. On the other hand, the osteocalcin content of MSCs seeded in the gelatin sponges incorporating no or low MCP showed a significantly higher levels in comparison with the MSCs seeded in the gelatins incorporating high MCP. These findings indicate that the MCP incorporation maintained the pore size and porosity percentage of the gelatin sponges and enabled the sponge to achieve mechanical reinforcement as well as promoting MSC proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Ahmed Hussain
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
46
|
Yokomuro H, Shiono N, Watanabe Y, Yoshihara K, Koyama N, Okada M. Optimal culture conditions for constructing durable biografts for repairing the impaired heart--dynamic cell culture with pre-seeding. Ann Thorac Cardiovasc Surg 2011; 17:481-6. [PMID: 21881373 DOI: 10.5761/atcs.oa.10.01650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tissue engineering with cell seeded biodegradable material has attracted attention as a novel means of treating the severely impaired heart. Here, we consider optimal preparation of a durable biograft using dynamic and static cultures. METHODS Vascular smooth muscle cells (VSMCs) derived from the rat aorta were seeded onto biodegradable material P (LA/CL) (poly-L-lactide-ε-caprolactone copolymer) and cultured as follows: a) Static culture (n = 11), b) dynamic culture (n = 12), c) 0 h pre-seeding (n = 12), d) 24 h pre-seeding (n = 5) and e) 1 week pre-seeding (n = 12). Dynamic culture: Cells were cultured in spinner flasks. Pre-seeding: Static cell seeding and culture before dynamic culture. EVALUATION The conditions of the P (LA/CL) in the five groups were evaluated as cell proliferation and by histological studies. RESULTS VSMCs proliferated both in and on the biodegradable materials. The quality of the dynamic culture cell with pre-seeding increased. Although the duration of pre-seeding exerted no significantly different effects, cell attachment and proliferation were widely scattered in the 0 h pre-seeding group, whereas cells proliferating on the front of the scaffold obstructed proliferation inside the biodegradable material in the 1 week pre-seeding group . CONCLUSIONS Dynamic cell culture with 24 h pre-seeding is effective for constructing ideal biografts.
Collapse
Affiliation(s)
- Hiroki Yokomuro
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Venkataraman L, Ramamurthi A. Induced elastic matrix deposition within three-dimensional collagen scaffolds. Tissue Eng Part A 2011; 17:2879-89. [PMID: 21702719 DOI: 10.1089/ten.tea.2010.0749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The structural stability of a cyclically distending elastic artery and the healthy functioning of vascular smooth muscle cells (SMCs) within are maintained by the presence of an intact elastic matrix and its principal protein, elastin. The accelerated degradation of the elastic matrix, which occurs in several vascular diseases, coupled with the poor ability of adult SMCs to regenerate lost elastin, can therefore adversely impact vascular homeostasis. Similarly, efforts to tissue engineer elastic matrix structures are constrained by our inability to induce adult cells to synthesize tropoelastin precursors and to crosslink them into architectural mimics of native elastic matrices, especially within engineered constructs where SMCs/fibroblasts primarily deposit collagen in abundance. In this study, we have shown that transforming growth factor-beta1 (TGF-β1) and hyaluronan oligomers (HA-o) synergistically enhance elastic matrix deposition by adult rat aortic SMCs (RASMCs) seeded within nonelastogenic, statically loaded three-dimensional gels, composed of nonelastogenic type-I collagen. While there was no substantial increase in production of tropoelastin within experimental cases compared to the nonadditive control cultures over 3 weeks, we observed significant increases in matrix elastin deposition; soluble matrix elastin in constructs that received the lowest doses of TGF-β1 with respective doses of HA-o, and insoluble matrix at the highest doses that corresponded with elevated lysyl-oxidase protein quantities. However, despite elastogenic induction, overall matrix yields remained poor in all experimental cases. At all provided doses, the factors reduced the production of matrix metalloproteinases (MMP)-9, especially the active enzyme, though MMP-2 levels were lowered only in constructs cultured with the higher doses of TGF-β1. Immuno-fluorescence showed elastic fibers within the collagen constructs to be discontinuous, except at the edges of the constructs. Von Kossa staining revealed no calcific deposits in any of the cases. This study confirms the benefits of utilizing TGF-β1 and HA-o in inducing matrix elastin synthesis by adult RASMCs over nonadditive controls, within a collagenous environment, that is not inherently conducive to elastogenesis.
