1
|
Tsuchiya H. Gustatory and Saliva Secretory Dysfunctions in COVID-19 Patients with Zinc Deficiency. Life (Basel) 2022; 12:life12030353. [PMID: 35330104 PMCID: PMC8950751 DOI: 10.3390/life12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Given the ever-progressing studies on coronavirus disease 2019 (COVID-19), it is critical to update our knowledge about COVID-19 symptomatology and pathophysiology. In the present narrative review, oral symptoms were overviewed using the latest data and their pathogenesis was hypothetically speculated. PubMed, LitCovid, ProQuest, and Google Scholar were searched for relevant studies from 1 April 2021 with a cutoff date of 31 January 2022. The literature search indicated that gustatory dysfunction and saliva secretory dysfunction are prevalent in COVID-19 patients and both dysfunctions persist after recovery from the disease, suggesting the pathogenic mechanism common to these cooccurring symptoms. COVID-19 patients are characterized by hypozincemia, in which zinc is possibly redistributed from blood to the liver at the expense of zinc in other tissues. If COVID-19 induces intracellular zinc deficiency, the activity of zinc-metalloenzyme carbonic anhydrase localized in taste buds and salivary glands may be influenced to adversely affect gustatory and saliva secretory functions. Zinc-binding metallothioneins and zinc transporters, which cooperatively control cellular zinc homeostasis, are expressed in oral tissues participating in taste and saliva secretion. Their expression dysregulation associated with COVID-19-induced zinc deficiency may have some effect on oral functions. Zinc supplementation is expected to improve oral symptoms in COVID-19 patients.
Collapse
|
2
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
3
|
Wang P, Feng YB, Wang L, Li Y, Fan C, Song Q, Yu SY. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav Immun 2019; 82:106-121. [PMID: 31394209 DOI: 10.1016/j.bbi.2019.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/27/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal injury within specific brain regions is considered a critical risk factor in the pathophysiology of depression. However, the underlying mechanisms of this process, and thus the potential for development of novel therapeutic strategies in the treatment of depression, remain largely unknown. Here, we report that Il-6 protects against neuronal anomalies related with depression, in part, by suppressing oxidative stress and consequent autophagic and apoptotic hyperactivity. Specifically, we show that IL-6 is downregulated within the CA1 hippocampus in two animal models of depression and upregulated by antidepressants. Increasing levels of IL-6 in the CA1 region result in pleiotropic protective actions including reductions in oxidative stress and modulation of autophagy, anti-immuno-inflammatory activation and anti-apoptotic effects in CA1 neurons, all of which are associated with the rescue of depression-like behaviors. In contrast, IL-6 downregulation exacerbates neuronal anomalies within the CA1 region and facilitates the genesis of depression phenotypes in rats. Interestingly, in addition to attenuating oxidative damage, the antioxidant, N-acetylcysteine (NAC), is also associated with significantly decreased neuronal deficits and the display of depressive behaviors in rats. These results suggest that IL-6 may exert neuroprotection within CA1 neurons via pleiotropic mechanisms and may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Peng Wang
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Ya-Bo Feng
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwuweiqi Road 423#, Jinan, Shandong Province 250012, PR China
| | - Liyan Wang
- Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Ye Li
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Cuiqin Fan
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Qiqi Song
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China; Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province 250012, PR China.
| |
Collapse
|
4
|
Menezes GD, Faria-Melibeu AC, Serfaty CA, Campello-Costa P. In vivo effect of acute exposure to interleukin-6 on the developing visual system. Neurosci Lett 2019; 698:7-12. [PMID: 30611891 DOI: 10.1016/j.neulet.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
Abstract
Interleukin-6 (IL-6) is involved in different processes of the central nervous system. Our aims were to investigate the effect of IL-6 on retinotectal topography and on different signaling pathways. Rats were submitted to an intravitreous injection of either IL-6 (50 ng/ml) or PBS (vehicle) at postnatal day 10 (PND10). At PND11 or PND14, different groups were processed for western blot, histochemistry or immunofluorescence analysis. IL-6 treatment leads to an increase in pSTAT-3 levels in the retina and a disruption in the retinotectal topographic map, suggesting that a transient increase in interleukin-6 levels may impact neural circuitry development.
Collapse
Affiliation(s)
- Grasielle Duarte Menezes
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Adriana C Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
5
|
Chen WQ, Cheng YY, Zhao XL, Li ST, Hou Y, Hong Y. Effects of Zinc on the Induction of Metallothione in Isoforms in Hippocampus in Stress Rats. Exp Biol Med (Maywood) 2016; 231:1564-8. [PMID: 17018881 DOI: 10.1177/153537020623100917] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Metallothioneins (MTs) are involved in the cellular metabolism of zinc and in cytoprotection against stress factors. Hippocampus plays a specific role in the body's response to stressors. The present study was conducted to evaluate the effects of zinc on the expression of metallothionein isoforms in the hippocampus of stress rats. The animal model of psychologic stress was developed by restraint for 4 weeks. Wistar rats were randomly assigned to 6 groups: control group, zinc-deficient group, zinc-supplemented group, and the corresponding 3 stress groups. Three separate diets of different zinc contents (1.73 ppm, 17.7 ppm, and 41.4 ppm, respectively) were used in this study. Compared with the control group, the stress groups had higher inductions of MTs and MT-1 and MT-3 mRNA in hippocampus. On the one hand, the expressions of MTs and their mRNAs in hippocampus were downregulated in the zinc-deficient group; however, their expressions were evidently enhanced in the stress zinc-deficient group. MT induction in the zinc-supplemented group was increased. Furthermore, the stress zinc-supplemented group had a more significant yield of MTs and their mRNAs. In addition, the levels of plasma cortisol, interleukin-6 (IL-6), IL-1, and nitric oxide (NO) were increased clearly in the zinc-deficient group and the stress groups. The results suggest that zinc deficiency may decrease and zinc supplementation may increase the expressions of MTs and their mRNAs in hippocampus; moreover, stress can increase their expressions dramatically. The Impairment of stress on the body may be involved with the nutrition status of zinc, and zinc deficiency can lower the body's adaptability to stress.
