1
|
Meyers KT, Damphousse CC, Ozols AB, Campbell JM, Newbern JM, Hu C, Marrone DF, Gallitano AL. Serial electroconvulsive Seizure alters dendritic complexity and promotes cellular proliferation in the mouse dentate gyrus; a role for Egr3. Brain Stimul 2023; 16:889-900. [PMID: 37146791 PMCID: PMC10776161 DOI: 10.1016/j.brs.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite being one of the safest, most effective treatments for severe mood disorders, the therapeutic mechanisms of electroconvulsive therapy remain unknown. Electroconvulsive seizure (ECS) induces rapid, high-level expression of immediate early genes (IEGs) and brain-derived neurotrophic factor (BDNF), in addition to stimulation of neurogenesis and dendritic remodeling of dentate gyrus (DG) neurons. We have previously shown that this upregulation of BDNF fails to occur in the hippocampus of mice lacking the IEG Egr3. Since BDNF influences neurogenesis and dendritic remodeling, we hypothesized that Egr3-/- mice will exhibit deficits in neurogenesis and dendritic remodeling in response to ECS. OBJECTIVE To test this hypothesis, we examined dendritic remodeling and cellular proliferation in the DG of Egr3-/- and wild-type mice following repeated ECS. METHODS Mice received 10 daily ECSs. Dendritic morphology was examined in Golgi-Cox-stained tissue and cellular proliferation was analyzed through bromodeoxyuridine (BrdU) immunohistochemistry and confocal imaging. RESULTS Serial ECS in mice results in dendritic remodeling, increased spine density, and cellular proliferation in the DG. Loss of Egr3 alters the dendritic remodeling induced by serial ECS but does not change the number of dendritic spines or cellular proliferation consequences of ECS. CONCLUSION Egr3 influences the dendritic remodeling induced by ECS but is not required for ECS-induced proliferation of hippocampal DG cells.
Collapse
Affiliation(s)
- K T Meyers
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, 85281, USA; Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - C C Damphousse
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - A B Ozols
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Campbell
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - J M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - C Hu
- Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health - Phoenix, 714 E Van Buren St #119, Phoenix, AZ, 85006, USA
| | - D F Marrone
- Psychology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - A L Gallitano
- Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
2
|
Ladrón de Guevara-Miranda D, Millón C, Rosell-Valle C, Pérez-Fernández M, Missiroli M, Serrano A, Pavón FJ, Rodríguez de Fonseca F, Martínez-Losa M, Álvarez-Dolado M, Santín LJ, Castilla-Ortega E. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech 2017; 10:323-336. [PMID: 28138095 PMCID: PMC5374316 DOI: 10.1242/dmm.026682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.
Collapse
Affiliation(s)
- David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Carmelo Millón
- Departamento de Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Cristina Rosell-Valle
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Mercedes Pérez-Fernández
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Michele Missiroli
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Magdalena Martínez-Losa
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Manuel Álvarez-Dolado
- Laboratory of Cell-based Therapy for Neuropathologies, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| |
Collapse
|
3
|
Marx M, Haas CA, Häussler U. Differential vulnerability of interneurons in the epileptic hippocampus. Front Cell Neurosci 2013; 7:167. [PMID: 24098270 PMCID: PMC3787650 DOI: 10.3389/fncel.2013.00167] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/07/2013] [Indexed: 11/30/2022] Open
Abstract
The loss of hippocampal interneurons has been considered as one reason for the onset of temporal lobe epilepsy (TLE) by shifting the excitation-inhibition balance. Yet, there are many different interneuron types which show differential vulnerability in the context of an epileptogenic insult. We used the intrahippocampal kainate (KA) mouse model for TLE in which a focal, unilateral KA injection induces status epilepticus (SE) followed by development of granule cell dispersion (GCD) and hippocampal sclerosis surrounding the injection site but not in the intermediate and temporal hippocampus. In this study, we characterized the loss of interneurons with respect to septotemporal position and to differential vulnerability of interneuron populations. To this end, we performed intrahippocampal recordings of the initial SE, in situ hybridization for glutamic acid decarboxylase 67 (GAD67) mRNA and immunohistochemistry for parvalbumin (PV) and neuropeptide Y (NPY) in the early phase of epileptogenesis at 2 days and at 21 days after KA injection, when recurrent epileptic activity and GCD have fully developed. We show that SE extended along the entire septotemporal axis of both hippocampi, but was stronger at distant sites than at the injection site. There was an almost complete loss of interneurons surrounding the injection site and expanding to the intermediate hippocampus already at 2 days but increasing until 21 days after KA. Furthermore, we observed differential vulnerability of PV- and NPY-expressing cells: while the latter were lost at the injection site but preserved at intermediate sites, PV-expressing cells were gone even at sites more temporal than GCD. In addition, we found upregulation of GAD67 mRNA expression in dispersed granule cells and of NPY staining in ipsilateral granule cells and ipsi- and contralateral mossy fibers. Our data thus indicate differential survival capacity of interneurons in the epileptic hippocampus and compensatory plasticity mechanisms depending on the hippocampal position.
Collapse
Affiliation(s)
- Markus Marx
- Experimental Epilepsy Research, Department of Neurosurgery, University of Freiburg Freiburg, Germany
| | | | | |
Collapse
|
4
|
Khaira SK, Nefzger CM, Beh SJ, Pouton CW, Haynes JM. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons. Neurochem Int 2011; 59:413-20. [PMID: 21349310 DOI: 10.1016/j.neuint.2011.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/21/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of the patterning factors that direct neurons toward forebrain and midbrain fates.
