1
|
Wang NB, Adewumi HO, Lende-Dorn BA, Beitz AM, O'Shea TM, Galloway KE. Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion. Cell Syst 2025; 16:101206. [PMID: 40086435 DOI: 10.1016/j.cels.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Direct conversion generates patient-specific, disease-relevant cell types, such as neurons, that are rare, limited, or difficult to isolate from common and easily accessible cells, such as skin cells. However, low rates of direct conversion and complex protocols limit scalability and, thus, the potential of cell-fate conversion for biomedical applications. Here, we optimize the conversion protocol by examining process parameters, including transcript design; delivery via adeno-associated virus (AAV), retrovirus, and lentivirus; cell seeding density; and the impact of media conditions. Thus, we report a compact, portable conversion process that boosts proliferation and increases direct conversion of mouse fibroblasts to induced motor neurons (iMNs) to achieve high conversion rates of above 1,000%, corresponding to more than ten motor neurons yielded per cell seeded, which we achieve through expansion. Our optimized, direct conversion process generates functional motor neurons at scales relevant for cell therapies (>107 cells) that graft with the mouse central nervous system. High-efficiency, compact, direct conversion systems will support scaling to patient-specific, neural cell therapies.
Collapse
Affiliation(s)
- Nathan B Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Brittany A Lende-Dorn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Adewumi HO, Berniac GI, McCarthy EA, O'Shea TM. Ischemic and hemorrhagic stroke lesion environments differentially alter the glia repair potential of neural progenitor cell and immature astrocyte grafts. Exp Neurol 2024; 374:114692. [PMID: 38244885 DOI: 10.1016/j.expneurol.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Using cell grafting to direct glia-based repair mechanisms in adult CNS injuries represents a potential therapeutic strategy for supporting functional neural parenchymal repair. However, glia repair directed by neural progenitor cell (NPC) grafts is dramatically altered by increasing lesion size, severity, and mode of injury. To address this, we studied the interplay between astrocyte differentiation and cell proliferation of NPC in vitro to generate proliferating immature astrocytes (ImA) using hysteretic conditioning. ImA maintain proliferation rates at comparable levels to NPC but showed robust immature astrocyte marker expression including Gfap and Vimentin. ImA demonstrated enhanced resistance to myofibroblast-like phenotypic transformations upon exposure to serum enriched environments in vitro compared to NPC and were more effective at scratch wound closure in vitro compared to quiescent astrocytes. Glia repair directed by ImA at acute ischemic striatal stroke lesions was equivalent to NPC but better than quiescent astrocyte grafts. While ischemic injury environments supported enhanced survival of grafts compared to healthy striatum, hemorrhagic lesions were hostile towards both NPC and ImA grafts leading to poor survival and ineffective modulation of natural wound repair processes. Our findings demonstrate that lesion environments, rather than transcriptional pre-graft states, determine the survival, cell-fate, and glia repair competency of cell grafts applied to acute CNS injuries.
Collapse
Affiliation(s)
- Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Gabriela I Berniac
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Emily A McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA.
| |
Collapse
|
3
|
Laperle AH, Moser VA, Avalos P, Lu B, Wu A, Fulton A, Ramirez S, Garcia VJ, Bell S, Ho R, Lawless G, Roxas K, Shahin S, Shelest O, Svendsen S, Wang S, Svendsen CN. Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration. Stem Cell Reports 2023; 18:1629-1642. [PMID: 37084724 PMCID: PMC10444557 DOI: 10.1016/j.stemcr.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeutic potential and safety. Single-nuclei RNA-seq show iNPC-GDNFs express NPC markers. iNPC-GDNFs delivered into the subretinal space of the Royal College of Surgeons rodent model of retinal degeneration preserve photoreceptors and visual function. Additionally, iNPC-GDNF transplants in the spinal cord of SOD1G93A amyotrophic lateral sclerosis (ALS) rats preserve motor neurons. Finally, iNPC-GDNF transplants in the spinal cord of athymic nude rats survive and produce GDNF for 9 months, with no signs of tumor formation or continual cell proliferation. iNPC-GDNFs survive long-term, are safe, and provide neuroprotection in models of both retinal degeneration and ALS, indicating their potential as a combined cell and gene therapy for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander H Laperle
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - V Alexandra Moser
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pablo Avalos
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bin Lu
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amanda Wu
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Fulton
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephany Ramirez
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Veronica J Garcia
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaughn Bell
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ritchie Ho
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - George Lawless
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristina Roxas
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saba Shahin
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oksana Shelest
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Soshana Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaomei Wang
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects. World J Stem Cells 2023; 15:687-700. [PMID: 37545757 PMCID: PMC10401423 DOI: 10.4252/wjsc.v15.i7.687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland.
| |
Collapse
|
5
|
Abbate C. The Adult Neurogenesis Theory of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221279. [PMID: 37182879 DOI: 10.3233/jad-221279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alzheimer's disease starts in neural stem cells (NSCs) in the niches of adult neurogenesis. All primary factors responsible for pathological tau hyperphosphorylation are inherent to adult neurogenesis and migration. However, when amyloid pathology is present, it strongly amplifies tau pathogenesis. Indeed, the progressive accumulation of extracellular amyloid-β deposits in the brain triggers a state of chronic inflammation by microglia. Microglial activation has a significant pro-neurogenic effect that fosters the process of adult neurogenesis and supports neuronal migration. Unfortunately, this "reactive" pro-neurogenic activity ultimately perturbs homeostatic equilibrium in the niches of adult neurogenesis by amplifying tau pathogenesis in AD. This scenario involves NSCs in the subgranular zone of the hippocampal dentate gyrus in late-onset AD (LOAD) and NSCs in the ventricular-subventricular zone along the lateral ventricles in early-onset AD (EOAD), including familial AD (FAD). Neuroblasts carrying the initial seed of tau pathology travel throughout the brain via neuronal migration driven by complex signals and convey the disease from the niches of adult neurogenesis to near (LOAD) or distant (EOAD) brain regions. In these locations, or in close proximity, a focus of degeneration begins to develop. Then, tau pathology spreads from the initial foci to large neuronal networks along neural connections through neuron-to-neuron transmission.
Collapse
Affiliation(s)
- Carlo Abbate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
6
|
Reilly M, Robertson S, Suzuki M. Sphere-Based Expansion of Myogenic Progenitors from Human Pluripotent Stem Cells. Methods Mol Biol 2023; 2640:159-174. [PMID: 36995594 DOI: 10.1007/978-1-0716-3036-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The protocol presented here is to derive, maintain, and differentiate human pluripotent stem cells into skeletal muscle progenitor/stem cells (myogenic progenitors) using a sphere-based culture approach. This sphere-based culture is an attractive method for maintaining progenitor cells due to their longevity and the presence of cell-cell interactions and molecules. Large numbers of cells can be expanded in culture using this method, which represents a valuable source for cell-based tissue modeling and regenerative medicine.
