1
|
Semenova Y, Bjørklund G. Antioxidants and neurodegenerative eye disease. Crit Rev Food Sci Nutr 2024; 64:9672-9690. [PMID: 37312562 DOI: 10.1080/10408398.2023.2215865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative ocular disorders mostly develop with aging and present great complications in the quality of life. Glaucoma and age-related macular degeneration (ARMD) rank as the third and fourth leading causes of blindness and low vision. Oxidative stress is one factor in the pathogenesis of neurodegenerative eye disease. In addition, ocular ischemia and neuroinflammation play an important role. It can be hypothesized that the influence of antioxidants through diet or oral supplementation can counteract the harmful effects of reactive oxygen species accumulated secondary to oxidative stress, ischemia, and inflammation. A range of studies has been published over the past decades focusing on the possible adjuvant effect of antioxidants in ARMD, while there were fewer reports on the potential role of antioxidants in glaucoma. Although certain reports demonstrated positive results, others were discouraging. As there is a controversy between the studies favoring and disfavoring supplementation with different types of antioxidants, it is important to revise the existing evidence on the role of antioxidants in neurodegenerative ocular disorders with a special focus on glaucoma and ARMD.
Collapse
Affiliation(s)
- Yuliya Semenova
- Department of Surgery, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
2
|
Arunkumar R, Li B, Addo EK, Hartnett ME, Bernstein PS. Prenatal Carotenoid Supplementation With Lutein or Zeaxanthin Ameliorates Oxygen-Induced Retinopathy (OIR) in Bco2-/- Macular Pigment Mice. Invest Ophthalmol Vis Sci 2023; 64:9. [PMID: 37036416 PMCID: PMC10108734 DOI: 10.1167/iovs.64.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/19/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose Premature infants at risk of retinopathy of prematurity (ROP) miss placental transfer of the carotenoids lutein (L) and zeaxanthin (Z) during the third trimester. We previously demonstrated that prenatal L and Z supplementation raised carotenoid levels in infants at birth in the Lutein and Zeaxanthin in Pregnancy (L-ZIP) study (NCT03750968). Based on their antioxidant effects and bioavailability, we hypothesized that prenatal maternal supplementation with macular carotenoids would reduce the risk of ROP. To test this hypothesis, we utilized "macular pigment mice" genetically engineered to take up L and Z into the retina in a model of oxygen-induced retinopathy (OIR). Methods Pregnant Bco2-/- mice were divided into nine experimental subgroups based on the type of supplementation (L, Z, or placebo) and on the maternal supplementation start date corresponding to the three trimesters of human fetal development (E0, E11, and P1). Pups and nursing mothers were exposed to 75% O2 for 5 days (P7-P12) and returned to room air for 5 days (P12-P17). Pups were killed at P12 and P17, and their retinas were analyzed for vaso-obliteration and intravitreal neovascularization. Results Pups of pregnant mice supplemented with L or Z had significant reductions in areas of vaso-obliteration and intravitreal neovascularization compared to placebo. Prenatal carotenoid supplementation starting at E0 or E11 was significantly more protective against OIR than postnatal supplementation starting at P1. Conclusions Prenatal supplementation with L and Z was beneficial in a mouse OIR model. We recommend testing prenatal L and Z supplementation in future human clinical trials to prevent ROP.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Emmanuel K. Addo
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Mary Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
|
4
|
Dziedziak J, Kasarełło K, Cudnoch-Jędrzejewska A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants (Basel) 2021; 10:antiox10111743. [PMID: 34829613 PMCID: PMC8614766 DOI: 10.3390/antiox10111743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are ophthalmic neurodegenerative diseases responsible for irreversible vision loss in the world population. Only a few therapies can be used to slow down the progression of these diseases and there are no available treatment strategies for reversing the degeneration of the neural retina. In AMD, the pathological process causes the malfunction and damage of the retinal pigmented epithelium and photoreceptors in the macula. In glaucoma, damage of the retinal ganglion cells and their axons is observed and treatment strategies are limited to intraocular pressure lowering. Therefore, other prophylactic and/or therapeutic methods are needed. Oxidative stress is involved in the neurodegenerative process accompanying both AMD and glaucoma; therefore, the use of antioxidant agents would clearly be beneficial, which is supported by the decreased prevalence and progression of AMD in patients adherent to a diet naturally rich in antioxidants. Dietary antioxidants are easily available and their use is based on the natural route of administration. Many preclinical studies both in vitro and using animal models of retinal degeneration showed the efficacy of dietary antioxidants, which was further proved in clinical trials. Resveratrol is beneficial both in AMD and glaucoma animal models, but confirmed only among AMD patients. For AMD, carotenoids and omega-3 fatty acids were also proved to be sufficient in preventing neurodegeneration. For glaucoma, coenzyme Q10 and alpha-lipoic acid showed efficacy for decreasing retinal ganglion cell loss and inhibiting the accompanying destructive processes. Interestingly, the benefits of vitamins, especially vitamin E was not confirmed, neither in preclinical nor in clinical studies.
Collapse
|
5
|
Arunkumar R, Gorusupudi A, Li B, Blount JD, Nwagbo U, Kim HJ, Sparrow JR, Bernstein PS. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4 -/-/Bco2 -/- double knockout mice. Exp Eye Res 2021; 209:108680. [PMID: 34161819 PMCID: PMC8595537 DOI: 10.1016/j.exer.2021.108680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Accumulation of bisretinoids such as A2E and its isomer iso-A2E is thought to mediate blue light-induced oxidative damage associated with age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1). We hypothesize that increasing dietary intake of the macular carotenoids lutein and zeaxanthin in individuals at risk of AMD and STGD1 can inhibit the formation of bisretinoids A2E and iso-A2E, which can potentially ameliorate macular degenerative diseases. To study the beneficial effect of macular carotenoids in a retinal degenerative diseases model, we used ATP-binding cassette, sub-family A member 4 (Abca4-/-)/β,β-carotene-9',10'-oxygenase 2 (Bco2-/-) double knockout (KO) mice that accumulate elevated levels of A2E and iso-A2E in the retinal pigment epithelium (RPE) and macular carotenoids in the retina. Abca4-/-/Bco2-/- and Abca4-/- mice were fed a lutein-supplemented chow, zeaxanthin-supplemented chow or placebo chow (~2.6 mg of carotenoid/mouse/day) for three months. Visual function and electroretinography (ERG) were measured after one month and three months of carotenoid supplementation. The lutein and zeaxanthin supplemented Abca4-/-/Bco2-/- mice had significantly lower levels of RPE/choroid A2E and iso-A2E compared to control mice fed with placebo chow and improved visual performance. Carotenoid supplementation in Abca4-/- mice minimally raised retinal carotenoid levels and did not show much difference in bisretinoid levels or visual function compared to the control diet group. There was a statistically significant inverse correlation between carotenoid levels in the retina and A2E and iso-A2E levels in the RPE/choroid. Supplementation with retinal carotenoids, especially zeaxanthin, effectively inhibits bisretinoid formation in a mouse model of STGD1 genetically enhanced to accumulate carotenoids in the retina. These results provide further impetus to pursue oral carotenoids as therapeutic interventions for STGD1 and AMD.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Binxing Li
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - J David Blount
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Provis JM, Penfold PL, Cornish EE, Sandercoe TM, Madigan MC. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 2021; 88:269-81. [PMID: 16255686 DOI: 10.1111/j.1444-0938.2005.tb06711.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 06/27/2005] [Accepted: 07/01/2005] [Indexed: 01/14/2023] Open
Abstract
The central retina in primates is adapted for high acuity vision. The most significant adaptations to neural retina in this respect are: 1. The very high density of cone photoreceptors on the visual axis; 2. The dominance of Midget pathways arising from these cones and 3. The diminishment of retinal blood supply in the macula, and its absence on the visual axis. Restricted blood supply to the part of the retina that has the highest density of neural elements is paradoxical. Inhibition of vascular growth and proliferation is evident during foetal life and results in metabolic stress in ganglion cells and Muller cells, which is resolved during formation of the foveal depression. In this review we argue that at the macula stressed retinal neurons adapt during development to a limited blood supply from the choriocapillaris, which supplies little in excess of metabolic demand of the neural retina under normal conditions. We argue also that while adaptation of the choriocapillaris underlying the foveal region may initially augment the local supply of oxygen and nutrients by diffusion, in the long term these adaptations make the region more vulnerable to age-related changes, including the accumulation of insoluble material in Bruch's membrane and beneath the retinal pigment epithelium. These changes eventually impact on delivery of oxygen and nutrients to the RPE and outer neural retina because of reduced flow in the choriocapillaris and the increasing barriers to effective diffusion. Both the inflammatory response and the sequelae of oxidative stress are predictable outcomes in this scenario.
