1
|
Chmielewska-Kassassir M, Sobierajska K, Ciszewski WM, Kryczka J, Zieleniak A, Wozniak LA. Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:5003. [PMID: 37894370 PMCID: PMC10605291 DOI: 10.3390/cancers15205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To determine the mechanism of EPE in downregulating TYMS in MPM cancer. METHODS The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. RESULTS In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. CONCLUSION EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Collapse
Affiliation(s)
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| |
Collapse
|
2
|
Goto S, Takahashi M, Yasutsune N, Inayama S, Kato D, Fukuoka M, Kashiwaba SI, Murakami Y. Identification of GA-Binding Protein Transcription Factor Alpha Subunit (GABPA) as a Novel Bookmarking Factor. Int J Mol Sci 2019; 20:E1093. [PMID: 30836589 PMCID: PMC6429373 DOI: 10.3390/ijms20051093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Mitotic bookmarking constitutes a mechanism for transmitting transcriptional patterns through cell division. Bookmarking factors, comprising a subset of transcription factors (TFs), and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription in the early G1 phase. However, the specific TFs that act as bookmarking factors remain largely unknown. Previously, we identified the "early G1 genes" and screened TFs that were predicted to bind to the upstream region of these genes, then identified GA-binding protein transcription factor alpha subunit (GABPA) and Sp1 transcription factor (SP1) as candidate bookmarking factors. Here we show that GABPA and multiple histone acetylation marks such as H3K9/14AC, H3K27AC, and H4K5AC are maintained at specific genomic sites in mitosis. During the M/G1 transition, the levels of these histone acetylations at the upstream regions of genes bound by GABPA in mitosis are decreased. Upon depletion of GABPA, levels of histone acetylation, especially H4K5AC, at several gene regions are increased, along with transcriptional induction at 1 h after release. Therefore, we proposed that GABPA cooperates with the states of histone acetylation to act as a novel bookmarking factor which, may negatively regulate transcription during the early G1 phase.
Collapse
Affiliation(s)
- Shunya Goto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Masashi Takahashi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Narumi Yasutsune
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Sumiki Inayama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Dai Kato
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Shu-Ichiro Kashiwaba
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Order-MadeMedical Research Inc., 208Todai-Kashiwa VP, 5-4-19 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-0882, Japan.
| |
Collapse
|
3
|
Monica V, Lo Iacono M, Bracco E, Busso S, Di Blasio L, Primo L, Peracino B, Papotti M, Scagliotti G. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget 2018; 7:76577-76589. [PMID: 27391433 PMCID: PMC5363531 DOI: 10.18632/oncotarget.10428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2015] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Background Thymidylate synthase (TS), one of the key enzymes for thymidine synthesis, is a target of pemetrexed (PEM), a key agent for the systemic therapy of malignant pleural mesothelioma (MPM) and its overexpression has been correlated to PEM-resistance. In MPM, experimental data report activation of the c-SRC tyrosine kinase suggesting it as a potential target to be further investigated. Results MPM cell lines showed different sensitivity, being MSTO the most and REN the least sensitive to PEM. REN cells showed high levels of both TS and SRC: dasatinib inhibited SRC activation and suppressed TS protein expression, starting from 100 nM dose, blocking the PEM-induced up regulation of TS protein levels. Dasatinib treatment impaired cells migration, and both sequential and co-administration with PEM significantly increased apoptosis. Dasatinib pretreatment improved sensitivity to PEM, downregulated TS promoter activity and, in association with PEM, modulated the downstream PI3K-Akt-mTOR signaling. Cell lines and Methods In three MPM cell lines (MPP89, REN and MSTO), the effects of c-SRC inhibition, in correlation with TS expression and PEM sensitivity, were evaluated. PEM and dasatinib, a SRC inhibitor, were administered as single agents, in combination or sequentially. Cell viability, apoptosis and migration, as well as TS expression and SRC activation have been assessed. Conclusions These data indicate that dasatinib sensitizes mesothelioma cells to PEM through TS down-regulation.