Collapse
Affiliation(s)
- Megan Reilly
- Department of Comparative Biosciences, The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
O'Shea TM, Ao Y, Wang S, Wollenberg AL, Kim JH, Ramos Espinoza RA, Czechanski A, Reinholdt LG, Deming TJ, Sofroniew MV. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun 2022; 13:5702. [PMID: 36171203 PMCID: PMC9519954 DOI: 10.1038/s41467-022-33382-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype.
Collapse
Affiliation(s)
- T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| | - Y Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - S Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - A L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - R A Ramos Espinoza
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - T J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
8
|
Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med 2022; 28:1813-1822. [PMID: 36064599 PMCID: PMC9499868 DOI: 10.1038/s41591-022-01956-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3–5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation. A phase 1/2a study shows that human neural progenitor cells modified to release the growth factor GDNF are safely transplanted into the spinal cord of patients with ALS, with cell survival and GDNF production for over 3 years.
Collapse
|
9
|
Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell Tissue Res 2022; 387:177-205. [PMID: 35001210 DOI: 10.1007/s00441-021-03551-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
Retinal degenerative diseases such as retinitis pigmentosa (RP) are of the major causes of vision loss in developed countries. Despite the unclear pathophysiology, treatment methods have been investigated vastly in the past decades. This review article mainly discusses the advances in application of stem cell and progenitor transplantation for retinitis pigmentosa. Stem cell sources such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal progenitor cells, and olfactory ensheathing cells are discussed separately in addition to a brief description of two approaches for treatment of early-stage RP, including gene therapy and nutritional therapy.
Collapse
|
10
|
Sucha R, Kubickova M, Cervenka J, Hruska-Plochan M, Bohaciakova D, Vodickova Kepkova K, Novakova T, Budkova K, Susor A, Marsala M, Motlik J, Kovarova H, Vodicka P. Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 2021; 10:271174. [PMID: 34357391 PMCID: PMC8353267 DOI: 10.1242/bio.058727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Collapse
Affiliation(s)
- Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martina Kubickova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Tereza Novakova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Katerina Budkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martin Marsala
- Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, Department of Anesthesiology, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Hana Kovarova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| |
Collapse
|
11
|
Armijo E, Edwards G, Flores A, Vera J, Shahnawaz M, Moda F, Gonzalez C, Sanhueza M, Soto C. Induced Pluripotent Stem Cell-Derived Neural Precursors Improve Memory, Synaptic and Pathological Abnormalities in a Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10071802. [PMID: 34359972 PMCID: PMC8303262 DOI: 10.3390/cells10071802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia in the elderly population. The disease is characterized by progressive memory loss, cerebral atrophy, extensive neuronal loss, synaptic alterations, brain inflammation, extracellular accumulation of amyloid-β (Aβ) plaques, and intracellular accumulation of hyper-phosphorylated tau (p-tau) protein. Many recent clinical trials have failed to show therapeutic benefit, likely because at the time in which patients exhibit clinical symptoms the brain is irreversibly damaged. In recent years, induced pluripotent stem cells (iPSCs) have been suggested as a promising cell therapy to recover brain functionality in neurodegenerative diseases such as AD. To evaluate the potential benefits of iPSCs on AD progression, we stereotaxically injected mouse iPSC-derived neural precursors (iPSC-NPCs) into the hippocampus of aged triple transgenic (3xTg-AD) mice harboring extensive pathological abnormalities typical of AD. Interestingly, iPSC-NPCs transplanted mice showed improved memory, synaptic plasticity, and reduced AD brain pathology, including a reduction of amyloid and tangles deposits. Our findings suggest that iPSC-NPCs might be a useful therapy that could produce benefit at the advanced clinical and pathological stages of AD.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7550000, Chile
| | - George Edwards
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Andrea Flores
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Jorge Vera
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800024, Chile; (J.V.); (M.S.)
| | - Mohammad Shahnawaz
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Fabio Moda
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy
| | - Cesar Gonzalez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt 5480000, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800024, Chile; (J.V.); (M.S.)
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7550000, Chile
- Correspondence:
| |
Collapse
|
12
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
14
|
Tierney WM, Uhlendorf TL, Lemus AJ, Ortega BA, Magaña J, Ochoa J, Van Trigt W, Cruz A, Kopyov A, Kopyov OV, Cohen RW. Transplanted Human Neural Progenitor Cells Attenuate Motor Dysfunction and Lengthen Longevity in a Rat Model of Ataxia. Cell Transplant 2020; 29:963689720920275. [PMID: 32314612 PMCID: PMC7444227 DOI: 10.1177/0963689720920275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
The spastic Han Wistar (sHW) rat serves as a model for human ataxia presenting symptoms of motor deterioration, weight loss, shortened lifespan, and Purkinje neuron loss. Past studies revealed that human neural progenitor cells (NPCs) improved ataxic symptoms at 20 d posttransplantation in sHW rats. In this study, we investigated the fate and longer-term effectiveness of these transplanted NPCs. Rats were placed into four treatment groups: an untreated normal control group (n = 10), an untreated mutant rat control (n = 10), a mutant group that received an injection of dead NPCs (n = 9), and a mutant group that received live NPCs (n = 10). Bilateral cerebellar injections containing 500,000 of either live or dead NPCs were performed on mutant sHW rats at 40 d of age. Motor activity for all mutant rats started to decline in open field testing around day 35. However, at day 45, the live NPC-treated mutants exhibited significant improvements in open field activity. Similar improvements were observed during rotarod testing and weight gain through the completion of the experiments (100 d). Immunohistochemistry revealed few surviving human NPCs in the cerebella of 80- and 100-d-old NPC-treated mutants; while cresyl violet staining revealed that live NPC-treated mutants had significantly more surviving Purkinje neurons compared to mutants that were untreated or received dead NPCs. Direct stereotactic implantation of NPCs alleviated the symptoms of ataxia, acting as a neuroprotectant, supporting future clinical applications of these NPCs in the areas of ataxia as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Wesley M. Tierney
- Department of Biology, California State University, Northridge, CA, USA
| | - Toni L. Uhlendorf
- Department of Biology, California State University, Northridge, CA, USA
| | - Aaron J.J. Lemus
- Department of Biology, California State University, Northridge, CA, USA
| | - Bianca A. Ortega
- Department of Biology, California State University, Northridge, CA, USA
| | - Jesse Magaña
- Department of Biology, California State University, Northridge, CA, USA
| | | | | | | | | | | | - Randy W. Cohen
- Department of Biology, California State University, Northridge, CA, USA
| |
Collapse
|
15
|
Yang C, Wang X, Tang X, Wang R, Bao X. Stem-Cell Research of Parkinson Disease: Bibliometric Analysis of Research Productivity from 1999 to 2018. World Neurosurg 2019; 134:e405-e411. [PMID: 31655231 DOI: 10.1016/j.wneu.2019.10.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Although the overall publication trends in Parkinson disease (PD) and characteristics of top-cited articles have been reported, there was only 1 literature analysis published in 2012 with a special focus on stem cells. It is necessary to evaluate and update the global publication trends in stem cell research of PD. METHODS We identified the publications designated as "article" about stem-cell research of PD between 1999 and 2018 in the Web of Science Core Collection. We used HistCite to analyze annual outputs, journals, countries/regions, and institutions every 5 years and visualized global collaborations between publications by VOSviewer. Moreover, to track the growing hotspots, MeSH terms of each publication were obtained by Medical Text Indexer according to the title and abstract. RESULTS We described the publication trends and topic hotspots of stem-cell research of PD by bibliometric analysis of 1709 papers. Researchers showed growing interest in publishing relevant scientific literature in journals associated with stem cells or multidisciplinary science. Stem cell research of PD was more common in developed countries and regions. The United States of America was the most contributive country throughout, accounting for 33% of total publications and ranking first in all 5-year periods. Harvard University was the most productive institution in this area, ranking first during 1999-2003, 2004-2008, and 2009-2013. The application of induced pluripotent stem cells was at the forefront of cell therapies for PD. CONCLUSIONS These bibliometric findings suggest that stem cell research consistently promotes the understanding and treatment of PD.