Collapse
Affiliation(s)
- Jan M Provis
- Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT, 2601, Australia.
| | | | | | | | | |
Collapse
|
7
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Biswal MR, Justis BD, Han P, Li H, Gierhart D, Dorey CK, Lewin AS. Daily zeaxanthin supplementation prevents atrophy of the retinal pigment epithelium (RPE) in a mouse model of mitochondrial oxidative stress. PLoS One 2018; 13:e0203816. [PMID: 30265681 PMCID: PMC6161850 DOI: 10.1371/journal.pone.0203816] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023] Open
Abstract
Oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD). The dry form of AMD (geographic atrophy) is characterized by loss of RPE, photoreceptors, and macular pigments. The cumulative effects of oxidative stress impact mitochondrial function in RPE. In Sod2flox/floxVMD2-cre mice, the RPE specific deletion of Sod2, the gene for mitochondrial manganese superoxide dismutase (MnSOD), leads to elevated oxidative stress in retina and RPE, and causes changes in the RPE and underlying Bruch's membrane that share some features of AMD. This study tested the hypothesis that zeaxanthin supplementation would reduce oxidative stress and preserve RPE structure and function in these mice. Zeaxanthin in retina/RPE/choroid and liver was quantified by LC/MS, retinal function and structure were evaluated by electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT), and antioxidant gene expression was measured by RT-PCR. After one month of supplementation, zeaxanthin levels were 5-fold higher in the retina/RPE/choroid and 12-fold higher in liver than in unsupplemented control mice. After four months of supplementation, amplitudes of the ERG a-wave (function of rod photoreceptors) and b-wave (function of the inner retina) were not different in supplemented and control mice. In contrast, the c-wave amplitude (a measure of RPE function) was 28% higher in supplemented mice than in control mice. Higher RPE/choroid expression of antioxidant genes (Cat, Gstm1, Hmox1, Nqo1) and scaffolding protein Sqstm1 were found in supplemented mice than in unsupplemented controls. Reduced nitrotyrosine content in the RPE/choroid was demonstrated by ELISA. Preliminary assessment of retinal ultrastructure indicated that supplementation supported better preservation of RPE structure with more compact basal infoldings and intact mitochondria. We conclude that daily zeaxanthin supplementation protected RPE cells from mitochondrial oxidative stress associated with deficiency in the MnSOD and thereby improved RPE function early in the disease course.
Collapse
Affiliation(s)
- Manas R. Biswal
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- College of Pharmacy, University of South Florida, Tampa, United States of America
- * E-mail:
| | - Bradley D. Justis
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Pingyang Han
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Hong Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | | | - Cheryl K. Dorey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States of America
- Center for Vision Research, University of Florida, Gainesville, FL, United States of America
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
9
|
Toomey MB, Corbo JC. Evolution, Development and Function of Vertebrate Cone Oil Droplets. Front Neural Circuits 2017; 11:97. [PMID: 29276475 PMCID: PMC5727011 DOI: 10.3389/fncir.2017.00097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Ozyurt A, Kocak N, Akan P, Calan OG, Ozturk T, Kaya M, Karahan E, Kaynak S. Comparison of macular pigment optical density in patients with dry and wet age-related macular degeneration. Indian J Ophthalmol 2017. [PMID: 28643712 PMCID: PMC5508458 DOI: 10.4103/ijo.ijo_365_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: The aim of the study was to evaluate the macular pigment optical density (MPOD) levels in patients with wet age-related macular degeneration (AMD), dry AMD, and also in healthy controls. Settings and Design: This study was conducted at Department of Ophthalmology, and the study design was a prospective study. Patients and Methods: Forty-eight patients with wet AMD, 51 patients with dry AMD, and 50 controls were included in the study. All patients were naive to both previous lutein or zeaxanthin administration and any previous intravitreal injections. Fundus reflectance (VISUCAM 500, reflectance of a single 460 nm wavelength) was used to measure the MPOD levels. Three groups were compared regarding age, gender, serum lutein, and zeaxanthin concentrations as well as MPOD levels. Results: Serum lutein and zeaxanthin levels were significantly higher in control group when compared with wet AMD (Group 1) and dry AMD (Group 2) (P = 0.001 and P < 0.001, respectively). Mean MPOD was found to be similar in all of the three study subgroups (P = 0.630). However, maximum MPOD was significantly higher in control group when compared with Group 1 and 2 (P = 0.003). There was no correlation between serum lutein or zeaxanthin concentrations and mean MPOD levels (P = 0.815, r = 0.014 and P = 0.461, r = 0.043, respectively), but there was a weak correlation between serum zeaxanthin concentration and maximum MPOD level (P = 0.042, r = 0.124). Maximum MPOD level was found to be correlated with the level of AMD (Group 1, 2, and 3; r = 0.184, P = 0.041). Conclusion: Maximum MPOD level was found to be lower in patients with AMD when compared with control cases. Mean MPOD and maximum MPOD levels were similar in wet and dry AMD Groups. These results can be applied clinically keeping in mind that MPOD measurements with one wavelength reflectometry may not be completely reliable.
Collapse
Affiliation(s)
- Ayhan Ozyurt
- Department of Ophthalmology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nilufer Kocak
- Department of Ophthalmology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Pınar Akan
- Department of Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ozlem Gursoy Calan
- Department of Biochemistry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Taylan Ozturk
- Department of Ophthalmology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mahmut Kaya
- Department of Ophthalmology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Eyup Karahan
- Department of Ophthalmology, Karatas Hospital, Izmir, Turkey
| | - Suleyman Kaynak
- Department of Ophthalmology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
11
|
Type-specific photoreceptor loss in pigeons after disruption of parasympathetic control of choroidal blood flow by the medial subdivision of the nucleus of Edinger-Westphal. Vis Neurosci 2016; 33:E008. [PMID: 27485271 PMCID: PMC5678271 DOI: 10.1017/s0952523816000043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The medial part of the nucleus of Edinger–Westphal (EWM) in birds mediates light-regulated adaptive increases in choroidal blood flow (ChBF). We sought to characterize the effect of loss of EWM-mediated ChBF regulation on photoreceptor health in pigeons housed in either moderate intensity diurnal or constant light (CL). Photoreceptor abundance following complete EWM destruction was compared to that following a lesion in the pupil control circuit (as a control for spread of EWM lesions to the nearby pupil-controlling lateral EW) or following no EW damage. Birds were housed post-lesion in a 12 h 400 lux light/12 h dark light cycle for up to 16.5 months, or in constant 400 lux light for up to 3 weeks. Paraformaldehyde–glutaraldehyde fixed eyes were embedded in plastic, sectioned, slide-mounted, and stained with toluidine blue/azure II. Blinded analysis of photoreceptor outer segment abundance was performed, with outer segment types distinguished by oil droplet tint and laminar position. Brains were examined histologically to assess lesion accuracy. Disruption of pupil control had no adverse effect on photoreceptor outer segment abundance in either diurnal light or CL, but EWM destruction led to 50–60% loss of blue/violet cone outer segments in both light conditions, and a 42% loss of principal cone outer segments in CL. The findings indicate that adaptive regulation of ChBF by the EWM circuit plays a role in maintaining photoreceptor health and mitigates the harmful effect of light on photoreceptors, especially short wavelength-sensitive cone photoreceptors.
Collapse
|
12
|
Ma L, Liu R, Du JH, Liu T, Wu SS, Liu XH. Lutein, Zeaxanthin and Meso-zeaxanthin Supplementation Associated with Macular Pigment Optical Density. Nutrients 2016; 8:nu8070426. [PMID: 27420092 PMCID: PMC4963902 DOI: 10.3390/nu8070426] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 01/16/2023] Open
Abstract
The purpose of this study was to evaluate the effects of lutein, zeaxanthin and meso-zeaxanthin on macular pigment optical density (MPOD) in randomized controlled trials (RCTs) among patients with age-related macular degeneration (AMD) and healthy subjects. Medline, Embase, Web of Science and Cochrane Library databases was searched through May 2016. Meta-analysis was conducted to obtain adjusted weighted mean differences (WMD) for intervention-versus-placebo group about the change of MPOD between baseline and terminal point. Pearson correlation analysis was used to determine the relationship between the changes in MPOD and blood xanthophyll carotenoids or baseline MPOD levels. Twenty RCTs involving 938 AMD patients and 826 healthy subjects were identified. Xanthophyll carotenoids supplementation was associated with significant increase in MPOD in AMD patients (WMD, 0.07; 95% CI, 0.03 to 0.11) and healthy subjects (WMD, 0.09; 95% CI, 0.05 to 0.14). Stratified analysis showed a greater increase in MPOD among trials supplemented and combined with meso-zeaxanthin. Additionally, the changes in MPOD were related with baseline MPOD levels (rAMD = −0.43, p = 0.06; rhealthy subjects = −0.71, p < 0.001) and blood xanthophyll carotenoids concentration (rAMD = 0.40, p = 0.07; rhealthy subjects = 0.33, p = 0.05). This meta-analysis revealed that lutein, zeaxanthin and meso-zeaxanthin supplementation improved MPOD both in AMD patients and healthy subjects with a dose-response relationship.
