1
|
Sohsah EA, El-Beltagy AEFBM, El-Sayyad HI, Saleh TR, El-Badry DA, Sabry DA. Comparative evaluation of the testicular development between Japanese quail and albino rats. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2025; 12:1-23. [DOI: 10.1080/2314808x.2024.2442248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Enas Ae Sohsah
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Tasneem R. Saleh
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dina A. El-Badry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalia A. Sabry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Higuchi K, Kazeto Y, Nyuji M, Soma S, Takashi T, Okita K, Hayashida T, Gen K. Molecular characterization and stage-dependent gene expression of gonadotropin receptors in Pacific bluefin tuna, Thunnus orientalis, ovarian follicles. Gen Comp Endocrinol 2024; 359:114620. [PMID: 39368754 DOI: 10.1016/j.ygcen.2024.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
To understand the physiological mechanisms by which pituitary-derived gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) regulate asynchronous oocyte development, we investigated the function and expression of Fsh and Lh receptors (Fshr and Lhr, respectively) in Pacific bluefin tuna (PBT, Thunnus orientalis). As a first, we cloned the full-length cDNAs encoding PBT Fshr and Lhr. Recombinant PBT Fsh and Lh single-chain proteins were produced in abundance using stable CHO-DG44 cell lines and were subsequently purified from the culture medium, culminating in their yields being 87.0 and 88.2%, respectively. An in vitro reporter assay using homologous recombinant Gths revealed that PBT Fshr and Lhr responded strongly to their corresponding ligands in a dose-dependent manner, with no cross-activation over a wide range of concentrations. Moreover, quantitative expression analysis of Fshr and Lhr at the follicle level showed that fshr gene expression was highly upregulated in the ovarian follicles through vitellogenesis, while lhr expression was significantly upregulated and peaked in fully vitellogenic ovarian follicles. These findings suggest that asynchronous-type oocyte development is primarily attributed to the differential function and expression of Gthrs, rather than the ligand, in PBT.
Collapse
Affiliation(s)
- Kentaro Higuchi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| | - Yukinori Kazeto
- Minamiizu Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 183-2 Irozaki, Minamiizu, Kamo, Shizuoka 415-0156, Japan
| | - Mitsuo Nyuji
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Satoshi Soma
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Yokohama, Kanagawa 236-8648, Japan
| | - Toshinori Takashi
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Kogen Okita
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Takao Hayashida
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Koichiro Gen
- Nagasaki Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| |
Collapse
|
3
|
Ma H, Gao G, Palti Y, Tripathi V, Birkett JE, Weber GM. Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro. Int J Mol Sci 2024; 25:12683. [PMID: 39684392 DOI: 10.3390/ijms252312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex.
Collapse
Affiliation(s)
- Hao Ma
- US Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ruminant Disease and Immunology Research Unit, Ames, IA 50010, USA
| | - Guangtu Gao
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Yniv Palti
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Vibha Tripathi
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Jill E Birkett
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Gregory M Weber
- US Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
4
|
Qin G, Qin Z, Lu C, Ye Z, Elaswad A, Jin Y, Khan MGQ, Su B, Dunham RA. Gene Editing of the Follicle-Stimulating Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Transcription Activator-like Effector Nuclease Technology with Electroporation. BIOLOGY 2023; 12:biology12030392. [PMID: 36979084 PMCID: PMC10044888 DOI: 10.3390/biology12030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Follicle-stimulating hormone (fsh) plays an important role in sexual maturation in catfish. Knocking out the fsh gene in the fish zygote should suppress the reproduction of channel catfish (Ictalurus punctatus). In this study, transcription activator-like effector nuclease (TALEN) plasmids targeting the fsh gene were electroporated into fertilized eggs with the standard double electroporation technique. Targeted fsh cleavage efficiency was 63.2% in P1fsh-knockout catfish. Ten of fifteen (66.7%) control pairs spawned, and their eggs had 32.3–74.3% average hatch rates in 2016 and 2017. Without hormone therapy, the spawning rates of P1 mutants ranged from 33.3 to 40.0%, with an average egg hatching rate of 0.75%. After confirmation of the low fertility of P1 mutants in 2016, human chorionic gonadotropin (HCG) hormone therapy improved the spawning rates by 80% for female mutants and 88.9% for male mutants, and the mean hatch rate was 35.0% for F1 embryos, similar to that of the controls (p > 0.05). Polymerase chain reaction (PCR) identification showed no potential TALEN plasmid integration into the P1 channel catfish genome. Neither the P1 nor the F1 mutant fish showed any noticeable changes in in body weight, survival rate, and hatching rate when the reproductive gene was knocked out. F1 families had a mean inheritance rate of 50.3%. The results brought us one step closer to allowing implementation of certain genetic techniques to aquaculture and fisheries management, while essentially eliminating the potential environment risk posed by transgenic, hybrid, and exotic fish as well as domestic fish.
Collapse
|
5
|
Ohga H, Ohta K, Matsuyama M. Long-day stimulation increases thyroid-stimulating hormone expression and affects gonadal development in chub mackerel. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111334. [PMID: 36280226 DOI: 10.1016/j.cbpa.2022.111334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
For seasonal breeders, photoperiodic changes are important signals that mark the start of the breeding season. Thyroid-stimulating hormone (TSH) is a glycoprotein hormone that not only promotes the secretion of thyroid hormone but also plays a key role in regulating seasonal reproduction in birds and mammals. However, whether TSH activation has been implicated as a seasonal indicator in fish breeding has not been fully investigated. In this study, we isolated tshb as a starting point to elucidate the effect of photoperiodic changes on the activation of the reproductive axis of chub mackerel. The isolated tshb was classified as tshba, which is widely conserved in vertebrates. The quantitative PCR results showed that tshb was strongly expressed in the pituitary. When female and male chub mackerel with immature gonads were reared for six weeks under different photoperiodic conditions, the gonads developed substantially in the long-day (LD) reared fish compared to those in the short-day reared fish. Real-time PCR results showed that the expression level of tshb in the pituitary gland was significantly elevated in the LD group. Although there was no difference in the gonadotropin-releasing hormone 1 gene expression level in the preoptic area of the brain, follicle-stimulating hormone and luteinizing hormone gene expression levels in the pituitary were also significantly elevated in the LD group. In conclusion, TSH is a potential mediator of seasonal information in the reproductive endocrine axis and may induce gonadal development during the breeding season of chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Aqua-Bioresource Innovation Center (ABRIC) Karatsu Satellite, Kyushu University, Saga 847-0132, Japan.