Collapse
Affiliation(s)
- Chengxian Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Wang
- Institute of Medical Information and Library, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Tang
- Institute of Medical Information and Library, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel Approach to Stem Cell Therapy in Parkinson's Disease. Stem Cells Dev 2019; 27:951-957. [PMID: 29882481 DOI: 10.1089/scd.2018.0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this commentary we discuss International Stem Cell Corporation's (ISCO's) approach to developing a pluripotent stem cell based treatment for Parkinson's disease (PD). In 2016, ISCO received approval to conduct the world's first clinical study of a pluripotent stem cell based therapy for PD. The Australian regulatory agency Therapeutic Goods Administration (TGA) and the Melbourne Health's Human Research Ethics Committee (HREC) independently reviewed ISCO's extensive preclinical data and granted approval for the evaluation of a novel human parthenogenetic derived neural stem cell (NSC) line, ISC-hpNSC, in a PD phase 1 clinical trial ( ClinicalTrials.gov NCT02452723). This is a single-center, open label, dose escalating 12-month study with a 5-year follow-up evaluating a number of objective and patient-reported safety and efficacy measures. A total of 6 years of safety and efficacy data will be collected from each patient. Twelve participants are recruited in this study with four participants per single dose cohort of 30, 50, and 70 million ISC-hpNSC. The grafts are placed bilaterally in the caudate nucleus, putamen, and substantia nigra by magnetic resonance imaging-guided stereotactic surgery. Participants are 30-70 years old with idiopathic PD ≤13 years duration and unified PD rating scale motor score (Part III) in the "OFF" state ≤49. This trial is fully funded by ISCO with no economic involvement from the patients. It is worth noting that ISCO underwent an exhaustive review process and successfully answered the very comprehensive, detailed, and specific questions posed by the TGA and HREC. The regulatory/ethic review process is based on applying scientific and clinical expertise to decision-making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines or novel therapies.
Collapse
Affiliation(s)
| | | | - Glenn Sherman
- 1 International Stem Cell Corporation , Carlsbad, California
| | | | - Andrew Evans
- 2 Royal Melbourne Hospital , Parkville, Australia
| | - Russell Kern
- 1 International Stem Cell Corporation , Carlsbad, California.,3 Cyto Therapeutics , Melbourne, Australia
| |
Collapse
|
17
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M. Stem cell-based therapy for Parkinson's disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 2018; 234:1326-1335. [PMID: 30146713 DOI: 10.1002/jcp.27182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) as an increasing clinical syndrome is a multifunctional impairment with systemic involvement. At present, therapeutic approaches such as l-3,4-dihydroxy-phenylalanine replacement therapy, dopaminergic agonist administration, and neurosurgical treatment intend to relieve PD symptoms which are palliative and incompetent in counteracting PD progression. These mentioned therapies have not been able to replace the lost cells and they could not effectively slow down the relentless neurodegenerative process. Till now, there is a lack of eligible treatment for PD, and stem cells therapy recently has been considered for PD treatment. In this review, we demonstrate how human stem cell technology especially human endometrium-derived stem cells have made advancement as a therapeutic source for PD compared with other treatments.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Moradian Tehrani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran.,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Neural precursor cells form integrated brain-like tissue when implanted into rat cerebrospinal fluid. Commun Biol 2018; 1:114. [PMID: 30271994 PMCID: PMC6123740 DOI: 10.1038/s42003-018-0113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/15/2018] [Indexed: 11/30/2022] Open
Abstract
There is tremendous interest in transplanting neural precursor cells for brain tissue regeneration. However, it remains unclear whether a vascularized and integrated complex neural tissue can be generated within the brain through transplantation of cells. Here, we report that early stage neural precursor cells recapitulate their seminal properties and develop into large brain-like tissue when implanted into the rat brain ventricle. Whereas the implanted cells predominantly differentiated into glutamatergic neurons and astrocytes, the host brain supplied the intact vasculature, oligodendrocytes, GABAergic interneurons, and microglia that seamlessly integrated into the new tissue. Furthermore, local and long-range axonal connections formed mature synapses between the host brain and the graft. Implantation of precursor cells into the CSF-filled cavity also led to a formation of brain-like tissue that integrated into the host cortex. These results may constitute the basis of future brain tissue replacement strategies. Nikorn Pothayee et al. show that early neural precursor cells (NPCs) derived from the embryonic telencephalon or midbrain can develop into brain-like tissue when implanted into the rat brain ventricle. Telencephalon-derived NPCs also form brain tissue in the host cortex when implanted into a CSF-filled cavity formed by cortical ablation.