Collapse
Affiliation(s)
- Wei-Qiang Chen
- Department of Nutrition, Institute of Health and Environmental Medicine, Tianjin 300050, China.
| | | | | | | | | | | |
Collapse
|
6
|
Comparative In Vivo Study of Biocompatibility of Apatites Incorporated with 1% Zinc or Lead Ions versus Stoichiometric Hydroxyapatite. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/jbbte.19.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite is the main ceramic material that has being used in bone repair, although its physico-chemical and in vivo behavior should be better understood. A method to improve the biocompatibility of HA is the substitution of calcium with divalent cations which enhance mechanic resistance and can modulate inflammatory response against implanted material. In this study we analyzed the biocompatibility of HA doped with one per cent of Zn2+ or Pb2+. The first one has being described as an inflammation modulator and the second would be a model for chronic toxicity assay. Biocompatibility of the both materials was studied in vivo following the ISO 10993-6 standard. HA cylinders (ZnHA, PbHA and stoichiometric HA as positive control) were implanted into subcutaneous tissue of 45 Balb-c mice and after 1, 3 and 9 weeks the animals were euthanized (5 for each experimental condition). Necropsies of the skin containing reactional tissue were removed, fixed in 10% formaldehyde and followed the histological processing for paraffin embedding and staining with Hematoxylin-Eosine and Picrosirius red. Microscopic analysis showed for all groups moderate inflammatory response, decreasing throughout the experimental periods, with ZnHA group showing more intense response. Similar presence of macrophages, fibrosis and angiogenesis were observed among the groups. Thereby, we can conclude that ZnHA and PbHA are biocompatible and not bioresorbable, being the ZnHA potentially indicated as bone graft. Detailed studies are required to better understand the role of PbHA as chronic model for lead toxicity.
Collapse
|
7
|
Hepatic expression of metallothionein I/II, glycoprotein 96, IL-6, and TGF- β in rat strains with different susceptibilities to experimental autoimmune encephalomyelitis. Clin Dev Immunol 2013; 2013:750406. [PMID: 24489578 PMCID: PMC3893782 DOI: 10.1155/2013/750406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
In a search of peripheral factors that could be responsible for the discrepancy in susceptibility to EAE in Albino Oxford (AO) and Dark Agouti (DA) rats, we estimated the expression of metallothioneins I/II (MT), heat shock protein-gp96, interleukin (IL)-6, and transforming growth factor (TGF)-β in the livers of these animals. Rats were immunized with bovine brain homogenate (BBH) emulsified in complete Freund adjuvant (CFA) or only with CFA. Western blot and immunohistochemical analyses were done on day 12 after the immunization, as well as in intact rats. The data have shown that during the first attack of EAE only the EAE prone-DA rats markedly upregulated the hepatic MTs, gp96, IL-6, and TGF-β. In contrast, AO rats had a significantly higher expression of MT I/II, IL-6, and TGF-β in intact liver (P < 0,001), suggesting that the greater constitutive expression of these proteins contributed to the resistance of EAE. Besides, since previously we found that AO rats reacted on immunization by an early upregulation of TGF-β on several hepatic structures (vascular endothelium, Kupffer cells, and hepatocytes), the data suggest that the specific hepatic microenvironment might contribute also to the faster recovery of these rats from EAE.
Collapse
|
8
|
Prostaglandin E₂ is critical for the development of niacin-deficiency-induced photosensitivity via ROS production. Sci Rep 2013; 3:2973. [PMID: 24131900 PMCID: PMC3797990 DOI: 10.1038/srep02973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/08/2022] Open
Abstract
Pellagra is a photosensitivity syndrome characterized by three “D's”: diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.
Collapse
|
9
|
Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci 2013; 33:12041-51. [PMID: 23864690 DOI: 10.1523/jneurosci.0673-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Susceptibility and progression of brain injury in the newborn is closely associated with an exacerbated innate immune response, but the underlying mechanisms are often unclear. Toll-like receptors (TLRs) are important innate immune sensors that may influence the vulnerability of the developing brain. In the current study, we provide novel data to show that activation of the viral innate immune receptor TLR-3 sensitizes the neonatal brain to subsequent hypoxic-ischemic (HI) damage. Poly inosinic:poly cytidylic acid (Poly I:C), a synthetic ligand for TLR-3, was administered to neonatal mice 14 h before cerebral HI. Activation of TLR-3 before HI increased infarct volume from 3.0 ± 0.5 to 15.4 ± 2.1 mm³ and augmented loss of myelin basic protein from 13.4 ± 6.0 to 70.6 ± 5.3%. The sensitizing effect of Poly I:C was specific for the TLR-3 pathway because mice deficient in the TLR-3 adaptor protein Toll/IL-1R domain-containing adaptor molecule-1 (TRIF) did not develop larger brain damage. The increased vulnerability was associated with a TRIF-dependent heightened inflammatory response, including proinflammatory cytokines, chemokines, and the apoptosis-associated mediator Fas, whereas there was a decrease in reparative M2-like CD11b⁺ microglia and phosphorylation of Akt. Because TLR-3 is activated via double-stranded RNA during most viral infections, the present study provides evidence that viral infections during pregnancy or in the neonate could have great impact on subsequent HI brain injury.
Collapse
|
10
|
Moylan S, Eyre HA, Maes M, Baune BT, Jacka FN, Berk M. Exercising the worry away: how inflammation, oxidative and nitrogen stress mediates the beneficial effect of physical activity on anxiety disorder symptoms and behaviours. Neurosci Biobehav Rev 2013; 37:573-84. [PMID: 23415701 DOI: 10.1016/j.neubiorev.2013.02.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Regular physical activity exerts positive effects on anxiety disorder symptoms, although the biological mechanisms underpinning this effect are incompletely understood. Numerous lines of evidence support inflammation and oxidative and nitrogen stress (O&NS) as important in the pathogenesis of mood and anxiety disorders, and physical activity is known to influence these same pathways. This paper reviews the inter-relationships between anxiety disorders, physical activity and inflammation and O&NS, to explore whether modulation of inflammation and O&NS may in part underpin the positive effect of physical activity on anxiety disorders. Numerous studies support the notion that physical activity operates as an anti-inflammatory and anti-O&NS agent which potentially exerts positive effects on neuroplasticity, the expression of neurotrophins and normal neuronal functions. These effects may therefore influence the expression and evolution of anxiety disorders. Further exploration of this area may elicit a deeper understanding of the pathogenesis of anxiety disorders, and inform the development of integrated programmes including PA specifically suited to the treatment and prevention of anxiety disorders and symptoms.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Metallothioneins and brain injury: What transgenic mice tell us. Environ Health Prev Med 2012; 9:87-94. [PMID: 21432316 DOI: 10.1007/bf02898066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 03/18/2004] [Indexed: 10/21/2022] Open
Abstract
In rodents, the metallothionein (MT) family is composed of four members, MT-1 to MT-4. MT-1&2 are expressed in virtually all tissues including those of the Central Nervous System (CNS), while MT-3 (also called Growth Inhibitory Factor) and MT-4 are expressed prominently in the brain and in keratinizing epithelia, respectively. For the understanding of the physiological functions of these proteins in the brain, the use of transgenic mice has provided essential information. Results obtained inMT-1&2-null mice and in MT-1-overexpressing mice strongly suggeset that these MT isoforms are important antioxidant, anti-inflammatory and antiapoptotic proteins in the brain. Results inMT-3-null mice show a very different pattern, with no support for MT-1&2-like functions. Rather, MT-3 could be involved in neuronal sprouting and survival. Results obtained in a model of peripheral nervous system injury also suggest that MT-3 could be involved in the control of nerve growth.