Collapse
Affiliation(s)
- S K Khaira
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
5
|
Onténiente B. [Neuroplasticity: from physiological adaptation to the concept of therapeutic plasticity]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2009; 203:107-11. [PMID: 19358816 DOI: 10.1051/jbio:2009001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
There is considerable evidence that the human brain maintains the ability to reorganize itself throughout life, an ability known as neuroplasticity. Initially demonstrated in physiological situations, neuroplasticity includes, and relies on, a number of adaptive mechanisms that include not only phenotypic modifications of neurons or synaptic reorganisation but also major modifications of brain circuitry after insults. Recently, the presence of neurogenic zones in the adult brain has unveiled a new aspect of brain plasticity that, together with emerging stem cell therapy, opens the possibility to take advantage of these natural reminders of the developmental period to repair lesioned tissues, a concept known as "therapeutic plasticity".
Collapse
Affiliation(s)
- Brigitte Onténiente
- INSERM, UMR 894, Centre de Recherches en Psychiatrie et Neurosciences, 2Ter rue d'Alésia, 75014 Paris, France.
| |
Collapse
|
6
|
Jaffe DB, Gutiérrez R. Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. PROGRESS IN BRAIN RESEARCH 2007; 163:109-32. [PMID: 17765714 DOI: 10.1016/s0079-6123(07)63006-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication between the dentate gyrus (DG) and area CA3 of the hippocampus proper is transmitted via axons of granule cells--the mossy fiber (MF) pathway. In this review we discuss and compare the properties of transmitter release from the MFs onto pyramidal neurons and interneurons. An examination of the anatomical connectivity from DG to CA3 reveals a surprising interplay between excitation and inhibition for this circuit. In this respect it is particularly relevant that the major targets of the MFs are interneurons and that the consequence of MF input into CA3 may be inhibitory or excitatory, conditionally dependent on the frequency of input and modulatory regulation. This is further complicated by the properties of transmitter release from the MFs where a large number of co-localized transmitters, including GABAergic inhibitory transmitter release, and the effects of presynaptic modulation finely tune transmitter release. A picture emerges that extends beyond the hypothesis that the MFs are simply "detonators" of CA3 pyramidal neurons; the properties of synaptic information flow from the DG have more subtle and complex influences on the CA3 network.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
7
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
8
|
Kralic JE, Ledergerber DA, Fritschy JM. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur J Neurosci 2005; 22:1916-27. [PMID: 16262631 DOI: 10.1111/j.1460-9568.2005.04386.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adult hippocampal neurogenesis is enhanced in response to multiple stimuli including seizures. However, the relationship between neurogenesis and the development of temporal lobe epilepsy (TLE) remains unclear. Unilateral intrahippocampal injection of kainate in adult mice models the morphological characteristics (e.g. neuronal loss, gliosis, granule cell dispersion and hypertrophy) and occurrence of chronic, spontaneous recurrent partial seizures observed in human TLE. We investigated the influence of a kainate-induced epileptogenic focus on hippocampal neurogenesis, comparing neural stem cell proliferation following status epilepticus and spontaneous recurrent partial seizures. Cell proliferation in the subgranular zone was transiently increased bilaterally after kainate treatment. As a result, neurogenesis was stimulated in the contralateral dentate gyrus. In contrast, the epileptic hippocampus exhibited a strongly reduced neurogenic potential, even after onset of spontaneous recurrent partial seizures, possibly due to an alteration of the neurogenic niche in the subgranular zone. These results show that neurogenesis does not contribute to the formation of the epileptic focus and may be affected when dispersion of dentate gyrus granule cells occurs. Therefore, in patients with TLE, hippocampal sclerosis and granule cell dispersion may play a significant role in disrupting the potential for hippocampal neurogenesis.
Collapse
Affiliation(s)
- Jason E Kralic
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH -8057 Zurich, Switzerland
| | | | | |
Collapse
|
9
|
Sirvanci S, Meshul CK, Onat F, San T. Glutamate and GABA immunocytochemical electron microscopy in the hippocampal dentate gyrus of normal and genetic absence epilepsy rats. Brain Res 2005; 1053:108-15. [PMID: 16038886 DOI: 10.1016/j.brainres.2005.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 11/22/2022]
Abstract
It is generally accepted that absence epilepsy results from the impairment of GABAergic and glutamatergic neurotransmission. In particular, besides excessive GABA mediation within the thalamo-cortico-thalamic circuit in absence epilepsy, neuronal networks of the hippocampus have recently received attention. In the present study, we examined the density of glutamate and GABA neurotransmitter immunolabeling in the dentate gyrus of the hippocampus of genetic absence epilepsy rats from Strasbourg (GAERS) compared to the control group. GABA and glutamate were found to exist in synaptic vesicles of the mossy fiber terminals of the control and GAERS groups. The density of glutamate immunolabeling within the mossy fiber terminals in the hilar region of GAERS hippocampus was found to be significantly decreased compared to the control group. There was no difference in the density of immunolabeling within GABA nerve terminals between GAERS and control group. The findings of this study suggest that mechanisms underlying absence seizures in GAERS may also manifest themselves in other brain regions such as the hippocampus. The presence of GABA within synaptic vesicles of mossy fiber terminals, as revealed by high resolution ultrastructural immunocytochemistry, has provided additional evidence to the possible modulatory role of GABA on synaptic transmission between the mossy fiber and the target cell.
Collapse
Affiliation(s)
- Serap Sirvanci
- Marmara University School of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | | | | | | |
Collapse
|
10
|
Tu B, Timofeeva O, Jiao Y, Nadler JV. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 2005; 25:1718-29. [PMID: 15716408 PMCID: PMC6725947 DOI: 10.1523/jneurosci.4835-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY.