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
6
|
Nyuji M, Hamaguchi M, Shimizu A, Isu S, Yoneda M, Matsuyama M. Development of sandwich enzyme-linked immunosorbent assays for chub mackerel Scomber japonicus gonadotropins and regulation of their secretion in female reproduction. Gen Comp Endocrinol 2022; 328:114103. [PMID: 35940318 DOI: 10.1016/j.ygcen.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
The pituitary gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play critical roles in regulating gonadal development and sexual maturation in vertebrates. We developed non-competitive enzyme-linked immunosorbent assays (ELISAs) to measure Fsh and Lh in chub mackerel Scomber japonicus, which is a commercially important scombrid species. Mouse monoclonal antibodies specific for Fsh and Lh, and a rabbit polyclonal antibody against both Gths were produced by immunization with hormones purified from chub mackerel pituitaries. These monoclonal and polyclonal antibodies were used as capture and detection antibodies in the developed sandwich ELISAs. The ELISAs were reproducible, sensitive, and specific for chub mackerel Fsh and Lh. Parallelism between the standard curve and serial dilutions of chub mackerel serum and pituitary extract was observed for both Fsh and Lh ELISAs. Comparison between vitellogenic and immature females revealed that Fsh is secreted during vitellogenesis and Lh is barely released during immaturity. After gonadotropin-releasing hormone analog (GnRHa) injection, vitellogenic females showed increases in serum Lh, whereas serum levels of Fsh did not vary. Moreover, the serum steroid profiles revealed that estradiol-17β was continuously produced after GnRHa treatment, whereas 17,20β-dihydroxy-4-pregnen-3-one secretion was transiently induced. These results indicate that, in vitellogenic females, GnRHa stimulates the release of Lh, but not Fsh, which results in acceleration of vitellogenesis and induction of oocyte maturation via steroid production.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Masami Hamaguchi
- Fisheries Technology Institute, Hatsukaichi Field Station, Japan Fisheries Research and Education Agency, Hiroshima 739-0452, Japan
| | - Akio Shimizu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Sayoko Isu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| | - Michiya Matsuyama
- Aqua-Bioresource Innovation Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Murugananthkumar R, Sudhakumari CC. Understanding the impact of stress on teleostean reproduction. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huang T, Gu W, Liu E, Zhang L, Dong F, He X, Jiao W, Li C, Wang B, Xu G. Screening and Validation of p38 MAPK Involved in Ovarian Development of Brachymystax lenok. Front Vet Sci 2022; 9:752521. [PMID: 35252414 PMCID: PMC8889577 DOI: 10.3389/fvets.2022.752521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brachymystax lenok (lenok) is a rare cold-water fish native to China that is of high meat quality. Its wild population has declined sharply in recent years, and therefore, exploring the molecular mechanisms underlying the development and reproduction of lenoks for the purposes of artificial breeding and genetic improvement is necessary. The lenok comparative transcriptome was analyzed by combining single molecule, real-time, and next generation sequencing (NGS) technology. Differentially expressed genes (DEGs) were identified in five tissues (head kidney, spleen, liver, muscle, and gonad) between immature [300 days post-hatching (dph)] and mature [three years post-hatching (ph)] lenoks. In total, 234,124 and 229,008 full-length non-chimeric reads were obtained from the immature and mature sequencing data, respectively. After NGS correction, 61,405 and 59,372 non-redundant transcripts were obtained for the expression level and pathway enrichment analyses, respectively. Compared with the mature group, 719 genes with significantly increased expression and 1,727 genes with significantly decreased expression in all five tissues were found in the immature group. Furthermore, DEGs and pathways involved in the endocrine system and gonadal development were identified, and p38 mitogen-activated protein kinases (MAPKs) were identified as potentially regulating gonadal development in lenok. Inhibiting the activity of p38 MAPKs resulted in abnormal levels of gonadotropin-releasing hormone, follicle-stimulating hormone, and estradiol, and affected follicular development. The full-length transcriptome data obtained in this study may provide a valuable reference for the study of gene function, gene expression, and evolutionary relationships in B. lenok and may illustrate the basic regulatory mechanism of ovarian development in teleosts.
Collapse
Affiliation(s)
- Tianqing Huang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wei Gu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Enhui Liu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lanlan Zhang
- Heilongjiang Province General Station of Aquatic Technology Promotion, Harbin, China
| | - Fulin Dong
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianchen He
- Heilongjiang Aquatic Animal Resource Conservation Center, Harbin, China
| | - Wenlong Jiao
- Gansu Fisheries Research Institute, Lanzhou, China
| | - Chunyu Li
- Xinjiang Tianyun Organic Agriculture Co., Yili Group, Hohhot, China
| | - Bingqian Wang
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- *Correspondence: Bingqian Wang
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Gefeng Xu
| |
Collapse
|
9
|
Multi-Parametric Portfolio to Assess the Fitness and Gonadal Maturation in Four Key Reproductive Phases of Brown Trout. Animals (Basel) 2021; 11:ani11051290. [PMID: 33946305 PMCID: PMC8146139 DOI: 10.3390/ani11051290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Brown trout is a freshwater fish with economic importance and with a great potential to be used as an environmental biosensor species. Despite being selected as a model species in distinct scientific contexts, in cultured specimens, there is a surprising lack of works investigating the morpho-physiological changes associated with the reproductive cycle; particularly concerning the gonads. In this study, a multi-parameter portfolio of biometric, biochemical, hormonal, and morphological analysis was established, which allowed a seasonal and sex characterization of the gonad status of adult brown trout males and females. Sampling included four reproductive phases: spawning capable (December), regressing (March), regenerating (July), and developing (November). Sex- and season-specific changes were described. The discriminative parameters characterized here stand now as normal baseline values against which abnormal patterns can be compared with. These parameters have the potential to be used as tools for the environmental monitoring of the reproductive status of wild populations and for the control of breeding stocks in aquaculture. Abstract Brown trout is an environmental freshwater sentinel species and is economically important for recreational fishing and aquaculture. Despite that, there is limited knowledge regarding morpho-physiological variations in adults throughout the reproductive cycle. Thus, this study aimed to analyze the fitness and gonadal maturation of cultured adult brown trout in four reproductive phases (spawning capable—December, regressing—March, regenerating—July, and developing—November). The systematic evaluation of males and females was based on biometric, biochemical, and hormonal parameters, along with a histomorphological grading of gonads and the immunophenotype location of key steroidogenic enzymes. The total weight and lengths reached the lowest levels in December. Gonad weights were higher in December and November, while the opposite pattern was found for liver weights. The lowest levels of cholesterol and total protein were also noted during those stages. The 11-ketotestosterone (11-KT) and testosterone (T) for males, and estradiol (E2) and T for females, mostly explained the hormonal variations. The immunohistochemistry of cytochrome P450c17 (CYP17-I), aromatase (CYP19), and 17β-hydroxysteroid dehydrogenase (17β-HSD) showed sex and site-specific patterns in the distinct reproductive phases. The sex- and season-specific changes generated discriminative multi-parameter profiles, serving as a tool for environmental and aquaculture surveys.