Collapse
|
12
|
Helmy A, De Simoni MG, Guilfoyle MR, Carpenter KLH, Hutchinson PJ. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol 2011; 95:352-72. [PMID: 21939729 DOI: 10.1016/j.pneurobio.2011.09.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 01/31/2023]
Abstract
There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease.
Collapse
Affiliation(s)
- Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
13
|
Jung JE, Kim GS, Chan PH. Neuroprotection by interleukin-6 is mediated by signal transducer and activator of transcription 3 and antioxidative signaling in ischemic stroke. Stroke 2011; 42:3574-9. [PMID: 21940958 DOI: 10.1161/strokeaha.111.626648] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Interleukin-6 (IL-6) has been shown to have a neuroprotective effect in brain ischemic injury. However, its molecular mechanisms are still poorly understood. In this study, we investigated the neuroprotective role of the IL-6 receptor (IL-6R) by IL-6 in the reactive oxygen species defense system after transient focal cerebral ischemia (tFCI). METHODS IL-6 was injected in mice before and after middle cerebral artery occlusion. Coimmunoprecipitation assays were performed for analysis of an IL-6R association after tFCI. Primary mouse cerebral cortical neurons were transfected with small interfering RNA probes targeted to IL-6Rα or gp130 and were used for chromatin-immunoprecipitation assay, luciferase promoter assay, and cell viability assay. Reduction in infarct volumes by IL-6 was measured after tFCI. RESULTS IL-6R was disrupted through a disassembly between IL-6Rα and gp130 associated by protein oxidation after reperfusion after tFCI. This suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and finally induced neuronal cell death through a decrease in manganese-superoxide dismutase. However, IL-6 injections prevented disruption of IL-6R against reperfusion after tFCI, consequently restoring activity of STAT3 through recovery of the binding of STAT3 to gp130. Moreover, IL-6 injections restored the transcriptional activity of the manganese-superoxide dismutase promoter through recovery of the recruitment of STAT3 to the manganese-superoxide dismutase promoter and reduced infarct volume after tFCI. CONCLUSIONS This study demonstrates that IL-6 has a neuroprotective effect against cerebral ischemic injury through IL-6R-mediated STAT3 activation and manganese-superoxide dismutase expression.
Collapse
Affiliation(s)
- Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS #P314, Stanford, CA 94305-5487, USA
| | | | | |
Collapse
|
14
|
Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M, Olesen J. Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia 2009; 30:303-10. [DOI: 10.1111/j.1468-2982.2009.01954.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To test the hypothesis that permeability of the blood–brain barrier (BBB) is altered during migraine attack due to enhanced activation of matrix metalloproteinases (MMPs), we investigated MMP-3, MMP-9 and tissue inhibitor of metalloproteases (TIMP)-1 in the external jugular vein during and outside of migraine attacks in 21 patients with migraine without aura. In addition, we measured plasma levels of several other proteins including MMP-7, -8, -10 and TIMP-2. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study plasma concentration of MMPs. There was no difference in MMP-9 and TIMP-1 levels between ictal and interictal periods. We found significantly decreased plasma levels of MMP-3 in the external jugular ( P = 0.002) and cubital ( P = 0.008) vein during attacks compared with outside of attacks. We found no correlation of ictal or interictal MMP-3, MMP-9 and TIMP-1 to migraine duration and frequency analysed in 21 patients ( P > 0.05). There was no difference between ictal and interictal plasma levels of MMP-7, -8, -10 and TIMP-2 ( P > 0.05). Our data suggest that plasma MMP-9 cannot be used as a biomarker of BBB disruption in migraine without aura. Decreased MMP-3 levels are an interesting and unexpected finding warranting further investigation.
Collapse
Affiliation(s)
- M Ashina
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Copenhagen, Denmark
| | - JF Tvedskov
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Copenhagen, Denmark
| | - K Lipka
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Copenhagen, Denmark
| | - J Bilello
- GlaxoSmithKline R&D, Research Triangle Park, Durham, NC, USA
- Precision Human Biolaboratory, Durham, NC, USA
| | - M Penkowa
- Section of Neuroprotection, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Olesen
- Danish Headache Centre and Department of Neurology, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
15
|
Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP. Methamphetamine-Induced Early Increase of IL-6 and TNF-α mRNA Expression in the Mouse Brain. Ann N Y Acad Sci 2008; 1139:103-11. [DOI: 10.1196/annals.1432.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Marcellini F, Giuli C, Papa R, Gagliardi C, Malavolta M, Mocchegiani E. Psychosocial and biochemical interactions in aging: preliminary results from an Italian old sample of "Zincage" project. Arch Gerontol Geriatr 2007; 44 Suppl 1:259-69. [PMID: 17317461 DOI: 10.1016/j.archger.2007.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the interactions among biological factors and psychosocial conditions is a very innovative field, because data are lacking in the scientific literature. Among biological aspects, zinc is an essential element in the elderly, especially in relation to one of the proteins, such as albumin, involved in zinc transport into the cells. In this study, the aim is the assessment of the interrelationship between albumin value (used as an index of the body zinc status) and some psychosocial dimensions in elderly Italian sample recruited for ZINCAGE project, supported by the European Commission in the "Sixth Framework Programme". Some tests and questionnaires were administered to older people included in the trial: the "life-style questionnaire"; the mini mental state examination (MMSE); the geriatric depression scale (GDS-15 items). On the basis of the Senieur Protocol for gerontological studies, a sample of 291 Italian healthy old subjects has been recruited in Central Italy and divided into 3 age groups: (a) 125 subjects aged from 65 to 74 years, (b) 89 subjects aged from 75 to 84 years, (c) 77 subjects aged >or=85 years (classified like successful old people). No cognitive impairment assessed by MMSE was observed in 67.5% of the sample; 64.0% had GDS score less than 5, indicating no depression, whereas the prevalence of biological albumin deficiency (<3.5 g/dl) found in Italian old people was 21.0%. Sixty one percent of subjects with albumin deficiency displayed higher values of GDS (>or=5). These preliminary results showed an interrelationship among serum albumin value and psychosocial aspects in Italian old population, suggesting that low albumin values may be involved in impaired psychological dimensions.