Collapse
Affiliation(s)
- Bin Tu
- Department of Pharmacology and Cancer Biolog, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
11
|
Arabadzisz D, Antal K, Parpan F, Emri Z, Fritschy JM. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Exp Neurol 2005; 194:76-90. [PMID: 15899245 DOI: 10.1016/j.expneurol.2005.01.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 01/25/2005] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Major aspects of temporal lobe epilepsy (TLE) can be reproduced in mice following a unilateral injection of kainic acid into the dorsal hippocampus. This treatment induces a non-convulsive status epilepticus and acute lesion of CA1, CA3c and hilar neurons, followed by a latent phase with ongoing ipsilateral neuronal degeneration. Spontaneous focal seizures mark the onset of the chronic phase. In striking contrast, the ventral hippocampus and the contralateral side remain structurally unaffected and seizure-free. In this study, functional and neurochemical alterations of the contralateral side were studied to find candidate mechanisms underlying the lack of a mirror focus in this model of TLE. A quantitative analysis of simultaneous, bilateral EEG recordings revealed a significant decrease of theta oscillations ipsilaterally during the latent phase and bilaterally during the chronic phase. Furthermore, the synchronization of bilateral activity, which is very high in control, was strongly reduced already during the latent phase and the decrease was independent of recurrent seizures. Immunohistochemical analysis performed in the contralateral hippocampus of kainate-treated mice revealed reduced calbindin-labeling of CA1 pyramidal cells; down-regulation of CCK-8 and up-regulation of NPY-labeling in mossy fibers; and a redistribution of galanin immunoreactivity. These changes collectively might limit neuronal excitability in CA1 and dentate gyrus, as well as glutamate release from mossy fiber terminals. Although these functional and neurochemical alterations might not be causally related, they likely reflect long-ranging network alterations underlying the independent evolution of the two hippocampal formations during the development of an epileptic focus in this model of TLE.
Collapse
Affiliation(s)
- Dimitrula Arabadzisz
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Rougier A, Arthaud S, Zombre N, La Salle GLG. Patterns of dentate granule cell responses to perforant path stimulation in epileptic mice with granule cell dispersion. Epilepsy Res 2005; 63:119-29. [PMID: 15777666 DOI: 10.1016/j.eplepsyres.2005.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/31/2004] [Accepted: 01/23/2005] [Indexed: 11/22/2022]
Abstract
In adult mice, intrahippocampal administration of kainic acid induces a structural modification of the granule cell layer reminiscent of granule cell dispersion (GCD) seen in humans with temporal lobe epilepsy. We tested that GCD might be involved in the patterns of granule cell responses to perforant path stimulation by recording field potentials in vivo after kainic acid-induced status epilepticus until the phase of chronic seizure activity in presence of GCD or after its alteration by K252a co-treatment, an inhibitor of tyrosine kinase activities. Stimulation triggered bursts of multiple population spikes, the number of which progressively increased with time whereas their amplitude decreased in parallel with the progressive decrease in granule cell density. The population spike threshold was reached for a lower excitatory synaptic drive than in controls, as assessed by the initial slope of the field excitatory post-synaptic potential. This indicates that, for identical synaptic responses, granule cells were closer to the firing threshold. Fast inhibition, assessed by paired pulse stimulation, was compromised immediately after the initial status epilepticus, consistent with the rapid loss of most hilar cells. Neither the epileptic course nor the epileptiform responses of the granule cells were modified and manipulation by alteration following GCD manipulation while granule cell neuropeptide-Y immunostaining was substantially decreased. In this mouse model of TLE, granule cells display a progressive increase in epileptiform responses to afferent input until the occurrence of spontaneous seizures. The population spike amplitude decreases in parallel with GCD while the granule cell excitability is enhanced. Consequently, data from field potentials in epilepsy experiments should be interpreted with care, taking into account the possible variations in the neuronal density in the recorded area.
Collapse
Affiliation(s)
- A Rougier
- Laboratoire d'Epileptologie Expérimentale et Clinique, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
13
|
Suzuki F, Heinrich C, Boehrer A, Mitsuya K, Kurokawa K, Matsuda M, Depaulis A. Glutamate Receptor Antagonists and Benzodiazepine Inhibit the Progression of Granule Cell Dispersion in a Mouse Model of Mesial Temporal Lobe Epilepsy. Epilepsia 2005; 46:193-202. [PMID: 15679500 DOI: 10.1111/j.0013-9580.2005.35504.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Unilateral intrahippocampal injection of kainic acid (KA) in adult mice induces the progressive dispersion of dentate granule cells, one of the characteristic pathologic changes of mesial temporal lobe epilepsy. However, little is known about the mechanisms that trigger this dispersion. In this study, the possible involvement of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurotransmissions in the development of granule cell dispersion (GCD) was examined in this model. METHODS Antagonists of N-methyl-d-aspartate (NMDA) receptor (MK-801) and non-NMDA receptor (GYKI52466), and an agonist of benzodiazepine-GABA(A) receptor (midazolam) were injected before and after KA in various ways, and the morphologic changes of the hippocampus, especially GCD, were examined. RESULTS MK-801 (5 mg/kg, i.p.) did not reduce GCD when injected 2 h before KA injection but inhibited GCD almost completely for <or=14 days, when injected 4 h after KA. However, mild to moderate dispersion was observed at 28 days, indicating that MK-801 may delay the progression of GCD. Similarly, daily treatment with MK-801 (2 x 1 mg/kg i.p./day) for the first 26 days after KA significantly reduced GCD. In contrast, GYKI52466 (30 mg/kg, s.c.) was effective only when it was injected before KA. A significant reduction of GCD was also observed after continuous administration of midazolam (10 mg/kg/h) after KA. CONCLUSIONS These data show that GCD in this mouse model is triggered by either the stimulation of the NMDA receptor or reduction of GABA(A)-mediated inhibition after intrahippocampal injection of KA. It is suggested that the increased excitation or the reduced inhibition or both could be one of the factors triggering or maintaining or both the process of GCD.