Collapse
Affiliation(s)
- Valentina Monica
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Marco Lo Iacono
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Simone Busso
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Laura Di Blasio
- Department of Oncology, University of Torino, IRCCS Candiolo, Torino, Italy
| | - Luca Primo
- Department of Oncology, University of Torino, IRCCS Candiolo, Torino, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| |
Collapse
|
4
|
Ueda A, Akagi T, Yokota T. GA-Binding Protein Alpha Is Involved in the Survival of Mouse Embryonic Stem Cells. Stem Cells 2017; 35:2229-2238. [PMID: 28762569 DOI: 10.1002/stem.2673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2016] [Revised: 06/18/2017] [Accepted: 07/15/2017] [Indexed: 01/14/2023]
Abstract
Ets-related transcription factor GA-binding protein alpha (GABPα), which is encoded by Gabpa, is expressed in a variety of cell types and is involved in cellular functions such as cell cycle regulation, apoptosis, and differentiation. Here, we generated Gabpa conditional knockout embryonic stem cells (ESCs) and characterized its cellular phenotypes. Disruption of Gabpa revealed that the proliferation of Gabpa-null ESCs was drastically repressed and cells started to die within 2 days. The repressed proliferation of Gabpa-null ESCs was recovered by artificially forced expression of GABPα. Expression analysis showed that p53 mRNA levels were comparable; however, p53 target genes, including Cdkn1a/p21, Mdm2, and Gadd45a, were upregulated and cell cycle-related genes, including Cyclin D1/D2 and Cyclin E1/E2, were downregulated in Gabpa-null ESCs. Interestingly, p53 and cleaved Caspase3 expressions were enhanced in the cells and reduced proliferation as well as cell death of Gabpa-null ESCs were rescued by either transfection of p53 RNAi or treatment of the p53 inhibitor pifithrin-α. These results suggest that GABPα inhibits the accumulation of p53 and is involved in the proliferation and survival of ESCs. Stem Cells 2017;35:2229-2238.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tadayuki Akagi
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Takashi Yokota
- Department of Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
5
|
Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR. Biosci Rep 2017; 37:BSR20170976. [PMID: 28729249 PMCID: PMC5634328 DOI: 10.1042/bsr20170976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors.
Collapse
|
6
|
Characterization of the Rat GAL2R Promoter: Positive Role of ETS-1 in Regulation of the Rat GAL2R Gene in PC12 Cells. Mol Neurobiol 2016; 54:4421-4431. [PMID: 27349435 DOI: 10.1007/s12035-016-9986-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Galanin receptor 2 (GAL2R) is a G protein-coupled receptor for the neuropeptide galanin that regulates many important physiological functions and pathological processes. To investigate the molecular mechanism governing GAL2R gene transcription, the rat GAL2R promoter was isolated and analyzed. We found that the region from -320 to -300 of the GAL2R promoter contains two putative ETS-1 elements and plays an important role in regulating GAL2R promoter activity. We also showed that transcription factor ETS-1 bound to this region in vitro and in vivo. Overexpression of ETS-1 significantly increased GAL2R promoter activity and transcription of the GAL2R gene, whereas knockdown of ETS-1 produced the opposite effects. In addition, we showed that ETS-1 recruited co-activator p300 to the GAL2R promoter. These data indicate a role for ETS-1 in the control of the GAL2R gene expression and provide a basis for understanding the transcriptional regulation of the GAL2R gene.
Collapse
|
7
|
Sharma NL, Massie CE, Butter F, Mann M, Bon H, Ramos-Montoya A, Menon S, Stark R, Lamb AD, Scott HE, Warren AY, Neal DE, Mills IG. The ETS family member GABPα modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Res 2014; 42:6256-69. [PMID: 24753418 PMCID: PMC4041454 DOI: 10.1093/nar/gku281] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2013] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Naomi L Sharma
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Charlie E Massie
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Falk Butter
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Helene Bon
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Antonio Ramos-Montoya
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Suraj Menon
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rory Stark
- Department of Bioinformatics, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alastair D Lamb
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Helen E Scott
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Anne Y Warren
- Department of Pathology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Department of Urology, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Mills
- Uro-oncology Research Group, CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK Prostate Cancer Research Group, Centre for Molecular Medicine (Norway), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Gaustadalleen 21, Oslo N-0349, Norway Department of Cancer Prevention and Department of Urology, Oslo University Hospital, Oslo N-0349, Norway
| |
Collapse
|
8
|
Jin R, Xu HG, Yuan WX, Zhuang LL, Liu LF, Jiang L, Zhu LH, Liu JY, Zhou GP. Mechanisms elevating ORMDL3 expression in recurrent wheeze patients: role of Ets-1, p300 and CREB. Int J Biochem Cell Biol 2012; 44:1174-83. [PMID: 22546552 DOI: 10.1016/j.biocel.2012.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 12/25/2022]
Abstract
The first genetic factor identified for childhood asthma by genome-wide association study (GWAS) is the locus on chromosome 17q21, harboring the Orosomucoid 1-like 3 (ORMDL3) gene. ORMDL3 is implicated in facilitation of endoplasmic reticulum-mediated inflammatory responses, believed to underlie its association with asthma. In the present study, we demonstrated that mRNA expression of ORMDL3 is significantly increased in the peripheral blood of recurrent wheeze patients compared with normal control subjects by real-time RT-PCR. To elucidate the molecular mechanisms involved in human ORMDL3 regulation, we cloned and characterized the promoter region of ORMDL3. Applying 5'-rapid amplification of cDNA end analysis (RACE), we revealed that ORMDL3 gene used multiple transcriptional start sites (TSSs). Using a series of 5' deletion promoter plasmids in luciferase reporter assays, we identified that the proximal minimal promoter of ORMDL3 was located within the region -84/+58 relative to the TSS. Mutational analysis, RNA interference experiments and sequential chromatin immunoprecipitation (ChIP) assay demonstrated that transcriptional activity of the ORMDL3 gene was cooperatively regulated by multiple transcription factors, including Ets-1, p300 and CREB. The expression levels of Ets-1, p300 and CREB were increased in the peripheral blood of recurrent wheeze patients compared with normal control subjects and showed a strong linear correlation with the expression of ORMDL3. Our findings indicate that Ets-1, p300 and CREB binding to the promoter region drive the ORMDL3 transcription.
