1
|
Pettrey C, Kerr PL, Dickey TO. Physical Exercise as an Intervention for Depression: Evidence for Efficacy and Mu-Opioid Receptors as a Mechanism of Action. ADVANCES IN NEUROBIOLOGY 2024; 35:221-239. [PMID: 38874725 DOI: 10.1007/978-3-031-45493-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Physical exercise is often cited as an important part of an intervention for depression, and there is empirical evidence to support this. However, the mechanism of action through which any potential antidepressant effects are produced is not widely understood. Recent evidence points toward the involvement of endogenous opioids, and especially the mu-opioid system, as a partial mediator of these effects. In this chapter, we discuss the current level of empirical support for physical exercise as either an adjunctive or standalone intervention for depression. We then review the extant evidence for involvement of endogenous opioids in the proposed antidepressant effects of exercise, with a focus specifically on evidence for mu-opioid system involvement.
Collapse
Affiliation(s)
| | - Patrick L Kerr
- Behavioral Medicine & Psychiatry, WVU School of Medicine, Charleston, WV, USA
| | - T O Dickey
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA
| |
Collapse
|
2
|
Ateaque S, Merkouris S, Wyatt S, Allen ND, Xie J, DiStefano PS, Lindsay RM, Barde YA. Selective activation and down-regulation of Trk receptors by neurotrophins in human neurons co-expressing TrkB and TrkC. J Neurochem 2022; 161:463-477. [PMID: 35536742 PMCID: PMC9321069 DOI: 10.1111/jnc.15617] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
In the central nervous system, most neurons co-express TrkB and TrkC, the tyrosine kinase receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). As NT3 can also activate TrkB, it has been difficult to understand how NT3 and TrkC can exert unique roles in the assembly of neuronal circuits. Using neurons differentiated from human embryonic stem cells expressing both TrkB and TrkC, we compared Trk activation by BDNF and NT3. To avoid the complications resulting from TrkB activation by NT3, we also generated neurons from stem cells engineered to lack TrkB. We found that NT3 activates TrkC at concentrations lower than those of BDNF needed to activate TrkB. Downstream of Trk activation, the changes in gene expression caused by TrkC activation were found to be similar to those resulting from TrkB activation by BDNF, including a number of genes involved in synaptic plasticity. At high NT3 concentrations, receptor selectivity was lost as a result of TrkB activation. In addition, TrkC was down-regulated, as was also the case with TrkB at high BDNF concentrations. By contrast, receptor selectivity as well as reactivation were preserved when neurons were exposed to low neurotrophin concentrations. These results indicate that the selectivity of NT3/TrkC signalling can be explained by the ability of NT3 to activate TrkC at concentrations lower than those needed to activate TrkB. They also suggest that in a therapeutic perspective, the dosage of Trk receptor agonists will need to be taken into account if prolonged receptor activation is to be achieved.
Collapse
Affiliation(s)
- Sarah Ateaque
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Sean Wyatt
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | - Jia Xie
- The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
3
|
Dagnino APA, Chagastelles PC, Medeiros RP, Estrázulas M, Kist LW, Bogo MR, Weber JBB, Campos MM, Silva JB. Neural Regenerative Potential of Stem Cells Derived from the Tooth Apical Papilla. Stem Cells Dev 2020; 29:1479-1496. [PMID: 32988295 DOI: 10.1089/scd.2020.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.
Collapse
Affiliation(s)
- Ana Paula Aquistapase Dagnino
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Cesar Chagastelles
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Renata Priscila Medeiros
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marina Estrázulas
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Batista Blessmann Weber
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Martha Campos
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jefferson Braga Silva
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Kozlov EM, Grechko AV, Chegodaev YS, Wu WK, Orekhov AN. Contribution of Neurotrophins to the Immune System Regulation and Possible Connection to Alcohol Addiction. BIOLOGY 2020; 9:biology9040063. [PMID: 32231011 PMCID: PMC7235771 DOI: 10.3390/biology9040063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
The first references to neurotrophic factors date back to the middle of the 20th century when the nerve growth factor (NGF) was first discovered. Later studies delivered a large amount of data on neurotrophic factors. However, many questions regarding neurotrophin signaling still remain unanswered. One of the principal topics in neurotrophin research is their role in the immune system regulation. Another important research question is the possible involvement of neurotrophin signaling in the pathological processes associated with alcoholism. Among known neurotrophins, NT-4 remains the least studied and appears to be involved in alcoholism and chronic stress pathogenesis. In this review we discuss known neurotrophin signaling cascades mediated by different neurotrophin receptors, as well as provide a generalization of the data regarding the influence of neurotrophins NGF, BDNF, and NT-4 on the immune system and their potential contribution to the pathogenesis of alcoholism.
Collapse
Affiliation(s)
- Evgenii M. Kozlov
- Laboratory of Clinical Microbiology and Biotechnology of Bacteriophages G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240 Moscow, Russia;
| | - Yegor S. Chegodaev
- I. M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei 100, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Correspondence: ; Tel.: +7-903-169-08-66
| |
Collapse
|
5
|
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer's dementia. Ageing Res Rev 2018; 48:109-121. [PMID: 30326283 DOI: 10.1016/j.arr.2018.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence indicates that moderate intensity aerobic exercise is positively correlated with cognitive function and memory. However, the exact mechanisms underlying such improvements remain unclear. Recent research in animal models allows proposition of a pathway in which brain-derived neurotrophic factor (BDNF) is a key mediator. This perspective draws upon evidence from animal and human studies to highlight such a mechanism whereby exercise drives synthesis and accumulation of neuroactive metabolites such as myokines and ketone bodies in the periphery and in the hippocampus to enhance BDNF expression. BDNF is a neurotrophin with well-established properties of promoting neuronal survival and synaptic integrity, while its influence on energy transduction may provide the crucial link between inherent vascular and metabolic benefits of exercise with enhanced brain function. Indeed, BDNF mRNA and protein is robustly elevated in rats following periods of voluntary exercise. This was also correlated with improved spatial memory, while such benefits were abolished upon inhibition of BDNF signaling. Similarly, both BDNF and cardiovascular fitness arising from aerobic exercise have been positively associated with hippocampal volume and function in humans. We postulate that exercise will attenuate cortical atrophy and synaptic loss inherent to neurodegenerative disorders - many of which also exhibit aberrant down-regulation of BDNF. Thus, the proposed link between BDNF, exercise and cognition may have critical therapeutic implications for the prevention and amelioration of memory loss and cognitive impairment in Alzheimer's disease and associated dementias.
Collapse
|
6
|
Brague JC, Zinn CR, Granot DY, Feathers CT, Swann JM. TrkB is necessary for male copulatory behavior in the Syrian Hamster (Mesocricetus auratus). Horm Behav 2018; 97:162-169. [PMID: 29092774 DOI: 10.1016/j.yhbeh.2017.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
The magnocellular medial preoptic nucleus (MPN mag), a subdivision of the medial preoptic area (MPOA), plays a critical role in the regulation of copulation in the male Syrian hamster; in part by mediating the effects of gonadal steroids. For example, ablation of the MPN mag eliminates mating and testosterone placed in the MPN mag restores mating in castrated males. Furthermore, testosterone treatment enhances synaptic density and dendritic spines in the MPN mag. Thus, copulatory behaviors are correlated with increases in synaptic morphology in the MPN mag. As brain derived neurotrophic factor (BDNF) and its receptor, tyrosine receptor kinase-B (TrkB), effect neuronal growth and synaptic plasticity, this study explored the role of TrkB and BDNF in mediating testosterone's effects on the MPN mag and behavior. Testosterone treatment increased BDNF expression and conversely lowered TrkB expression in the MPOA. siRNA-mediated TrkB knockdown in the MPN mag eliminated copulation two-days post injection and the behavior was restored one week later. These data indicate that testosterone influences the expression of BDNF and TrkB in the MPOA and that expression of copulation is dependent on the presence of TrkB. Taken together our findings support a role for TrkB and BDNF in mediating the effects of testosterone on copulatory behavior in the Syrian hamster.