Collapse
Affiliation(s)
- Le Ma
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
| | - Rong Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
- The 3201 Hospital, Xi'an Jiao tong University College of Medicine, 783 Tianhan Road, Hanzhong 723000, Shaanxi, China.
| | - Jun Hui Du
- The Ninth Hospital of Xi'an, Xi'an Jiaotong University College of Medicine, 151 East of South Second Ring Road, Xi'an 710054, Shaanxi, China.
| | - Tao Liu
- The 3201 Hospital, Xi'an Jiao tong University College of Medicine, 783 Tianhan Road, Hanzhong 723000, Shaanxi, China.
| | - Shan Shan Wu
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Beijing 100050, China.
| | - Xiao Hong Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
13
|
Sandkam BA, Deere-Machemer KA, Johnson AM, Grether GF, Helen Rodd F, Fuller RC. Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:527-34. [DOI: 10.1007/s00359-016-1097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023]
|
14
|
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 2016; 50:34-66. [PMID: 26541886 PMCID: PMC4698241 DOI: 10.1016/j.preteyeres.2015.10.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/04/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age.
Collapse
Affiliation(s)
- Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Preejith P Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Bradley S Henriksen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - John M Nolan
- Macular Pigment Research Group, Vision Research Centre, School of Health Science, Carriganore House, Waterford Institute of Technology West Campus, Carriganore, Waterford, Ireland.
| |
Collapse
|
15
|
Abed E, Corbo G, Falsini B. Neurotrophin Family Members as Neuroprotectants in Retinal Degenerations. BioDrugs 2014; 29:1-13. [DOI: 10.1007/s40259-014-0110-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards. Naturwissenschaften 2014; 101:1107-14. [DOI: 10.1007/s00114-014-1250-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
17
|
McCartney KL, Ligon RA, Butler MW, Denardo DF, McGraw KJ. The effect of carotenoid supplementation on immune system development in juvenile male veiled chameleons (Chamaeleo calyptratus). Front Zool 2014; 11:26. [PMID: 24655326 PMCID: PMC4022081 DOI: 10.1186/1742-9994-11-26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/07/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life stage have largely been restricted to birds and mammals. We investigated the effects of carotenoid supplementation on multiple aspects of immunity in juvenile veiled chameleons (Chamaeleo calyptratus). We supplemented half of the chameleons with lutein (a xanthophyll carotenoid) for 14 weeks during development and serially measured multiple aspects of immune function, including: agglutination and lysis performance of plasma, wound healing, and plasma nitric oxide concentrations before and after wounding. Results Though lutein supplementation effectively elevated circulating carotenoid concentrations throughout the developmental period, we found no evidence that carotenoid repletion enhanced immune function at any point. However, agglutination and lysis scores increased, while baseline nitric oxide levels decreased, as chameleons aged. Conclusions Taken together, our results indicate that body mass and age, but not carotenoid access, may play an important role in immune performance of growing chameleons. Hence, studying well-understood physiological processes in novel taxa can provide new perspectives on alternative physiological processes and nutrient function.
Collapse
Affiliation(s)
| | - Russell A Ligon
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | | | |
Collapse
|
18
|
Demmig-Adams B, Adams RB. Eye nutrition in context: mechanisms, implementation, and future directions. Nutrients 2013; 5:2483-501. [PMID: 23857222 PMCID: PMC3738983 DOI: 10.3390/nu5072483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Carotenoid-based visual cues and roles of carotenoids in human vision are reviewed, with an emphasis on protection by zeaxanthin and lutein against vision loss, and dietary sources of zeaxanthin and lutein are summarized. In addition, attention is given to synergistic interactions of zeaxanthin and lutein with other dietary factors affecting human vision (such as antioxidant vitamins, phenolics, and poly-unsaturated fatty acids) and the emerging mechanisms of these interactions. Emphasis is given to lipid oxidation products serving as messengers with functions in gene regulation. Lastly, the photo-physics of light collection and photoprotection in photosynthesis and vision are compared and their common principles identified as possible targets of future research.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|
19
|
Ma L, Yan SF, Huang YM, Lu XR, Qian F, Pang HL, Xu XR, Zou ZY, Dong PC, Xiao X, Wang X, Sun TT, Dou HL, Lin XM. Effect of Lutein and Zeaxanthin on Macular Pigment and Visual Function in Patients with Early Age-related Macular Degeneration. Ophthalmology 2012; 119:2290-7. [DOI: 10.1016/j.ophtha.2012.06.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022] Open
|
20
|
Zhang L, Chong L, Cho J, Liao PC, Shen F, Leung YF. Drug Screening to Treat Early-Onset Eye Diseases: Can Zebrafish Expedite the Discovery? ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2012; 1:374-83. [PMID: 26107731 DOI: 10.1097/apo.0b013e31827a9969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The molecular basis of many early-onset eye diseases has been uncovered, but the number of available drug treatments for improving deteriorated vision is still scarce. Consequently, there is a high demand for new drugs to treat these diseases. This review first provides a brief synopsis of the use of zebrafish model for screening drugs with vision benefits. In particular, visual-motor response, the activity response of larvae to a change in light stimuli, is proposed to serve as a simple and efficient tool for screening drugs that may improve vision in various zebrafish visual mutants. The second part of the review discusses the identification of novel drug candidates, with particular emphasis on naturally derived chemicals including traditional Chinese medicines and nutritional therapies on retinal degenerative diseases. Many of these chemicals have been used in neuroprotection and/or have been consumed by many populations for good health and vision; thus, the screening of these chemicals with various zebrafish visual mutants would expedite the development of novel drugs for treating early-onset eye diseases.
Collapse
Affiliation(s)
- Liyun Zhang
- From the *Department of Biological Sciences, Purdue University; and †Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, IN
| | | | | | | | | | | |
Collapse
|
21
|
Ma L, Dou HL, Huang YM, Lu XR, Xu XR, Qian F, Zou ZY, Pang HL, Dong PC, Xiao X, Wang X, Sun TT, Lin XM. Improvement of retinal function in early age-related macular degeneration after lutein and zeaxanthin supplementation: a randomized, double-masked, placebo-controlled trial. Am J Ophthalmol 2012; 154:625-634.e1. [PMID: 22835510 DOI: 10.1016/j.ajo.2012.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE To examine the effects of lutein and zeaxanthin supplementation on retinal function using multifocal electroretinograms (mfERG) in patients with early age-related macular degeneration (AMD). DESIGN Randomized, double-masked, placebo-controlled trial. METHODS One hundred eight subjects with early AMD were randomly assigned to receive 10 mg/d lutein (n = 27), 20 mg/d lutein (n = 27), 10 mg/d lutein plus 10 mg/d zeaxanthin (n = 27), or placebo (n = 27) for 48 weeks. Thirty-six age-matched controls without AMD were also enrolled to compare baseline data with early AMD patients. MfERG responses and macular pigment optical densities (MPODs) were recorded and analyzed at baseline and at 24 and 48 weeks. RESULTS There were significant reductions in N1P1 response densities in ring 1 to ring 3 in early AMD patients compared with the controls (P < .05), whereas neither N1P1 response densities in ring 4 to ring 6 nor P1 peak latencies significantly changed. After 48-week supplementation, the N1P1 response densities showed significant increases in ring 1 for the 20 mg lutein group and for the lutein and zeaxanthin group, and in ring 2 for the 20 mg lutein group. The increases in MPOD related positively to the increases in N1P1 response density in ring 1 and ring 2 for nearly all active treatment groups. N1P1 response densities in ring 3 to ring 6 or P1 peak latencies in all rings did not change significantly in any group. CONCLUSION Early functional abnormalities of the central retina in the early AMD patients could be improved by lutein and zeaxanthin supplementation. These improvements may be potentially attributed to the elevations in MPOD.