Collapse
Affiliation(s)
- Fumio Suzuki
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kahn L, Alonso G, Normand E, Manzoni OJ. Repeated morphine treatment alters polysialylated neural cell adhesion molecule, glutamate decarboxylase-67 expression and cell proliferation in the adult rat hippocampus. Eur J Neurosci 2005; 21:493-500. [PMID: 15673448 DOI: 10.1111/j.1460-9568.2005.03883.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Altered synaptic transmission and plasticity in brain areas involved in reward and learning are thought to underlie the long-lasting effects of addictive drugs. In support of this idea, opiates reduce neurogenesis [A.J. Eisch et al. (2000) Proceedings of the National Academy of Sciences USA, 97, 7579-7584] and enhance long-term potentiation in adult rodent hippocampus [J.M. Harrison et al. (2002) Journal of Neurophysiology, 87, 2464-2470], a key structure of learning and memory processes. Here we studied how repeated morphine treatment and withdrawal affect cell proliferation and neuronal phenotypes in the dentate gyrus-CA3 region of the adult rat hippocampus. Our data showed a strong reduction of cellular proliferation in morphine-dependent animals (54% of control) that was followed by a rebound increase after 1 week withdrawal and a return to normal after 2 weeks withdrawal. Morphine dependence was also associated with a drastic reduction in the expression levels of the polysialylated form of neural cell adhesion molecule (68% of control), an adhesion molecule expressed by newly generated neurons and involved in cell migration and structural plasticity. Polysialylated neural cell adhesion molecule levels quickly returned to normal following withdrawal. In morphine-dependent rats, we found a significant increase of glutamate decarboxylase-67 mRNA transcription (170% of control) in dentate gyrus granular cells which was followed by a marked rebound decrease after 1 week withdrawal and a return to normal after 4 weeks withdrawal. Together, the results show, for the first time, that, in addition to reducing cell proliferation and neurogenesis, chronic exposure to morphine dramatically alters neuronal phenotypes in the dentate gyrus-CA3 region of the adult rat hippocampus.
Collapse
Affiliation(s)
- Laëtitia Kahn
- INSERM Equipe Avenir 'Plasticité synaptique: Maturation & Addiction', Bordeaux Cedex, France
| | | | | | | |
Collapse
|
15
|
Abstract
The granule cells of the dentate gyrus (DG), origin of the mossy fibers (MFs), have been considered to be glutamatergic. However, data obtained with different experimental approaches in recent years may be calling for a redefinition of their phenotype. Although they indeed release glutamate for fast neurotransmission, immunohistological and molecular biology evidence has revealed that these glutamatergic cells also express GABAergic markers. The granule cell expression of a GABAergic phenotype is developmentally regulated. Electrophysiological studies reveal that during the first 3 weeks of age, mossy fiber stimulation provokes monosynaptic fast inhibitory transmission mediated by GABA, besides the monosynaptic excitatory glutamatergic transmission, onto their targets in CA3. After this age, mossy fiber GABAergic transmission abruptly disappears and the GABAergic markers are undetected. In the adult, the GABAergic markers are upregulated and GABA-mediated transmission emerges after induction of hyperexcitability. The simultaneous glutamate- and GABA-mediated signals share the same plastic and pharmacological characteristics that correspond to neurotransmission of mossy fiber origin. This intriguing evidence gives rise to two fundamental points of discussion. The first is the plausible fact that glutamate and GABA, two neurotransmitters of opposing actions, are coreleased from the mossy fibers. The second relates to its functional implications that can be immediately inferred, as the dentate gyrus can exert direct GABA-mediated excitatory actions early in life and inhibitory actions in young and adult hippocampus. This evidence poses the need to reevaluate and reinterpret some aspects of the physiology of the mossy fiber pathway under normal and pathological conditions. This work reviews the recent evidence that supports the assumption that glutamate and GABA can be coreleased from a single pathway, the mossy fibers, and makes some considerations about its functional implications.
Collapse
Affiliation(s)
- Rafael Gutiérrez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City 07000, D.F., Mexico.
| |
Collapse
|
16
|
Maqueda J, Ramírez M, Lamas M, Gutiérrez R. Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neurosci Lett 2003; 353:69-71. [PMID: 14642440 DOI: 10.1016/j.neulet.2003.08.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated neurotransmission from the granule cells to CA3 is transiently expressed during the first 3 weeks of age in the rat. In the adult, seizures provoke this inhibitory signaling to reappear. To gain insight into the origin of GABA in these cells, we explored the expression of both isoforms of glutamic acid decarboxylase (GAD, 65 and 67 kDa), during development and after seizures in the adult rat. We found that GAD(67), but not GAD(65), is expressed in the mossy fibers of developing rats. In adults, GAD(67) is no longer detectable, unless seizures are induced. By contrast, GAD(65) is neither expressed in granule cells nor in their mossy fibers at any age nor after seizures, despite the presence of GAD(65) mRNA, confirmed by reverse transcription-polymerase chain reaction in situ.
Collapse
Affiliation(s)
- Jasmín Maqueda
- Centro de Investigación y Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, Mexico City, D.F., Mexico
| | | | | | | |
Collapse
|
17
|
Straessle A, Loup F, Arabadzisz D, Ohning GV, Fritschy JM. Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy. Eur J Neurosci 2003; 18:2213-26. [PMID: 14622182 DOI: 10.1046/j.1460-9568.2003.02964.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations of gamma-aminobutyric acid (GABA)B receptor expression have been reported in human temporal lobe epilepsy (TLE). Here, changes in regional and cellular expression of the GABAB receptor subunits R1 (GBR1) and R2 (GBR2) were investigated in a mouse model that replicates major functional and histopathological features of TLE. Adult mice received a single, unilateral injection of kainic acid (KA) into the dorsal hippocampus, and GABAB receptor immunoreactivity was analysed between 1 day and 3 months thereafter. In control mice, GBR1 and GBR2 were distributed uniformly across the dendritic layers of CA1-CA3 and dentate gyrus. In addition, some interneurons were labelled selectively for GBR1. At 1 day post-KA, staining for both GBR1 and GBR2 was profoundly reduced in CA1, CA3c and the hilus, and no interneurons were visible anymore. At later stages, the loss of GABAB receptors persisted in CA1 and CA3, whereas staining increased gradually in dentate gyrus granule cells, which become dispersed in this model. Most strikingly, a subpopulation of strongly labelled interneurons reappeared, mainly in the hilus and CA3 starting at 1 week post-KA. In double-staining experiments, these cells were selectively labelled for neuropeptide Y. The number of GBR1-positive interneurons also increased contralaterally in the hilus. The rapid KA-induced loss of GABAB receptors might contribute to epileptogenesis because of a reduction in both presynaptic control of transmitter release and postsynaptic inhibition. In turn, the long-term increase in GABAB receptors in granule cells and specific subtypes of interneurons may represent a compensatory response to recurrent seizures.