Collapse
|
20
|
Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB, Ohm JE. MPP + decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep 2018; 8:11715. [PMID: 30082759 PMCID: PMC6079049 DOI: 10.1038/s41598-018-29528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons (DNs), with currently available therapeutics, such as L-Dopa, only able to relieve some symptoms. Stem cell replacement is an attractive therapeutic option for PD patients, and DNs derived by differentiating patient specific stem cells under defined in-vitro conditions may present a viable opportunity to replace dying neurons. We adopted a previously published approach to differentiate Mesenchymal Stem Cells (MSCs) into DN using a 12-day protocol involving FGF-2, bFGF, SHH ligand and BDNF. While MSC-derived DNs have been characterized for neuronal markers and electrophysiological properties, we investigated store-operated calcium entry (SOCE) mechanisms of these DNs under normal conditions, and upon exposure to environmental neurotoxin, 1-methyl, 4-phenyl pyridinium ion (MPP+). Overall, we show that MSC-derived DNs are functional with regard to SOCE mechanisms, and MPP+ exposure dysregulates calcium signaling, making them vulnerable to neurodegeneration. Since in-vitro differentiation of MSCs into DNs is an important vehicle for PD disease modeling and regenerative medicine, the results of this study may help with understanding of the pathological mechanisms underlying PD.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Sumali Pandey
- Biosciences Department, Minnesota State University, Moorhead, Moorhead, MN, USA
| | - Kristen M Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - James D Foster
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, 58203, USA
| | - Brij B Singh
- School of Dentistry, UT Health Science Center San Antonio, TX, 78229, San Antonio, USA.
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
21
|
Lee JM, Moon JY, Shaker MR, Sun W, Chung BG. Uniform-sized neurosphere-mediated motoneuron differentiation in microwell arrays. Electrophoresis 2017; 38:3161-3167. [DOI: 10.1002/elps.201700118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jong Min Lee
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| | - Joo Yoon Moon
- Department of Biomedical Engineering; Sogang University; Seoul Korea
| | - Mohammed R. Shaker
- Department of Anatomy, Brain Korea 21 Program; Korea University College of Medicine; Seoul Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Program; Korea University College of Medicine; Seoul Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering; Sogang University; Seoul Korea
| |
Collapse
|
22
|
Dhivya V, Balachandar V. Cell replacement therapy is the remedial solution for treating Parkinson's disease. Stem Cell Investig 2017; 4:59. [PMID: 28725655 DOI: 10.21037/sci.2017.06.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/25/2017] [Indexed: 01/14/2023]
Abstract
The selective degeneration of dopaminergic (DA) neurons in Parkinson's disease (PD) has made an idol target for cell replacement therapies and other emerging surgical treatments. Certainly, by transplantation method, the therapeutic regimens such as human fetal ventral midbrain (hfVM) cells, human embryonic stem cells (hESCs), human neural stem/precursor/ progenitor cells (hNSCs/hNPCs), human mesenchymal stem cells (hMSCs), human induced neural stem cells (hiNSCs), and human induced pluripotent stem cells (hiPSCs) have been used into DA deficient striatum. In recent decades, surgical methods such as deep brain stimulation (DBS) and gene therapies have been used with the aim of treating PD. Though the technology has improved and many treating options arise, the permanent source for curing PD has not been identified yet. In this review, we examine how stem cell therapies have made advancement as a therapeutic source for PD when compared with surgical treatments.
Collapse
Affiliation(s)
- Venkatesan Dhivya
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
23
|
Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH. Neural Repair Strategies for Parkinson's Disease: Insights from Primate Models. Cell Transplant 2017; 15:251-65. [PMID: 16719060 DOI: 10.3727/000000006783982025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nonhuman primate models of Parkinson's disease (PD) have been invaluable to our understanding of the human disease and in the advancement of novel therapies for its treatment. In this review, we attempt to give a brief overview of the animal models of PD currently used, with a more comprehensive focus on the advantages and disadvantages presented by their use in the nonhuman primate. In particular, discussion addresses the 6-hydroxydopamine (6-OHDA), 1-methyl-1,2,3,6-tetrahydopyridine (MPTP), rotenone, paraquat, and maneb parkinsonian models. Additionally, the role of primate PD models in the development of novel therapies, such as trophic factor delivery, grafting, and deep brain stimulation, are described. Finally, the contribution of primate PD models to our understanding of the etiology and pathology of human PD is discussed.
Collapse
Affiliation(s)
- Katherine Soderstrom
- Department of Neurological Science, Research Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
24
|
Mizumoto H, Mizumoto K, Whiteley SJO, Shatos M, Klassen H, Young MJ. Transplantation of Human Neural Progenitor Cells to the Vitreous Cavity of the Royal College of Surgeons Rat. Cell Transplant 2017. [DOI: 10.3727/000000001783986936] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hiroyuki Mizumoto
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Keiko Mizumoto
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Simon J. O. Whiteley
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Marie Shatos
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Henry Klassen
- CHOC Research, Children's Hospital of Orange County, Orange, CA 92868
| | - Michael J. Young
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
25
|
Affiliation(s)
- Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Jieli Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
- Department of Physics, Oakland University, Rochester, MI 48309
| |
Collapse
|
26
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
28
|
Goldberg NRS, Marsh SE, Ochaba J, Shelley BC, Davtyan H, Thompson LM, Steffan JS, Svendsen CN, Blurton-Jones M. Human Neural Progenitor Transplantation Rescues Behavior and Reduces α-Synuclein in a Transgenic Model of Dementia with Lewy Bodies. Stem Cells Transl Med 2017; 6:1477-1490. [PMID: 28225193 PMCID: PMC5464354 DOI: 10.1002/sctm.16-0362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/11/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders sharing the common feature of misfolding and accumulation of the presynaptic protein α‐synuclein (α‐syn) into insoluble aggregates. Within this diverse group, Dementia with Lewy Bodies (DLB) is characterized by the aberrant accumulation of α‐syn in cortical, hippocampal, and brainstem neurons, resulting in multiple cellular stressors that particularly impair dopamine and glutamate neurotransmission and related motor and cognitive function. Recent studies show that murine neural stem cell (NSC) transplantation can improve cognitive or motor function in transgenic models of Alzheimer's and Huntington's disease, and DLB. However, examination of clinically relevant human NSCs in these models is hindered by the challenges of xenotransplantation and the confounding effects of immunosuppressant drugs on pathology and behavior. To address this challenge, we developed an immune‐deficient transgenic model of DLB that lacks T‐, B‐, and NK‐cells, yet exhibits progressive accumulation of human α‐syn (h‐α‐syn)‐laden inclusions and cognitive and motor impairments. We demonstrate that clinically relevant human neural progenitor cells (line CNS10‐hNPCs) survive, migrate extensively and begin to differentiate preferentially into astrocytes following striatal transplantation into this DLB model. Critically, grafted CNS10‐hNPCs rescue both cognitive and motor deficits after 1 and 3 months and, furthermore, restore striatal dopamine and glutamate systems. These behavioral and neurochemical benefits are likely achieved by reducing α‐syn oligomers. Collectively, these results using a new model of DLB demonstrate that hNPC transplantation can impact a broad array of disease mechanisms and phenotypes and suggest a cellular therapeutic strategy that should be pursued. Stem Cells Translational Medicine2017;6:1477–1490
Collapse
Affiliation(s)
- Natalie R S Goldberg