Collapse
Affiliation(s)
- Rui Jin
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, Jiangsu Province 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Iida R, Ueki M, Yasuda T. Identification of Rhit as a novel transcriptional repressor of human Mpv17-like protein with a mitigating effect on mitochondrial dysfunction, and its transcriptional regulation by FOXD3 and GABP. Free Radic Biol Med 2012; 52:1413-22. [PMID: 22306510 DOI: 10.1016/j.freeradbiomed.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. To elucidate the molecular basis of M-LP expression, we recently searched for regulatory elements of M-LP and identified a novel mouse KRAB-containing protein, Rhit (regulator of heat-induced transcription), as a repressor of the transcriptional regulation of M-LP. In this study, we identified zinc-finger protein 205 as a candidate human Rhit (RhitH) and subsequently confirmed its participation in transcriptional regulation of human M-LP (M-LPH). To clarify the functions of RhitH and M-LPH, we searched for cis-regulatory elements in the promoter region of RhitH and identified two transcription factors: forkhead box D3, as a negative regulatory element, and GA-binding protein, one of the key regulators of the mitochondrial electron transport system, as a positive regulatory element. Additionally, it was demonstrated that knockdown of RhitH or overexpression of M-LPH reduces the generation of intracellular H(2)O(2) and loss of mitochondrial membrane potential caused by an inhibitor of the respiratory chain, antimycin A. These results suggest that M-LPH functions to protect cells from oxidative stress and/or initiation of the mitochondrial apoptotic cascade under stressed conditions.
Collapse
Affiliation(s)
- Reiko Iida
- Division of Life Science, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
10
|
Alexandrov BS, Gelev V, Yoo SW, Alexandrov LB, Fukuyo Y, Bishop AR, Rasmussen KØ, Usheva A. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation. Nucleic Acids Res 2009; 38:1790-5. [PMID: 20019064 PMCID: PMC2847213 DOI: 10.1093/nar/gkp1084] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely ‘transcription factor-centric’ view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation.
Collapse
Affiliation(s)
- Boian S Alexandrov
- Los Alamos National Laboratory, Theoretical Division and Center for Nonlinear Studies, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Regulation of natriuretic peptide receptor-A gene expression and stimulation of its guanylate cyclase activity by transcription factor Ets-1. Biosci Rep 2009; 29:57-70. [PMID: 18651838 DOI: 10.1042/bsr20080094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
ANP (atrial natriuretic peptide) exerts its biological effects by binding to GC (guanylate cyclase)-A/NPR (natriuretic peptide receptor)-A, which generates the second messenger cGMP. The molecular mechanism mediating Npr1 (coding for GC-A/NPRA) gene regulation and expression is not well understood. The objective of the present study was to elucidate the mechanism by which Ets-1 [Ets (E twenty-six) transformation-specific sequence] contributes to the regulation of Npr1 gene transcription and expression. Chromatin immunoprecipitation and gel-shift assays confirmed the in vivo and in vitro binding of Ets-1 to the Npr1 promoter. Overexpression of Ets-1 enhanced significantly Npr1 mRNA levels, protein expression, GC activity and ANP-stimulated intracellular accumulation of cGMP in transfected cells. Depletion of endogenous Ets-1 by siRNA (small interfering RNA) dramatically decreased promoter activity by 80%. Moreover, methylation of the Npr1 promoter region (-356 to +55) reduced significantly the promoter activity and hypermethylation around the Ets-1 binding sites directly reduced Ets-1 binding to the Npr1 promoter. Collectively, the present study demonstrates that Npr1 gene transcription and GC activity of the receptor are critically controlled by Ets-1 in target cells.