Collapse
Affiliation(s)
- F Marcellini
- Social Gerontology Unit, Research Department, INRCA, Via S. Margherita, 5. I-60100 Ancona, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Kobayashi K, Kuroda J, Shibata N, Hasegawa T, Seko Y, Satoh M, Tohyama C, Takano H, Imura N, Sakabe K, Fujishiro H, Himeno S. Induction of metallothionein by manganese is completely dependent on interleukin-6 production. J Pharmacol Exp Ther 2007; 320:721-7. [PMID: 17065364 DOI: 10.1124/jpet.106.112912] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metallothionein (MT) is a cysteine-rich protein that binds to and is inducible by heavy metals such as cadmium and zinc. However, the precise mechanism of MT induction by other metals remains unclear. In the present study, we investigated the mechanism of MT induction by manganese, focusing on the involvement of cytokine production. Administration of MnCl(2) to mice resulted in the induction of MT dose-dependently in the liver with little accumulation of manganese. Speciation analysis of metals in the liver cytosol showed that the major metal bound to the induced MT was zinc. Administration of MnCl(2) caused an increase in mRNA levels of interleukin-6 (IL-6) in the liver as well as an increase in serum levels of IL-6 but not those of other inflammatory cytokines. Subsequently, serum levels of serum amyloid A (SAA), an acute-phase protein induced by IL-6, increased with a peak at 24 h. However, no increase in serum alanine aminotransferase activity was observed, suggesting that manganese enhanced the production of IL-6 and SAA without causing liver injury. In response to IL-6, the expression of a zinc transporter, ZIP14, was enhanced in the liver, possibly contributing to the synthesis of hepatic zinc-MT. In IL-6-null mice, the induction of hepatic MT by treatment with MnCl(2) was completely suppressed to the control level. These results suggest that manganese is a unique metal that induces the synthesis of hepatic MT completely depending on the production of IL-6 without accompanying liver injury.
Collapse
|
18
|
Hakkoum D, Stoppini L, Muller D. Interleukin-6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures. J Neurochem 2006; 100:747-57. [PMID: 17144903 DOI: 10.1111/j.1471-4159.2006.04257.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine now widely recognized to contribute to the molecular events that follow CNS injury. Little is known, however, about its action on axonal sprouting and regeneration in the brain. We addressed this issue using the model of transection of Schaffer collaterals in mice organotypic hippocampal slice cultures. Transection of slice cultures was associated with a marked release of IL-6 that could be neutralized by an IL-6 blocking antibody. We monitored functional recovery across the lesion by recording synaptic responses using a multi-electrode array. We found that application of IL-6 antibodies to the cultures after lesioning significantly reduced functional recovery across the lesion. Furthermore, the level of expression of the 43-kDa growth-associated protein (GAP-43) was lower in slices treated with the IL-6 neutralizing antibody than in those treated with a control IgG. Conversely, addition of exogenous IL-6 to the culture medium resulted in a dose-dependent enhancement of functional recovery across the lesion and a higher level of expression of GAP-43. Co-culture of CA3 hemi-slices from thy1-YFP mice with CA1 hemi-slices from wild-type animals confirmed that IL-6-treated co-cultures exhibited an increased number of growing fluorescent fibres across the lesion site. Taken together these data indicate that IL-6 plays an important role in CNS repair mechanisms by promoting regrowth and axon regeneration.
Collapse
Affiliation(s)
- David Hakkoum
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
19
|
Yin X, Knecht DA, Lynes MA. Metallothionein mediates leukocyte chemotaxis. BMC Immunol 2005; 6:21. [PMID: 16164753 PMCID: PMC1262721 DOI: 10.1186/1471-2172-6-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 09/15/2005] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents. Modulation of MT levels has also been shown to alter specific immune functions. We have noticed that the MT genes map close to the chemokines Ccl17 and Cx3cl1. Cysteine motifs that characterize these chemokines are also found in the MT sequence suggesting that MT might also act as a chemotactic factor. RESULTS In the experiments reported here, we show that immune cells migrate chemotactically in the presence of a gradient of MT. This response can be specifically blocked by two different monoclonal anti-MT antibodies. Exposure of cells to MT also leads to a rapid increase in F-actin content. Incubation of Jurkat T cells with cholera toxin or pertussis toxin completely abrogates the chemotactic response to MT. Thus MT may act via G-protein coupled receptors and through the cyclic AMP signaling pathway to initiate chemotaxis. CONCLUSION These results suggest that, under inflammatory conditions, metallothionein in the extracellular environment may support the beneficial movement of leukocytes to the site of inflammation. MT may therefore represent a "danger signal"; modifying the character of the immune response when cells sense cellular stress. Elevated metallothionein produced in the context of exposure to environmental toxicants, or as a result of chronic inflammatory disease, may alter the normal chemotactic responses that regulate leukocyte trafficking. Thus, MT synthesis may represent an important factor in immunomodulation that is associated with autoimmune disease and toxicant exposure.