Collapse
|
22
|
Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ, Tang G, Sparrow JR, Gierhart D, Shang F. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 2012; 53:1298-307. [PMID: 22732187 PMCID: PMC3744865 DOI: 10.1016/j.freeradbiomed.2012.06.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/04/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work is to test the protective effects of lutein and zeaxanthin against photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of inflammation-related genes. To mimic lipofuscin-mediated photooxidation in vivo, we used ARPE-19 cells that accumulated A2E, a lipofuscin fluorophore and photosensitizer, as a model system to investigate the effects of lutein and zeaxanthin supplementation. The data show that supplementation with lutein or zeaxanthin in the medium resulted in accumulation of lutein or zeaxanthin in the RPE cells. The concentrations of lutein and zeaxanthin in the cells were 2- to 14-fold of that detected in the medium, indicating that ARPE-19 cells actively take up lutein or zeaxanthin. As compared with untreated cells, exposure of A2E-containing RPE to blue light resulted in a 40-60% decrease in proteasome activity, a 50-80% decrease in expression of CFH and MCP-1, and an~20-fold increase in expression of IL-8. The photooxidation-induced changes in expression of MCP-1, IL-8, and CFH were similar to those caused by chemical inhibition of the proteasome, suggesting that inactivation of the proteasome is involved in the photooxidation-induced alteration in expression of these inflammation-related genes. Incubation of the A2E-containing RPE with lutein or zeaxanthin prior to blue light exposure significantly attenuated the photooxidation-induced inactivation of the proteasome and photooxidation-induced changes in expression of MCP-1, IL-8, and CFH. Together, these data indicate that lutein or zeaxanthin modulates inflammatory responses in cultured RPE in response to photooxidation. Protecting the proteasome from oxidative inactivation appears to be one of the mechanisms by which lutein and zeaxanthin modulate the inflammatory response. Similar mechanisms may explain salutary effects of lutein and zeaxanthin in reducing the risk for AMD.
Collapse
Affiliation(s)
- Qingning Bian
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Shasha Gao
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Jilin Zhou
- Department of Ophthalmology, Columbia University, New York, NY 10032
| | - Jian Qin
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Allen Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Elizabeth J. Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Guangwen Tang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032
| | | | - Fu Shang
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| |
Collapse
|
23
|
Carotenoids in bird testes: links to body carotenoid supplies, plumage coloration, body mass and testes mass in house finches (Carpodacus mexicanus). Comp Biochem Physiol B Biochem Mol Biol 2012; 163:285-91. [PMID: 22771377 DOI: 10.1016/j.cbpb.2012.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 11/20/2022]
Abstract
Carotenoid pigments can be allocated to different parts of the body to serve specific functions. In contrast to other body tissues, studies of carotenoid resources in the testes of animals are relatively scarce. We used high-performance liquid chromatography to determine the types and concentrations of carotenoids in the testes of house finches (Carpodacus mexicanus). Additionally, we examined the relationships between testes carotenoid concentrations and carotenoid pools in other body tissues, as well as body mass, testes mass and plumage coloration. We detected low concentrations of several carotenoids - lutein (the predominant carotenoid), zeaxanthin, anhydrolutein, β-cryptoxanthin, β-carotene and an unknown carotene - in the testes of wild house finches. We also found that testes lutein levels were significantly and positively associated with circulating lutein levels, while the concentration of zeaxanthin in testes was positively associated with zeaxanthin levels in liver, though in this instance the relationship was much weaker and only marginally significant. Furthermore, lutein levels in testes were significantly negatively associated with testes mass. Finally, plumage coloration was not associated with either the concentration of carotenoids in the testes or relative testes mass. These results suggest that testes carotenoids are reflective of the pool of circulating carotenoids in house finches, and that plumage coloration is unlikely to signal either the carotenoid content of testes tissue or a male's capacity for sperm production.
Collapse
|
24
|
Kijlstra A, Tian Y, Kelly ER, Berendschot TTJM. Lutein: more than just a filter for blue light. Prog Retin Eye Res 2012; 31:303-15. [PMID: 22465791 DOI: 10.1016/j.preteyeres.2012.03.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 12/15/2022]
Abstract
Lutein is concentrated in the primate retina, where together with zeaxanthin it forms the macular pigment. Traditionally lutein is characterized by its blue light filtering and anti-oxidant properties. Eliminating lutein from the diet of experimental animals results in early degenerative signs in the retina while patients with an acquired condition of macular pigment loss (Macular Telangiectasia) show serious visual handicap indicating the importance of macular pigment. Whether lutein intake reduces the risk of age related macular degeneration (AMD) or cataract formation is currently a strong matter of debate and abundant research is carried out to unravel the biological properties of the lutein molecule. SR-B1 has recently been identified as a lutein binding protein in the retina and this same receptor plays a role in the selective uptake in the gut. In the blood lutein is transported via high-density lipoproteins (HDL). Genes controlling SR-B1 and HDL levels predispose to AMD which supports the involvement of cholesterol/lutein transport pathways. Apart from beneficial effects of lutein intake on various visual function tests, recent findings show that lutein can affect immune responses and inflammation. Lutein diminishes the expression of various ocular inflammation models including endotoxin induced uveitis, laser induced choroidal neovascularization, streptozotocin induced diabetes and experimental retinal ischemia and reperfusion. In vitro studies show that lutein suppresses NF kappa-B activation as well as the expression of iNOS and COX-2. Since AMD has features of a chronic low-grade systemic inflammatory response, attention to the exact role of lutein in this disease has shifted from a local effect in the eye towards a possible systemic anti-inflammatory function.
Collapse
Affiliation(s)
- Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Richer SP, Stiles W, Graham-Hoffman K, Levin M, Ruskin D, Wrobel J, Park DW, Thomas C. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: the Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. ACTA ACUST UNITED AC 2012; 82:667-680.e6. [PMID: 22027699 DOI: 10.1016/j.optm.2011.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/11/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study is to evaluate whether dietary supplementation with the carotenoid zeaxanthin (Zx) raises macula pigment optical density (MPOD) and has unique visual benefits for patients with early atrophic macular degeneration having visual symptoms but lower-risk National Institute of Health/National Eye Institute/Age-Related Eye Disease Study characteristics. METHODS This was a 1-year, n = 60 (57 men, 3 women), 4-visit, intention-to-treat, prospective, randomized controlled clinical trial of patients (74.9 years, standard deviation [SD] 10) with mild-to-moderate age-related macular degeneration (AMD) randomly assigned to 1 of 2 dietary supplement carotenoid pigment intervention groups: 8 mg Zx (n = 25) and 8 mg Zx plus 9 mg lutein (L) (n = 25) or 9 mg L ("Faux Placebo," control group, n = 10). Analysis was by Bartlett's test for equal variance, 3-way repeated factors analysis of variance, independent t test (P < 0.05) for variance and between/within group differences, and post-hoc Scheffé's tests. Estimated foveal heterochromic flicker photometry, 1° macular pigment optical density (MPOD QuantifEye(®)), low- and high-contrast visual acuity, foveal shape discrimination (Retina Foundation of the Southwest), 10° yellow kinetic visual fields (KVF), glare recovery, contrast sensitivity function (CSF), and 6° blue cone ChromaTest(®) color thresholds were obtained serially at 4, 8, and 12 months. RESULTS Ninety percent of subjects completed ≥ 2 visits with an initial Age-Related Eye Disease Study report #18 retinopathy score of 1.4 (1.0 SD)/4.0 and pill intake compliance of 96% with no adverse effects. There were no intergroup differences in 3 major AMD risk factors: age, smoking, and body mass index as well as disease duration and Visual Function Questionnaire 25 composite score differences. Randomization resulted in equal MPOD variance and MPOD increasing in each of the 3 groups from 0.33 density units (du) (0.17 SD) baseline to 0.51 du (0.18 SD) at 12 m, (P = 0.03), but no between-group differences (Analysis of Variance; P = 0.47). In the Zx group, detailed high-contrast visual acuity improved by 1.5 lines, Retina Foundation of the Southwest shape discrimination sharpened from 0.97 to 0.57 (P = 0.06, 1-tail), and a larger percentage of Zx patients experienced clearing of their KVF central scotomas (P = 0.057). The "Faux Placebo" L group was superior in terms of low-contrast visual acuity, CSF, and glare recovery, whereas Zx showed a trend toward significance. CONCLUSION In older male patients with AMD, Zx-induced foveal MPOD elevation mirrored that of L and provided complementary distinct visual benefits by improving foveal cone-based visual parameters, whereas L enhanced those parameters associated with gross detailed rod-based vision, with considerable overlap between the 2 carotenoids. The equally dosed (atypical dietary ratio) Zx plus L group fared worse in terms of raising MPOD, presumably because of duodenal, hepatic-lipoprotein or retinal carotenoid competition. These results make biological sense based on retinal distribution and Zx foveal predominance.