Collapse
|
12
|
Takahashi K, Hayashi N, Shimokawa T, Umehara N, Kaminogawa S, Ra C. Cooperative regulation of Fc receptor gamma-chain gene expression by multiple transcription factors, including Sp1, GABP, and Elf-1. J Biol Chem 2008; 283:15134-41. [PMID: 18378679 PMCID: PMC3258888 DOI: 10.1074/jbc.m800498200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2008] [Revised: 03/05/2008] [Indexed: 11/06/2022] Open
Abstract
The Fc receptor gamma-chain (FcRgamma), which was first identified as a constituent of the high affinity IgE receptor, associates with various cell surface receptors to mediate intracellular signals. We identified three transcriptional enhancer elements in the 5' region of the human FcRgamma gene; one of the cis-elements was recognized by the transcription factor Sp-1 and another was recognized by GABP or Elf-1. The sequence of the other element was similar to a binding motif of the C/EBP family. Overexpression experiments showed that these transcription factors cooperatively activated the FcRgamma promoter. Furthermore, inactivation of the GABP-binding site by nucleotide substitutions as well as repression of GABPalpha expression by RNA interference reduced Sp1-mediated transactivation of the FcRgamma promoter, demonstrating that Sp1 and GABP synergistically activated the FcRgamma promoter. This synergistic activation was suggested to require physical interaction between the two transcription factors, because the Ets domain of GABPalpha was demonstrated to directly bind Sp1. On the other hand, GABP and Elf-1, whose recognition sequences overlapped, were shown to bind the FcRgamma gene with similar affinity in the context of chromatin, although Elf-1 exerted weaker enhancer activity for FcRgamma gene expression than did GABP. Both were thought to compete for binding to the element, because additional expression of Elf-1 in combination with Sp1 and GABP reduced FcRgamma promoter activity. Such functional and physical interactions among transcription factors involved in the cooperative regulation of FcRgamma gene expression as revealed in this study will become promising targets for medical applications against various immune diseases involving FcRgamma.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Department of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Sciences, 30-1 Oyaguchi Kamima-chi, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Koh HS, Lee C, Lee KS, Ham CS, Seong RH, Kim SS, Jeon SH. CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-kappaB upon T-cell activation. Biochem Biophys Res Commun 2008; 370:149-53. [PMID: 18355446 DOI: 10.1016/j.bbrc.2008.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
CD7, one of the galectin-1 receptors, has crucial roles in galectin-1-mediated apoptosis of activated T-cells and T-lymphoma progression in peripheral tissues. In this study, we showed that CD7 promoter activity was increased by NF-kappaB and that this activity was synergistic when Sp1 was co-expressed in the immature T-cell line L7. Site-directed mutagenesis analysis of the CD7 promoter indicated that NF-kappaB specifically bound to the NF-kappaE2 site in cooperation with Sp1. Overexpression of E12 or Twist2 proteins negatively regulated NF-kappaB-mediated activity of the CD7 proximal promoter. In addition, CD7 expression was down-regulated by treatment with the p38 MAPK inhibitor SB20358, or the MSK1 inhibitor H-89. These signaling pathway inhibitors prevented galectin-1-mediated apoptosis of immature T-cells. From these results, we concluded that the regulation of CD7 gene expression through NF-kappaB activation induced by TCR/CD28 might have significant implications for T-cell homeostasis.
Collapse
Affiliation(s)
- Han S Koh
- Department of Life Science, Hallym University, Hallym Daehakgil 39, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Tetrahydrofolate (THF) polyglutamates are a family of cofactors that carry and chemically activate one-carbon units for biosynthesis. THF-mediated one-carbon metabolism is a metabolic network of interdependent biosynthetic pathways that is compartmentalized in the cytoplasm, mitochondria, and nucleus. One-carbon metabolism in the cytoplasm is required for the synthesis of purines and thymidylate and the remethylation of homocysteine to methionine. One-carbon metabolism in the mitochondria is required for the synthesis of formylated methionyl-tRNA; the catabolism of choline, purines, and histidine; and the interconversion of serine and glycine. Mitochondria are also the primary source of one-carbon units for cytoplasmic metabolism. Increasing evidence indicates that folate-dependent de novo thymidylate biosynthesis occurs in the nucleus of certain cell types. Disruption of folate-mediated one-carbon metabolism is associated with many pathologies and developmental anomalies, yet the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be established. This chapter focuses on our current understanding of mammalian folate-mediated one-carbon metabolism, its cellular compartmentation, and knowledge gaps that limit our understanding of one-carbon metabolism and its regulation.