Collapse
Affiliation(s)
- Joe C Brague
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States..
| | - Clifford R Zinn
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Dean Y Granot
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Cameron T Feathers
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States
| | - Jennifer M Swann
- Lehigh University, Department of Biological Sciences, Iacocca Hall, 111 Research Dr., Bethlehem, PA 18015, United States..
| |
Collapse
|
7
|
Daly C, Ward R, Reynolds AL, Galvin O, Collery RF, Kennedy BN. Brain-Derived Neurotrophic Factor as a Treatment Option for Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:465-471. [PMID: 29721977 DOI: 10.1007/978-3-319-75402-4_57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review discusses the therapeutic potential of brain-derived neurotrophic factor (BDNF) for retinal degeneration. BDNF, nerve growth factor (NGF), neurotrophin 3 (NT-3) and NT-4/NT-5 belong to the neurotrophin family. These neuronal modulators activate a common receptor and a specific tropomyosin-related kinase (Trk) receptor. BDNF was identified as a photoreceptor protectant in models of retinal degeneration as early as 1992. However, development of effective therapeutics that exploit this pathway has been difficult due to challenges in sustaining therapeutic levels in the retina.
Collapse
Affiliation(s)
- Conor Daly
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Rebecca Ward
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
| | - Alison L Reynolds
- School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Orla Galvin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland.,RenaSci Limited, BioCity, Nottingham, UK
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Eye Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Breandán N Kennedy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland.
| |
Collapse
|
8
|
Low I, Wei SY, Lee PS, Li WC, Lee LC, Hsieh JC, Chen LF. Neuroimaging Studies of Primary Dysmenorrhea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:179-199. [DOI: 10.1007/978-981-13-1756-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Bazovkina DV, Kondaurova EM, Tsybko AS, Kovetskaya AI, Ilchibaeva TV, Naumenko VS. The effects of chronic alcoholization on the expression of brain-derived neurotrophic factor and its receptors in the brains of mice genetically predisposed to depressive-like behavior. Mol Biol 2017. [DOI: 10.1134/s0026893317040057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Sheldrick A, Camara S, Ilieva M, Riederer P, Michel TM. Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals - a proof of concept study. Eur Psychiatry 2017; 46:65-71. [PMID: 29102768 DOI: 10.1016/j.eurpsy.2017.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The neurotrophic factors (NTF) hypothesis of depression was postulated nearly a decade ago and is nowadays widely acknowledged. Previous reports suggest that cerebral concentrations of NTF may be reduced in suicide victims who received minimal or no antidepressant pharmacotherapy. Recent evidence suggests that antidepressant treatment may improve or normalise cerebral concentrations of neurotrophic factors. Therefore, we examined the concentration of brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) in different brain regions (cortex, cingulate gyrus, thalamus, hippocampus, putamen and nucleus caudatus) of 21 individuals - 7 patients of which 4 patients with major depressive disorder (MDD) and overall age 86.8±5 years who received antidepressant pharmacotherapy (selective serotonin re-uptake inhibitors [SSRI]; tricyclic antidepressants [TCA]), 3 patients with MDD without antidepressant treatment and overall age 84.3±5 years versus 14 unaffected subjects at age 70.3±13.8. We detected significant elevation of BDNF (parietal cortex) and NT3 (parietal, temporal and occipital cortex, cingulate gyrus, thalamus, putamen and nucleus caudatus regions) in MDD patients who received antidepressant medication compared to MDD untreated patients and controls. Moreover, we detected a significant decrease of NT3 levels in the parietal cortex of patients suffering from MDD non-treated patients without treatment compared to healthy individuals. Although the limited statistical power due to the small sample size in this proof of concept study corroborates data from previous studies, which show that treatment with antidepressants mediates alterations in neuroplasticity via the action of NTF. However, more research using post-mortem brain tissue with larger samples needs to be carried out as well as longitudinal studies to further verify these results.
Collapse
Affiliation(s)
- A Sheldrick
- Department Psychiatry Odense, Psychiatry in the Region of Southern Denmark, J.B. Winslowsvej 20, 5000 Odense C, Denmark
| | - S Camara
- Clinical Neurochemistry, Department Psychiatry and Psychotherapy, University Hospital Würzburg, Fürchsleinstr. 15, 97080 Würzburg, Germany
| | - M Ilieva
- Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, J.B. Winslowsvej 19, 5000 Odense C, Denmark.
| | - P Riederer
- Department Psychiatry Odense, Psychiatry in the Region of Southern Denmark, J.B. Winslowsvej 20, 5000 Odense C, Denmark; Clinical Neurochemistry, Department Psychiatry and Psychotherapy, University Hospital Würzburg, Fürchsleinstr. 15, 97080 Würzburg, Germany; Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, J.B. Winslowsvej 19, 5000 Odense C, Denmark; Department Neurobiology, Instiute for Molecular Medicine, 5000 Odense C, Denmark; Center for applied Neuroscience, BRIDGE, Odense University Hospital, Psychiatry in the Region of Southern Denmark, University of Southern Denmark, 5000 Odense C, Denmark
| | - T M Michel
- Department Psychiatry Odense, Psychiatry in the Region of Southern Denmark, J.B. Winslowsvej 20, 5000 Odense C, Denmark; Department of Psychiatry, Institute for Clinical Research, University of Southern Denmark, J.B. Winslowsvej 19, 5000 Odense C, Denmark; Department Neurobiology, Instiute for Molecular Medicine, 5000 Odense C, Denmark; Center for applied Neuroscience, BRIDGE, Odense University Hospital, Psychiatry in the Region of Southern Denmark, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
11
|
The BDNF Val66Met polymorphism is associated with the functional connectivity dynamics of pain modulatory systems in primary dysmenorrhea. Sci Rep 2016; 6:23639. [PMID: 27010666 PMCID: PMC4806293 DOI: 10.1038/srep23639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/10/2016] [Indexed: 01/23/2023] Open
Abstract
Primary dysmenorrhea (PDM), menstrual pain without an organic cause, is a prevailing problem in women of reproductive age. We previously reported alterations of structure and functional connectivity (FC) in the periaqueductal gray (PAG) of PDM subjects. Given that the brain derived neurotrophic factor (BDNF) acts as a pain modulator within the PAG and the BDNF Val66Met polymorphism contributes towards susceptibility to PDM, the present study of imaging genetics set out to investigate the influence of, firstly, the BDNF Val66Met single nucleotide polymorphism and, secondly, the genotype-pain interplays on the descending pain modulatory systems in the context of PAG-seeded FC patterning. Fifty-six subjects with PDM and 60 controls participated in the current study of resting-state functional magnetic resonance imaging (fMRI) during the menstruation and peri-ovulatory phases; in parallel, blood samples were taken for genotyping. Our findings indicate that the BDNF Val66Met polymorphism is associated with the diverse functional expressions of the descending pain modulatory systems. Furthermore, PAG FC patterns in pain-free controls are altered in women with PDM in a genotype-specific manner. Such resilient brain dynamics may underpin the individual differences and shed light on the vulnerability for chronic pain disorders of PDM subjects.