Collapse
Affiliation(s)
- Stuart P Richer
- Captain James A. Lovell Federal Health Care Facility, North Chicago, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Zeaxanthin is a predominant xanthophyll in human eyes and may reduce the risk of cataracts and age-related macular degeneration. Spirulina is an algal food that contains a high concentration of zeaxanthin. In order to determine the zeaxanthin bioavailability of spirulina for dietary supplementation in humans, spirulina was grown in nutrient solution with2H2O for carotenoid labelling. Single servings of2H-labelled spirulina (4·0–5·0 g) containing 2·6–3·7 mg zeaxanthin were consumed by fourteen healthy male volunteers (four Americans and ten Chinese) with 12 g dietary fat. Blood samples were collected over a 45 d period. The serum concentrations of total zeaxanthin were measured using HPLC, and the enrichment of labelled zeaxanthin was determined using LC-atmospheric pressure chemical ionisation-MS (LC-APCI-MS). The results showed that intrinsically labelled spirulina zeaxanthin in the circulation was detected at levels as low as 10 % of the total zeaxanthin for up to 45 d after intake of the algae. A single dose of spirulina can increase mean serum zeaxanthin concentration in humans from 0·06 to 0·15 μmol/l, as shown in our study involving American and Chinese volunteers. The average 15 d area under the serum zeaxanthin response curve to the single dose of spirulina was 293 nmol × d/μmol (range 254–335) in American subjects, and 197 nmol × d/μmol (range 154–285) in Chinese subjects. It is concluded that the relative bioavailability of spirulina zeaxanthin can be studied with high sensitivity and specificity using2H labelling and LC-APCI-MS methodology. Spirulina can serve as a rich source of dietary zeaxanthin in humans.
Collapse
|
27
|
Lutein or Zeaxanthin Supplementation Suppresses Inflammatory Responses in Retinal Pigment Epithelial Cells and Macrophages. RETINAL DEGENERATIVE DISEASES 2012; 723:43-50. [DOI: 10.1007/978-1-4614-0631-0_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Lutein and zeaxanthin intake and the risk of age-related macular degeneration: a systematic review and meta-analysis. Br J Nutr 2011; 107:350-9. [DOI: 10.1017/s0007114511004260] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lutein and zeaxanthin are thought to decrease the incidence of age-related macular degeneration (AMD); however, findings have been inconsistent. We conducted a systematic literature review and meta-analysis to evaluate the relationship between dietary intake of lutein and zeaxanthin and AMD risk. Relevant studies were identified by searching five databases up to April 2010. Reference lists of articles were retrieved, and experts were contacted. Literature search, data extraction and study quality assessment were performed independently by two reviewers and results were pooled quantitatively using meta-analysis methods. The potential sources of heterogeneity and publication bias were also estimated. The search yielded six longitudinal cohort studies. The pooled relative risk (RR) for early AMD, comparing the highest with the lowest category of lutein and zeaxanthin intake, was 0·96 (95 % CI 0·78, 1·17). Dietary intake of these carotenoids was significantly related with a reduction in risk of late AMD (RR 0·74; 95 % CI 0·57, 0·97); and a statistically significant inverse association was observed between lutein and zeaxanthin intake and neovascular AMD risk (RR 0·68; 95 % CI 0·51, 0·92). The results were essentially consistent among subgroups stratified by participant characteristics. The findings of the present meta-analysis indicate that dietary lutein and zeaxanthin is not significantly associated with a reduced risk of early AMD, whereas an increase in the intake of these carotenoids may be protective against late AMD. However, additional studies are needed to confirm these relationships.
Collapse
|
29
|
Barker FM, Snodderly DM, Johnson EJ, Schalch W, Koepcke W, Gerss J, Neuringer M. Nutritional manipulation of primate retinas, V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Invest Ophthalmol Vis Sci 2011; 52:3934-42. [PMID: 21245404 DOI: 10.1167/iovs.10-5898] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Blue-light photooxidative damage has been implicated in the etiology of age-related macular degeneration (AMD). The macular pigment xanthophylls lutein (L) and zeaxanthin (Z) and n-3 fatty acids may reduce this damage and lower the risk of AMD. This study investigated the effects of the lifelong absence of xanthophylls followed by L or Z supplementation, combined with the effects of n-3 fatty acid deficiency, on acute blue-light photochemical damage. METHODS Subjects included eight rhesus monkeys with no lifelong intake of xanthophylls and no detectable macular pigment. Of these, four had low n-3 fatty acid intake and four had adequate intakes. Control subjects had typical L, Z, and n-3 fatty acid intake. Retinas received 150-μm-diameter exposures of low-power 476-nm laser light at 0.5 mm (∼2°) eccentricity, which is adjacent to the macular pigment peak, and parafoveally at 1.5 mm (∼6°). Exposures of xanthophyll-free animals were repeated after supplementation with pure L or Z for 22 to 28 weeks. Ophthalmoscopically visible lesion areas were plotted as a function of exposure energy, with greater slopes of the regression lines indicating greater sensitivity to damage. RESULTS In control animals, the fovea was less sensitive to blue-light-induced damage than the parafovea. Foveal protection was absent in xanthophyll-free animals but was evident after supplementation. In the parafovea, animals low in n-3 fatty acids showed greater sensitivity to damage than animals with adequate levels. CONCLUSIONS After long-term xanthophyll deficiency, L or Z supplementation protected the fovea from blue light-induced damage, whereas adequate n-3 fatty acid levels reduced the damage in the parafovea.
Collapse
Affiliation(s)
- Felix M Barker
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
van Norren D, Gorgels TGMF. The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data. Photochem Photobiol 2011; 87:747-53. [PMID: 21410704 DOI: 10.1111/j.1751-1097.2011.00921.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical damage to the retina occurs for prolonged exposures of intense light. Two action spectra exist for this phenomenon. In rat an action spectrum matching the absorption spectrum of rhodopsin was found. In macaque, the susceptibility for photochemical damage decreased continuously from the UV to long visible wavelengths. Later, such a spectrum was also found in rat. In search for critical parameters that determine the shape of the spectrum we gathered all available data on the damage threshold dose for monochromatic radiation and noted the experimental conditions. The rhodopsin action spectrum was found in two sources; the other 16 sources adhered to the short wavelength spectrum. Comparing the conditions we conclude that the critical parameters for the generation of either action spectrum remain elusive. Experiments are suggested to resolve this issue and fill a few gaps in our knowledge.
Collapse
Affiliation(s)
- Dirk van Norren
- University Medical Center Utrecht, and TNO, Soesterberg, The Netherlands.
| | | |
Collapse
|
31
|
The effects of dietary carotenoid intake on carotenoid accumulation in the retina of a wild bird, the house finch (Carpodacus mexicanus). Arch Biochem Biophys 2010; 504:161-8. [DOI: 10.1016/j.abb.2010.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/17/2010] [Accepted: 06/28/2010] [Indexed: 11/19/2022]
|
32
|
Li B, Vachali P, Bernstein PS. Human ocular carotenoid-binding proteins. Photochem Photobiol Sci 2010; 9:1418-25. [PMID: 20820671 PMCID: PMC3938892 DOI: 10.1039/c0pp00126k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/29/2010] [Indexed: 02/06/2023]
Abstract
Two dietary carotenoids, lutein and zeaxanthin, are specifically delivered to the human macula at the highest concentration anywhere in the body. Whenever a tissue exhibits highly selective uptake of a compound, it is likely that one or more specific binding proteins are involved in the process. Over the past decade, our laboratory has identified and characterized several carotenoid-binding proteins from human retina including a pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein, a member of the steroidogenic acute regulatory domain (StARD) family as a lutein-binding protein, and tubulin as a less specific, but higher capacity site for carotenoid deposition. In this article, we review the purification and characterization of these carotenoid-binding proteins, and we relate these ocular carotenoid-binding proteins to the transport and uptake role of serum lipoproteins and scavenger receptor proteins in a proposed pathway for macular pigment carotenoid delivery to the human retina.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, 84132, U. S. A.; Fax: +1 801-581-3357; Tel: +1 801-581-6078
| | - Preejith Vachali
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, 84132, U. S. A.; Fax: +1 801-581-3357; Tel: +1 801-581-6078
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, 65 Mario Capecchi Drive, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, 84132, U. S. A.; Fax: +1 801-581-3357; Tel: +1 801-581-6078
| |
Collapse
|
33
|
Scientific Opinion on the substantiation of health claims related to zeaxanthin and maintenance of normal vision (ID 1684, 2169, 2888) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Li B, Ahmed F, Bernstein PS. Studies on the singlet oxygen scavenging mechanism of human macular pigment. Arch Biochem Biophys 2010; 504:56-60. [PMID: 20678467 DOI: 10.1016/j.abb.2010.07.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/25/2010] [Accepted: 07/25/2010] [Indexed: 01/29/2023]
Abstract
It is thought that direct quenching of singlet oxygen and scavenging free radicals by macular pigment carotenoids is a major mechanism for their beneficial effects against light-induced oxidative stress. Corresponding data from human tissue remains unavailable, however. In the studies reported here, electron paramagnetic resonance (EPR) spectroscopy was used to measure light-induced singlet oxygen generation in post-mortem human macula and retinal pigment epithelium/choroid (RPE/choroid). Under white-light illumination, production of singlet oxygen was detected in RPE/choroid but not in macular tissue, and we show that exogenously added macular carotenoids can quench RPE/choroid singlet oxygen. When the singlet oxygen quenching ability of the macular carotenoids was investigated in solution, it was shown that a mixture of meso-zeaxanthin, zeaxanthin, and lutein in a ratio of 1:1:1 can quench more singlet oxygen than the individual carotenoids at the same total concentration.