Collapse
|
48
|
Yamada Y, Hozumi K, Nomizu M. Construction and Activity of a Synthetic Basement Membrane with Active Laminin Peptides and Polysaccharides. Chemistry 2011; 17:10500-8. [DOI: 10.1002/chem.201101064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuji Yamada
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‐0392 (Japan), Fax: (+81) 426‐76‐5662
| | - Kentaro Hozumi
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‐0392 (Japan), Fax: (+81) 426‐76‐5662
| | - Motoyoshi Nomizu
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‐0392 (Japan), Fax: (+81) 426‐76‐5662
| |
Collapse
|
49
|
Sharifpoor S, Simmons CA, Labow RS, Paul Santerre J. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold. Biomaterials 2011; 32:4816-29. [PMID: 21463894 DOI: 10.1016/j.biomaterials.2011.03.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 10/18/2022]
Abstract
There are few synthetic elastomeric biomaterials that simultaneously provide the required biological conditioning and the ability to translate biomechanical stimuli to vascular smooth muscle cells (VSMCs). Biomechanical stresses are important physiological elements that regulate VSMC function, and polyurethane elastomers are a class of materials capable of facilitating the translation of stress induced biomechanics. In this study, human coronary artery smooth muscle cells (hCASMCs), which were seeded into a porous degradable polar/hydrophobic/ionic (D-PHI) polyurethane scaffold, were subjected to uniaxial cyclic mechanical strain (CMS) over a span of four weeks using a customized bioreactor. The distribution, proliferation and contractile protein expression of hCASMCs in the scaffold were then analyzed and compared to those grown under static conditions. Four weeks of CMS, applied to the elastomeric scaffold, resulted in statistically greater DNA mass, more cell area coverage and a better distribution of cells deeper within the scaffold construct. Furthermore, CMS samples demonstrated improved tensile mechanical properties following four weeks of culture, suggesting the generation of more extracellular matrix within the polyurethane constructs. The expression of smooth muscle α-actin, calponin and smooth muscle myosin heavy chain and the absence of Ki-67+ cells in both static and CMS cultures, throughout the 4 weeks, suggest that hCASMCs retained their contractile character on these biomaterials. The study highlights the importance of implementing physiologically-relevant biomechanical stimuli in the development of synthetic elastomeric tissue engineering scaffolds.
Collapse
Affiliation(s)
- Soroor Sharifpoor
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Faculty of Dentistry, 124 Edward Street, Toronto, Ontario, Canada M5G1G6
| | | | | | | |
Collapse
|
50
|
Nam J, Johnson J, Lannutti JJ, Agarwal S. Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomater 2011; 7:1516-24. [PMID: 21109030 DOI: 10.1016/j.actbio.2010.11.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 12/24/2022]
Abstract
As the potential range of stem cell applications in tissue engineering continues to grow, the appropriate scaffolding choice is necessary to create tightly defined artificial microenvironments for each target organ. These microenvironments determine stem cell fate via control over differentiation. In this study we examined the specific effects of scaffold stiffness on embryonic mesenchymal progenitor cell behavior. Mechanically distinct scaffolds having identical microstructures and surface chemistries were produced utilizing core-shell electrospinning. The modulus of core-shell poly(ether sulfone)-poly(ε-caprolactone) (PES-PCL) fibers (30.6 MPa) was more than four times that of pure PCL (7.1 MPa). The results for chondrogenic and osteogenic differentiation of progenitor cells on each scaffold indicate that the lower modulus PCL fibers provided more appropriate microenvironments for chondrogenesis, evident by a marked up-regulation of chondrocytic Sox9, collagen type 2, and aggrecan gene expression and chondrocyte-specific extracellular matrix glycosaminoglycan production. In contrast, the stiffer core-shell PES-PCL fibers supported enhanced osteogenesis by promoting osteogenic Runx2, alkaline phosphatase, and osteocalcin gene expression, as well as alkaline phosphatase activity. The findings demonstrate that the microstructural stiffness/modules of a scaffold and the pliability of individual fibers may play a critical role in controlling stem cell differentiation. Regulation of cytoskeletal organization may occur via a "dynamic scaffold" leading to the subsequent intracellular signaling events that control differentiation-specific gene expression.
Collapse
Affiliation(s)
- Jin Nam
- Biomechanics and Tissue Engineering Laboratory, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|