Collapse
|
10
|
Xie D, Chen Q, Gong S, An J, Li Y, Lian X, Liu Z, Shen Y, Giesy JP. Exposure of zebrafish to environmentally relevant concentrations of mercury during early life stages impairs subsequent reproduction in adults but can be recovered in offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105655. [PMID: 33099036 DOI: 10.1016/j.aquatox.2020.105655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a global pollutant that poses potential threats to health of fishes. Although effects of Hg on reproduction of fishes have been documented, little is known about effects of exposure to Hg2+ during early life stages on subsequent reproductive fitness of adults or whether these effects can be transferred to offspring. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of Hg2+ (0.6, 3 or 15 μg/L) for 5 days and then depurated in clean water for another 115 days. Exposure to Hg2+ during early life stages disturbed the balance of sex hormones and gametogenesis by altering expression of mRNA for genes involved in the hypothalamic-pituitary-gonadal axis, which resulted in delayed gonadal development and lesser gonado-somatic index, thereby resulting in lesser fecundity. A similar, but less pronounced effect was observed in F1 females that were not exposed directly to Hg, whereas such damage was neither observed in F1 males nor either sex during the F2 generation. Exposure to Hg2+ during early life can impair subsequent reproduction in adults and has intergenerational effects on F1 females, but this reproductive damage can be recovered in F1 males and in F2 females.
Collapse
Affiliation(s)
- Dongmei Xie
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Shiling Gong
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| |
Collapse
|
11
|
Rahdari A, Khoshkholgh M, Yarmohammadi M, Ortiz-Zarragoitia M, Lokman PM, Akhavan SR, de Cerio OD, Cancio I, Falahatkar B. The effects of 11-ketotestosterone implants on transcript levels of gonadotropin receptors, and foxl2 and dmrt1 genes in the Previtellogenic ovary of cultured beluga (Huso huso). JOURNAL OF FISH BIOLOGY 2020; 97:374-382. [PMID: 32388872 DOI: 10.1111/jfb.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The in vivo effect of 11-ketotestosterone (11KT) on transcript levels of the gonadotropin receptors (fshr and lhr) and sex differentiation-related genes (dmrt1 and foxl2) was examined in the ovaries of immature female beluga. For this purpose, six fish were treated with implants containing 2.5 mg 11KT and a placebo group of six females of the same age and gametogenic stage were given a blank implant. The implants were intraperitoneally inserted into 4-year-old females at the previtellogenic stage (mean body weight 5580 ± 165 g) and maintained under culture conditions for 8 weeks. Ovary samples for gene expression analysis of lhr, fshr, dmrt1 and foxl2 were collected by biopsy at 3 and 8 weeks post implantation. Diameters of oocytes increased in response to 11KT treatment, both at 3 and at 8 weeks post implantation, but no obvious changes were evident in cytology. Three weeks of 11KT treatment did not affect target gene expression, but a tendency for a time-dependent decrease of lhr and dmrt1 mRNA levels was observed in both treatment and placebo groups. By 8 weeks of treatment, however, 11KT implants provoked the upregulation of fshr and foxl2 transcript levels. Furthermore, lhr and dmrt1 transcript abundances recovered by 8 weeks of exposure in both blank- and 11KT-implanted beluga. These results suggest that 11KT, either directly or indirectly, may affect gametogenesis and regulate some key components of the reproductive axis in female beluga.
Collapse
Affiliation(s)
- Abdolali Rahdari
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Fisheries, Hamoun International Wetland Research Institute, University of Zabol, Zabol, Iran
| | - Majidreza Khoshkholgh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Mahtab Yarmohammadi
- International Sturgeon Research Institute, Agricultural Research Education and Extension Organization, Rasht, Iran
| | - Maren Ortiz-Zarragoitia
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | | | - Sobhan R Akhavan
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Oihane Diaz de Cerio
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | - Ibon Cancio
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| |
Collapse
|
12
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
13
|
Jenkins LE, Pierce AL, Graham ND, Medeiros LR, Hatch DR, Nagler JJ. Elevated plasma triglycerides and growth rate are early indicators of reproductive status in post-spawning female steelhead trout ( Oncorhynchus mykiss). CONSERVATION PHYSIOLOGY 2019; 7:coz038. [PMID: 31380109 PMCID: PMC6659465 DOI: 10.1093/conphys/coz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Many iteroparous fishes spawn after skipping one or more yearly cycles, which impacts recruitment estimates used for fisheries management and conservation. The physiological mechanisms underlying the development of consecutive and skip spawning life histories in fishes are not well understood. In salmonids, lipid energy reserves and/or growth are thought to regulate the initiation of reproductive maturation during a critical period ~1 year prior to spawning. The fasting spawning migration of summer-run steelhead trout (Oncorhynchus mykiss) results in significant depletion of energy reserves during the proposed critical period for repeat spawning. To determine whether and when lipid energy reserves and growth influence repeat spawning, measures of lipid energy reserves, growth rate and reproductive development were tracked in female steelhead trout from first to second spawning as a consecutive or skip spawner in captivity. Plasma triglyceride (TG) levels and growth rate were elevated by 10 weeks after spawning in reproductive (i.e. consecutive spawning) versus non-reproductive (i.e. skip spawning) individuals. Muscle lipid (ML) levels, condition factor and plasma estradiol levels increased at later time points. The early differences in plasma TG levels and increases in growth rate are attributable to differential rates of feeding and assimilation between the groups following spawning. A year after spawning, plasma TG levels, MLs and growth rate decreased in consecutive spawners, attributable to transfer of lipid reserves into the ovary. During the year prior to second spawning, energy reserves and plasma estradiol levels were higher in reproductive skip spawners versus consecutive spawners, reflecting the energy deficit after first spawning. These results suggest that the decision to initiate ovarian recrudescence occurs by 10 weeks after first spawning and are consistent with the differences in energy reserves acquired following spawning being a consequence of that decision. This information will increase the success of conservation projects reconditioning post-spawning summer-run steelhead trout.