Collapse
|
12
|
Intranasal Delivery of Recombinant AAV Containing BDNF Fused with HA2TAT: a Potential Promising Therapy Strategy for Major Depressive Disorder. Sci Rep 2016; 6:22404. [PMID: 26935651 PMCID: PMC4776097 DOI: 10.1038/srep22404] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 01/08/2023] Open
Abstract
Depression is a disturbing psychiatric disease with unsatisfied therapy. Not all patients are sensitive to anti-depressants currently in use, side-effects are unavoidable during therapy, and the cases with effectiveness are always accompanied with delayed onset of clinical efficacy. Delivering brain-derived neurotrophic factor (BDNF) to brain seems to be a promising therapy. However, a better approach to delivery is still rudimentary. The purpose of our present work is to look for a rapid-onset and long-lasting therapeutic strategy for major depressive disorder (MDD) by effectively delivering BDNF to brain. BDNF, fused with cell-penetrating peptides (TAT and HA2), was packaged in adenovirus associated virus (AAV) to construct the BDNF-HA2TAT/AAV for intranasally delivering BDNF to central nervous system (CNS) via nose-brain pathway. Intranasal administration of BDNF-HA2TAT/AAV to normal mice displayed anti-depression effect in forced swimming test when the delivery lasted relatively longer. The AAV applied to mice subjected to chronic mild stress (CMS) through intranasal administration for 10 days also alleviated depression-like behaviors. Western-blotting analysis revealed that BDNF-HA2TAT/AAV nasal administration enhanced hippocampal BDNF content. These results indicate intranasal administration of constructed BDNF-HA2TAT/AAV exerts anti-depression effect in CMS mice by increasing hippocampal BDNF, suggesting that this strategy holds a promising therapeutic potential for MDD.
Collapse
|
13
|
Sanna MD, Ghelardini C, Galeotti N. Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain. Neuropharmacology 2016; 105:543-552. [PMID: 26898292 DOI: 10.1016/j.neuropharm.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Although antiretroviral agents have been used successfully in suppressing viral production, they have also been associated with a number of side effects. The antiretroviral toxic neuropathy induces debilitating and extremely difficult to treat pain syndromes that often lead to discontinuation of antiretroviral therapy. Due to the critical need for the identification of novel therapeutic targets to improve antiretroviral neuropathic pain management, we investigated the role of the JNK signalling pathway in the mechanism of antiretroviral painful neuropathy. Mice were exposed to zalcitabine (2',3'-dideoxycytidine, ddC) and stavudine (2',3'-didehydro-3'-deoxythymidine, d4T) that induced a persistent mechanical allodynia and a transient cold allodynia. Treatment with the JNK blocker SP600125 before antiretroviral administration abolished mechanical hypersensitivity with no effect on thermal response. A robust spinal JNK overphosphorylation was observed on post-injection day 1 and 3, along with a JNK-dependent increase in p-c-Jun and ATF3 protein levels. Co-immunoprecipitation experiments showed the presence of a heterodimeric complex between ATF3 and c-Jun indicating that these transcription factors can act together to regulate transcription through heterodimerization. A rise in BDNF and caspase-3 protein levels was detected on day 1 and BDNF sequestration prevented both caspase-3 and p-JNK increase. These data suggest that BDNF plays a role in the early stages of ddC-induced allodynia by promoting apoptotic events and the activation of a hypernociceptive JNK-mediated pathway. We illustrated the activation of a BDNF-mediated JNK pathway involved in the early events responsible for the promotion of neuropathic pain, leading to a better knowledge of the mechanisms involved in the antiretroviral neuropathy. SUMMARY JNK blockade prevents antiretroviral-induced pain hypersensitivity. This may represent a potential prophylactic treatment of neuropathic pain to improve antiretroviral tolerability.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Nicoletta Galeotti
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy.
| |
Collapse
|
14
|
Human Pluripotent Stem Cell-Derived Retinal Ganglion Cells: Applications for the Study and Treatment of Optic Neuropathies. CURRENT OPHTHALMOLOGY REPORTS 2015; 3:200-206. [PMID: 26618076 DOI: 10.1007/s40135-015-0081-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Schunck RVA, Torres IL, Laste G, de Souza A, Macedo IC, Valle MTC, Salomón JL, Moreira S, Kuo J, Arbo MD, Dallegrave E, Leal MB. Protracted alcohol abstinence induces analgesia in rats: Possible relationships with BDNF and interleukin-10. Pharmacol Biochem Behav 2015; 135:64-9. [DOI: 10.1016/j.pbb.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
16
|
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10:3245-67. [PMID: 25995632 PMCID: PMC4425321 DOI: 10.2147/ijn.s77480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Moscow, Russia
| | - Ganna Kocherga
- Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, Ukraine
| | - Muhamad Abu Bakar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Yin JB, Wu HH, Dong YL, Zhang T, Wang J, Zhang Y, Wei YY, Lu YC, Wu SX, Wang W, Li YQ. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray. Front Neural Circuits 2014; 8:137. [PMID: 25477786 PMCID: PMC4238372 DOI: 10.3389/fncir.2014.00137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022] Open
Abstract
The periaqueductal gray (PAG) modulates nociception via a descending pathway that relays in the rostral ventromedial medulla (RVM) and terminates in the spinal cord. Previous behavioral pharmacology and electrophysiological evidence suggests that brain-derived neurotrophic factor (BDNF) plays an important role in descending pain modulation, likely through the PAG-RVM pathway. However, detailed information is still lacking on the distribution of BDNF, activation of BDNF-containing neurons projecting to RVM in the condition of pain, and neurochemical properties of these neurons within the PAG. Through fluorescent in situ hybridization (FISH) and immunofluorescent staining, the homogenous distributions of BDNF mRNA and protein were observed in the four subregions of PAG. Both neurons and astrocytes expressed BDNF, but not microglia. By combining retrograde tracing methods and formalin pain model, there were more BDNF-containing neurons projecting to RVM being activated in the ventrolateral subregion of PAG (vlPAG) than other subregions of PAG. The neurochemical properties of BDNF-containing projection neurons in the vlPAG were investigated. BDNF-containing projection neurons expressed the autoreceptor TrkB in addition to serotonin (5-HT), neurotensin (NT), substance P (SP), calcitonin gene related peptide (CGRP), nitric oxide synthase (NOS), and parvalbumin (PV) but not tyrosine decarboxylase (TH). It is speculated that BDNF released from projection neurons in the vlPAG might participate in the descending pain modulation through enhancing the presynaptic release of other neuroactive substances (NSs) in the RVM.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital Affiliated to Fujian Medical University Fuzhou, China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Sheng-Xi Wu
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Wen Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University Xi'an, China
| |
Collapse
|
18
|
Ziemlińska E, Kügler S, Schachner M, Wewiór I, Czarkowska-Bauch J, Skup M. Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats. PLoS One 2014; 9:e88833. [PMID: 24551172 PMCID: PMC3925164 DOI: 10.1371/journal.pone.0088833] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023] Open
Abstract
Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.
Collapse
Affiliation(s)
| | - Sebastian Kügler
- Center of Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Iwona Wewiór
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
19
|
Weber AJ, Harman CD. BDNF treatment and extended recovery from optic nerve trauma in the cat. Invest Ophthalmol Vis Sci 2013; 54:6594-604. [PMID: 23989190 DOI: 10.1167/iovs.13-12683] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We examined the treatment period necessary to restore retinal and visual stability following trauma to the optic nerve. METHODS Cats received unilateral optic nerve crush and no treatment (NT), treatment of the injured eye with brain-derived neurotrophic factor (BDNF), or treatment of the injured eye combined with treatment of visual cortex for 2 or 4 weeks. After 1-, 2-, 4-, or 6-week survival periods, pattern electroretinograms (PERGs) were obtained and retinal ganglion cell (RGC) survival determined. RESULTS In the peripheral retina, RGC survival for NT, eye only, and eye + cortex animals was 55%, 78%, and 92%, respectively, at 1 week, and 31%, 60%, and 93%, respectively, at 2 weeks. PERGs showed a similar pattern of improvement. After 4 weeks, RGC survival was 7%, 29%, and 53% in each group, with PERGs in the dual-treated animals similar to the 1- to 2-week animals. For area centralis (AC), the NT, eye only, and eye + cortex animals showed 47%, 78%, and 82% survival, respectively, at 2 weeks, and 13%, 54%, and 81% survival, respectively, at 4 weeks. Removing the pumps at 2 weeks resulted in ganglion cell survival levels of 76% and 74% in the AC at 4 and 6 weeks postcrush, respectively. The PERGs from 2-week treated, but 4- and 6-week survival animals were comparable to those of the 2-week animals. CONCLUSIONS Treating the entire central visual pathway is important following optic nerve trauma. Long-term preservation of central vision may be achieved with as little as 2 weeks of treatment using this approach.