Collapse
Affiliation(s)
- Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
35
|
Toomey MB, Butler MW, McGraw KJ. Immune-system activation depletes retinal carotenoids in house finches (Carpodacus mexicanus). J Exp Biol 2010; 213:1709-16. [DOI: 10.1242/jeb.041004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SUMMARY
The costs of developing, maintaining, and activating the immune system have been cited as an important force shaping life-history evolution in animals. Immunological defenses require energy, nutrients and time that might otherwise be devoted to other life-history traits like sexual displays or reproduction. Carotenoid pigments in animals provide a unique opportunity to track the costs of immune activation, because they are diet-derived, modulate the immune system, and are used to develop colorful signals of quality. Carotenoids also accumulate in the retinas of birds, where they tune spectral sensitivity and provide photoprotection. If carotenoid accumulation in the retina follows the patterns of other tissues, then immune activation may deplete retinal carotenoid levels and impact visual health and function. To test this hypothesis, we challenged molting wild-caught captive house finches (Carpodacus mexicanus) with weekly injections of lipopolysaccharide (LPS) and phytohaemagglutinin (PHA) over the course of 8 weeks. Immunostimulated adult males and females produced significant antibody responses and molted more slowly than uninjected control birds. After 8 weeks, immune-challenged birds had significantly lower levels of specific retinal carotenoid types (galloxanthin and zeaxanthin), but there were no significant differences in the plasma, liver or feather carotenoid levels between the treatment groups. These results indicate that immune-system activation can specifically deplete retinal carotenoids, which may compromise visual health and performance and represent an additional somatic and behavioral cost of immunity.
Collapse
Affiliation(s)
- Matthew B. Toomey
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Michael W. Butler
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Kevin J. McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
36
|
Wang Y, Roger Illingworth D, Connor SL, Barton Duell P, Connor WE. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene. Eur J Nutr 2010; 49:327-36. [PMID: 20082082 DOI: 10.1007/s00394-009-0089-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Carotenoids may interact differently in their absorption and transport in animals and humans. The simultaneous administration of large amounts of lutein, zeaxanthin and beta carotene would affect not only plasma values but also their concentrations in the retina and other tissues. OBJECTIVE In this study, we investigated the transport, distribution and interactions of lutein, zeaxanthin and beta-carotene in the plasma, retina and other tissues of chicks fed supplements rich in lutein, zeaxanthin or beta-carotene. METHODS Newly hatched male Leghorn chicks were randomly assigned to ten groups. One group provided baseline data (1-day-old group). The other groups were fed one of the following six diets for 14 or 28 days: high lutein diet; high zeaxanthin diet; three high beta-carotene supplemented diets and the control diet. Plasma and tissues including retina were analyzed for lutein and zeaxanthin and beta-carotene at baseline and at 14 and 28 days. RESULTS All tissues had increased concentrations of lutein after the high lutein diet and had increased concentrations of zeaxanthin after the high zeaxanthin diet. After 28 days, the retinal concentrations of lutein and zeaxanthin in the chicks supplemented with lutein (27.2 mg/kg diet) and zeaxanthin (15.3 mg/kg diet) increased 128 and 116%, respectively, compared to the retinas of chicks fed the control diet (lutein 5.2 mg/kg and zeaxanthin 1.7 mg/kg). Lutein was decreased in plasma and other non-retinal tissues when the diet was supplemented with zeaxanthin; likewise, zeaxanthin was decreased in plasma and non-retinal tissues after the lutein supplement. Zeaxanthin increased in the retina after the high lutein supplement, and retinal lutein was maintained after the high zeaxanthin supplement. The high beta-carotene supplement increased the beta-carotene content of plasma and liver very little, and beta-carotene was not found in any other tissue in the chick, including the retina. More importantly, beta-carotene decreased the concentrations of both lutein and zeaxanthin in the plasma and most tissues, including the retina. CONCLUSION High dose dietary supplementation of a single carotenoid may alter the assimilation of other carotenoids. The retina appears to have the capacity to preserve accumulation of lutein and zeaxanthin, but this capacity is diminished when intake of beta-carotene is high.
Collapse
Affiliation(s)
- Yingming Wang
- Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine, L465, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
37
|
Ma L, Lin XM. Effects of lutein and zeaxanthin on aspects of eye health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:2-12. [PMID: 20355006 DOI: 10.1002/jsfa.3785] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lutein and zeaxanthin are members of the oxygenated carotenoids found particularly in egg yolks and dark-green leafy vegetables. A great deal of research has focused on their beneficial roles in eye health. The present article summarises the current literature related to the bioactivity of these carotenoids, emphasising their effects and possible mechanisms of action in relation to human eye health. Available evidence demonstrates that lutein and zeaxanthin are widely distributed in a number of body tissues and are uniquely concentrated in the retina and lens, indicating that each has a possible specific function in these two vital ocular tissues. Most of epidemiological studies and clinical trials support the notion that lutein and zeaxanthin have a potential role in the prevention and treatment of certain eye diseases such as age-related macular degeneration, cataract and retinitis pigmentosa. The biological mechanisms for the protective effects of these carotenoids may include powerful blue-light filtering activities and antioxidant properties. Although most studies point towards significant health benefits from lutein and zeaxanthin, further large-scale randomised supplementation trials are needed to define their effects on ocular function in health and disease.
Collapse
Affiliation(s)
- Le Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | |
Collapse
|
38
|
McGraw K, Toomey M. Carotenoid Accumulation in the Tissues of Zebra Finches: Predictors of Integumentary Pigmentation and Implications for Carotenoid Allocation Strategies. Physiol Biochem Zool 2010; 83:97-109. [DOI: 10.1086/648396] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Overview of Diet-Gene Interactions and the Example of Xanthophylls. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:17-26. [DOI: 10.1007/978-1-4419-7347-4_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Bhosale P, Li B, Sharifzadeh M, Gellermann W, Frederick JM, Tsuchida K, Bernstein PS. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 2009; 48:4798-807. [PMID: 19402606 DOI: 10.1021/bi9004478] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dietary intake of lutein and zeaxanthin appears to be advantageous for protecting human retinal and macular tissues from degenerative disorders such as age-related macular degeneration. Selective concentration of just two of the many dietary carotenoids suggests that uptake and transport of these xanthophyll carotenoids into the human foveal region are mediated by specific xanthophyll-binding proteins such as GSTP1 which has previously been identified as the zeaxanthin-binding protein of the primate macula. Here, a membrane-associated human retinal lutein-binding protein (HR-LBP) was purified from human peripheral retina using ion-exchange chromatography followed by size-exclusion chromatography. After attaining 83-fold enrichment of HR-LBP, this protein exhibited a significant bathochromic shift of approximately 90 nm in association with lutein, and equilibrium binding studies demonstrated saturable, specific binding toward lutein with a K(D) of 0.45 muM. Examination for cross-reactivity with antibodies raised against known lutein-binding proteins from other organisms revealed consistent labeling of a major protein band of purified HR-LBP at approximately 29 kDa with an antibody raised against silkworm (Bombyx mori) carotenoid-binding protein (CBP), a member of steroidogenic acute regulatory (StAR) protein family with significant homology to many human StAR proteins. Immunolocalization with antibodies directed against either CBP or GSTP1 showed specific labeling of rod and cone inner segments, especially in the mitochondria-rich ellipsoid region. There was also strong labeling of the outer plexiform (Henle fiber) layer with anti-GSTP1. Such localizations compare favorably with the distribution of macular carotenoids as revealed by resonance Raman microscopy. Our results suggest that HR-LBP may facilitate lutein's localization to a region of the cell subject to considerable oxidative stress.