Collapse
Affiliation(s)
- Laura E Jenkins
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Andrew L Pierce
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Neil D Graham
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Lea R Medeiros
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| | - Douglas R Hatch
- Fishery Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - James J Nagler
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
14
|
Anderson K, Pankhurst N, King H, Elizur A. Effects of GnRHa treatment during vitellogenesis on the reproductive physiology of thermally challenged female Atlantic salmon ( Salmo salar). PeerJ 2017; 5:e3898. [PMID: 29062601 PMCID: PMC5652270 DOI: 10.7717/peerj.3898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022] Open
Abstract
Tasmanian Atlantic salmon (S. salar) broodstock can experience temperatures above 20 °C, which impairs reproductive development and inhibits ovulation. The present study investigated the prolonged use of gonadotropin releasing hormone analogue (GnRHa) during vitellogenesis as a means of maintaining endocrine function and promoting egg quality at elevated temperature in maiden and repeat spawning S. salar. GnRHa-treatment during vitellogenesis did not compensate for the negative effects of thermal challenge on the timing of ovulation, egg size, egg fertility or embryo survival in any fish maintained at 22 °C relative to 14 °C. The lack of effectiveness was reflected by the endocrine data, as plasma follicle stimulating hormone and luteinising hormone levels were not different between treated and untreated groups at 22 °C. Furthermore, plasma testosterone and E2 levels were unchanged in GnRHa-treated fish at 22 °C, and plasma levels were generally lower in both groups maintained at 22 °C relative to 14 °C. Transcription of vitellogenin, and zona pellucida B and C was not enhanced in GnRHa-treated fish relative to untreated fish at 22 °C, presumably due to observed suppression of plasma E2. These results indicate that thermal impairment of reproduction is likely to occur on multiple levels, and is difficult to overcome via hormonal manipulation.
Collapse
Affiliation(s)
- Kelli Anderson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Ned Pankhurst
- Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Harry King
- Salmon Enterprises of Tasmania, Wayatinah, Tasmania, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
15
|
Monson C, Forsgren K, Goetz G, Harding L, Swanson P, Young G. A teleost androgen promotes development of primary ovarian follicles in coho salmon and rapidly alters the ovarian transcriptome†. Biol Reprod 2017; 97:731-745. [DOI: 10.1093/biolre/iox124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
|
16
|
Siregar AS, Prayogo NA. The disruptive effect of mercury chloride (HgCl) on gene expression of gonadotrophin hormones and testosterone level in male silver sharkminnow ( Osteochilus hasseltii C.V.) (Teleostei: Cyprinidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1352040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- A. S. Siregar
- Fishery and Marine Faculty, Jenderal Soedirman University , Indonesia
| | - N. A. Prayogo
- Fishery and Marine Faculty, Jenderal Soedirman University , Indonesia
- Center of Maritime and Bioscience, Jenderal Soedirman University , Indonesia
| |
Collapse
|
17
|
de Jesus LWO, Bogerd J, Vieceli FM, Branco GS, Camargo MP, Cassel M, Moreira RG, Yan CYI, Borella MI. Gonadotropin subunits of the characiform Astyanax altiparanae: Molecular characterization, spatiotemporal expression and their possible role on female reproductive dysfunction in captivity. Gen Comp Endocrinol 2017; 246:150-163. [PMID: 27940043 DOI: 10.1016/j.ygcen.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
To better understand the endocrine control of reproduction in Characiformes and the reproductive dysfunctions that commonly occur in migratory fish of this order when kept in captivity, we chose Astyanax altiparanae, which has asynchronous ovarian development and multiple spawning events, as model species. From A. altiparanae pituitary total RNA, we cloned the full-length cDNAs coding for the follicle-stimulating hormone β subunit (fshb), the luteinizing hormone β subunit (lhb), and the common gonadotropin α subunit (gpha). All three sequences showed the highest degree of amino acid identity with other homologous sequences from Siluriformes and Cypriniformes. Real-time, quantitative PCR analysis showed that gpha, fshb and lhb mRNAs were restricted to the pituitary gland. In situ hybridization and immunofluorescence, using specific-developed and characterized polyclonal antibodies, revealed that both gonadotropin β subunits mRNAs/proteins are expressed by distinct populations of gonadotropic cells in the proximal pars distalis. No marked variations for lhb transcripts levels were detected during the reproductive cycle, and 17α,20β-dihydroxy-4-pregnen-3-one plasma levels were also constant, suggesting that the reproductive dysfunction seen in A. altiparanae females in captivity are probably due to a lack of increase of Lh synthesis during spawning season. In contrast, fshb transcripts changed significantly during the reproductive cycle, although estradiol-17β (E2) levels remained constant during the experiment, possibly due to a differential regulation of E2 synthesis. Taken together, these data demonstrate the putative involvement of gonadotropin signaling on the impairment of the reproductive function in a migratory species when kept in captivity. Future experimental studies must be carried to clarify this hypothesis. All these data open the possibility for further basic and applied studies related to reproduction in this fish model.
Collapse
Affiliation(s)
- Lázaro Wender O de Jesus
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Hugo R. Kruyt Building, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Felipe M Vieceli
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Giovana S Branco
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Marília P Camargo
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Mônica Cassel
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, n.321, 05508-090 São Paulo, SP, Brazil
| | - Chao Y I Yan
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil
| | - Maria I Borella
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Professor Lineu Prestes 1524, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Okuzawa K, Kazeto Y, Uji S, Yamaguchi T, Tanaka H, Nyuji M, Gen K. Development of a homologous radioimmunoassay for red seabream follicle stimulating hormone and regulation of gonadotropins by GnRH in red seabream, Pagrus major. Gen Comp Endocrinol 2016; 239:4-12. [PMID: 27255365 DOI: 10.1016/j.ygcen.2016.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/03/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Using a recombinant chimeric single-chain follicle stimulating hormone (FSH), we established a radioimmunoassay (RIA) for red seabream (Pagrus major) FSH (pmFSH) which became a powerful tool for studying reproductive physiology. We studied the profiles in plasma and pituitary concentrations of FSH and luteinizing hormone (LH) during sexual maturation. A pre-established RIA for red seabream LH was used for the LH measurements. The regulation of FSH and LH secretion from the pituitary was investigated using a gonadotropin-releasing hormone analog (GnRHa) in vivo and in vitro. Marked differences in plasma and pituitary FSH levels were observed between males and females; pituitary FSH content in males was much higher than that in females during all seasons, and plasma FSH levels in males were high during the spawning season, whereas those in females were unchanged. In contrast, plasma and pituitary levels of LH were elevated before and during the spawning season in males and females. Injecting or implanting (cholesterol pellet) a GnRHa into adult and juvenile red seabream resulted in significant increases in plasma LH concentrations; however, no significant change was observed in plasma FSH. Moreover, GnRHa stimulated only LH secretion in an in vitro experiment using dispersed pituitary cells. The discrete FSH and LH secretion profiles revealed suggest differential roles for the two gonadotropins during red seabream gametogenesis. In addition, the marked difference in pituitary FSH levels in males and females suggests the relative significance of FSH in male reproduction.