Collapse
Affiliation(s)
- Andrea Straessle
- Institute of Pharmacology and Toxicology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Hirai H, Suzuki F, Kurokawa K, Mitsuya K, Matsuda M. Mouse Flamingo1/Celsr2 relates neuronal reorganization of the hypertrophic dentate granule cells after kainate injection. Brain Res 2003; 966:40-6. [PMID: 12646306 DOI: 10.1016/s0006-8993(02)04163-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single injection of kainate into the dorsal hippocampus of adult mice induced long-lasting hypertrophy and dispersion of dentate granule cells with dendritic hypertrophy and mossy fiber sprouting that resembled human hippocampal sclerosis. Our previous study indicated that brain derived neurotrophic factor was related to the initiation of these morphological changes. In this study, gene expression of the enlarged hippocampus was examined by differential display to find the gene relating to the progression of the pathological changes. Several genes were identified that were overexpressed in the enlarged dentate gyrus. One of them was highly homologous with mouse Flamingo1/Celsr2, suggesting that mouse Flamingo1/Celsr2 is related to the development of hippocampal sclerosis.
Collapse
Affiliation(s)
- Hisao Hirai
- Department of Neurosurgery, Shiga University of Medical Science, Tsukinowa-cho, Ohtsu, Seta, Shiga 520-2192, Japan
| | | | | | | | | |
Collapse
|
19
|
Riban V, Bouilleret V, Pham-Lê BT, Fritschy JM, Marescaux C, Depaulis A. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 2002; 112:101-11. [PMID: 12044475 DOI: 10.1016/s0306-4522(02)00064-7] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unilateral intrahippocampal injection of kainic acid in adult mice reproduces most of the morphological characteristics of hippocampal sclerosis (neuronal loss, gliosis, reorganization of neurotransmitter receptors, mossy fiber sprouting, granule cell dispersion) observed in patients with temporal lobe epilepsy. Whereas some neuronal loss is observed immediately after the initial status epilepticus induced by kainate treatment, most reorganization processes develop progressively over a period of several weeks. The aim of this study was to characterize the evolution of seizure activity in this model and to assess its pharmacological reactivity to classical antiepileptic drugs. Intrahippocampal electroencephalographic recordings showed three distinct phases of paroxystic activity following unilateral injection of kainic acid (1 nmol in 50 nl) into the dorsal hippocampus of adult mice: (i) a non-convulsive status epilepticus, (ii) a latent phase lasting approximately 2 weeks, during which no organized activity was recorded, and (iii) a phase of chronic seizure activity with recurrent hippocampal paroxysmal discharges characterized by high amplitude sharp wave onset. These recurrent seizures were first seen about 2 weeks post-injection. They were limited to the injected area and were not observed in the cerebral cortex, contralateral hippocampus or ipsilateral amygdala. Secondary propagation to the contralateral hippocampus and to the cerebral cortex was rare. In addition hippocampal paroxysmal discharges were not responsive to acute carbamazepine, phenytoin, or valproate treatment, but could be suppressed by diazepam. Our data further validate intrahippocampal injection of kainate in mice as a model of temporal lobe epilepsy and suggest that synaptic reorganization in the lesioned hippocampus is necessary for the development of organized recurrent seizures.
Collapse
Affiliation(s)
- V Riban
- Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, INSERM U. 398, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
20
|
Gutiérrez R. Activity-dependent expression of simultaneous glutamatergic and GABAergic neurotransmission from the mossy fibers in vitro. J Neurophysiol 2002; 87:2562-70. [PMID: 11976392 DOI: 10.1152/jn.2002.87.5.2562] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic transmission in the mossy fiber (MF) projection of the hippocampus is not normally detected in the rat. However, seizures induce simultaneous glutamatergic and GABAergic transmission in this projection, which coincides with an overexpression of GAD(67) and vesicular GABA transporter (VGAT) mRNA in the dentate gyrus (DG) and MF. To test whether this plastic change could be induced in an activity-dependent fashion in the absence of seizures, I recorded intracellularly from slices/cells that served as their own control, before and after direct or synaptic kindling of the DG in vitro. As expected, synaptic responses of CA3 pyramidal cells to test pulse DG stimulation were blocked by perfusion of N-methyl-D-aspartate (NMDA) and non-NMDA receptors' antagonists. However, after kindling the perforant path (3 1-s trains of 0.1-ms pulses at 100 Hz, 1 min apart from each other every 15 min for 3 h), which potentiated synaptic responses without inducing epileptiform activity, the perfusion of glutamatergic antagonists blocked the excitatory synaptic potential and isolated a fast bicuculline-sensitive inhibitory synaptic potential. Immunohistochemical experiments confirmed the overexpression of GAD(67) in the kindled slices. If kindling stimulation was provided just for 1 h or if it was completed in the presence of the protein synthesis inhibitor, cycloheximide, the expression of the GABAergic potential was prevented. Alternatively, when control synaptic responses of a given cell were first blocked, the direct kindling stimulation over the same site during perfusion of glutamatergic antagonists resulted in the induction of fast GABAergic potentials after 16.6 +/- 0.9 kindling trials. Furthermore, a high spacial specificity of this phenomenon was evidenced by recording synaptic responses of a given pyramidal cell to two different MF inputs. After blockade of all synaptic responses with the perfusion of glutamatergic antagonists, one of the inputs was kindled, while synaptic responses between the kindling trials were monitored by applying test pulse stimulation to both inputs. After 17 +/- 1 trials, test pulse stimulation provided over the kindled site evoked GABAergic potentials, whereas test pulse stimulation delivered to the alternative nonkindled parallel MF input remained ineffective. The DG-evoked GABAergic responses were inhibited by the activation of GABA(B)R and mGluR, whereby activation of group III mGluR with L-2-amino-4-phosphonobutyric acid (L-AP4) was significantly more effective than the activation of group II mGluR with DCG-IV. These data demonstrate that GABAergic transmission from the MF projection has distinctive features in the adult rat, and that its induction is dependent on protein synthesis responding in an activity-dependent fashion.