Collapse
Affiliation(s)
- Jennifer T Fox
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
15
|
Crook MF, Olive M, Xue HH, Langenickel TH, Boehm M, Leonard WJ, Nabel EG. GA-binding protein regulates KIS gene expression, cell migration, and cell cycle progression. FASEB J 2007; 22:225-35. [PMID: 17726090 DOI: 10.1096/fj.07-8573com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
The cyclin-dependent kinase inhibitor p27(Kip1) arrests cell cycle progression through G1/S phases and is regulated by phosphorylation of serine/threonine residues. Recently, we identified the serine/threonine kinase, KIS, which phosphorylates p27(Kip1) on serine 10 leading to nuclear export of p27(Kip1) and protein degradation. However, the molecular mechanisms of transcriptional activation of the human KIS gene and its biological activity are not known. We mapped the transcription initiation site approximately 116 bp 5' to the translation start site, and sequences extending to -141 were sufficient for maximal promoter activity. Mutation in either of two Ets-binding sites in this region resulted in an approximately 75-80% decrease in promoter activity. These sites form at least 3 specific complexes, which contained GA-binding protein (GABP). Knocking down GABPalpha by siRNA in vascular smooth muscle cells (VSMCs) diminished KIS gene expression and reduced cell migration. Correspondingly, in serum stimulated GABPalpha-deficient mouse embryonic fibroblasts (MEFs), KIS gene expression was also significantly reduced, which was associated with an increase in p27(Kip1) protein levels and a decreased percentage of cells in S-phase. Consistent with these findings, following vascular injury in vivo, GABPalpha-heterozygous mice demonstrated reduced KIS gene expression within arterial lesions and these lesions were significantly smaller compared to GABP+/+ mice. In summary, serum-responsive GABP binding to Ets-binding sites activates the KIS promoter, leading to KIS gene expression, cell migration, and cell cycle progression.
Collapse
Affiliation(s)
- Martin F Crook
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Yang ZF, Mott S, Rosmarin AG. The Ets transcription factor GABP is required for cell-cycle progression. Nat Cell Biol 2007; 9:339-46. [PMID: 17277770 DOI: 10.1038/ncb1548] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2006] [Accepted: 01/10/2007] [Indexed: 11/09/2022]
Abstract
The transition from cellular quiescence (G0) into S phase is regulated by the mitogenic-activation of D-type cyclins and cyclin-dependent kinases (Cdks), the sequestration of the Cdk inhibitors (CDKIs), p21 and p27, and the hyperphosphorylation of Rb with release of E2F transcription factors. However, fibroblasts that lack all D-type cyclins can still undergo serum-induced proliferation and key E2F targets are expressed at stable levels despite cyclical Rb-E2F activity. Here, we show that serum induces expression of the Ets transcription factor, Gabpalpha, and that its ectopic expression induces quiescent cells to re-enter the cell cycle. Genetic disruption of Gabpalpha prevents entry into S phase, and selectively reduces expression of genes that are required for DNA synthesis and degradation of CDKIs, yet does not alter expression of D-type cyclins, Cdks, Rb or E2Fs. Thus, GABP is necessary and sufficient for re-entry into the cell cycle and it regulates a pathway that is distinct from that of D-type cyclins and CDKs.
Collapse
Affiliation(s)
- Zhong-Fa Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
17
|
Remoli ME, Ragimbeau J, Giacomini E, Gafa V, Severa M, Lande R, Pellegrini S, Coccia EM. NF-{kappa}B is required for STAT-4 expression during dendritic cell maturation. J Leukoc Biol 2006; 81:355-63. [PMID: 17046972 DOI: 10.1189/jlb.0506319] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
The transcription factor STAT-4 plays a pivotal role in the IL-12-mediated development of naive CD4+ T cells into the Th1 phenotype. Initially thought to be restricted to the lymphoid lineage, STAT-4 was subsequently shown to be expressed in the myeloid compartment, mainly in activated monocytes, macrophages, and dendritic cells (DC). Here, we have studied STAT-4 in human monocyte-derived DC, and we demonstrated that its expression can be induced by multiple stimuli, such as the ligands for TLR-4, TLR-2, and TLR-3, different pathogens, CD40 ligand, and the proinflammatory cytokines TNF-alpha and IL-1beta. It is interesting that we found that STAT-4 is tyrosine-phosphorylated in response to type I IFN but not IL-12 in human mature DC. Cloning and functional analysis of the STAT-4 promoter showed that a NF-kappaB binding site, localized at -969/-959 bp upstream of the transcriptional start site, is involved in the regulation of this gene in primary human DC. EMSAs using a probe containing this NF-kappaB binding sequence and chromatin immunoprecipitation indicated that p65/p50 and p50/p50 dimers were the main NF-kappaB/Rel proteins involved in STAT-4 gene expression in maturing DC. The mutation of this kappaB site or the overexpression of the repressor IkappaBalpha exerted an inhibitory effect on a STAT-4 promoter-driven reporter as well as on STAT-4 expression. Altogether, these results indicate that STAT-4 can be finely tuned along with DC maturation through NF-kappaB activation and that its induction may be involved in preparing the DC to be receptive to the cytokine environment present in lymphoid organs.