Collapse
Affiliation(s)
- Prakash Bhosale
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Toomey MB, McGraw KJ. Seasonal, sexual, and quality related variation in retinal carotenoid accumulation in the house finch (Carpodacus mexicanus). Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2008.01498.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Zhao L, Sweet BV. Lutein and zeaxanthin for macular degeneration. Am J Health Syst Pharm 2008; 65:1232-8. [DOI: 10.2146/ahjp080052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lili Zhao
- University of Michigan College of Pharmacy (UMCP), Ann Arbor
| | - Burgunda V. Sweet
- Drug Information and Medication-Use Policy, University of Michigan Hospitals and Health Centers, and Clinical Associate Professor of Pharmacy, UMCP
| |
Collapse
|
43
|
Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S. Macular Pigment Lutein Is Antiinflammatory in Preventing Choroidal Neovascularization. Arterioscler Thromb Vasc Biol 2007; 27:2555-62. [DOI: 10.1161/atvbaha.107.151431] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration, the most common cause of blindness in the developed countries. The aim of the current study was to investigate the effect of lutein supplementation on the development of the murine model of laser-induced CNV together with underlying molecular mechanisms.
Methods and Results—
Mice were orally pretreated with lutein daily from 3 days before laser photocoagulation untill the end of the study. The index of CNV volume was significantly suppressed by the treatment with lutein, compared with vehicle-treated animals. Lutein treatment led to significant inhibition of macrophage infiltration into CNV and of the in vivo and in vitro expression of inflammation-related molecules including vascular endothelial growth factor, monocyte chemotactic protein −1, and intercellular adhesion molecule-1. Importantly, lutein suppressed IκB-α degradation and nuclear translocation of nuclear factor (NF)-κB p65 both in vivo and in vitro. Additionally, the development of CNV was significantly suppressed by inhibiting NF-κB p65 nuclear translocation, to the levels seen in the lutein treatment.
Conclusions—
Lutein treatment led to significant suppression of CNV development together with inflammatory processes including NF-κB activation and subsequent upregulation of inflammatory molecules, providing molecular evidence of potential validity of lutein supplementation as a therapeutic strategy to suppress CNV.
Collapse
Affiliation(s)
- Kanako Izumi-Nagai
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Norihiro Nagai
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Kazuhiro Ohgami
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Shingo Satofuka
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Yoko Ozawa
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Kazuo Tsubota
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Kazuo Umezawa
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Shigeaki Ohno
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Yuichi Oike
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| | - Susumu Ishida
- From the Laboratory of Retinal Cell Biology (K.I.-N., N.N., S.S., Y.O., Y.O., S.I.), the Department of Ophthalmology (K.I.-N., N.N., S.S., Y.O., K.T., S.I.), Keio University School of Medicine, Tokyo, Japan; the Department of Ophthalmology and Visual Sciences (K.O., S.O.), Hokkaido University Graduate School of Medicine, Sapporo, Japan; the Department of Applied Chemistry (K.U.), Faculty of Science and Technology, Keio University, Yokohama, Japan; and the Department of Molecular Genetics (Y.O.),
| |
Collapse
|
44
|
Parisi V, Tedeschi M, Gallinaro G, Varano M, Saviano S, Piermarocchi S. Carotenoids and antioxidants in age-related maculopathy italian study: multifocal electroretinogram modifications after 1 year. Ophthalmology 2007; 115:324-333.e2. [PMID: 17716735 DOI: 10.1016/j.ophtha.2007.05.029] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE To evaluate the influence of short-term carotenoid and antioxidant supplementation on retinal function in nonadvanced age-related macular degeneration (AMD). DESIGN Randomized controlled trial. PARTICIPANTS Twenty-seven patients with nonadvanced AMD and visual acuity > or =0.2 logarithm of the minimum angle of resolution were enrolled and randomly divided into 2 age-similar groups: 15 patients had oral supplementation of vitamin C (180 mg), vitamin E (30 mg), zinc (22.5 mg), copper (1 mg), lutein (10 mg), zeaxanthin (1 mg), and astaxanthin (4 mg) (AZYR SIFI, Catania, Italy) daily for 12 months (treated AMD [T-AMD] group; mean age, 69.4+/-4.31 years; 15 eyes); 12 patients had no dietary supplementation during the same period (nontreated AMD [NT-AMD] group; mean age, 69.7+/-6.23 years; 12 eyes). At baseline, they were compared with 15 age-similar healthy controls. METHODS Multifocal electroretinograms in response to 61 M-stimuli presented to the central 20 degrees of the visual field were assessed in pretreatment (baseline) conditions and, in nonadvanced AMD patients, after 6 and 12 months. MAIN OUTCOME MEASURES Multifocal electroretinogram response amplitude densities (RAD, nanovolt/deg(2)) of the N1-P1 component of first-order binary kernels measured from 5 retinal eccentricity areas between the fovea and midperiphery: 0 degrees to 2.5 degrees (R1), 2.5 degrees to 5 degrees (R2), 5 degrees to 10 degrees (R3), 10 degrees to 15 degrees (R4), and 15 degrees to 20 degrees (R5). RESULTS At baseline, we observed highly significant reductions of N1-P1 RADs of R1 and R2 in T-AMD and NT-AMD patients when compared with healthy controls (1-way analysis of variance P<0.01). N1-P1 RADs of R3-R5 observed in T-AMD and NT-AMD were not significantly different (P>0.05) from controls. No significant differences (P>0.05) were observed in N1-P1 RADs of R1-R5 between T-AMD and NT-AMD at baseline. After 6 and 12 months of treatment, T-AMD eyes showed highly significant increases in N1-P1 RADs of R1 and R2 (P<0.01), whereas no significant (P>0.05) change was observed in N1-P1 RADs of R3-R5. No significant (P>0.05) changes were found in N1-P1 RADs of R1-R5 in NT-AMD eyes. CONCLUSIONS In nonadvanced AMD eyes, a selective dysfunction in the central retina (0 degrees -5 degrees ) can be improved by the supplementation with carotenoids and antioxidants. No functional changes are present in the more peripheral (5 degrees -20 degrees ) retinal areas.
Collapse
Affiliation(s)
- Vincenzo Parisi
- Fondazione G. B. Bietti-Istituto di Ricovero e Cura a Carattere Scientifico, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Bhosale P, Serban B, Zhao DY, Bernstein PS. Identification and metabolic transformations of carotenoids in ocular tissues of the Japanese quail Coturnix japonica. Biochemistry 2007; 46:9050-7. [PMID: 17630780 PMCID: PMC2531157 DOI: 10.1021/bi700558f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As in humans and monkeys, lutein [(3R,3'R,6'R)-beta,epsilon-carotene-3,3'-diol] and zeaxanthin [a mixture of (3R,3'R)-beta,beta-carotene-3,3'diol and (3R,3'S-meso)-beta,beta-carotene-3,3'-diol] are found in substantial amounts in the retina of the Japanese quail Coturnix japonica. This makes the quail retina an excellent nonprimate small animal model for studying the metabolic transformations of these important macular carotenoids that are thought to play an integral role in protection against light-induced oxidative damage such as that found in age-related macular degeneration (AMD). In this study, we first identified the array of carotenoids present in the quail retina using C30 HPLC coupled with in-line mass spectral and photodiode array detectors. In addition to dietary lutein (2.1%) and zeaxanthin (11.8%), we identified adonirubin (5.4%), 3'-oxolutein (3.8%), meso-zeaxanthin (3.0%), astaxanthin (28.2%), galloxanthin (12.2%), epsilon,epsilon-carotene (18.5%), and beta-apo-2'-carotenol (9.5%) as major ocular carotenoids. We next used deuterium-labeled lutein and zeaxanthin as dietary supplements to study the pharmacokinetics and metabolic transformations of these two ocular pigments in serum and ocular tissues. We then detected and quantitated labeled carotenoids in ocular tissue using both HPLC-coupled mass spectrometry and noninvasive resonance Raman spectroscopy. Results indicated that dietary zeaxanthin is the precursor of 3'-oxolutein, beta-apo-2'-carotenol, adonirubin, astaxanthin, galloxanthin, and epsilon,epsilon-carotene, whereas dietary lutein is the precursor for meso-zeaxanthin. Studies also revealed that the pharmacokinetic patterns of uptake, carotenoid absorption, and transport from serum into ocular tissues were similar to results observed in most human clinical studies.