Collapse
Affiliation(s)
- Rafael Gutiérrez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Mexico D.F. 07000, Mexico
| |
Collapse
|
21
|
Abstract
Epilepsy is a devastating disease affecting more than 1% of the population. Yet, if one considers the neurobiological substrates of this disease, what is revealed is an array of phenomenon that exemplify the remarkable capacity for the brain to change its basic structure and function, that is, neural plasticity. Some of these alterations are transient and merely impressive for their extent, or for their robust nature across animal models and human epilepsy. Others are notable for their persistence, often enduring for months or years. As an example, the dentate gyrus, and specifically the principal cell of the dentate gyrus, the granule cell, is highlighted. This area of the brain and this particular cell type, for reasons that are currently unclear, hold an uncanny capacity to change after seizures. For those interested in plasticity, it is suggested that perhaps the best examples for studying plasticity lie in the field of epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, NY 10993-1195, USA.
| |
Collapse
|
22
|
de Almeida OMMS, Gardino PF, Loureiro dos Santos NE, Yamasaki EN, de Mello MCF, Hokoç JN, de Mello FG. Opposite roles of GABA and excitatory amino acids on the control of GAD expression in cultured retina cells. Brain Res 2002; 925:89-99. [PMID: 11755903 DOI: 10.1016/s0006-8993(01)03265-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanism of control of GAD expression by GABA and excitatory amino acids (EAAs) was studied in chick and rat retina cultures using immunohistochemical and PAGE-immunoblot detection of the enzyme, as well as by measuring enzyme activity. Aggregate cultures were prepared with retina cells obtained from chick embryos at embryonic days 8-9 (E8-E9). Organotypical cultures were also prepared with retinas from E14 chick embryos, post-hatched chicken and P21 rats. GABA (1-20 mM) fully prevented GAD expression in aggregate and organotypical cultures from chick embryo retinas. A substantial, but not complete, reduction of GAD was also observed in organotypical cultures of post-hatched chicken and P21 rats, in which both forms of the enzyme (GAD65 and 67) were affected. The GABA effect was not mimicked by THIP (100 microM), baclofen (100 microM) or CACA (300 microM), agonists of GABAa, b and c receptors, respectively. NNC-711, a potent inhibitor of GABA transporters, reduced by 50% the inhibition of GAD activity promoted by GABA. Aggregates exposed to GABA and treated with glutamate (5 mM) or kainate (100 microM) displayed an intense GAD-like immunoreactivity in many cell bodies, but not in neurite regions. Immunoblot analysis revealed that the increase in GAD-like immunoreactivity by EAA corresponded to a 67-kDa protein. However, GAD activity was not detected. Treatment of aggregates or retina homogenates with SNAP, a NO producing agent (but not its oxidized form), reduced GAD activity by more than 60% indicating that the lack of enzyme activity in GAD-like immunoreactive cells, could be due to NO production by EAA stimulation.
Collapse
Affiliation(s)
- O M M S de Almeida
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Uerj, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Ramírez M, Gutiérrez R. Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Res 2001; 917:139-46. [PMID: 11640899 DOI: 10.1016/s0006-8993(01)02794-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the normal granule cells of the dentate gyrus glutamate, GABA and glutamic acid decarboxylase (GAD67) coexist. After kindled seizures, this enzyme is transiently overexpressed and simultaneous glutamatergic and GABAergic transmission in the mossy fiber projection occurs. Since this dual transmission is also seen after acutely-induced seizures, we decided to study the relationship between the expression of GAD67 and the induction of simultaneous glutamatergic and GABAergic transmission by kindled or acutely induced seizures. We also explored whether kindling of the dentate gyrus in vitro, that does not induce epileptiform activity, could induce the expression of GAD67. We confirm that kindling epilepsy induces the expression of GAD67 in the dentate gyrus. Despite the emergence of GABAergic transmission in the mossy fiber projection after a single seizure, GAD67 expression in the dentate gyrus appeared similar to controls, however, in the mossy fibers an enhanced immunostaining was evident. Interestingly, kindling the dentate gyrus in vitro induces a marked GAD67 staining in the granule cells. Our results show that after the activity-dependent emergence of simultaneous glutamatergic and GABAergic transmission from the mossy fibers, GAD67 is expressed in the mossy fibers and, upon long-lasting enduring stimulation periods, also in the dentate gyrus. Thus, this phenomenon does not depend on the presence of epileptic activity, but rather, on increased excitatory input onto the dentate gyrus. This can represent a protective mechanism that can sustain GABA synthesis in an activity-dependent manner.