Collapse
Affiliation(s)
- Maria Elena Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fasciano S, Kaufman A, Patel RC. Expression of PACT is regulated by Sp1 transcription factor. Gene 2006; 388:74-82. [PMID: 17125937 PMCID: PMC1855191 DOI: 10.1016/j.gene.2006.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
PACT is a stress-modulated, cellular activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. The research presented here is aimed at understanding the regulation of PACT expression in mammalian cells. PACT is expressed ubiquitously in different cell types at varying abundance. We have characterized the sequence elements in PACT promoter region that are required for its expression. Using deletion analysis of the promoter we have identified the minimal basal promoter of PACT to be within 101 nucleotides upstream of its transcription start site. Further mutational analyses within this region, followed by electrophoretic mobility shift analyses (EMSAs) and chromatin immunoprecipitation (ChiP) analysis have shown that Specificity protein 1 (Sp1) is the major transcription factor responsible for PACT promoter activity.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, United States
| | | | | |
Collapse
|
19
|
Kapadia F, Johnson LF. Introduction of an initiator element in the mouse thymidylate synthase promoter alters S phase regulation but has no effect on promoter bidirectionality. J Cell Biochem 2006; 97:599-608. [PMID: 16215980 DOI: 10.1002/jcb.20666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
The promoter of the mouse thymidylate synthase (TS) gene lacks a TATAA box and an initiator element, is bidirectional and initiates transcription at multiple start sites across broad initiation windows upstream and downstream of the 30 nt essential promoter region. The TS promoter also plays an essential role in the post-transcription regulation of TS gene expression during the G(1)-S phase transition. The goal of this study was to determine if the addition of a TATAA box or an initiator element would have a significant effect on start-site pattern, promoter bidirectionality and S phase regulation of the TS gene. A TATAA box and/or an initiator element were inserted downstream of the TS essential promoter region, and the modified promoters were used to drive expression of indicator genes. The engineered genes were transfected into cultured mammalian cells, and the effects of the mutations were determined. Addition of the TATAA box and especially the initiator element had a significant effect on the transcription start site pattern, indicating that the elements were functional. Unexpectedly, addition of one or both of these elements had no effect on promoter bidirectionality. However, inclusion of the initiator element led to a significant reduction in S phase regulation of TS mRNA levels, indicating that changes in promoter architecture can perturb normal S phase regulation of TS gene expression.
Collapse
Affiliation(s)
- Fehmida Kapadia
- Department of Molecular Genetics and The Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
20
|
Ahn J, Ko M, Lee K, Oh J, Jeon SH, Seong RH. Expression of SRG3, a core component of mouse SWI/SNF chromatin-remodeling complex, is regulated by cooperative interactions between Sp1/Sp3 and Ets transcription factors. Biochem Biophys Res Commun 2005; 338:1435-46. [PMID: 16288722 DOI: 10.1016/j.bbrc.2005.10.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2005] [Accepted: 10/19/2005] [Indexed: 11/16/2022]
Abstract
SRG3, a mouse homolog of yeast SWI3 and human BAF155, is known to be a core component of SWI/SNF chromatin-remodeling complex. We have previously shown that SRG3 plays essential roles in early mouse embryogenesis, brain development, and T-cell development. SRG3 gene expression was differentially regulated depending on the developmental stages and exhibited tissue-specific pattern. In this study, we showed that the functional interactions between Sp and Ets family transcription factors are crucial for the SRG3 expression. Sp1 and Sp3 specifically bound to the two canonical Sp-binding sites (GC boxes) at -152 and -114, and a non-canonical Sp-binding site (CCTCCT motif) at -108 in the SRG3 promoter. Using Drosophila SL2 cells, we found that various Sp or Ets family members activate the SRG3 promoter through these Sp- or Ets-binding sites, respectively, in a dose-dependent manner. Intriguingly, different combinatorial expression of Ets and Sp factors in SL2 cells resulted in either strong synergistic activation or repression of the SRG3 promoter activity. Moreover, the Sp-mediated activation of SRG3 promoter required the intact Ets-binding element. Taken together, these results suggest that diverse interactions between Sp1/Sp3 and Ets factors are crucial for the SRG3 gene expression.