Collapse
Affiliation(s)
- Arthur J Weber
- Department of Physiology, Neuroscience Training Program, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
20
|
Nugraha B, Korallus C, Gutenbrunner C. Serum level of brain-derived neurotrophic factor in fibromyalgia syndrome correlates with depression but not anxiety. Neurochem Int 2013; 62:281-6. [DOI: 10.1016/j.neuint.2013.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 12/14/2012] [Accepted: 01/04/2013] [Indexed: 11/27/2022]
|
21
|
Li Q, Zhang X, Liu K, Gong L, Li J, Yao W, Liu C, Yu S, Li Y, Yao Z, Ma X. Brain-derived neurotrophic factor exerts antinociceptive effects by reducing excitability of colon-projecting dorsal root ganglion neurons in the colorectal distention-evoked visceral pain model. J Neurosci Res 2012; 90:2328-34. [DOI: 10.1002/jnr.23119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/24/2012] [Accepted: 06/27/2012] [Indexed: 11/10/2022]
|
22
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Arendt DH, Smith JP, Bastida CC, Prasad MS, Oliver KD, Eyster KM, Summers TR, Delville Y, Summers CH. Contrasting hippocampal and amygdalar expression of genes related to neural plasticity during escape from social aggression. Physiol Behav 2012; 107:670-9. [PMID: 22450262 DOI: 10.1016/j.physbeh.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 01/03/2023]
Abstract
Social subjugation has widespread consequences affecting behavior and underlying neural systems. We hypothesized that individual differences in stress responsiveness were associated with differential expression of neurotrophin associated genes within the hippocampus and amygdala. To do this we examined the brains of hamsters placed in resident/intruder interactions, modified by the opportunity to escape from aggression. In the amygdala, aggressive social interaction stimulated increased BDNF receptor TrK(B) mRNA levels regardless of the ability to escape the aggressor. In contrast, the availability of escape limited the elevation of GluR(1) AMPA subunit mRNA. In the hippocampal CA(1), the glucocorticoid stress hormone, cortisol, was negatively correlated with BDNF and TrK(B) gene expression, but showed a positive correlation with BDNF expression in the DG. Latency to escape the aggressor was also negatively correlated with CA(1) BDNF expression. In contrast, the relationship between amygdalar TrK(B) and GluR(1) was positive with respect to escape latency. These results suggest that an interplay of stress and neurotrophic systems influences learned escape behavior. Animals which escape faster seem to have a more robust neurotrophic profile in the hippocampus, with the opposite of this pattern in the amygdala. We propose that changes in the equilibrium of hippocampal and amygdalar learning result in differing behavioral stress coping choices.
Collapse
Affiliation(s)
- David H Arendt
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brain-derived neurotrophic factor and exercise in fibromyalgia syndrome patients: a mini review. Rheumatol Int 2011; 32:2593-9. [DOI: 10.1007/s00296-011-2348-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 12/18/2022]
|
25
|
Renn CL, Leitch CC, Lessans S, Rhee P, McGuire WC, Smith BA, Traub RJ, Dorsey SG. Brain-derived neurotrophic factor modulates antiretroviral-induced mechanical allodynia in the mouse. J Neurosci Res 2011; 89:1551-65. [PMID: 21647939 DOI: 10.1002/jnr.22685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Accepted: 04/12/2011] [Indexed: 01/12/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are key components of HIV/AIDS treatment to reduce viral load. However, these drugs can induce chronic neuropathic pain, leading to increased morbidity in HIV patients. This study examines the role of brain-derived neurotrophic factor (BDNF) in the spinal dorsal horn (SDH) in development of mechanical allodynia in male C57BL/6J mice treated with the NRTI stavudine (d4T). After d4T administration, mice developed increased neuronal activity and BDNF expression in the SDH and hind paw mechanical allodynia that was exacerbated by intrathecal BDNF administration. Intrathecal BDNF alone also increased neuronal activity and caused mechanical allodynia. Because excess BDNF amplified d4T-induced mechanical allodynia and neuronal activity, the impact of decreasing BDNF in the SDH was investigated. After d4T, BDNF heterozygous mice were less allodynic than wild-type littermates, which was negated by intrathecal BDNF administration. Finally, pretreatment with intrathecal trkB-Fc chimera prior to d4T or administration of the tyrosine kinase inhibitor K252a 3 days after d4T blocked BDNF-mediated signaling, significantly attenuated the development of mechanical allodynia (trkB-Fc), and decreased neuronal activity (trkB-Fc and K252a). Taken together, these findings provide evidence that BDNF in the SDH contributes to the development of NRTI-induced painful peripheral neuropathy and may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Cynthia L Renn
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, Maryland 21201-1579, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Biggs JE, Lu VB, Stebbing MJ, Balasubramanyan S, Smith PA. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization? Mol Pain 2010; 6:44. [PMID: 20653959 PMCID: PMC2918544 DOI: 10.1186/1744-8069-6-44] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/23/2010] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides, cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible that much of the information transfer between activated microglia and neurons, at least in this context, may be explicable in terms of the actions of brain derived neurotrophic factor (BDNF). Microglial-derived BDNF mediates central sensitization in lamina I by attenuating inhibitory synaptic transmission. This involves an alteration in the chloride equilibrium potential as a result of down regulation of the potassium-chloride exporter, KCC2. In lamina II, BDNF duplicates many aspects of the effects of chronic constriction injury (CCI) of the sciatic nerve on excitatory transmission. It mediates an increase in synaptic drive to putative excitatory neurons whilst reducing that to inhibitory neurons. CCI produces a specific pattern of changes in excitatory synaptic transmission to tonic, delay, phasic, transient and irregular neurons. A very similar 'injury footprint' is seen following long-term exposure to BDNF. This review presents new information on the action of BDNF and CCI on lamina II neurons, including the similarity of their actions on the kinetics and distributions of subpopulations of miniature excitatory postsynaptic currents (mEPSC). These findings raise the possibility that BDNF functions as a final common path for a convergence of perturbations that culminate in the generation of neuropathic pain.
Collapse
Affiliation(s)
- James E Biggs
- Department of Pharmacology and Centre for Neuroscience University of Alberta, Edmonton, Alberta, Canada
| | - Van B Lu
- Laboratory of MolecularPhysiology, NIH/NIAAA, Rockville, MD, USA
| | - Martin J Stebbing
- School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Peter A Smith
- Department of Pharmacology and Centre for Neuroscience University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Sirianni RW, Olausson P, Chiu AS, Taylor JR, Saltzman WM. The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Res 2010; 1321:40-50. [PMID: 20096671 DOI: 10.1016/j.brainres.2010.01.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/25/2009] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is closely linked with neuronal survival and plasticity in psychiatric disorders. In this work, we engineered degradable, injectable alginate microspheres and non-degradable, implantable poly(ethylene vinyl acetate) matrices to continuously deliver BDNF to the dorsal hippocampus of rats for two days or more than a week, respectively. The antidepressant-like behavioral effects of BDNF delivery were examined in the Porsolt forced swim test. Rats were sacrificed 10days after surgery and tissue samples were analyzed by western blot. A small dose of BDNF delivered in a single infusion, or from a two-day sustained-release alginate implant, produced an antidepressant-like behavior, whereas the same dose delivered over a longer period of time to a larger tissue region did not produce antidepressant-like effects. Prolonged delivery of BDNF resulted in a dysregulation of plasticity-related functions: increased dose and duration of BDNF delivery produced increased levels of TrkB, ERK, CREB, and phosphorylated ERK, while also producing decreased phosphorylated CREB. It is evident from this work that both duration and magnitude of BDNF dosing are of critical importance in achieving functional outcome.