Collapse
Affiliation(s)
- M Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional, Apartado Postal 14-740, D.F. 07000, México, Mexico
| | | |
Collapse
|
24
|
Fabene PF, Correia L, Carvalho RA, Cavalheiro EA, Bentivoglio M. The spiny rat Proechimys guyannensis as model of resistance to epilepsy: chemical characterization of hippocampal cell populations and pilocarpine-induced changes. Neuroscience 2001; 104:979-1002. [PMID: 11457585 DOI: 10.1016/s0306-4522(01)00138-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
At variance with pilocarpine-induced epilepsy in the laboratory rat, pilocarpine administration to the tropical rodent Proechimys guyannensis (casiragua) elicited an acute seizure that did not develop in long-lasting status epilepticus and was not followed by spontaneous seizures up to 30 days, when the hippocampus was investigated in treated and control animals. Nissl staining revealed in Proechimys a highly developed hippocampus, with thick hippocampal commissures and continuity of the rostral dentate gyri at the midline. Immunohistochemistry was used to study calbindin, parvalbumin, calretinin, GABA, glutamic acid decarboxylase, and nitric oxide synthase expression. The latter was also investigated with NADPH-diaphorase histochemistry. Cell counts and densitometric evaluation with image analysis were performed. Differences, such as low calbindin immunoreactivity confined to some pyramidal cells, were found in the normal Proechimys hippocampus compared to the laboratory rat. In pilocarpine-treated casiraguas, stereological cell counts in Nissl-stained sections did not reveal significant neuronal loss in hippocampal subfields, where the examined markers exhibited instead striking changes. Calbindin was induced in pyramidal and granule cells and interneuron subsets. The number of parvalbumin- or nitric oxide synthase-containing interneurons and their staining intensity were significantly increased. Glutamic acid decarboxylase(67)-immunoreactive interneurons increased markedly in the hilus and decreased in the CA1 pyramidal layer. The number and staining intensity of calretinin-immunoreactive pyramidal cells and interneurons were significantly reduced. These findings provide the first description of the Proechimys hippocampus and reveal marked long-term variations in protein expression after an epileptic insult, which could reflect adaptive changes in functional hippocampal circuits implicated in resistance to limbic epilepsy.
Collapse
Affiliation(s)
- P F Fabene
- Department of Morphological and Biomedical Sciences, Faculty of Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
25
|
Suzuki F, Hirai H, Onteniente B, Riban V, Matsuda M, Kurokawa K. Long-term increase of GluR2 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunit in the dispersed dentate gyrus after intrahippocampal kainate injection in the mouse. Neuroscience 2001; 101:41-50. [PMID: 11068135 DOI: 10.1016/s0306-4522(00)00359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrahippocampal injection of a subtoxic dose of kainate in mice has been shown to induce a dispersion of granule cells of the dentate gyrus, which is a characteristic morphological change often seen in human hippocampal sclerosis. In addition, it has been shown recently that such injections lead to recurrent hippocampal seizures and changes in glucose metabolism, which are reminiscent of temporal lobe epilepsy. Previous reports on human hippocampal sclerosis have shown an increase of the expression of the GluR2 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate subunits in the dispersed granule cell somata. However, no such changes have been observed so far in animal models of epilepsy with hippocampal sclerosis. In this study, the expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunits was examined by immunohistochemistry following intrahippocampal injection of kainate in mice and rats. In mice, such injection induced a persistent increase of GluR2 immunoreactivity in the granule cells for up to 180 days. By contrast, GluR1 immunoreactivity was transiently increased during the first four days after the injection and progressively decreased thereafter. By contrast, intrahippocampal injection of kainate in rats did not result in granule cell dispersion and no changes in GluR1 immunoreactivity or GluR2 immunoreactivity were observed. These results show that, in addition to morphological, clinical and metabolical similarities, intrahippocampal injection of kainate results in a persistent increase of GluR2 associated with granule cell dispersion, as in human hippocampal sclerosis. These data suggest the existence of common mechanisms between granule cell dispersion and regulation of GluR2 subunits associated with hippocampal sclerosis.
Collapse
Affiliation(s)
- F Suzuki
- Department of Neurosurgery and Anatomy, Shiga University of Medical Science, Seta-Tsukinowa-cho, Ohtsu, Shiga 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Walker MC, Ruiz A, Kullmann DM. Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 2001; 29:703-15. [PMID: 11301029 DOI: 10.1016/s0896-6273(01)00245-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.
Collapse
Affiliation(s)
- M C Walker
- Department of Clinical Neurology, Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, United Kingdom
| | | | | |
Collapse
|
27
|
Bouilleret V, Loup F, Kiener T, Marescaux C, Fritschy JM. Early loss of interneurons and delayed subunit-specific changes in GABA(A)-receptor expression in a mouse model of mesial temporal lobe epilepsy. Hippocampus 2001; 10:305-24. [PMID: 10902900 DOI: 10.1002/1098-1063(2000)10:3<305::aid-hipo11>3.0.co;2-i] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unilateral injection of kainic acid (KA) into the dorsal hippocampus of adult mice induces spontaneous recurrent partial seizures and replicates histopathological changes observed in human mesial temporal lobe epilepsy (MTLE) (Bouilleret V et al., Neuroscience 1999; 89:717-729). Alterations in pre- and postsynaptic components of GABAergic neurotransmission were investigated immunohistochemically at different time points (1-120 days) in this mouse model of MTLE. Markers of GABAergic interneurons (parvalbumin, calbindin-D28k, and calretinin), the type-1 GABA transporter (GAT1), and major GABA(A)-receptor subunits expressed in the hippocampal formation were analyzed. Acutely, KA injection produced a profound loss of hilar cells but only limited damage to CA1 and CA3 pyramidal cells. In addition, parvalbumin and calbindin-D28k staining of interneurons disappeared irreversibly in CA1 and dentate gyrus (DG), whereas calretinin staining was spared. The prominent GABA(A)-receptor alpha1 subunit staining of interneurons also disappeared after KA treatment, suggesting acute degeneration of these cells. Likewise, GAT1 immunoreactivity revealed degenerating terminals at 24 h post-KA in CA1 and DC and subsided almost completely thereafter. Loss of CA1 and, to a lesser extent, CA3 neurons became evident at 7-15 days post-KA. It was more accentuated after 1 month, accompanied by a corresponding reduction of GABA(A)-receptor staining. In contrast, DC granule cells were markedly enlarged and dispersed in the molecular layer and exhibited a prominent increase in GABA(A)-receptor subunit staining. After 4 months, the dorsal CA1 area was lost almost entirely, CA3 was reduced, and the DG represented most of the remaining dorsal hippocampal formation. No significant morphological alterations were detected contralaterally. These results suggest that loss of hilar cells and GABAergic neurons contributes to epileptogenesis in this model of MTLE. In contrast, long-term degeneration of pyramidal cells and granule cell dispersion may reflect distinct responses to recurrent seizures. Finally, GABA(A)-receptor upregulation in the DG may represent a compensatory response persisting for several months in epileptic mice.