Collapse
Affiliation(s)
- Jeongeun Ahn
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Research Center for Functional Cellomics, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Tsuchimochi K, Yagishita N, Yamasaki S, Amano T, Kato Y, Kawahara KI, Aratani S, Fujita H, Ji F, Sugiura A, Izumi T, Sugamiya A, Maruyama I, Fukamizu A, Komiya S, Nishioka K, Nakajima T. Identification of a crucial site for synoviolin expression. Mol Cell Biol 2005; 25:7344-56. [PMID: 16055742 PMCID: PMC1190266 DOI: 10.1128/mcb.25.16.7344-7356.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Synoviolin is an E3 ubiquitin ligase localized in the endoplasmic reticulum (ER) and serving as ER-associated degradation system. Analysis of transgenic mice suggested that synoviolin gene dosage is implicated in the pathogenesis of arthropathy. Complete deficiency of synoviolin is fatal embryonically. Thus, alternation of Synoviolin could cause breakdown of ER homeostasis and consequently lead to disturbance of cellular homeostasis. Hence, the expression level of Synoviolin appears to be important for its biological role in cellular homeostasis under physiological and pathological conditions. To examine the control of protein level, we performed promoter analysis to determine transcriptional regulation. Here we characterize the role of synoviolin transcription in cellular homeostasis. The Ets binding site (EBS), termed EBS-1, from position -76 to -69 of the proximal promoter, is responsible for synoviolin expression in vivo and in vitro. Interestingly, transfer of EBS-1 decoy into NIH 3T3 cells conferred not only the repression of synoviolin gene expression but also a decrease in cell number. Fluorescence-activated cell sorter analysis using annexin V staining confirmed the induction of apoptosis by EBS-1 decoy and demonstrated recovery of apoptosis by overexpression of Synoviolin. Our results suggest that transcriptional regulation of synoviolin via EBS-1 plays an important role in cellular homeostasis. Our study provides novel insight into the transcriptional regulation for cellular homeostasis.
Collapse
Affiliation(s)
- Kaneyuki Tsuchimochi
- Department of Genomic Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matrajt M, Platt CD, Sagar AD, Lindsay A, Moulton C, Roos DS. Transcript initiation, polyadenylation, and functional promoter mapping for the dihydrofolate reductase-thymidylate synthase gene of Toxoplasma gondii. Mol Biochem Parasitol 2005; 137:229-38. [PMID: 15383293 DOI: 10.1016/j.molbiopara.2003.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2003] [Revised: 11/03/2003] [Accepted: 12/19/2003] [Indexed: 01/21/2023]
Abstract
The fused dihydrofolate reductase/thymidylate synthase gene of Toxoplasma gondii contains ten exons spanning approximately 8 kb of genomic DNA. We have examined the ends of DHFR-TS transcripts within this gene, and find a complex pattern including two discrete 5' termini and multiple polyadenylation sites. No TATAA box or other classical promoter motif is evident in 1.4 kb of genomic DNA upstream of the coding region, but transcript mapping by RNase protection and primer extension reveals two prominent 5' ends at positions -369 and -341 nt relative to the ATG initiation codon. Upstream genomic sequences include GC-rich regions and the (opposite strand) WGAGACG motif previously identified in other T. gondii promoters. Mutagenesis of recombinant reporter plasmids demonstrates that this region is essential for efficient transgene expression. Sequencing the 3' ends from multiple independent mRNA clones demonstrates numerous polyadenylation sites, distributed over >650 nt of genomic sequence beginning approximately 250 nt downstream of the stop codon. Within this region, certain sites seem to be preferred: 14 different positions were found among the 32 polyadenylated transcripts examined, but approximately 40% of the transcripts map to two loci. The 3' noncoding region is rich in A and T nucleotides, and contains an imperfect 50 nt direct repeat, but no obvious poly(A) addition signal was identified.