Collapse
Affiliation(s)
- Rachael W Sirianni
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
28
|
Weber AJ, Viswanáthan S, Ramanathan C, Harman CD. Combined application of BDNF to the eye and brain enhances ganglion cell survival and function in the cat after optic nerve injury. Invest Ophthalmol Vis Sci 2009; 51:327-34. [PMID: 19710411 DOI: 10.1167/iovs.09-3740] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether application of BDNF to the eye and brain provides a greater level of neuroprotection after optic nerve injury than treatment of the eye alone. METHODS Retinal ganglion cell survival and pattern electroretinographic responses were compared in normal cat eyes and in eyes that received (1) a mild nerve crush and no treatment, (2) a single intravitreal injection of BDNF at the time of the nerve injury, or (3) intravitreal treatment combined with 1 to 2 weeks of continuous delivery of BDNF to the visual cortex, bilaterally. RESULTS Relative to no treatment, administration of BDNF to the eye alone resulted in a significant increase in ganglion cell survival at both 1 and 2 weeks after nerve crush (1 week, 79% vs. 55%; 2 weeks, 60% vs. 31%). Combined treatment of the eye and visual cortex resulted in a modest additional increase (17%) in ganglion cell survival in the 1-week eyes, a further significant increase (55%) in the 2-week eyes, and ganglion cell survival levels for both that were comparable to normal (92%-93% survival). Pattern ERG responses for all the treated eyes were comparable to normal at 1 week after injury; however, at 2 weeks, only the responses of eyes receiving the combined BDNF treatment remained so. CONCLUSIONS Although treatment of the eye alone with BDNF has a significant impact on ganglion cell survival after optic nerve injury, combined treatment of the eye and brain may represent an even more effective approach and should be considered in the development of future optic neuropathy-related neuroprotection strategies.
Collapse
Affiliation(s)
- Arthur J Weber
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
29
|
Unsain N, Montroull LE, Mascó DH. Brain-derived neurotrophic factor facilitates TrkB down-regulation and neuronal injury after status epilepticus in the rat hippocampus. J Neurochem 2009; 111:428-40. [PMID: 19686240 DOI: 10.1111/j.1471-4159.2009.06342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration (Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.
Collapse
Affiliation(s)
- Nicolás Unsain
- Facultad de Ciencias Exactas, Físicas y Naturales, Laboratorio de Neurobiología, Centro de Biología Celular y Molecular, Cátedra de Biología Celular, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
30
|
Gardiner J, Barton D, Overall R, Marc J. Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 2009; 15:47-61. [PMID: 19218230 DOI: 10.1177/1073858408325269] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxidative stress and loss of neurotrophic support play major roles in the development of various diseases of the central and peripheral nervous systems. In disorders of the central nervous system such as Alzheimer's, Parkinson's, and Huntington's diseases, oxidative stress appears inextricably linked to the loss of neurotrophic support. A similar situation is seen in the peripheral nervous system in diseases of olfaction, hearing, and vision. Neurotrophic factors act to up-regulate antioxidant enzymes and promote the expression of antioxidant proteins. On the other hand, oxidative stress can cause down-regulation of neurotrophic factors. We propose that normal functioning of the nervous systems involves a positive feedback loop between antioxidant processes and neurotrophic support. Breakdown of this feedback loop in disease states leads to increased oxidative stress and reduced neurotrophic support.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, Australia.
| | | | | | | |
Collapse
|
31
|
Johnson EC, Guo Y, Cepurna WO, Morrison JC. Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Exp Eye Res 2009; 88:808-15. [PMID: 19217904 PMCID: PMC2704056 DOI: 10.1016/j.exer.2009.02.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/13/2009] [Accepted: 02/03/2009] [Indexed: 12/19/2022]
Abstract
The neurotrophin (NT) hypothesis proposes that the obstruction of retrograde transport at the optic nerve head results in the deprivation of neurotrophic support to retinal ganglion cells (RGC) leading to apoptotic cell death in glaucoma. An important corollary to this concept is the implication that appropriate enhancement of neurotrophic support will prolong the survival of injured RGC indefinitely. This hypothesis is, perhaps, the most widely recognized theory to explain RGC loss resulting from exposure of the eye to elevated intraocular pressure (IOP). Recent studies of NT signaling using rat glaucoma models, have examined the endogenous responses of the retina to pressure exposure as well as studies designed to augment NT signaling in order to rescue RGC from apoptosis following pressure-induced injury. The examination of these studies in this review reveals a number of consistent observations and provides direction for further investigations of this hypothesis.
Collapse
Affiliation(s)
- Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, CERES, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
32
|
Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: An initial event in neuronal injury induction. Neuroscience 2008; 154:978-93. [DOI: 10.1016/j.neuroscience.2008.04.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 01/12/2023]
|
33
|
Ren K, Dubner R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol Neurobiol 2008; 35:224-35. [PMID: 17917111 DOI: 10.1007/s12035-007-0028-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/30/1999] [Accepted: 01/08/2007] [Indexed: 12/18/2022]
Abstract
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.
Collapse
Affiliation(s)
- Ke Ren
- Department of Biomedical Sciences, Dental School & Program in Neuroscience, University of Maryland, 650 W. Baltimore St., Baltimore, MD 21201-1586, USA.
| | | |
Collapse
|
34
|
Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008; 118:36-57. [PMID: 18394710 DOI: 10.1016/j.pharmthera.2008.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.
Collapse
Affiliation(s)
- Margaret I Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Hu Y, Arulpragasam A, Plant GW, Hendriks WTJ, Cui Q, Harvey AR. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts. Exp Neurol 2007; 207:314-28. [PMID: 17689533 DOI: 10.1016/j.expneurol.2007.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/27/2007] [Accepted: 07/02/2007] [Indexed: 12/22/2022]
Abstract
When grafted onto the cut optic nerve, chimeric peripheral nerve (PN) sheaths reconstituted with adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Regrowth can be further enhanced by using PN containing SCs transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of ciliary neurotrophic factor (CNTF). To determine whether other neurotrophic factors or different cell types also enhance RGC regrowth in this bridging model, we tested the effectiveness of (1) adult SCs transduced with brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), and (2) fibroblasts (FBs) genetically modified to express CNTF. SCs transduced with LV-BDNF and LV-GDNF secreted measurable and bioactive amounts of each of these proteins, but reconstituted grafts containing LV-BDNF or LV-GDNF transduced SCs did not enhance RGC survival or axonal regrowth. LV-BDNF modified grafts did, however, contain many pan-neurofilament immunolabeled axons, many of which were also immunoreactive for calcitonin gene-related peptide (CGRP) and were presumably of peripheral sensory origin. Nor-adrenergic and cholinergic axons were also seen in these grafts. There were far fewer axons in LV-GDNF engineered grafts. Reconstituted PN sheaths containing FBs that had been modified to express CNTF did not promote RGC viability or regeneration, and PN reconstituted with a mixed population of SCs and CNTF expressing FBs were less effective than SCs alone. These data show that both the type of neurotrophic factor and the cell types that express these factors are crucial elements when designing bridging substrates to promote long-distance regeneration in the injured CNS.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Renn CL, Lin L, Thomas S, Dorsey SG. Full-length tropomyosin-related kinase B expression in the brainstem in response to persistent inflammatory pain. Neuroreport 2006; 17:1175-9. [PMID: 16837849 DOI: 10.1097/01.wnr.0000215771.61355.e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supraspinal descending pathways from the periaqueductal gray and rostral ventromedial medulla dynamically modulate nociceptive transmission in the spinal dorsal horn. We examined the expression of the brain-derived neurotrophic factor receptor trkB in response to inflammation. No difference was observed in the number of neurons expressing trkB in the periaqueductal gray or rostral ventromedial medulla 3 h after inflammation; however, by 24 h, there was a significant increase in trkB expression in the periaqueductal gray (P < 0.05) and rostral ventromedial medulla (P < 0.05), compared with naïve levels, which persisted to 7 days and returned to naïve levels by 21 days. These results demonstrate a temporal increase in the number of cells expressing trkB in response to persistent inflammation, suggesting a role for trkB signaling in activity-dependent plasticity in the pain modulatory circuitry.