Collapse
Affiliation(s)
- V Bouilleret
- lnstitute of Pharmacology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Lanneau C, Peineau S, Petit F, Epelbaum J, Gardette R. Somatostatin modulation of excitatory synaptic transmission between periventricular and arcuate hypothalamic nuclei in vitro. J Neurophysiol 2000; 84:1464-74. [PMID: 10980019 DOI: 10.1152/jn.2000.84.3.1464] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypophysiotropic somatostatin (SRIF) and growth hormone-releasing hormone (GHRH) neurons are primarily involved in the neurohormonal control of growth hormone (GH) secretion. They are located in periventricular (PEV) and arcuate (ARC) hypothalamic nuclei, respectively, but their connectivity is not well defined. To better understand the neuronal network involved in the control of GH secretion, connections from PEV to ARC neurons were reconstructed in vitro and neuronal phenotypes assessed by single-cell multiplex RT-PCR. Of 814 stimulated PEV neurons, monosynaptic responses were detected in only 45 ARC neurons. Monosynaptic excitatory currents were detected in 29 ARC neurons and inhibitory currents in 16, indicating a 2/1 ratio for excitatory versus inhibitory connections. Galanin (GAL), NPY, pro-opiomelanocortin (POMC), and SRIF mRNAs were detected in neurons from both nuclei but GHRH mRNA almost exclusively in ARC. Among the five SRIF receptors, only sst1 and sst2 were expressed, in 94% of ARC and 59% of PEV neurons, respectively. Of 128 theoritical combinations between neuropeptides and sst receptors, only 22 were represented in PEV and 25 in ARC. For PEV neurons, neuropeptide phenotypes did not influence excitatory connections. However, the occurrence of presynaptic sst receptors on GAL and SRIF PEV neurons significantly increased their probability of connection to ARC neurons. GHRH ARC neurons expressing sst2, but not sst1, receptors were always connected with PEV neurons. Physiological responses to sst1 (CH-275) or sst2 (Octreotide) agonists were always correlated with the detection of respective sst mRNAs. In conclusion, 1) SRIF-modulated excitatory transmission develops in vitro from PEV to ARC neurons, 2) ARC GHRH neurons bearing sst2 receptors appears directly controlled by fast glutamatergic transmission from PEV neurons simultaneously expressing one to four neuropeptides, 3) GHRH neurons bearing sst1 receptors lack this control, and 4) these results suggest that fast excitatory neurotransmission and neuropeptide modulation can derive from a small subset of PEV hypothalamic neurons targeted at ARC neuronal subpopulations.
Collapse
Affiliation(s)
- C Lanneau
- U.159 Institut National de la Santé et de la Recherche Medicale Centre Paul Broca, 75014 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci 2000. [PMID: 10934264 DOI: 10.1523/jneurosci.20-16-06144.2000] [Citation(s) in RCA: 412] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A group of neurons with the characteristics of dentate gyrus granule cells was found at the hilar/CA3 border several weeks after pilocarpine- or kainic acid-induced status epilepticus. Intracellular recordings from pilocarpine-treated rats showed that these "granule-like" neurons were similar to normal granule cells (i. e., those in the granule cell layer) in membrane properties, firing behavior, morphology, and their mossy fiber axon. However, in contrast to normal granule cells, they were synchronized with spontaneous, rhythmic bursts of area CA3 pyramidal cells that survived status epilepticus. Saline-treated controls lacked the population of granule-like cells at the hilar/CA3 border and CA3 bursts. In rats that were injected after status epilepticus with bromodeoxyuridine (BrdU) to label newly born cells, and also labeled for calbindin D(28K) (because it normally stains granule cells), many double-labeled neurons were located at the hilar/CA3 border. Many BrdU-labeled cells at the hilar/CA3 border also were double-labeled with a neuronal marker (NeuN). Taken together with the recent evidence that granule cells that are born after seizures can migrate into the hilus, the results suggest that some newly born granule cells migrate as far as the CA3 cell layer, where they become integrated abnormally into the CA3 network, yet they retain granule cell intrinsic properties. The results provide insight into the physiological properties of newly born granule cells in the adult brain and suggest that relatively rigid developmental programs set the membrane properties of newly born cells, but substantial plasticity is present to influence their place in pre-existing circuitry.
Collapse
|
30
|
Bouilleret V, Schwaller B, Schurmans S, Celio MR, Fritschy JM. Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. Neuroscience 2000; 97:47-58. [PMID: 10771338 DOI: 10.1016/s0306-4522(00)00017-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed.
Collapse
Affiliation(s)
- V Bouilleret
- INSERM U. 398, Faculté de Médecine, 11 rue Humann, 67085, Strasbourg, France
| | | | | | | | | |
Collapse
|