- Department of Neurobiology and Behavior, Irvine, California, USA.,Sue and Bill Gross Stem Cell Research Center, Irvine, California, USA.,Institute for Memory Impairments and Neurological Disorders, Irvine, California, USA
| | - Samuel E Marsh
- Department of Neurobiology and Behavior, Irvine, California, USA.,Sue and Bill Gross Stem Cell Research Center, Irvine, California, USA.,Institute for Memory Impairments and Neurological Disorders, Irvine, California, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, Irvine, California, USA.,Institute for Memory Impairments and Neurological Disorders, Irvine, California, USA
| | - Brandon C Shelley
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, California, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, Irvine, California, USA.,Sue and Bill Gross Stem Cell Research Center, Irvine, California, USA.,Institute for Memory Impairments and Neurological Disorders, Irvine, California, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Clive N Svendsen
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, Irvine, California, USA.,Sue and Bill Gross Stem Cell Research Center, Irvine, California, USA.,Institute for Memory Impairments and Neurological Disorders, Irvine, California, USA
| |
Collapse
|
29
|
Gowing G, Svendsen S, Svendsen CN. Ex vivo gene therapy for the treatment of neurological disorders. PROGRESS IN BRAIN RESEARCH 2017; 230:99-132. [PMID: 28552237 DOI: 10.1016/bs.pbr.2016.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ex vivo gene therapy involves the genetic modification of cells outside of the body to produce therapeutic factors and their subsequent transplantation back into patients. Various cell types can be genetically engineered. However, with the explosion in stem cell technologies, neural stem/progenitor cells and mesenchymal stem cells are most often used. The synergy between the effect of the new cell and the additional engineered properties can often provide significant benefits to neurodegenerative changes in the brain. In this review, we cover both preclinical animal studies and clinical human trials that have used ex vivo gene therapy to treat neurological disorders with a focus on Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, and stroke. We highlight some of the major advances in this field including new autologous sources of pluripotent stem cells, safer ways to introduce therapeutic transgenes, and various methods of gene regulation. We also address some of the remaining hurdles including tunable gene regulation, in vivo cell tracking, and rigorous experimental design. Overall, given the current outcomes from researchers and clinical trials, along with exciting new developments in ex vivo gene and cell therapy, we anticipate that successful treatments for neurological diseases will arise in the near future.
Collapse
Affiliation(s)
- Genevieve Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Soshana Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
31
|
Sugai K, Fukuzawa R, Shofuda T, Fukusumi H, Kawabata S, Nishiyama Y, Higuchi Y, Kawai K, Isoda M, Kanematsu D, Hashimoto-Tamaoki T, Kohyama J, Iwanami A, Suemizu H, Ikeda E, Matsumoto M, Kanemura Y, Nakamura M, Okano H. Pathological classification of human iPSC-derived neural stem/progenitor cells towards safety assessment of transplantation therapy for CNS diseases. Mol Brain 2016; 9:85. [PMID: 27642008 PMCID: PMC5027634 DOI: 10.1186/s13041-016-0265-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.
Collapse
Affiliation(s)
- Keiko Sugai
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Ryuji Fukuzawa
- Department of Pathology, Tokyo Metropolitan Children's Medical Center, Fuchu, Tokyo, 183-8561, Japan
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Soya Kawabata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Nishiyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuichiro Higuchi
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Miho Isoda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Regenerative & Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo, 650-0047, Japan
| | - Daisuke Kanematsu
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | | | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Akio Iwanami
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan.,Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, 540-0006, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
| |
Collapse
|
32
|
Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J, Lin Z, Xiong N, Wang T. A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Front Aging Neurosci 2016; 8:117. [PMID: 27303288 PMCID: PMC4885841 DOI: 10.3389/fnagi.2016.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson's Disease (PD) is a progressively neurodegenerative disorder, implicitly characterized by a stepwise loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and explicitly marked by bradykinesia, rigidity, resting tremor and postural instability. Currently, therapeutic approaches available are mainly palliative strategies, including L-3,4-dihydroxy-phenylalanine (L-DOPA) replacement therapy, DA receptor agonist and deep brain stimulation (DBS) procedures. As the disease proceeds, however, the pharmacotherapeutic efficacy is inevitably worn off, worse still, implicated by side effects of motor response oscillations as well as L-DOPA induced dyskinesia (LID). Therefore, the frustrating status above has propeled the shift to cell replacement therapy (CRT), a promising restorative therapy intending to secure a long-lasting relief of patients' symptoms. By far, stem cell lines of multifarious origins have been established, which can be further categorized into embryonic stem cells (ESCs), neural stem cells (NSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). In this review, we intend to present a compendium of preparation and application of multifarious stem cells, especially in relation to PD research and therapy. In addition, the current status, potential challenges and future prospects for practical CRT in PD patients will be elaborated as well.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Ling Liu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiaoyun Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Chao Han
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Haiyang Jiang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jie Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Tao Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
33
|
Das MM, Avalos P, Suezaki P, Godoy M, Garcia L, Chang CD, Vit JP, Shelley B, Gowing G, Svendsen CN. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats. Exp Neurol 2016; 280:41-9. [PMID: 27032721 DOI: 10.1016/j.expneurol.2016.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
Age-associated health decline presents a significant challenge to healthcare, although there are few animal models that can be used to test potential treatments. Here, we show that there is a significant reduction in both spinal cord motor neurons and motor function over time in the aging rat. One explanation for this motor neuron loss could be reduced support from surrounding aging astrocytes. Indeed, we have previously shown using in vitro models that aging rat astrocytes are less supportive to rat motor neuron function and survival over time. Here, we test whether rejuvenating the astrocyte niche can improve the survival of motor neurons in an aging spinal cord. We transplanted fetal-derived human neural progenitor cells (hNPCs) into the aging rat spinal cord and found that the cells survive and differentiate into astrocytes with a much higher efficiency than when transplanted into younger animals, suggesting that the aging environment stimulates astrocyte maturation. Importantly, the engrafted astrocytes were able to protect against motor neuron loss associated with aging, although this did not result in an increase in motor function based on behavioral assays. We also transplanted hNPCs genetically modified to secrete glial cell line-derived neurotrophic factor (GDNF) into the aging rat spinal cord, as this combination of cell and protein delivery can protect motor neurons in animal models of ALS. During aging, GDNF-expressing hNPCs protected motor neurons, though to the same extent as hNPCs alone, and again had no effect on motor function. We conclude that hNPCs can survive well in the aging spinal cord, protect motor neurons and mature faster into astrocytes when compared to transplantation into the young spinal cord. While there was no functional improvement, there were no functional deficits either, further supporting a good safety profile of hNPC transplantation even into the older patient population.