Collapse
Affiliation(s)
- Xiuyun Yin
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| | - David A Knecht
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| | - Michael A Lynes
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| |
Collapse
|
20
|
HIDALGO J. Metallothioneins and Brain Injury: What Transgenic Mice Tell Us. Environ Health Prev Med 2004. [DOI: 10.1265/ehpm.9.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Penkowa M, Quintana A, Carrasco J, Giralt M, Molinero A, Hidalgo J. Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide. J Neurosci Res 2004; 77:35-53. [PMID: 15197737 DOI: 10.1002/jnr.20154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) induces significant inflammation and neurodegeneration but also affords neuroprotection against acute traumatic brain injury. This neuroprotection is likely mediated by the IL-6-induced protective factors metallothioneins-I and -II (MT-I+II). Here we evaluate the neuroprotective roles of IL-6 vs. MT-I+II during 6-aminonicotinamide (6-AN)-induced neurotoxicity, by using GFAP-IL6 mice and transgenic mice overexpressing MT-I (TgMT) as well as GFAP-IL6 mice crossed with TgMT mice (GFAP-IL6 x TgMT). 6-AN caused acute damage of brainstem gray matter areas identified by necrosis of astrocytes, followed by inflammatory responses. After 6-AN-induced toxicity, secondary damage was observed, consisting of oxidative stress, neurodegeneration, and apoptotic cell death. We hereby show that the primary injury caused by 6-AN was comparable in wild-type and GFAP-IL6 mice, but MT-I overexpression could significantly protect the brain tissue. As expected, GFAP-IL6 mice showed increased CNS inflammation with more gliosis, macrophages, and lymphocytes, including increased cytokine expression, relative to the other mice. However, GFAP-IL6 mice showed reduced oxidative stress (judged from nitrotyrosine, malondialdehyde, and 8-oxoguanine stainings), neurodegeneration (accumulation of neurofibrillary tangles), and apoptosis (determined from TUNEL and caspase-3). MT-I+II expression was significantly higher in GFAP-IL6 mice than in wild types, which may contribute to the IL-6-induced neuroprotection. In support of this, overexpression of MT-I in GFAP-IL6 x TgMT as well as TgMT mice protected the brainstem tissue significantly from 6-AN-induced toxicity and secondary brain tissue damage. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors, which in the future may become therapeutic agents.
Collapse
Affiliation(s)
- Milena Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
22
|
Penkowa M, Camats J, Hadberg H, Quintana A, Rojas S, Giralt M, Molinero A, Campbell IL, Hidalgo J. Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide. J Neurosci Res 2003; 73:481-96. [PMID: 12898533 DOI: 10.1002/jnr.10681] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
6-aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes mainly in the brainstem. We have examined the role of interleukin-6 (IL-6) in this degenerative process by using transgenic mice with astrocyte-targeted IL-6 expression (GFAP-IL6 mice). This study demonstrates that transgenic IL-6 expression significantly increases the 6-AN-induced inflammatory response of reactive astrocytes, microglia/macrophages, and lymphocytes in the brainstem. Also, IL-6 induced significant increases in proinflammatory cytokines IL-1, IL-12, and tumor necrosis factor-alpha as well as growth factors basic fibroblast growth factor (bFGF), transforming growth factor-beta, neurotrophin-3, angiopoietin, vascular endothelial growth factor, and the receptor for bFGF. In accordance, angiogenesis was increased in GFAP-IL6 mice relative to controls after 6-AN. Moreover, oxidative stress and apoptotic cell death were significantly reduced by transgenic IL-6 expression. IL-6 is also a major inducer in the CNS of metallothionein I and II (MT-I+II), which were significantly increased in the GFAP-IL6 mice. MT-I+II are antioxidants and neuroregenerative factors in the CNS, so increased MT-I+II levels in GFAP-IL6 mice could contribute to the reduction of oxidative stress and cell death in these mice.
Collapse
Affiliation(s)
- Milena Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Espey LL, Ujioka T, Okamura H, Richards JS. Metallothionein-1 messenger RNA transcription in steroid-secreting cells of the rat ovary during the periovulatory period. Biol Reprod 2003; 68:1895-902. [PMID: 12606366 DOI: 10.1095/biolreprod.102.013557] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An increase in metallothionein 1 (MT-1) mRNA was detected in the ovaries of immature Wistar rats that were primed with s.c. injection of 10 IU eCG followed 48 h later by 10 IU hCG s.c. to initiate the ovulatory process. Ovarian RNA was extracted at 0, 2, 4, 8, 12, 24, 72, 144, and 288 h after the primed animals were injected with hCG. These extracts were used for reverse transcription polymerase chain reaction (RT-PCR) differential display and Northern analyses that yielded complementary gene fragments for MT-1. Expression of MT-1 mRNA increased significantly by 24 h after hCG treatment and reached a peak at 144 h after hCG. In contrast, a disintegrin and metalloproteinase with thrombospondin motifs and a tissue inhibitor of metalloproteinase 1, which were also detected by the RT-PCR differential display procedure, reached a peak at 12 h after hCG and returned to control levels in the ovaries by 72 h after hCG. In situ hybridization indicated that most of the MT-1 mRNA was expressed in the vicinity of the theca interna of preovulatory follicles and in the lutein granulosa of postovulatory follicles. Thus, MT-1 mRNA expression is primarily in the vicinity of steroid-secreting areas of the ovary. The substantial increase in MT-1 mRNA expression might be important in protecting the ovarian tissues from oxidative stress generated by ovarian inflammatory events during the ovulatory process and luteinization.
Collapse
Affiliation(s)
- L L Espey
- Department of Biology, Trinity University, San Antonio, Texas 78212, USA.
| | | | | | | |
Collapse
|
24
|
Bolin LM, Strycharska-Orczyk I, Murray R, Langston JW, Di Monte D. Increased vulnerability of dopaminergic neurons in MPTP-lesioned interleukin-6 deficient mice. J Neurochem 2002; 83:167-75. [PMID: 12358740 DOI: 10.1046/j.1471-4159.2002.01131.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis that neuroinflammation contributes to dopaminergic neuron death in the MPTP-lesioned mouse, we compared nigrostriatal degeneration in interleukin (IL)-6 (+/+) with IL-6 (-/-) mice. In the absence of IL-6, a single injection of MPTP (30 mg/kg) resulted in significantly greater striatal dopamine depletion than that measured in IL-6 (+/+) mice. The observed dopamine depletion was MPTP dose dependent. This loss of striatal dopamine and a significantly greater loss of TH+ cells in the substantia nigra pars compacta in IL-6 (-/-) mice as compared with control IL-6 (+/+) mice, suggest that IL-6 is neuroprotective in the MPTP-lesioned nigrostriatal system. Co-localization experiments identified striatal astrocytes as the source of IL-6 in IL-6 (+/+) mice at 1 and 7 days postinjection of MPTP. The increased sensitivity of dopaminergic neurons to neurotoxicant in the absence of IL-6, is compatible with a neuroprotective activity of IL-6 in the injured nigrostriatal system.