Collapse
Affiliation(s)
- Mariana Matrajt
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lindås AC, Tomkinson B. Identification and characterization of the promoter for the gene encoding human tripeptidyl-peptidase II. Gene 2005; 345:249-57. [PMID: 15716107 DOI: 10.1016/j.gene.2004.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2004] [Revised: 10/26/2004] [Accepted: 11/24/2004] [Indexed: 11/22/2022]
Abstract
Tripeptidyl-peptidase II (TPP II) is a ubiquitously expressed exopeptidase. The expression of this enzyme is increased, e.g. in some tumor cells, but the regulation of the expression of the gene has not been investigated previously. The gene encoding human TPP II (TPP2) is 82 kb and consists of 30 exons. An 8 kb NcoI fragment covering the 5'-flanking region of the TPP2 gene, including the initiation codon, was cloned into a luciferase-containing reporter vector. Human embryonic kidney cells (HEK-293 cells) and murine fibroblasts (NIH3T3 cells) were transiently transfected with the construct. Through sequential deletions and analysis of short PCR-fragments, the promoter could be localized to a 215 bp fragment upstream of the initiation codon. This region is GC-rich, lacks a TATA-box and contains two inverted CCAAT-boxes and a GC-box. Electrophoretic mobility shift assays showed that nuclear proteins bind to the promoter fragment. The 85 bp 5'-end of the promoter fragment is essential for transcriptional activation. Out of this a 44 bp fragment suffices to compete with binding of nuclear proteins to the 215 bp fragment. Supershift assays demonstrated that the CCAAT-binding factor (CBF; NF-Y) is involved in the formation of a complex with the 215 bp fragment. Although Sp1 binds to the promoter fragment in vitro, it was found to bind to the 3'-end of the 215 bp fragment which is not essential for transcription. The potential role of Sp1 in transcription of TPP2 therefore remains to be established.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Uppsala University, BMC, Department of Biochemistry, Box 576, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
24
|
Romero EE, Marvi U, Niman ZE, Roth DA. The vitamin K-dependent gamma-glutamyl carboxylase gene contains a TATA-less promoter with a novel upstream regulatory element. Blood 2003; 102:1333-9. [PMID: 12714491 DOI: 10.1182/blood-2002-12-3833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
The expression of the vitamin K-dependent gamma-glutamyl carboxylase gene in liver is developmentally regulated. Since the gene product catalyzes an essential post-translational modification of the vitamin K-dependent blood coagulation proteins, the regulation of carboxylase expression is critical for hemostasis. We analyzed the activity of the rat carboxylase gene 5'-regulatory DNA sequences in rat hepatoma cell lines at different states of differentiation. These studies demonstrated that the 2.6-kb 5'-flanking sequence has differentiation-dependent transcriptional activity. Transient gene expression assays, examining the effects of nested deletions and site-directed mutagenesis of putative regulatory sequences, together with electrophoretic mobility shift assays (EMSAs) were used to identify sequences critical for the developmentally regulated transcription of the rat carboxylase gene. We identified a DNA sequence (-76 to -65; GTTCCGGCCTTC) not known to bind to transcription factors, yet which functions as an upstream promoter element. In vivo genomic DNA footprinting confirms the presence of nuclear protein-DNA interactions at this site in the endogenous carboxylase gene in differentiated hepatoma cells. Therefore, this DNA sequence has specific nuclear protein-binding activity and functional properties consistent with a regulatory element that plays a critical role in the developmental expression of the carboxylase gene, and hence the regulation of vitamin K-dependent blood coagulation protein synthesis.
Collapse
Affiliation(s)
- Elizabeth E Romero
- Center for Hemostasis and Thrombosis Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Matsui Y, Chansky HA, Barahmand-Pour F, Zielinska-Kwiatkowska A, Tsumaki N, Myoui A, Yoshikawa H, Yang L, Eyre DR. COL11A2 collagen gene transcription is differentially regulated by EWS/ERG sarcoma fusion protein and wild-type ERG. J Biol Chem 2003; 278:11369-75. [PMID: 12554743 DOI: 10.1074/jbc.m300164200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A specific t(21;22) chromosomal translocation creates the chimeric EWS/ERG gene in some cases of Ewing's sarcoma. In the resultant EWS/ERG fusion protein, the N-terminal part of the ETS family protein ERG is replaced by the N terminus of the RNA-binding protein EWS. We found that both the EWS/ERG and COL11A2 genes are expressed in the Ewing's sarcoma cell line, CADO-ES1. To investigate a potential role for EWS/ERG in COL11A2 gene expression, we characterized the COL11A2 promoter and tested the ability of wild-type ERG and EWS/ERG sarcoma fusion protein to transactivate COL11A2 promoter using a luciferase assay. We found that expression of EWS/ERG, but not wild-type ERG, transactivated the COL11A2 promoter and that this transactivation required not only the N-terminal region of EWS but also an intact DNA-binding domain from ERG. Electrophoretic mobility shift assay using COL11A2 promoter sequence showed involvement of EWS/ERG in the formation of DNA-protein complexes, and chromatin immunoprecipitation assay revealed direct interaction between COL11A2 promoter and EWS/ERG fusion protein in vivo. EWS/ERG, but not wild-type ERG, bound to RNA polymerase II. Treatment of cells with the histone deacetylase inhibitor trichostatin A enabled ERG to transactivate the COL11A2 promoter, therefore abolishing the differential effects of EWS/ERG and ERG. Taken together, these findings indicate that the COL11A2 gene is regulated both by potential ERG association with a histone deacetylase complex and by direct EWS/ERG recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Yoshito Matsui
- Department of Orthopedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington 98195-6500, USA
| | | | | | | | | | | | | | | | | |
Collapse
|