Collapse
Affiliation(s)
- Melanie M Das
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Pablo Avalos
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patrick Suezaki
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Marlesa Godoy
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Leslie Garcia
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Christine D Chang
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jean-Philippe Vit
- Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brandon Shelley
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Genevieve Gowing
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Clive N Svendsen
- The Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
34
|
Differentiated Cells Derived from Fetal Neural Stem Cells Improve Motor Deficits in a Rat Model of Parkinson's Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.18679/cn11-6030_r.2015.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective Parkinson's disease (PD), which is one of the most common neurodegenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods NSCs were isolated from 14-week-old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βIII-tubulin and microtubule-associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6-OHDA-lesioned PD rats. Results The motor behaviors of the PD rats were assessed by the number of apomorphine-induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine-induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.
Collapse
|
35
|
Abeysinghe HCS, Bokhari L, Quigley A, Choolani M, Chan J, Dusting GJ, Crook JM, Kobayashi NR, Roulston CL. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res Ther 2015; 6:186. [PMID: 26420220 PMCID: PMC4588906 DOI: 10.1186/s13287-015-0175-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. METHODS Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. RESULTS Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. CONCLUSION Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.
Collapse
Affiliation(s)
- Hima C S Abeysinghe
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
| | - Laita Bokhari
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - Anita Quigley
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Jerry Chan
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Gregory J Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Melbourne, VIC, Australia.
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| | - Jeremy M Crook
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Nao R Kobayashi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Carli L Roulston
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
36
|
Bernau K, Lewis CM, Petelinsek AM, Reagan MS, Niles DJ, Mattis VB, Meyerand ME, Suzuki M, Svendsen CN. In Vivo Tracking of Human Neural Progenitor Cells in the Rat Brain Using Magnetic Resonance Imaging Is Not Enhanced by Ferritin Expression. Cell Transplant 2015; 25:575-92. [PMID: 26160767 DOI: 10.3727/096368915x688614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rapid growth in the field of stem cell research has generated a lot of interest in their therapeutic use, especially in the treatment of neurodegenerative diseases. Specifically, human neural progenitor cells (hNPCs), unique in their capability to differentiate into cells of the neural lineage, have been widely investigated due to their ability to survive, thrive, and migrate toward injured tissues. Still, one of the major roadblocks for clinical applicability arises from the inability to monitor these cells following transplantation. Molecular imaging techniques, such as magnetic resonance imaging (MRI), have been explored to assess hNPC transplant location, migration, and survival. Here we investigated whether inducing hNPCs to overexpress ferritin (hNPCs(Fer)), an iron storage protein, is sufficient to track these cells long term in the rat striatum using MRI. We found that increased hypointensity on MRI images could establish hNPC(Fer) location. Unexpectedly, however, wild-type hNPC transplants were detected in a similar manner, which is likely due to increased iron accumulation following transplantation-induced damage. Hence, we labeled hNPCs with superparamagnetic iron oxide (SPIO) nanoparticles to further increase iron content in an attempt to enhance cell contrast in MRI. SPIO-labeling of hNPCs (hNPCs-SPIO) achieved increased hypointensity, with significantly greater area of decreased T2* compared to hNPC(Fer) (p < 0.0001) and all other controls used. However, none of the techniques could be used to determine graft rejection in vivo, which is imperative for understanding cell behavior following transplantation. We conclude that in order for cell survival to be monitored in preclinical and clinical settings, another molecular imaging technique must be employed, including perhaps multimodal imaging, which would utilize MRI along with another imaging modality.
Collapse
Affiliation(s)
- Ksenija Bernau
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Akhtar AA, Breunig JJ. Lost highway(s): barriers to postnatal cortical neurogenesis and implications for brain repair. Front Cell Neurosci 2015; 9:216. [PMID: 26136658 PMCID: PMC4468390 DOI: 10.3389/fncel.2015.00216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/21/2015] [Indexed: 11/13/2022] Open
Abstract
The genesis of the cerebral cortex is a highly complex and tightly-orchestrated process of cell division, migration, maturation, and integration. Developmental missteps often have catastrophic consequences on cortical function. Further, the cerebral cortex, in which neurogenesis takes place almost exclusively prenatally, has a very poor capacity for replacement of neurons lost to injury or disease. A multitude of factors underlie this deficit, including the depletion of radial glia, the gliogenic switch which mitigates continued neurogenesis, diminished neuronal migratory streams, and inflammatory processes associated with disease. Despite this, there are glimmers of hope that new approaches may allow for more significant cortical repair. Herein, we review corticogenesis from the context of regeneration and detail the strategies to promote neurogenesis, including interneuron transplants and glial reprogramming. Such strategies circumvent the "lost highways" which are critical for cortical development but are absent in the adult. These new approaches may provide for the possibility of meaningful clinical regeneration of elements of cortical circuitry lost to trauma and disease.