Collapse
Affiliation(s)
- Koichi Okuzawa
- Kamiura Laboratory, National Research Institute of Aquaculture, Fisheries Research Agency, Tsuiura, Kamiura, Saiki, Oita 879-2602 , Japan.
| | - Yukinori Kazeto
- Kamiura Laboratory, National Research Institute of Aquaculture, Fisheries Research Agency, Tsuiura, Kamiura, Saiki, Oita 879-2602 , Japan
| | - Susumu Uji
- National Research Institute of Aquaculture, Fisheries Research Agency, 422-1 Nakatsuhamaura, Minami-ise, Watarai, Mie 516-0193, Japan
| | - Toshiya Yamaguchi
- Kamiura Laboratory, National Research Institute of Aquaculture, Fisheries Research Agency, Tsuiura, Kamiura, Saiki, Oita 879-2602 , Japan
| | - Hideki Tanaka
- National Research Institute of Aquaculture, Fisheries Research Agency, 422-1 Nakatsuhamaura, Minami-ise, Watarai, Mie 516-0193, Japan
| | - Mitsuo Nyuji
- National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Fisheries Research Agency, 1551-8 Taira-cho, Nagasaki, Nagasaki 851-2213, Japan
| |
Collapse
|
19
|
Takahashi A, Kanda S, Abe T, Oka Y. Evolution of the Hypothalamic-Pituitary-Gonadal Axis Regulation in Vertebrates Revealed by Knockout Medaka. Endocrinology 2016; 157:3994-4002. [PMID: 27560548 DOI: 10.1210/en.2016-1356] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproduction is essential for life, but its regulatory mechanism is diverse. The analysis of this diversity should lead us to understand the evolutionary process of the regulation of reproduction. In mammals, the hypothalamic-pituitary-gonadal axis plays an essential role in such regulation, and each component, hypothalamic GnRH, and pituitary gonadotropins, LH, and FSH, is indispensable. However, the common principle of the hypothalamic-pituitary-gonadal axis regulation among vertebrates remains unclear. Here, we used a teleost medaka, which is phylogenetically distant from mammals, and analyzed phenotypes of gene knockouts (KOs) for GnRH, LH, and FSH. We showed that LH release, which we previously showed to be directly triggered by GnRH, is essential for ovulation in females, because KO medaka of GnRH and LH were anovulatory in spite of the full follicular growth and normal gonadosomatic index, and spawning could be induced by a medaka LH receptor agonist. On the other hand, we showed that FSH is necessary for the folliculogenesis, because the follicular growth of FSH KO medaka was halted at the previtellogenic stage, but FSH release does not necessarily require GnRH. By comparing these results with the previous studies in mammals that both GnRH and LH are necessary for folliculogenesis, we propose a hypothesis as follows. During evolution, LH was originally specialized for ovulation, and regulation of folliculogenesis by GnRH-LH (pulsatile release) was newly acquired in mammals, which enabled fine tuning of reproduction through hypothalamus.
Collapse
Affiliation(s)
- Akiko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Harding LB, Schultz IR, da Silva DAM, Ylitalo GM, Ragsdale D, Harris SI, Bailey S, Pepich BV, Swanson P. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:118-31. [PMID: 27475653 DOI: 10.1016/j.aquatox.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023]
Abstract
It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish.
Collapse
Affiliation(s)
- Louisa B Harding
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Irvin R Schultz
- Pacific Northwest National Laboratory -Marine Sciences Laboratory, 1529 West Sequim Bay Road, Sequim, WA 98382, USA
| | - Denis A M da Silva
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Dave Ragsdale
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie I Harris
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Stephanie Bailey
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Barry V Pepich
- Manchester Environmental Laboratory, United States Environmental Protection Agency Region 10, 7411 Beach Drive E, Port Orchard, WA 98366, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 98164, USA.
| |
Collapse
|
21
|
Golan M, Martin AO, Mollard P, Levavi-Sivan B. Anatomical and functional gonadotrope networks in the teleost pituitary. Sci Rep 2016; 6:23777. [PMID: 27029812 PMCID: PMC4815020 DOI: 10.1038/srep23777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian pituitaries exhibit a high degree of intercellular coordination; this enables them to mount large-scale coordinated responses to various physiological stimuli. This type of communication has not been adequately demonstrated in teleost pituitaries, which exhibit direct hypothalamic innervation and expression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in distinct cell types. We found that in two fish species, namely tilapia and zebrafish, LH cells exhibit close cell-cell contacts and form a continuous network throughout the gland. FSH cells were more loosely distributed but maintained some degree of cell-cell contact by virtue of cytoplasmic processes. These anatomical differences also manifest themselves at the functional level as evidenced by the effect of gap-junction uncouplers on gonadotropin release. These substances abolished the LH response to gonadotropin-releasing hormone stimulation but did not affect the FSH response to the same stimuli. Dye transfer between neighboring LH cells provides further evidence for functional coupling. The two gonadotropins were also found to be differently packaged within their corresponding cell types. Our findings highlight the evolutionary origin of pituitary cell networks and demonstrate how the different levels of cell-cell coordination within the LH and FSH cell populations are reflected in their distinct secretion patterns.