Collapse
Affiliation(s)
- Laurel M Bolin
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089, USA.
| | | | | | | | | |
Collapse
|
25
|
Hidalgo J, Penkowa M, Giralt M, Carrasco J, Molinero A. Metallothionein expression and oxidative stress in the brain. Methods Enzymol 2002; 348:238-49. [PMID: 11885277 DOI: 10.1016/s0076-6879(02)48642-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Juan Hidalgo
- Department of Cellular Biology, Physiology, and Immunology, Animal Physiology Unit, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Penkowa M, Poulsen C, Carrasco J, Hidalgo J. M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment. Exp Neurol 2002; 176:308-21. [PMID: 12359172 DOI: 10.1006/exnr.2002.7968] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray-matter astrocytes followed by a vigorous inflammatory response. Macrophage colony stimulating factor (M-CSF) is important during inflammation, and in order to further clarify the roles for M-CSF in neurodegeneration and brain cell death, we have examined the effect of 6-AN on osteopetrotic mice with genetic M-CSF deficiency (op/op mice). The 6-AN-induced degeneration of gray-matter areas was comparable in control and op/op mice, but the numbers of reactive astrocytes, macrophages, and lymphocytes in the damaged areas were significantly decreased in op/op mice relative to controls. The levels of oxidative stress (as determined by using immunoreactivity for inducible nitric oxide synthase, nitrotyrosine, and malondialdehyde) and apoptotic cell death (as determined by using TUNEL and immunoreactivity for caspases and cytochrome c) were significantly increased in 6-AN-injected op/op mice relative to controls. From a number of antioxidant factors assayed, only metallothioneins I and II (MT-I+II) were decreased in op/op mice in comparison to controls. Thus, the present results indicate that M-CSF is an important growth factor for coping with 6-AN-induced central nervous system damage and suggest that MT-I+II are likely to have a significant role.
Collapse
Affiliation(s)
- Milena Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
27
|
Eisel ULM. Cytokines in degenerative brain diseases: lessons from transgenic animals. Curr Top Microbiol Immunol 2002; 265:49-62. [PMID: 12014195 DOI: 10.1007/978-3-662-09525-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- U L M Eisel
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Scalabrino G, Corsi MM, Veber D, Buccellato FR, Pravettoni G, Manfridi A, Magni P. Cobalamin (vitamin B(12)) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol 2002; 127:37-43. [PMID: 12044973 DOI: 10.1016/s0165-5728(02)00095-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously demonstrated that the repeated intracerebroventricular (i.c.v.) microinjection of interleukin-6 (IL-6) prevented the myelinolytic lesions of cobalamin-deficient (Cbl-D) central neuropathy [or subacute combined degeneration (SCD)] in totally gastrectomized (TGX) rats. We therefore hypothesized that cobalamin (Cbl) may actually regulate IL-6 levels in rat cerebrospinal fluid (CSF). We measured IL-6 levels in the CSF of rats made Cbl-D by means of total gastrectomy (TG) or chronic feeding with a Cbl-D diet and killed at different times from the beginning of the experiment, and found that IL-6 levels significantly and progressively decreased over time. Chronic 2-month Cbl administration started 1 week after surgery prevented the decrease in IL-6 levels and, when it was started 2 months after surgery, it significantly increased IL-6 levels, but not to presurgical values. We also investigated whether IL-6 decrease might be ultimately due to the Cbl-deficiency-linked decrease in epidermal growth factor (EGF) synthesis. Repeated i.c.v. administrations of EGF to TGX rats did not modify CSF IL-6 levels. These results, together with those of a previous study showing the preventive effect of IL-6 treatment on SCD lesions, demonstrate that: (i) Cbl selectively regulates CSF IL-6 levels; and (ii) decreased IL-6 availability plays a role in the pathogenesis of the experimental SCD, in which no evidence of inflammatory and/or immunological reaction has been observed.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Institute of General Pathology, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Penkowa M, Giralt M, Camats J, Hidalgo J. Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 2002; 444:174-89. [PMID: 11835189 DOI: 10.1002/cne.10149] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes. Metallothionein 1+2 (MT-1+2) are neuroprotective factors in the central nervous system (CNS), and to determine the roles for MT after 6-AN, we have examined transgenic mice overexpressing MT-1 (TgMTI* mice) after an i.p. injection with 6-AN. In control mice injected with 6-AN, astrocytes in specific gray matter areas of the brainstem showed degeneration. Reactive astrocytes surrounded the degenerated areas, which were heavily infiltrated by macrophages and T lymphocytes. MT-1+2 expression was significantly decreased in the damaged brainstem areas, but it increased in reactive astrocytes surrounding these areas and also in infiltrating macrophages. The levels of oxidative stress, as determined by immunoreactivity for inducible nitric-oxide synthase (iNOS), malondialdehyde (MDA), and nitrotyrosine (NITT), and the number of terminal deoxynucleotidyl transferase [TdT]-mediated deoxyuridine triphosphate [dUTP]-digoxigenin nick end labeling-positive (TUNEL+), caspase-3+ apoptotic cells were significantly increased in the brainstem of normal mice after 6-AN. In the TgMTI* mice, the 6-AN-induced tissue damage was decreased in comparison to control mice, and they showed significantly reduced numbers of recruited macrophages and T lymphocytes, and a drastic reduction of oxidative stress and apoptotic cell death. In addition, the accompanying reactive astrogliosis was increased in the transgenic mice. To further study the potential protective role of MT, we administered intraperitoneally Zn-MT-2 to 6-AN-injected normal mice and found essentially the same results as those obtained in TgMTI* mice. Thus, we hereby report that endogenous MT-1 overexpression and exogenous MT-2 treatment have significant neuroprotective roles during CNS pathological conditions.