Collapse
Affiliation(s)
- Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
38
|
Bagga V, Dunnett S, Fricker R. The 6-OHDA mouse model of Parkinson's disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res 2015; 288:107-17. [DOI: 10.1016/j.bbr.2015.03.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/20/2022]
|
39
|
Akhtar AA, Molina J, Dutra-Clarke M, Kim GB, Levy R, Schreiber-Stainthorp W, Danielpour M, Breunig JJ. A transposon-mediated system for flexible control of transgene expression in stem and progenitor-derived lineages. Stem Cell Reports 2015; 4:323-31. [PMID: 25702640 PMCID: PMC4375828 DOI: 10.1016/j.stemcr.2015.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/17/2022] Open
Abstract
Precise methods for transgene regulation are important to study signaling pathways and cell lineages in biological systems where gene function is often recycled within and across lineages. We engineered a genetic toolset for flexible transgene regulation in these diverse cellular contexts. Specifically, we created an optimized piggyBac transposon-based system, allowing for the facile generation of stably transduced cell lineages in vivo and in vitro. The system, termed pB-Tet-GOI (piggyBac-transposable tetracycline transactivator-mediated flexible expression of a genetic element of interest), incorporates the latest generation of tetracycline (Tet) transactivator and reverse Tet transactivator variants—along with engineered mutants—in order to provide regulated transgene expression upon addition or removal of doxycycline (dox). Altogether, the flexibility of the system allows for dox-induced, dox-suppressed, dox-resistant (i.e., constitutive), and dox-induced/constitutive regulation of transgenes. This versatile strategy provides reversible temporal regulation of transgenes with robust inducibility and minimal leakiness. pB-Tet-GOI features the latest generation of Tet transactivators (tTAs) and variants piggyBac transposition allows for genomic insertion of pb-Tet-GOI pb-Tet-GOI provides flexible control of transgenes in vitro and in vivo tTA variants permit reversible, constitutive, or induced constitutive expression
Collapse
Affiliation(s)
- Aslam Abbasi Akhtar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Molina
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Dutra-Clarke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gi Bum Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rachelle Levy
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Moise Danielpour
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua J Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
40
|
Lu B, Lin Y, Tsai Y, Girman S, Adamus G, Jones MK, Shelley B, Svendsen CN, Wang S. A Subsequent Human Neural Progenitor Transplant into the Degenerate Retina Does Not Compromise Initial Graft Survival or Therapeutic Efficacy. Transl Vis Sci Technol 2015; 4:7. [PMID: 25694843 PMCID: PMC4324446 DOI: 10.1167/tvst.4.1.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Stem and progenitor cell transplantation provides a promising clinical application for treating degenerative retinal diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Our previous studies have shown that a single subretinal injection of human cortical-derived neural progenitor cells (hNPCctx) into cyclosporine-treated Royal College of Surgeons (RCS) rats preserved both photoreceptors and visual function. However, it is still unknown whether nonautologous progenitor cell readministration for sustained vision is efficacious and safe in terms of the initial graft initiating an immune response to a subsequent graft. METHODS A cell suspension containing 3×104 hNPCctx into one eye of cyclosporine-treated RCS rats at postnatal day 21 (P21), followed by a second transplantation at P95 into the previously untreated fellow eye. RESULTS hNPCctx delayed photoreceptor degeneration and preserved visual function, as measured by electroretinography (ERG), optokinetic response (OKR), and luminance threshold recordings (LTRs). Visual function and photoreceptors of the initially treated eye were still preserved 6 weeks after hNPCctx were injected into the second eye. Antibodies against T-cell markers showed that CD3, CD4, and CD8 T cells were not detected at P90 and P140 in most cases. No detectable level of anti-nestin antibody was found in serum by enzyme-linked immunosorbent assay (ELISA). CONCLUSIONS This xenograft study with cyclosporine-treated animals demonstrates that readministration of hNPCctx into the fellow eye did not induce anti-graft immune responses or lower therapeutic efficacy of hNPCctx in preserving vision. Thus, readministration of progenitor cells to sustain long-term efficacy may be an option for long-term therapies of retinal degeneration. TRANSLATIONAL RELEVANCE Redosing neural progenitors do not affect the efficacy of the initial grafts in protecting vision or induce unwanted immune responses.
Collapse
Affiliation(s)
- Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanhua Lin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuchun Tsai
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Melissa K. Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brandon Shelley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
41
|
Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2015; 23:441-58. [PMID: 24816443 DOI: 10.3727/096368914x678454] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polyglutamine (polyQ) diseases are a group of neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding a long polyQ tract in the respective proteins. To date, a total of nine polyQ disorders have been described: six spinocerebellar ataxias (SCA) types 1, 2, 6, 7, 17; Machado-Joseph disease (MJD/SCA3); Huntington's disease (HD); dentatorubral pallidoluysian atrophy (DRPLA); and spinal and bulbar muscular atrophy, X-linked 1 (SMAX1/SBMA). PolyQ diseases are characterized by the pathological expansion of CAG trinucleotide repeat in the translated region of unrelated genes. The translated polyQ is aggregated in the degenerated neurons leading to the dysfunction and degeneration of specific neuronal subpopulations. Although animal models of polyQ disease for understanding human pathology and accessing disease-modifying therapies in neurodegenerative diseases are available, there is neither a cure nor prevention for these diseases, and only symptomatic treatments for polyQ diseases currently exist. Long-term pharmacological treatment is so far disappointing, probably due to unwanted complications and decreasing drug efficacy. Cellular transplantation of stem cells may provide promising therapeutic avenues for restoration of the functions of degenerative and/or damaged neurons in polyQ diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
Bang SY, Kwon SH, Yi SH, Yi SA, Park EK, Lee JC, Jang CG, You JS, Lee SH, Han JW. Epigenetic activation of the Foxa2 gene is required for maintaining the potential of neural precursor cells to differentiate into dopaminergic neurons after expansion. Stem Cells Dev 2014; 24:520-33. [PMID: 25233056 DOI: 10.1089/scd.2014.0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of forkhead box protein A2 (Foxa2) expression in fetal ventral mesencephalon (VM)-derived neural precursor cells (NPCs) appears to be associated with the loss of their potential to differentiate into dopaminergic (DA) neurons after mitogenic expansion in vitro, hindering their efficient use as a transplantable cell source. Here, we report that epigenetic activation of Foxa2 in VM-derived NPCs by inducing histone hyperacetylation rescues the mitogenic-expansion-dependent decrease of differentiation potential to DA neurons. The silencing of Foxa2 gene expression after expansion is accompanied by repressive histone modifications, including hypoacetylation of histone H3 and H4 and trimethylation of H3K27 on the Foxa2 promoter, as well as on the global level. In addition, histone deacetylase 7 (HDAC7) is highly expressed during differentiation and recruited to the Foxa2 promoter. Induction of histone acetylation in VM-derived NPCs by either knockdown of HDAC7 or treatment with the HDAC inhibitor apicidin upregulates Foxa2 expression via hyperacetylation of H3 and a decrease in H3K27 trimethylation on the promoter regions, leading to the expression of DA neuron developmental genes and enhanced differentiation of DA neurons. These effects are antagonized by the expression of shRNAs specific for Foxa2 but enhanced by shRNA for HDAC7. Collectively, these findings indicate that loss of differentiation potential of expanded VM-derived NPCs is attributed to a decrease in Foxa2 expression and suggest that activation of the endogenous Foxa2 gene by epigenetic regulation might be an approach to enhance the generation of DA neurons.
Collapse
Affiliation(s)
- So-Young Bang
- 1 Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University , Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cell based therapies in Parkinson's Disease. Ann Neurosci 2014; 18:76-83. [PMID: 25205926 PMCID: PMC4117039 DOI: 10.5214/ans.0972.7531.1118209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/09/2011] [Accepted: 04/30/2011] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is characterized by bradykinesia, hypokinesia/ akinesia, rigidity, tremor, and postural instability, caused by dopaminergic (DA) striatal denervation. The prevalence of PD increases from 50 years of age with steep rise after age 60 years. Current treatment of PD relies heavily on replacing lost dopamine either with its precursor L-dopa or dopamine agonists (ropinirole, pramipexole, bromocriptine, lisuride etc). Other pharmacological measures like catechol-O-methyltrasferase (COMT) inhibitors like entacopone, telcapone and monoamine oxidase B (MAO-B) inhibitors like selegiline and rasagiline are also useful, while L-dopa remains the gold standard in the treatment of PD. Emerging therapies are focusing on cell based therapeutics derived from various sources.