Collapse
Affiliation(s)
- Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Agnés O. Martin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Patrice Mollard
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
- INSERM, U661, F-34000 Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, F-34000 Montpellier, France
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
22
|
Rather MA, Bhat IA, Sharma R. Identification, cDNA Cloning, and Characterization of Luteinizing Hormone Beta Subunit (lhb) Gene in Catla catla. Anim Biotechnol 2016; 27:148-56. [DOI: 10.1080/10495398.2016.1140055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, India
| | - Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
23
|
Plasma levels of follicle-stimulating and luteinizing hormones during the reproductive cycle of wild and cultured Senegalese sole ( Solea senegalensis ). Comp Biochem Physiol A Mol Integr Physiol 2016; 191:35-43. [DOI: 10.1016/j.cbpa.2015.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022]
|
24
|
Nyuji M, Kazeto Y, Izumida D, Tani K, Suzuki H, Hamada K, Mekuchi M, Gen K, Soyano K, Okuzawa K. Greater amberjack Fsh, Lh, and their receptors: Plasma and mRNA profiles during ovarian development. Gen Comp Endocrinol 2016; 225:224-234. [PMID: 26519759 DOI: 10.1016/j.ygcen.2015.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022]
Abstract
To understand the endocrine regulation of ovarian development in a multiple spawning fish, the relationship between gonadotropins (Gths; follicle-stimulating hormone [Fsh] and luteinizing hormone [Lh]) and their receptors (Gthrs; Fshr and Lhr) were investigated in greater amberjack (Seriola dumerili). cDNAs encoding the Gth subunits (Fshβ, Lhβ, and glycoprotein α [Gpα]) and Gthrs were cloned. The in vitro reporter gene assay using recombinant hormones revealed that greater amberjack Fshr and Lhr responded strongly to their own ligands. Competitive enzyme-linked immunosorbent assays (ELISAs) were developed for measuring greater amberjack Fsh and Lh. Anti-Fsh and anti-Lh antibodies were raised against recombinant chimeric single-chain Gths consisting of greater amberjack Fshβ (or Lhβ) with rabbit GPα. The validation study showed that the ELISAs were precise (intra- and inter-assay coefficient of variation, <10%) and sensitive (detection limit of 0.2ng/ml for Fsh and 0.8ng/ml for Lh) with low cross-reactivity. A good parallelism between the standard curve and serial dilutions of greater amberjack plasma and pituitary extract were obtained. In female greater amberjack, pituitary fshb, ovarian fshr, and plasma E2 gradually increased during ovarian development, and plasma Fsh significantly increased during the post-spawning period. This suggests that Fsh plays a role throughout ovarian development and during the post-spawning period. Pituitary lhb, ovarian lhr, and plasma Lh were high during the spawning period, suggesting that the synthesis and secretion of Lh, and Lhr expression are upregulated to induce final oocyte maturation and ovulation.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Daisuke Izumida
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Kosuke Tani
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Hiroshi Suzuki
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| | - Kazuhisa Hamada
- Komame Branch, Stock Enhancement Technology Development Center, National Research Institute of Aquaculture, Fisheries Research Agency, Otsuki 788-0315, Japan
| | - Miyuki Mekuchi
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2231, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Nagasaki 851-2213, Japan
| | - Koichi Okuzawa
- National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki 519-0423, Japan
| |
Collapse
|
25
|
Moreira RG, Honji RM, Melo RG, Narcizo ADM, Amaral JS, Araújo RDC, Hilsdorf AWS. The involvement of gonadotropins and gonadal steroids in the ovulatory dysfunction of the potamodromous Salminus hilarii (Teleostei: Characidae) in captivity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1435-1447. [PMID: 26183262 DOI: 10.1007/s10695-015-0097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Potamodromous teleosts that require migration to reproduce show dysfunctions that block ovulation and spawning while in captivity. To understand the physiological basis of these reproductive dysfunctions, follicle-stimulating hormone b subunit (fshb) and luteinizing hormone b subunit (lhb) gene expression analyses by real-time quantitative PCR, together with measurements of estradiol (E 2), 17α-hydroxyprogesterone (17α-OHP) and 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) levels, were carried out throughout the reproductive cycle of the potamodromous Salminus hilarii. The following reproductive stages were evaluated in captive and wild females: previtellogenic (PV), advanced maturation/mature (AM) and regression/spent (REG/SPENT). In the wild females, fshb expression decreased from the PV to the AM stage, and the opposite pattern was detected for E 2, which increased from the PV to the AM stage. fshb was expressed at lower levels in captive than in wild females, and this difference did not change during the reproductive cycle. lhb expression also increased from the PV to the AM stage in both groups, but the wild females at the AM and REG/SPENT stages showed higher lhb expression levels than the captive females. The concentrations of 17α-OHP did not change during the reproductive cycle, and the levels were higher in the captive than in the wild females at all reproductive stages. 17α,20β-DHP levels did not change between wild and captive females. However, in captive females, the transition from PV to AM stage was followed by an increase in 17α,20β-DHP levels. These data indicate that dysfunctions in the gonadotropins and steroids synthesis pathways cause the ovulation failure in captive S. hilarii.
Collapse
Affiliation(s)
- Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil.
| | - Renato Massaaki Honji
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | - Renato Garcia Melo
- Núcleo de Biotecnologia, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Amanda de Moraes Narcizo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | - Juliane Suzuki Amaral
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no 321, São Paulo, SP, 05508-090, Brazil
| | | | | |
Collapse
|
26
|
Mazón MJ, Molés G, Rocha A, Crespo B, Lan-Chow-Wing O, Espigares F, Muñoz I, Felip A, Carrillo M, Zanuy S, Gómez A. Gonadotropins in European sea bass: Endocrine roles and biotechnological applications. Gen Comp Endocrinol 2015; 221:31-41. [PMID: 26002037 DOI: 10.1016/j.ygcen.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.