Collapse
Affiliation(s)
- Milena Penkowa
- Institute of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | |
Collapse
|
30
|
Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 2001; 119:248-60. [PMID: 11585628 DOI: 10.1016/s0165-5728(01)00357-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Penkowa M, Hidalgo J. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). Exp Neurol 2001; 170:1-14. [PMID: 11421579 DOI: 10.1006/exnr.2001.7675] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE. However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE in vivo and that MT-II might be a potentially useful factor for treatment of EAE/MS.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Canpolat E, Lynes MA. In vivo manipulation of endogenous metallothionein with a monoclonal antibody enhances a T-dependent humoral immune response. Toxicol Sci 2001; 62:61-70. [PMID: 11399794 DOI: 10.1093/toxsci/62.1.61] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metallothionein (MT) is a small stress response protein that can be induced by exposure to heavy metal cations, oxidative stressors, and acute phase cytokines that mediate inflammation. In previous experiments, we have shown that exogenous MT can affect cell proliferation, macrophage and cytotoxic T lymphocyte function, and humoral immunity to T-dependent antigens. In the studies described here, we have explored the effect of a monoclonal anti-MT antibody (clone UC1MT) on the role that endogenous MT plays in the humoral immune response. In vivo injection of UC1MT significantly increased the humoral response to simultaneous challenge with ovalbumin (OVA). In contrast, mice immunized with OVA in the presence of an isotype-matched antibody control (MOPC 21) showed no change in the anti-OVA humoral response. The predominant anti-OVA response that was enhanced by UC1MT treatment was the IgG(1) response; the IgG(2a) anti-OVA response was not altered by UC1MT treatment. UC1MT treatment increased the numbers of IgG anti-OVA secreting cells as measured by ELISPOT assay, suggesting that blocking the effects of MT synthesized during the immune response augments the differentiation of antigen-specific plasma cells. The percentages of T and B cells in the spleens of animals from each treatment group were not significantly different, suggesting that this regimen of UC1MT treatment does not significantly affect hematopoiesis, but rather alters antigen-induced differentiation of lymphocytes. These observations are compatible with previous results from our laboratory that suggest that endogenous MT synthesized during the normal immune response or as a consequence of toxicant exposure suppresses in vivo immune function. In light of the fact that significant amounts of MT can be synthesized during toxicant exposure, manipulation of MT levels with an anti-MT antibody may ultimately represent an important therapeutic approach to the treatment of immune dysfunctions that result from toxicant exposure.
Collapse
Affiliation(s)
- E Canpolat
- Department of Molecular and Cell Biology, 75 North Eagleville Road, Unit 3125, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
33
|
Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001; 102:805-18. [PMID: 11182244 DOI: 10.1016/s0306-4522(00)00515-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus, the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death in the interleukin-6 null mice. The present results demonstrate that interleukin-6 deficiency increases neuronal injury and impairs the inflammatory response after kainic acid-induced seizures.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Hidalgo J, Aschner M, Zatta P, Vasák M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 2001; 55:133-45. [PMID: 11470309 DOI: 10.1016/s0361-9230(01)00452-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) constitute a family of proteins characterized by a high heavy metal [Zn(II), Cu(I)] content and also by an unusual cysteine abundance. Mammalian MTs are comprised of four major isoforms designated MT-1 trough MT-4. MT-1 and MT-2 are expressed in most tissues including the brain, whereas MT-3 (also called growth inhibitory factor) and MT-4 are expressed predominantly in the central nervous system and in keratinizing epithelia, respectively. All MT isoforms have been implicated in disparate physiological functions, such as zinc and copper metabolism, protection against reactive oxygen species, or adaptation to stress. In the case of MT-3, an additional involvement of this isoform in neuromodulatory events and in the pathogenesis of Alzheimer's disease has also been suggested. It is essential to gain insight into how MTs are regulated in the brain in order to characterize MT functions, both in normal brain physiology, as well as in pathophysiological states. The focus of this review concerns the biology of the MT family in the context of their expression and functional roles in the central nervous system.
Collapse
Affiliation(s)
- J Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
35
|
Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Fattoretti P, Bertoni-Freddari C, Isani G, Zambenedetti P, Zatta P. Zinc-bound metallothioneins as potential biological markers of ageing. Brain Res Bull 2001; 55:147-53. [PMID: 11470310 DOI: 10.1016/s0361-9230(01)00468-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metallothioneins (MTs) (I+II) play pivotal roles in metal-related cell homeostasis because of their high affinity for metals forming clusters. The main functional role of MTs is to sequester and/or dispense zinc participating in zinc homeostasis. Consistent with this role, MT gene expression is transcriptionally induced by a variety of stressing agents to protect cells from reactive oxygen species. In order to accomplish this task, MTs induce the secretion of pro-inflammatory cytokines by immune and brain cells, such as astrocytes, for a prompt response against oxidative stress. These cytokines are in turn involved in new synthesis of MTs in the liver and brain. Such protective mechanism occurs in the young-adult age, when stresses are transient. Stress-like condition is instead constant in the old age, and this causes continuous stealing of intracellular zinc by MTs and consequent low bioavailability of zinc ions for immune, endocrine, and cerebral functions. Therefore, a protective role of zinc-bound MTs (I+II) during ageing can be questioned. Because free zinc ions are required for optimal efficiency of the immune-endocrine-nervous network, zinc-bound MTs (I+II) may play a different role during ageing, switching from a protective to a deleterious one in immune, endocrine, and cerebral activities. Physiological zinc supply, performed cautiously, can correct deficiencies in the immune-neuroendocrine network and can improve cognitive performances during ageing and accelerated ageing. Altogether these data indicate that zinc-bound MTs (I+II) can be considered as novel potential markers of ageing.
Collapse
Affiliation(s)
- E Mocchegiani
- Immunology Center, Section Nutrition, Immunity and Ageing, Italian National Research Centres on Ageing (INRCA), Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Giralt M, Carrasco J, Penkowa M, Morcillo MA, Santamaría J, Campbell IL, Hidalgo J. Astrocyte-targeted expression of interleukin-3 and interferon-alpha causes region-specific changes in metallothionein expression in the brain. Exp Neurol 2001; 168:334-46. [PMID: 11259121 DOI: 10.1006/exnr.2000.7601] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice expressing IL-3 and IFN-alpha under the regulatory control of the GFAP gene promoter (GFAP-IL3 and GFAP-IFNalpha mice) exhibit a cytokine-specific, late-onset chronic-progressive neurological disorder which resemble many of the features of human diseases such as multiple sclerosis, Aicardi-Goutières syndrome, and some viral encephalopathies including HIV leukoencephalopathy. In this report we show that the metallothionein-I+II (MT-I+II) isoforms were upregulated in the brain of both GFAP-IL3 and GFAP-IFNalpha mice in accordance with the site and amount of expression of the cytokines. In the GFAP-IL3 mice, in situ hybridization analysis for MT-I RNA and radioimmunoassay results for MT-I+II protein revealed that a significant upregulation was observed in the cerebellum and medulla plus pons at the two ages studied, 1-3 and 6-10 months. Increased MT-I RNA levels occurred in the Purkinje and granular layers of the cerebellum, as well as in its white matter tracts. In contrast to the cerebellum and brain stem, MT-I+II were downregulated by IL-3 in the hippocampus and the remaining brain in the older mice. In situ hybridization for MT-III RNA revealed a modest increase in the cerebellum, which was confirmed by immunohistochemistry. MT-III immunoreactivity was present in cells that were mainly round or amoeboid monocytes/macrophages and in astrocytes. MT-I+II induction was more generalized in the GFAP-IFNalpha (GIFN12 and GIFN39 lines) mice, with significant increases in the cerebellum, thalamus, hippocampus, and cortex. In the high expressor line GIFN39, MT-III RNA levels were significantly increased in the cerebellum (Purkinje, granular, and molecular layers), thalamus, and hippocampus (CA2/CA3 and especially lacunosum molecular layers). Reactive astrocytes, activated rod-like microglia, and macrophages, but not the perivenular infiltrating cells, were identified as the cellular sources of the MT-I+II and MT-III proteins. The pattern of expression of the different MT isoforms in these transgenic mice differed substantially, demonstrating unique effects associated with the expression of each cytokine. The results indicate that the MT expression in the CNS is significantly affected by the cytokine-induced inflammatory response and support a major role of these proteins during CNS injury.