Collapse
Affiliation(s)
| | | | | | - Paul S. Bernstein
- Correspondence to: Paul S. Bernstein, MD, PhD, Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Medical Drive, Salt Lake City, UT 84132, U.S.A. Tel: 801-581-6078, Fax: 801-581-3357, E-mail:
| |
Collapse
|
46
|
Wang Y, Connor SL, Wang W, Johnson EJ, Connor WE. The selective retention of lutein, meso-zeaxanthin and zeaxanthin in the retina of chicks fed a xanthophyll-free diet. Exp Eye Res 2007; 84:591-8. [PMID: 17227674 DOI: 10.1016/j.exer.2006.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/20/2006] [Accepted: 11/24/2006] [Indexed: 11/27/2022]
Abstract
Lutein and zeaxanthin are pigmented oxygenated carotenoids, or xanthophylls, derived from plants and concentrated in the retina of primates and birds. We investigated the transport, distribution and depletion of lutein and zeaxanthin in the plasma and tissues of newly hatched chicks fed xanthophyll-free diets. One-day-old Leghorn chicks were randomly divided into two groups. A control group was fed a diet containing lutein and zeaxanthin (5.2 and 1.7 mg/kg diet, respectively) for 28 days. An experimental group was fed a diet containing no lutein and zeaxanthin for 28 days. Plasma and tissues were analyzed for lutein and zeaxanthin at 28 days (control) and on days 1, 14 and 28 (experimental). At hatching, lutein and zeaxanthin were the predominant carotenoids present in the blood and tissues. As indicated by their similar mass contents, there was complete transfer of these carotenoids from egg yolk to chick. Lutein and zeaxanthin concentrations in the plasma and tissues of chicks fed the xanthophyll-free diet decreased rapidly to almost zero (with a depletion time of seven days [t(1/2)]). In contrast, the retina retained its initial concentrations of lutein and zeaxanthin similar to the control group. meso-Zeaxanthin and cis-zeaxanthin were identified only in the retina. The retina concentrated zeaxanthin over lutein. Lutein and zeaxanthin were selectively retained in the retinas of chicks fed a xanthophyll-free diet. In contrast, the plasma and other tissues lost up to 90% of their original content of xanthophylls. These data emphasize the relative stability of lutein and zeaxanthin in the cone-rich retina where they are present as esters in oil droplets. The tissue depletion suggests the need for a regular dietary intake of lutein and zeaxanthin because of rapid depletion in the body. It is clear that these xanthophylls may have an essential role in the cone-rich retina of the chick as evidenced by their selective retention.
Collapse
Affiliation(s)
- Yingming Wang
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, L465, Oregon Health and Science University, Portland, OR 972391, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Visual perception occurs when radiation with a wavelength between 400 and 760 nm reaches the retina. The retina has evolved to capture photons efficiently and initiate visual transduction. The retina, however, is vulnerable to damage by light, a vulnerability that has long been recognized. Photochemical damage has been widely studied, because it can cause retinal damage within the intensity range of natural light. Photochemical lesions are primarily located in the outer layers at the central region of the retina. Two classes of photochemical damage have been recognized: Class I damage, which is characterized by the rhodopsin action spectrum, is believed to be mediated by visual pigments, with the primary lesions located in the photoreceptors; whereas Class II damage is generally confined to the retinal pigment epithelium. The action spectrum peaks in the short wavelength region, providing the basis for the concept of blue light hazard. Several factors can modify the susceptibility of the retina to photochemical damage. Photochemical mechanisms, in particular mechanisms that arise from illumination with blue light, are responsible for solar retinitis and for iatrogenic retinal insult from ophthalmological instruments. Further, blue light may play a role in the pathogenesis of age-related macular degeneration. Laboratory studies have suggested that photochemical damage includes oxidative events. Retinal cells die by apoptosis in response to photic injury, and the process of cell death is operated by diverse damaging mechanisms. Modern molecular biology techniques help to study in-depth the basic mechanism of photochemical damage of the retina and to develop strategies of neuroprotection.
Collapse
Affiliation(s)
- Jiangmei Wu
- Department of Vitreoretinal Diseases, Saint Erik's Eye Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Delori FC, Goger DG, Keilhauer C, Salvetti P, Staurenghi G. Bimodal spatial distribution of macular pigment: evidence of a gender relationship. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2006; 23:521-38. [PMID: 16539047 DOI: 10.1364/josaa.23.000521] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7 degrees from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell's spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.
Collapse
|
49
|
Leung IYF, Sandstrom MM, Zucker CL, Neuringer M, Max Snodderly D. Nutritional manipulation of primate retinas. IV. Effects of n--3 fatty acids, lutein, and zeaxanthin on S-cones and rods in the foveal region. Exp Eye Res 2006; 81:513-29. [PMID: 15916761 DOI: 10.1016/j.exer.2005.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/28/2005] [Accepted: 03/21/2005] [Indexed: 11/25/2022]
Abstract
Lutein and zeaxanthin are xanthophylls selectively accumulated by primate retinas that may protect the macula from age-related macular degeneration. In this project, we manipulated n-3 fatty acids, lutein and/or zeaxanthin levels in the diet and studied their possible outcome on S-cone and rod cell density in the foveal region. Rhesus monkeys (7-16 year, n=17) were fed from birth xanthophyll-free semipurified diets with either adequate or low n-3 fatty acids. Five monkeys were supplemented with lutein and six with zeaxanthin for 6-24 months, while six remained xanthophyll-free until sacrifice. Retinas were embedded in methacrylate and serial 2 microm sections were cut along the vertical meridian. Rod nuclei, and immuno-labelled outer segments of S-cones and rods, were reconstructed and counted in an 8 microm strip. The density profiles were compared with data from control monkeys (n=7) fed a standard laboratory diet. S-cone density profiles were symmetrical along the vertical meridian and the densities decreased rapidly with retinal eccentricity. Rod densities were higher in the superior region than the inferior region in most of the control and experimental animals. Unlike the significant effects observed for retinal pigment epithelial cells of these same monkeys (Leung, I.Y-F., Sandstrom, M.M., Zucker, C.L., Neuringer, M., Snodderly, D.M., 2004. Nutritional manipulation of primate retinas. II. Effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 45, 3244-3256), neither xanthophyll supplementation nor low dietary n-3 fatty acids produced consistent effects on S-cone or rod density profiles of the experimental animals. However, monkeys low in n-3 fatty acids had increased variability of S-cone density in the fovea and low density of foveal rod outer segments. The high variability suggests that the photoreceptors of some animals were resistant to the nutritional manipulations, while others may have been affected. Thus, the photoreceptors appear less sensitive than the retinal pigment epithelium to these nutritional manipulations. However, it is possible that more consistent effects would emerge at a later age or after exposure to stressors such as high light levels.
Collapse
Affiliation(s)
- Ivan Y-F Leung
- The Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
50
|
Kim SR, Nakanishi K, Itagaki Y, Sparrow JR. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 2005; 82:828-39. [PMID: 16364293 DOI: 10.1016/j.exer.2005.10.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 11/20/2022]
Abstract
A2-PE is a pigment that forms as a byproduct of the visual cycle, its synthesis from all-trans-retinal and phosphatidylethanolamine occurring in photoreceptor outer segments. A2-PE is deposited in retinal pigment epithelial (RPE) cells secondary to phagocytosis of shed outer segment membrane and it undergoes hydrolysis to generate the RPE lipofuscin fluorophores, A2E, iso-A2E and other minor cis-isomers of A2E. We have demonstrated that A2-PE can initiate photochemical processes that involve the oxidation of A2-PE and that, by analogy with A2E are likely to include the formation of reactive moieties. We also show that potential sources of protection against the photooxidation of A2-PE are the lipid-soluble carotenoids zeaxanthin and lutein (xanthophylls), that constitute the yellow pigment of the macula. Irradiation of A2-PE in the presence of lutein or zeaxanthin suppressed A2-PE photooxidation and in experiments in which we compared the antioxidant capability of zeaxanthin and lutein to alpha-tocopherol, the carotenoids were more potent. Additionally, the effect with zeaxanthin was consistently more robust than with lutein and when alpha-tocopherol was combined with either carotenoid, the outcome was additive. Lutein, zeaxanthin and alpha-tocopherol were all efficient quenchers of singlet oxygen. We have also shown that lutein and zeaxanthin can protect against A2-PE/A2E photooxidation without appreciable consumption of the carotenoid by chemical reaction. This observation contrasts with the pronounced susceptibility of A2E and A2-PE to photooxidation and is of interest since lutein, zeaxanthin, A2E and A2-PE all have conjugated systems of carbon-carbon double bonds terminating in cyclohexenyl end-groups. The structural features responsible for the differences in quenching mechanisms are discussed. It has long been suspected that macular pigment protects the retina both by filtering high-energy blue light and by serving an antioxidant function. Evidence presented here suggests that the photochemical reactions against which lutein and zeaxanthin protect, may include those initiated by the A2-PE. Quantitative HPLC analysis revealed that in eyecups of C57BL/6J and BALB/cByJ mice, levels of A2-PE were several fold greater than the cleavage product, A2E. Taken together, these results may have implications with respect to the involvement of A2-PE formation in mechanisms underlying blue light-induced photoreceptor cell damage and may be significant to retinal degenerative disorders, such as those associated with ABCA4 mutations, wherein there is a propensity for increased A2-PE synthesis.
Collapse
Affiliation(s)
- So Ra Kim
- Department of Ophthalmology, Columbia University, NY 10032, USA
| | | | | | | |
Collapse
|