Collapse
Affiliation(s)
- Cynthia L Renn
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, Maryland 21201-1579, USA
| | | | | | | |
Collapse
|
37
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 2006; 13:1328-41. [PMID: 16708079 DOI: 10.1038/sj.gt.3302791] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal ganglion cell (RGC) survival and regeneration following (i) optic nerve (ON) crush or (ii) after ON cut and attachment of a peripheral nerve (PN). At 7 weeks after ON crush, quantification of betaIII-tubulin immunostaining revealed that, compared to AAV-GFP controls, RGC survival was not enhanced by AAV-GAP43-GFP but was increased in AAV-CNTF-GFP (mean RGCs/retina: 17 450+/-358 s.e.m.) and AAV-BDNF-GFP injected eyes (10 200+/-4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many betaIII-tubulin- and GFP-positive fibres proximal to the ON crush. However, only in the AAV-CNTF-GFP group were regenerating RGC axons seen in distal ON (1135+/-367 axons/nerve, 0.5 mm post-crush), some reaching the optic chiasm. RGCs were immunoreactive for CNTF and quantitative RT-PCR revealed a substantial increase in CNTF mRNA expression in retinas transduced with AAV-CNTF-GFP. The combination of AAV-CNTF-GFP transduction of RGCs with autologous PN-ON transplantation resulted in even greater RGC survival and regeneration. At 7 weeks after PN transplantation there were 27 954 (+/-2833) surviving RGCs/retina, about 25% of the adult RGC population. Of these, 13 352 (+/-1868) RGCs/retina were retrogradely labelled after fluorogold injections into PN grafts. In summary, AAV-mediated expression of CNTF promotes long-term survival and regeneration of injured adult RGCs, effects that are substantially enhanced by combining gene and cell-based therapies/interventions.
Collapse
Affiliation(s)
- S G Leaver
- School of Anatomy and Human Biology, The University of Western Australia, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Guo W, Robbins MT, Wei F, Zou S, Dubner R, Ren K. Supraspinal brain-derived neurotrophic factor signaling: a novel mechanism for descending pain facilitation. J Neurosci 2006; 26:126-37. [PMID: 16399679 PMCID: PMC6674294 DOI: 10.1523/jneurosci.3686-05.2006] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the adult mammalian brain, brain-derived neurotrophic factor (BDNF) is critically involved in long-term synaptic plasticity. Here, we show that supraspinal BDNF-tyrosine kinase receptor B (TrkB) signaling contributes to pain facilitation. We show that BDNF-containing neurons in the periaqueductal gray (PAG), the central structure for pain modulation, project to and release BDNF in the rostral ventromedial medulla (RVM), a relay between the PAG and spinal cord. BDNF in PAG and TrkB phosphorylation in RVM neurons are upregulated after inflammation. Intra-RVM sequestration of BDNF and knockdown of TrkB by RNA interference attenuate inflammatory pain. Microinjection of BDNF (10-100 fmol) into the RVM facilitates nociception, which is dependent on NMDA receptors (NMDARs). In vitro studies with RVM slices show that BDNF induces tyrosine phosphorylation of the NMDAR NR2A subunit in RVM via a signal transduction cascade involving IP(3), PKC, and Src. The supraspinal BDNF-TrkB signaling represents a previously unknown mechanism underlying the development of persistent pain. Our findings also caution that application of BDNF for recovery from CNS disorders could lead to undesirable central pain.
Collapse
Affiliation(s)
- Wei Guo
- Department of Biomedical Sciences, Program in Neuroscience, Dental School, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
40
|
Gibbons AS, Bailey KA. BDNF and NT-3 regulation of trkB and trkC mRNA levels in the developing chick spinal cord. Neurosci Lett 2005; 385:41-5. [PMID: 15927371 DOI: 10.1016/j.neulet.2005.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/03/2005] [Accepted: 05/06/2005] [Indexed: 12/17/2022]
Abstract
In this study we investigated the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 on mRNA levels of TrkB and TrkC receptors. We used an expression system to supply developing chicks with the neurotrophic factor and then analysed the receptor mRNA levels at embryonic day 8 (E8), E10 and E15 using semi-quantitative RT-PCR. In control chicks, maximal expression levels of both receptors were observed at E10. Treatment with BDNF resulted in significant down-regulation of TrkB mRNA levels (P<0.05) at E10 but not E8 or E15. Treatment with NT-3 showed down-regulation of trkB levels at all developmental stages. TrkC mRNA levels were down-regulated at all developmental stages with NT-3 treatment and at E10 and E15 with BDNF treatment. For both receptors the down-regulation was greater in NT-3-treated chicks than those treated with BDNF. Thus, our data indicate that neurotrophin receptor mRNA levels in the spinal cord are regulated by neurotrophic factors during embryonic development.
Collapse
Affiliation(s)
- Andrew S Gibbons
- School of Biological Sciences, Monash University, P.O. Box 18, Vic. 3800, Australia
| | | |
Collapse
|
41
|
Spalding KL, Cui Q, Harvey AR. Retinal ganglion cell neurotrophin receptor levels and trophic requirements following target ablation in the neonatal rat. Neuroscience 2005; 131:387-95. [PMID: 15708481 DOI: 10.1016/j.neuroscience.2004.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2004] [Indexed: 02/06/2023]
Abstract
Superior colliculus (SC) ablation in neonatal rats results in a rapid increase in retinal ganglion cell (RGC) death. This injury-induced death is reduced by exogenous brain-derived neurotrophic factor or neurotrophin-4/5 (NT-4/5), but the protective effect of these molecules is transient, delaying but not preventing neuronal loss. We sought to discover why neurotrophins only temporarily reduce RGC death after target ablation, focusing on changes in neurotrophin receptor expression and possible changes in growth factor dependency. In unlesioned rats, receptor tyrosine kinase B (trkB) immunohistochemistry revealed no change in the number of trkB positive cells in the RGC layer 24 h after intraocular NT-4/5 injection. However, after SC lesions there were significantly less immunoreactive cells and, surprisingly, even fewer immunoreactive cells in NT-4/5 injected eyes. Semi-quantitative confocal analysis of immunofluorescence intensity revealed an increase in trkB staining in the RGC layer in unlesioned rats 24 h after NT-4/5 injection, whereas in SC-lesioned animals exposed to NT-4/5 there was a significant decrease in staining. To determine whether injured neonatal RGCs can switch their trophic requirements, different doses of ciliary neurotrophic factor were given intraocularly, either alone or combined with NT-4/5. We also tested an SC-derived chondroitin sulfate proteoglycan that has been reported to promote neonatal RGC survival. None of these interventions reduced lesion-induced RGC death 24 or 36 h after SC ablation. In summary, we show that developing RGCs do not shift their trophic dependence to other survival factors following injury; rather, the application of neurotrophins causes a down-regulation of the cognate trkB receptor, presumably altering the long-term responsiveness of neonatal RGCs to exogenous neurotrophins. These data highlight the difficulty in promoting long-term neuronal survival when using one-off administration of recombinant growth factors.