Collapse
Affiliation(s)
- María José Mazón
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Olivier Lan-Chow-Wing
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Felipe Espigares
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| |
Collapse
|
27
|
Acharjee A, Chaube R, Joy KP. Molecular cloning and characterization of the gonadotropin subunits GPα, FSHβ, and LHβ genes in the stinging catfishHeteropneustes fossilis: Phylogeny, seasonal expression and pituitary localization. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/jez.1949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Arup Acharjee
- Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| | - Radha Chaube
- Department of Zoology; Mahila Mahavidyalaya; Banaras Hindu University; Varanasi India
| | - Keerikkattil Paily Joy
- Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| |
Collapse
|
28
|
Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese Sturgeon (Acipenser sinensis). PLoS One 2015; 10:e0127332. [PMID: 26030930 PMCID: PMC4452307 DOI: 10.1371/journal.pone.0127332] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background The Chinese sturgeon (Acipenser sinensis) is endangered through anthropogenic activities including over-fishing, damming, shipping, and pollution. Controlled reproduction has been adopted and successfully conducted for conservation. However, little information is available on the reproductive regulation of the species. In this study, we conducted de novo transcriptome assembly of the gonad tissue to create a comprehensive dataset for A. sinensis. Results The Illumina sequencing platform was adopted to obtain 47,333,701 and 47,229,705 high quality reads from testis and ovary cDNA libraries generated from three-year-old A. sinensis. We identified 86,027 unigenes of which 30,268 were annotated in the NCBI non-redundant protein database and 28,281 were annotated in the Swiss-prot database. Among the annotated unigenes, 26,152 and 7,734 unigenes, respectively, were assigned to gene ontology categories and clusters of orthologous groups. In addition, 12,557 unigenes were mapped to 231 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. A total of 1,896 unigenes, potentially differentially expressed between the two gonad types, were found, with 1,894 predicted to be up-regulated in ovary and only two in testis. Fifty-five potential gametogenesis-related genes were screened in the transcriptome and 34 genes with significant matches were found. Besides, more paralogs of 11 genes in three gene families (sox, apolipoprotein and cyclin) were found in A. sinensis compared to their orthologs in the diploid Danio rerio. In addition, 12,151 putative simple sequence repeats (SSRs) were detected. Conclusions This study provides the first de novo transcriptome analysis currently available for A. sinensis. The transcriptomic data represents the fundamental resource for future research on the mechanism of early gametogenesis in sturgeons. The SSRs identified in this work will be valuable for assessment of genetic diversity of wild fish and genealogy management of cultured fish.
Collapse
|
29
|
Chi ML, Ni M, Li JF, He F, Qian K, Zhang P, Chai SH, Wen HS. Molecular cloning and characterization of gonadotropin subunits (GTHα, FSHβ and LHβ) and their regulation by hCG and GnRHa in Japanese sea bass (Lateolabrax japonicas) in vivo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:587-601. [PMID: 25724868 DOI: 10.1007/s10695-014-9992-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
In this study, three cDNA sequences encoding common glycoprotein α subunit (GTHα), follicle-stimulating hormone β subunit (FSHβ) and luteinizing hormone β subunit (LHβ) were isolated from Japanese sea bass (Lateolabrax japonicas). Comparison of the deduced amino acid sequences with other gonadotropic hormones (GTHs) indicated that their cysteine residues and potential N-linked glycosylation sites were highly conserved, and high homology with those of other perciformes was showed in phylogenetic analysis. GTHs transcripts were present highly in the pituitary and brain and weakly in testis and other tissues. During testicular development, GTHs transcriptional levels in pituitary and brain (expect FSHβ subunit in brain) were significantly increased at spermiation period, stage V. Subsequently, the effects of hCG and GnRHa on the mRNA levels of GTHs subunits were examined. In brain, both hormones were detected to improve the expression of GTHα subunit mRNA. In pituitary, three GTHs subunits increased parallelly and abruptly in two hormone treatment groups. In testis, hCG was suggested to improve three GTHs subunits expression in Japanese sea bass for the first time. These results suggest that both gonadotropins are probably involved in the control of Japanese sea bass spermatogenesis and provide a framework for better understanding of the mechanisms of hormone-mediated reproduction control in Japanese sea bass and other teleosts.
Collapse
Affiliation(s)
- Mei L Chi
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shi B, Liu X, Xu Y, Wang S. Molecular characterization of three gonadotropin subunits and their expression patterns during ovarian maturation in Cynoglossus semilaevis. Int J Mol Sci 2015; 16:2767-93. [PMID: 25633101 PMCID: PMC4346864 DOI: 10.3390/ijms16022767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022] Open
Abstract
The endocrine regulation of reproduction in a multiple spawning flatfish with an ovary of asynchronous development remains largely unknown. The objectives of this study were to monitor changes in mRNA expression patterns of three gonadotropin hormone (GTH) subunits (FSHβ, LHβ and CGα) and plasma GTH levels during ovarian maturation of half-smooth tongue sole Cynoglossus semilaevis. Cloning and sequence analysis revealed that the cDNAs of FSHβ, LHβ and CGα were 541, 670 and 685 bp in length, and encode for peptides of 130, 158 and 127 amino acids, respectively. The number of cysteine residues and potential N-linked glycosylation sites of the flatfish GTHs were conserved among teleosts. However, the primary structure of GTHs in Pleuronectiformes appeared to be highly divergent. The FSHβ transcriptional level in the pituitary remained high during the vitellogenic stage while plasma levels of FSH peaked and oocyte development was stimulated. The LHβ expression in the pituitary and ovary reached the maximum level during oocyte maturation stages when the plasma levels of LH peaked. The brain GTHs were expressed at the different ovarian stages. These results suggested that FSH and LH may simultaneously regulate ovarian development and maturation through the brain-pituitary-ovary axis endocrine system in tongue sole.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/metabolism
- Cloning, Molecular
- Female
- Flatfishes/growth & development
- Follicle Stimulating Hormone, beta Subunit/blood
- Follicle Stimulating Hormone, beta Subunit/classification
- Follicle Stimulating Hormone, beta Subunit/metabolism
- Glycoprotein Hormones, alpha Subunit/blood
- Glycoprotein Hormones, alpha Subunit/classification
- Glycoprotein Hormones, alpha Subunit/metabolism
- Luteinizing Hormone, beta Subunit/blood
- Luteinizing Hormone, beta Subunit/classification
- Luteinizing Hormone, beta Subunit/metabolism
- Molecular Sequence Data
- Ovary/growth & development
- Ovary/metabolism
- Ovary/pathology
- Phylogeny
- Pituitary Gland/metabolism
- RNA, Messenger/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- Bao Shi
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| | - Xuezhou Liu
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| | - Yongjiang Xu
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| | - Shanshan Wang
- Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| |
Collapse
|
31
|
Chi ML, Wen HS, Ni M, He F, Li JF, Qian K, Zhang P, Chai SH, Ding YX, Yin XH. Molecular identification of genes involved in testicular steroid synthesis and characterization of the responses to hormones stimulation in testis of Japanese sea bass (Lateolabrax japonicas). Steroids 2014; 84:92-102. [PMID: 24704264 DOI: 10.1016/j.steroids.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 03/21/2014] [Indexed: 11/20/2022]
Abstract
Testicular steroids are critical hormones for the regulation of spermatogenesis in male teleosts and their productions have been reported to be regulated by gonadotropins and gonadotropin-releasing hormone. In the Japanese sea bass (Lateolabrax japonicas), the reproductive endocrine, particularly regarding the production and regulation of testicular steroids, are not well understood. For this reason, we first cloned and characterized the response of several key genes regulating the production of testicular steroids and, second, we analyzed the changes of mRNA profiles of these genes during testicular development cycle and in the administration of hCG and GnRHa with corresponding testosterone level in serum, GSI and histological analyses. We succeeded in cloning the full-length cDNAs for the fushi tarazu factor-1 (FTZ-F1) homologues (FTZ-F1a and FTZ-F1b), steroidogenic acute regulatory protein (StAR) and anti-Müllerian hormone (AMH) in Japanese sea bass. Multiple sequence alignment and phylogenetic analysis of these proteins clearly showed that these genes in Japanese sea bass were homologous to those of other piscine species. During the testicular development cycle and hCG/GnRHa administration, quantification of jsbStAR transcripts revealed a trend similar to their serum testosterone levels, while a reciprocal relationship was founded between the serum concentrations of testosterone and jsbAMH and the links between gonadal expression of jsbStAR, jsbAMH and jsbFTZ-F1 were also observed. Our results have identified for the first time several key genes involved in the regulation of steroid production and spermatogenesis in the Japanese sea bass testis and these genes are all detected under gonadotropic hormone and gonadotropin-releasing hormone control.