Collapse
|
45
|
BDNF increases survival and neuronal differentiation of human neural precursor cells cotransplanted with a nanofiber gel to the auditory nerve in a rat model of neuronal damage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:356415. [PMID: 25243135 PMCID: PMC4160623 DOI: 10.1155/2014/356415] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/02/2014] [Accepted: 07/29/2014] [Indexed: 12/03/2022]
Abstract
Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM). Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel), in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC) integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF) treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN).
Collapse
|
46
|
Mortazavi MM, Harmon OA, Adeeb N, Deep A, Tubbs RS. Treatment of spinal cord injury: a review of engineering using neural and mesenchymal stem cells. Clin Anat 2014; 28:37-44. [PMID: 25156268 DOI: 10.1002/ca.22443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/16/2022]
Abstract
Over time, various treatment modalities for spinal cord injury have been trialed, including pharmacological and nonpharmacological methods. Among these, replacement of the injured neural and paraneural tissues via cellular transplantation of neural and mesenchymal stem cells has been the most attractive. Extensive experimental studies have been done to identify the safety and effectiveness of this transplantation in animal and human models. Herein, we review the literature for studies conducted, with a focus on the human-related studies, recruitment, isolation, and transplantation, of these multipotent stem cells, and associated outcomes.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, University of Washington, Seattle, Washington
| | | | | | | | | |
Collapse
|
47
|
Ganz J, Arie I, Buch S, Zur TB, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS One 2014; 9:e100445. [PMID: 24945922 PMCID: PMC4063966 DOI: 10.1371/journal.pone.0100445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/28/2014] [Indexed: 11/23/2022] Open
Abstract
Achieving safe and readily accessible sources for cell replacement therapy in Parkinson’s disease (PD) is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC) was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-dopaminergic phenotype in vitro in response to dopaminergic developmental cues and tested their therapeutic potential in the hemi-Parkinsonian rat model. We found that hOMSC express constitutively a repertoire of neuronal and dopaminergic markers and pivotal transcription factors. Soluble developmental factors induced a reproducible neuronal-like morphology in the majority of hOMSC, downregulated stem cells markers, upregulated the expression of the neuronal and dopaminergic markers that resulted in dopamine release capabilities. Transplantation of these dopaminergic-induced hOMSC into the striatum of hemi-Parkinsonian rats improved their behavioral deficits as determined by amphetamine-induced rotational behavior, motor asymmetry and motor coordination tests. Human TH expressing cells and increased levels of dopamine in the transplanted hemispheres were observed 10 weeks after transplantation. These results demonstrate for the first time that soluble factors involved in the development of DA neurons, induced a DA phenotype in hOMSC in vitro that significantly improved the motor function of hemiparkinsonian rats. Based on their neural-related origin, their niche accessibility by minimal-invasive procedures and their propensity for DA differentiation, hOMSC emerge as an attractive tool for autologous cell replacement therapy in PD.
Collapse
Affiliation(s)
- Javier Ganz
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ina Arie
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Buch
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben Zur
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yael Barhum
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Sammy Pour
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Shareef Araidy
- Oral & Maxillofacial Dept., Baruch Padeh Medical Center, Poria, Lower Galilee, Israel
| | - Sandu Pitaru
- Oral Biology Dept., School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Neurosciences Laboratory, Felsenstein Medical Research Center-Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
48
|
Wei F, Li M, Cheng SY, Wen L, Liu MH, Shuai J. Cloning, expression, and functional characterization of the rat Pax6 5a orthologous splicing variant. Gene 2014; 547:169-74. [PMID: 24952136 DOI: 10.1016/j.gene.2014.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Pax6 functions as a pleiotropic regulator in eye development and neurogenesis. Its splice variant Pax6 5a has been cloned in many vertebrate species including human and mouse, but never in rat. This study focused on the cloning and characterization of the Pax6 5a orthologous splicing variant in rat. It was cloned from Sprague-Dawley rats 10 days post coitum (E10) by RT-PCR and was sequenced for comparison with Pax6 sequences in the GenBank by BLAST. The rat Pax6 5a was revealed to contain an additional 42 bp insertion at the paired domain. At the nucleotide level, the rat Pax6 5a coding sequence (1,311 bp) had a higher degree of homology to the mouse (96% identical) than to the human (93% identical) sequence. At the amino acid (aa) level, rat PAX6 5a shares 99.8% identity with the mouse sequence and 99.5% with the human sequence. The splice variant is preferentially expressed in the rat E10 embryonic headfolds and not in the trunk of neurula. Its effects on the proliferation of rat mesenchymal stem cells (rMSCs) were preliminarily evaluated by the MTT assay. Both pLEGFP-Pax6 5a-transfected cells and pLEGFP-Pax6-transfected cells exhibited a similar growth curve (P>0.05), suggesting that the Pax6 5a has a similar effect on the proliferation of rMSCs as Pax6.
Collapse
Affiliation(s)
- Fei Wei
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Min Li
- Reproductive Center & Gynecology Department of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Sai-Yu Cheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Wen
- Trauma Center & Emergency Room of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ming-Hua Liu
- Trauma Center & Emergency Room of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jie Shuai
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
49
|
Shelley BC, Gowing G, Svendsen CN. A cGMP-applicable expansion method for aggregates of human neural stem and progenitor cells derived from pluripotent stem cells or fetal brain tissue. J Vis Exp 2014. [PMID: 24962813 DOI: 10.3791/51219] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as "chopping" that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Collapse
|
50
|
Wakeman DR, Redmond DE, Dodiya HB, Sladek JR, Leranth C, Teng YD, Samulski RJ, Snyder EY. Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target. Stem Cells Transl Med 2014; 3:692-701. [PMID: 24744393 DOI: 10.5966/sctm.2013-0208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition.
Collapse
Affiliation(s)
- Dustin R Wakeman
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - D Eugene Redmond
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hemraj B Dodiya
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John R Sladek
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Csaba Leranth
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yang D Teng
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Evan Y Snyder
- Graduate Program in Biomedical Sciences, University of California at San Diego, La Jolla, California, USA; Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, California, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA; Departments of Psychiatry, Neurosurgery, and Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Neurology, University of Colorado School of Medicine, Denver, Colorado, USA; Department of Neurosurgery and Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA; Gene Therapy Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|