Collapse
Affiliation(s)
- K L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
42
|
Barnea A, Roberts J, Croll SD. Continuous exposure to brain-derived neurotrophic factor is required for persistent activation of TrkB receptor, the ERK signaling pathway, and the induction of neuropeptide Y production in cortical cultures. Brain Res 2004; 1020:106-17. [PMID: 15312792 DOI: 10.1016/j.brainres.2004.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that brain-derived neurotrophic factor (BDNF) induces persistent neuropeptide Y (NPY) production in cortical cultures in an ERK1/2-dependent manner. In some studies, it was shown that BDNF leads to the downregulation of TrkB receptor and some of its downstream responses, whereas in others it does not. We examined whether the BDNF requirement for induction of persistent NPY production correlates with that for induction of phosphorylation of TrkB and ERK1/2. Continuous 24-h exposure to BDNF led to a 2- to 3-fold increase in NPY production (maximal level). While 1 h of BDNF exposure induced NPY production at a half maximal level, 8 h was required for induction of a maximal level. BDNF-induced NPY production was completely inhibited by co-exposure to TrkB-Fc fusion protein (TrkB extracellular domain fused to Fc) and partially inhibited by TrkB-Fc added 1 h after BDNF; TrkC-Fc did not do so. Activation of TrkB receptor was analyzed at two potential tyrosine phosphorylated sites, the activation loop and the Shc binding. BDNF led to coordinated phosphorylation of the two sites that persisted for 6-8 h, and this was not associated with changes in the content of TrkB protein. The presence of BDNF throughout the 6- to 8-h period was required for the persistent phosphorylation of TrkB and ERK1/2. Thus, continuous BDNF activation of TrkB is required for persistent activation of the ERK1/2 pathway and induction of NPY production. We propose that, within the time frame analyzed in this study, BDNF does not lead to the downregulation of TrkB receptor or of the biological responses leading to NPY production.
Collapse
Affiliation(s)
- Ayalla Barnea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, USA.
| | | | | |
Collapse
|
43
|
Haynes LE, Barber D, Mitchell IJ. Chronic antidepressant medication attenuates dexamethasone-induced neuronal death and sublethal neuronal damage in the hippocampus and striatum. Brain Res 2004; 1026:157-67. [PMID: 15488477 DOI: 10.1016/j.brainres.2004.05.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2004] [Indexed: 10/26/2022]
Abstract
Dexamethasone, a synthetic corticosteroid, which can induce a range of mood disorders including depression and affective psychosis, is toxic to specific hippocampal and striatal neuronal populations. Chronic administration of antidepressants can induce neuroprotective effects, potentially by raising cellular levels of brain-derived neurotrophic factor (BDNF). We accordingly tested the hypothesis that chronic pretreatment of rats (Sprague-Dawley, male) with antidepressants would attenuate dexamethasone-induced neuronal damage as revealed by reductions in the level of neuronal death and in sublethal neuronal damage shown by the increase in the number of MAP-2 immunoreactive neurons. In support of this hypothesis, we demonstrate that chronic treatment with a range of antidepressants prior to dexamethasone administration (0.7 mg/kg, i.p.) attenuated the levels of neuronal death and loss of MAP-2 immunoreactivity in both the hippocampus and striatum. The antidepressants used were: desipramine (8 mg/kg, i.p., tricyclic), fluoxetine (8 mg/kg, i.p., selective serotonin reuptake inhibitor) and tranylcypromine (10 mg/kg, i.p., monoamine oxidase inhibitor) with each drug being injected once per day for 10 days. In contrast, acute injection of none of the antidepressants exerted a protective effect from dexamethasone-associated neuronal damage. Similarly, injection of neither cocaine nor chlordiazepoxide (benzodiazepine) exerted protective effects when injected either chronically or acutely. The observed protection from dexamethasone-induced neuronal damage is in keeping with the potential of chronic antidepressant medication to increase BDNF levels. The potential for dexamethasone to induce disorders of mood by damaging specific neuronal populations in the hippocampus and dorsomedial striatum is discussed.
Collapse
Affiliation(s)
- Linda E Haynes
- Biomedical Science, Medical School, The University of Nottingham, Queens Medical Centre, E70, Nottingham NG7 2UH, United Kingdom.
| | | | | |
Collapse
|
44
|
Xu B, Michalski B, Racine RJ, Fahnestock M. The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes. Neuroscience 2004; 126:521-31. [PMID: 15183502 DOI: 10.1016/j.neuroscience.2004.03.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2004] [Indexed: 01/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that mediates synaptic plasticity and excitability in the CNS. Recent evidence has shown that increased BDNF levels can lead to hyperexcitability and epileptiform activities, while suppression of BDNF function in transgenic mice or by antagonist administration retards the development of seizures. However, several groups, including our own, have reported that increasing BDNF levels by continuous intrahippocampal infusion inhibits epileptogenesis. It is possible that the continuous administration of BDNF produces a down-regulation of its high-affinity TrkB receptor, leading to a decrease of neuronal responsiveness to BDNF. If so, then animals should respond differently to bolus injections of BDNF, which presumably do not alter Trk expression, compared with continuous infusion. To test this hypothesis, we compared the effects of intrahippocampal BDNF continuous infusion and bolus injections on kindling induction. We showed that continuous infusion of BDNF inhibited the development of behavioral seizures and decreased the level of phosphorylated Trks or TrkB receptors. In contrast, multiple bolus microinjections of BDNF accelerated kindling development and did not affect the level of phosphorylated Trks or TrkB receptors. Our results indicate that different administration protocols yield opposite effects of BDNF on neuronal excitability, epileptogenesis and Trk expression. Unlike nerve growth factor and neurotrophin-3, which affect mossy fiber sprouting, we found that BDNF administration had no effect on the mossy fiber system in naive or kindled rats. Such results suggest that the effects of BDNF on epileptogenesis are not modulated by its effect on sprouting, but rather by its effects on excitability.
Collapse
Affiliation(s)
- B Xu
- Department of Psychology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Chen H, Weber AJ. Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Brain Res 2004; 1011:99-106. [PMID: 15140649 DOI: 10.1016/j.brainres.2004.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known retinal neuroprotectant, but its effectiveness is limited: higher doses do not yield increased cell survival, multiple applications are not additive, and long-term delivery does not reverse, ganglion cell death. These limitations might reflect either injury- or BDNF-induced retinal changes in TrkB, the high affinity tyrosine kinase receptor used by BDNF. Retinal levels of TrkB protein and mRNA were measured in rats following intravitreal application of BDNF alone, optic nerve crush alone, and both. Full-length receptor protein levels (TrkB.FL) were determined by Western blot analysis and mRNA (trkB.FL) levels were measured using RNAse protection assay (RPA). BDNF alone produced a rapid and prolonged decrease in normal retina TrkB.FL. Nerve crush also resulted in decreased TrkB.FL, but the reduction was not apparent before 2-week post-crush. BDNF applied at the time of the crush yielded reductions in TrkB.FL similar to that of BDNF alone. With respect to TrkB mRNA levels, injection of BDNF into normal eyes and optic nerve crush alone showed bell-shaped patterns of change: approximately 50% below normal at 24-h post-procedure, approximately 50% above normal at 3 days, normal at 7 days, and approximately 50% below normal at 2-week post-procedure. When BDNF and nerve crush were combined, trkB-FL levels reached 90% of normal 1-week post-crush/injection. The data suggest that the limitation of BDNF in promoting ganglion cell survival following optic nerve injury results, in part, due to drug-induced down-regulation of the full-length TrkB receptor needed to activate intracellular pathways.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Ave., Memphis, TN 38163, USA.
| | | |
Collapse
|
46
|
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, can modulate synaptic plasticity and neurotransmitter release across multiple neurotransmitter systems, as well as the intracellular signal-transduction pathway. Recent studies had demonstrated that BDNF may play a role in the antidepressant mechanism and the pathogenesis of major depression. These findings implicated that BDNF may involve in mood regulation. In addition, (1). studies found positive association between BDNF genetic polymorphism and bipolar affective disorders; (2). agents which potentially induce manic states also increase BDNF, and (3). increase in mossy fibers were noted for bipolar affective disorder brain and BDNF is related to the induction of aberrant mossy fiber sprouting. From these finding, it is proposed that BDNF overactivity may be implicated in the manic state. The notion of BDNF overactivity in mania suggests that factors associated with increased BDNF activity may proffer the etiological fundamentals for bipolar affective disorder. Further, exploration of this hypothesis can provide a new direction in the treatment of the bipolar affective disorder.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec 2, 11217, Taipei, Taiwan, ROC.