Collapse
Affiliation(s)
- M Giralt
- Departamento de Biología Celular, Universidad Autónoma de Barcelona, Bellaterra, 08193, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
We examined the expression and roles of neuroprotective metallothionein-I+II (MT-I+II) in the rat CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for the human autoimmune disease, multiple sclerosis (MS). EAE caused significant macrophage activation, T-lymphocyte infiltration, and astrogliosis in spinal cord, brain stem, and cerebellum, which peaked 14-18 days after immunization. The remission of symptoms and histopathological changes began at days 19-21 and were completed by days 30-40. MT-I+II expression was increased significantly in EAE infiltrates. In order to study the effects of increased MT levels, we administered Zn-MT-II intraperitoneally (i.p.) to rats during EAE. Clinically, Zn-MT-II treatment reduced the severity of EAE symptoms and mortality in a time- and dose-dependent manner. Histopathologically, Zn-MT-II increased reactive astrogliosis and decreased macrophages and T lymphocytes significantly in the CNS. In spleen sections, the number of macrophages both in control and EAE-sensitized rats was reduced by Zn-MT-II, while the number of lymphocytes remained unaltered by Zn-MT-II. Therefore, we suggest that MT-II has peripheral mechanisms of action on macrophages, while T lymphocytes are affected locally in the CNS. During EAE, oxidative stress was decreased by Zn-MT-II, which could contribute to the diminished clinical scores observed. None of the effects caused by Zn-MT-II could be attributable to the zinc content. These results suggest MT-I+II as potentially useful factors for the treatment of EAE/MS.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
38
|
Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 2000; 32:271-85. [PMID: 11102968 DOI: 10.1002/1098-1136(200012)32:3<271::aid-glia70>3.0.co;2-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to determine the role of the neuropoietic cytokine interleukin-6 (IL-6) during the first 3 weeks after a focal brain injury, we examined the inflammatory response, oxidative stress and neuronal survival in normal and interleukin-6-deficient (knockout, IL-6KO) mice subjected to a cortical freeze lesion. In normal mice, the brain injury was followed by reactive astrogliosis and recruitment of macrophages from 1 day postlesion (dpl), peaking at 3-10 dpl, and by 20 dpl the transient immunoreactions were decreased, and a glial scar was present. In IL-6KO mice, the reactive astrogliosis and recruitment of macrophages were decreased throughout the experimental period. The expression of the antioxidant and anti-apoptotic factors metallothionein I+II (MT-I+II) was increased prominently by the freeze lesion, but this response was significantly reduced in the IL-6 KO mice. By contrast, the expression of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice showed higher levels of MDA, NITT, and iNOS than did normal mice. Concomitantly, in IL-6KO mice the number of apoptotic neurons was significantly increased as judged by TUNEL staining, and regeneration of the tissue was delayed relative to normal mice. The changes in neuronal tissue damage and in brain regeneration observed in IL-6KO mice are likely caused by the IL-6-dependent decrease in MT-I+II expression, indicating IL-6 and MT-I+II as neuroprotective factors during brain injury.
Collapse
Affiliation(s)
- M Penkowa
- Institute of Medical Anatomy, Section C, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
39
|
Penkowa M, Carrasco J, Giralt M, Molinero A, Hernández J, Campbell IL, Hidalgo J. Altered central nervous system cytokine-growth factor expression profiles and angiogenesis in metallothionein-I+II deficient mice. J Cereb Blood Flow Metab 2000; 20:1174-89. [PMID: 10950378 DOI: 10.1097/00004647-200008000-00003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To study the importance of metallothionein-I and -II (MT-I+II) for brain inflammation and regeneration, the authors examined normal and MT-I+II knock-out (MT-KO) mice subjected to a cortical freeze injury. Normal mice showed profound neurodegeneration, inflammation, and gliosis around the injury, which was repaired by 20 days postlesion (dpl). However, in MT-KO mice the lesion-associated inflammation was still present as late as 90 dpl. Scanning electron microscopy demonstrated that the number of capillaries was lower, and ultrastructural preservation of the lesioned parenchyma was poorer in MT-KO mice, suggesting an altered angiogenesis. To gain insight into the mechanisms involved, a number of cytokines and growth factors were evaluated. The number of cells expressing the proinflammatory cytokines IL-1beta, IL-6, and TNF-alpha was higher in MT-KO mice than in normal mice, which was confirmed by RNase protection analysis, whereas the number of cells expressing the growth factors bFGF, TGFbeta1, VEGF, and NT-3 was lower. Increased expression of proinflammatory cytokines could be involved in the sustained recruitment of CD-14+ and CD-34+ inflammatory cells and their altered functions observed in MT-KO mice. Decreases in trophic factors bFGF, TGFbeta1, and VEGF could mediate the decreased angiogenesis and regeneration observed in MT-KO mice after the freeze lesion. A role for MT-I+II in angiogenesis was also observed in transgenic mice expressing IL-6 under the control of the promoter of glial fibrillary acidic protein gene (GFAP-IL6 mice) because MT-I+II deficiency dramatically decreased the IL-6-induced angiogenesis of the GFAP-IL6 mice. In situ hybridization analysis indicated that the MT-III expression was not altered by MT-I+II deficiency. These results suggest that the MT-I+II isoforms have major regulatory functions in the brain inflammatory response to injury, especially in the angiogenesis process.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|