| |
Collapse
|
47
|
Cellerino A, Arango-González B, Pinzón-Duarte G, Kohler K. Brain-derived neurotrophic factor regulates expression of vasoactive intestinal polypeptide in retinal amacrine cells. J Comp Neurol 2003; 467:97-104. [PMID: 14574682 DOI: 10.1002/cne.10908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic-factor (BDNF) is expressed in the retina and controls the development of subtypes of amacrine cells. In the present study we investigated the effects of BDNF on amacrine cells expressing vasoactive intestinal polypeptide (VIP). Rats received three intraocular injections of BDNF on postnatal days (P) 16, 18, and 20. The animals were sacrificed on P22, P40, P60, P80, and P120, and VIP expression in their retinas was detected by immunohistochemistry (P22, P40) and by radioimmunoassay (RIA; P22, P40, P60, P80, P120) to assess the time course of BDNF effects on VIP. A significant increase in the density of VIP-positive amacrine cells was detected in BDNF-treated retinas, and VIP concentration was up-regulated by 150% both at P22 and at P40 with respect to untreated controls. VIP concentration then slowly declined in the treated retinas over a period of 3 months; however, a statistically significant increase of 50% was still detectable on P120. The impact of endogenous BDNF on the regulation of VIP expression in the retina was analyzed in mice homozygous for a targeted deletion of the BDNF gene locus (bdnf-/-). VIP immunohistochemistry revealed a marked reduction of VIP-positive amacrine cells and of VIP-immunopositive processes in the inner plexiform layer of the BDNF knockout mice. Mice lacking BDNF expressed only 5% of the VIP protein in their retinas compared with the retinas of wild-type mice as measured by RIA. Our data show that BDNF is a major regulator of VIP expression in retinal amacrine cells and exerts long-lasting effects on VIP content.
Collapse
Affiliation(s)
- Alessandro Cellerino
- Scuola Normale Superiore and Istituto di Neurofisiologia, Consiglio Nazionale delle Ricerche, I-56100 Pisa, Italy
| | | | | | | |
Collapse
|
48
|
Xu B, Michalski B, Racine RJ, Fahnestock M. Continuous infusion of neurotrophin-3 triggers sprouting, decreases the levels of TrkA and TrkC, and inhibits epileptogenesis and activity-dependent axonal growth in adult rats. Neuroscience 2003; 115:1295-308. [PMID: 12453498 DOI: 10.1016/s0306-4522(02)00384-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurotrophin-3 (NT-3), a member of the neurotrophin family of neurotrophic factors, is important for cell survival, axonal growth and neuronal plasticity. Epileptiform activation can regulate the expression of neurotrophins, and increases or decreases in neurotrophins can affect both epileptogenesis and seizure-related axonal growth. Interestingly, the expression of nerve growth factor and brain-derived neurotrophic factor is rapidly up-regulated following seizures, while NT-3 mRNA remains unchanged or undergoes a delayed down-regulation, suggesting that NT-3 might have a different function in epileptogenesis. In the present study, we demonstrate that continuous intraventricular infusion of NT-3 in the absence of kindling triggers mossy fiber sprouting in the inner molecular layer of the dentate gyrus and the stratum oriens of the CA3 region. Furthermore, despite this NT-3-related sprouting effect, continuous infusion of NT-3 retards the development of behavioral seizures and inhibits kindling-induced mossy fiber sprouting in the inner molecular layer of the dentate gyrus. We also show that prolonged infusion of NT-3 leads to a decrease in kindling-induced Trk phosphorylation and a down-regulation of the high-affinity Trk receptors, TrkA and TrkC, suggesting an involvement of both cholinergic nerve growth factor receptors and hippocampal NT-3 receptors in these effects. Our results demonstrate an important inhibitory role for NT-3 in seizure development and seizure-related synaptic reorganization.
Collapse
MESH Headings
- Animals
- Cell Count
- Cytochrome c Group/pharmacology
- Drug Administration Schedule
- Epilepsy/drug therapy
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Growth Cones/drug effects
- Growth Cones/metabolism
- Kindling, Neurologic/drug effects
- Kindling, Neurologic/metabolism
- Male
- Molecular Weight
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/growth & development
- Mossy Fibers, Hippocampal/metabolism
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Neuropil/cytology
- Neuropil/drug effects
- Neurotrophin 3/metabolism
- Neurotrophin 3/pharmacology
- Phosphorylation/drug effects
- Rats
- Rats, Long-Evans
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, trkA/drug effects
- Receptor, trkA/metabolism
- Receptor, trkB/drug effects
- Receptor, trkB/metabolism
- Receptor, trkC/drug effects
- Receptor, trkC/metabolism
- Seizures/drug therapy
- Seizures/metabolism
- Seizures/physiopathology
Collapse
Affiliation(s)
- B Xu
- Department of Psychology, McMaster University, L8S 4K1, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
49
|
Fahnestock M, Garzon D, Holsinger RMD, Michalski B. Neurotrophic factors and Alzheimer's disease: are we focusing on the wrong molecule? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:241-52. [PMID: 12456067 DOI: 10.1007/978-3-7091-6139-5_22] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Brain derived neurotrophic factor (BDNF) promotes cholinergic neuron function and survival. In Alzheimer's disease, BDNF mRNA and protein are decreased in basal forebrain cholinergic neuron target tissues such as cortex and hippocampus. Using RT-PCR, we demonstrate that BDNF is synthesized in basal forebrain, supplying cholinergic neurons with a local as well as a target-derived source of this factor. BDNF mRNA levels are decreased 50% in nucleus basalis of Alzheimer disease patients compared to controls. Thus, not only do the basal forebrain cholinergic neurons have a reduced supply of target-derived BDNF, but also of local BDNF. We also show by Western blotting that human CNS tissue contains both proBDNF and mature BDNF protein. Moreover, we demonstrate a significant (2.25-fold) deficit in proBDNF protein in Alzheimer's disease parietal cortex compared to controls. Thus, reduced BDNF mRNA and protein levels in Alzheimer's disease suggests that BDNF administration may be an effective therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- M Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada.
| | | | | | | |
Collapse
|
50
|
Rumajogee P, Madeira A, Vergé D, Hamon M, Miquel MC. Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J Neurochem 2002; 83:1525-8. [PMID: 12472905 DOI: 10.1046/j.1471-4159.2002.01264.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) and cAMP on the neuronal serotoninergic phenotype were studied in primary cultures of E14 rat embryonic rostral raphe. Short treatments (for 18 h) with BDNF or dibutyryl-cAMP induced an almost two-fold increase in the number of serotoninergic neurones and a dramatic extension and ramification of their neurites. These changes were associated with marked increases in the levels of mRNAs encoding the serotonin transporter, the 5-HT1A and 5-HT1B receptors and the BDNF receptor tyrosine kinase B (TrkB). Concomitant blockade of tyrosine kinases by genistein suppressed all the up-regulating effects of BDNF and cAMP on 5-hydroxytryptamine (5-HT) neurones. These findings suggest that an auto-amplifying mechanism underlies the promoting effect of BDNF on the differentiation of serotoninergic neurones through TrkB activation, which is also triggered by cAMP.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Bucladesine/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Enzyme Inhibitors/pharmacology
- Genistein/pharmacology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Transport Proteins
- Nerve Tissue Proteins
- Neurites/drug effects
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Phenotype
- RNA, Messenger/metabolism
- Raphe Nuclei/cytology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1B
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT1
- Serotonin/metabolism
- Serotonin Plasma Membrane Transport Proteins
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Laboratoire de Neurobiologie des Signaux Intercellulaires, CNRS UMR 7101, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|