Collapse
Affiliation(s)
- Mei L Chi
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hai S Wen
- Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Meng Ni
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Feng He
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ji F Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Kun Qian
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Pei Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Sen H Chai
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yu X Ding
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xiang H Yin
- Fisheries College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
32
|
Allen MS, Ferguson MM, Danzmann RG. Molecular markers for variation in spawning date in a hatchery population of rainbow trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:289-298. [PMID: 24114565 DOI: 10.1007/s10126-013-9547-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/15/2013] [Indexed: 06/02/2023]
Abstract
We examined the distribution of alleles at 63 microsatellite loci distributed across 29 linkage groups in broodstock females from a commercial population of rainbow trout spawning on different dates throughout the season (August to January). A total of 368 females, 184 and 117 females from each of the tail-ends of the spawning distribution and a subsample of 67 females spawning in the middle, were used to detect marker-trait associations. Twenty-one loci in a subset of genomic regions (RT-5, 7, 8, 10, 12, 14, 15, 22, 23, 24, 25, 29, 30, and 31) were significantly associated with variation in spawning date. Many of these markers localize to regions with known spawning date quantitative trait loci based on previous studies. An individual assignment analysis was used to test how well the molecular data could be used to assign individuals to their correct spawning group, and markers were given a ranking reflecting their contribution to the accuracy of assignment. The top 15 ranked markers were successful at assigning the majority of females to the correct spawning group based on genotype with an average accuracy of 76 %. The most likely genes that could contribute to these differences in spawning date are discussed. Together, these data indicate that the loci could be incorporated into a selection index with phenotype data to increase the accuracy of selection for spawning date.
Collapse
Affiliation(s)
- M S Allen
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
33
|
Shahjahan M, Kitahashi T, Parhar IS. Central pathways integrating metabolism and reproduction in teleosts. Front Endocrinol (Lausanne) 2014; 5:36. [PMID: 24723910 PMCID: PMC3971181 DOI: 10.3389/fendo.2014.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023] Open
Abstract
Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
Collapse
Affiliation(s)
- Md. Shahjahan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia e-mail:
| |
Collapse
|
34
|
Berkovich N, Corriero A, Santamaria N, Mylonas CC, Vassallo-Aguis R, de la Gándara F, Meiri-Ashkenazi I, Zlatnikov V, Gordin H, Bridges CR, Rosenfeld H. Intra-pituitary relationship of follicle stimulating hormone and luteinizing hormone during pubertal development in Atlantic bluefin tuna (Thunnus thynnus). Gen Comp Endocrinol 2013; 194:10-23. [PMID: 23973326 DOI: 10.1016/j.ygcen.2013.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 01/13/2023]
Abstract
As part of the endeavor aiming at the domestication of Atlantic bluefin tuna (BFT; Thunnus thynnus), first sexual maturity in captivity was studied by documenting its occurrence and by characterizing the key hormones of the reproductive axis: follicle stimulating hormone (FSH) and luteinizing hormone (LH). The full length sequence encoding for the related hormone β-subunits, bftFSHβ and bftLHβ, were determined, revealing two bftFSHβ mRNA variants, differing in their 5' untranslated region. A quantitative immuno-dot-blot assay to measure pituitary FSH content in BFT was developed and validated enabling, for the first time in this species, data sets for both LH and FSH to be compared. The expression and accumulation patterns of LH in the pituitary showed a steady increase of this hormone, concomitant with fish age, reaching higher levels in adult females compared to males of the same age class. Conversely, the pituitary FSH levels were elevated only in 2Y and adult fish. The pituitary FSH to LH ratio was consistently higher (>1) in immature than in maturing or pubertal fish, resembling the situation in mammals. Nevertheless, the results suggest that a rise in the LH storage level above a minimum threshold may be an indicator of the onset of puberty in BFT females. The higher pituitary LH levels in adult females over males may further support this notion. In contrast three year-old (3Y) males were pubertal while cognate females were still immature. However, it is not yet clear whether the advanced puberty in the 3Y males was a general feature typifying wild BFT populations or was induced by the culture conditions. Future studies testing the effects of captivity and hormonal treatments on precocious maturity may allow for improved handling of this species in a controlled environment which would lead to more cost-efficient farming.
Collapse
Affiliation(s)
- Nadia Berkovich
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, Israel; Department of Life Sciences, Ben-Gurion University, Eilat Campus, Eilat, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim BH, Lee CH, Hur SW, Hur SP, Kim DH, Suh HL, Kim SY, Lee YD. Long Photoperiod Affects Gonadal Development in Olive Flounder Paralichthys olivaceus. Dev Reprod 2013; 17:241-6. [PMID: 25949139 PMCID: PMC4282300 DOI: 10.12717/dr.2013.17.3.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
To effects of sex maturation in olive flounder by regulating long photoperiod, gonadal development and GTH mRNA expression in the pituitary were investigated. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from September 2011 to March 2012. The results showed that natural photoperiodic group showed a higher gonadosomatic index (GSI) than long photoperiodic group during the spawning season (March 2012). The histological analysis of ovarian tissue showed that natural photoperiod group of ovaries contained vitellogenic oocytes, but long photoperiod group of ovaries mainly contained perinucleolus staged oocyte and oil-drop staged oocytes. The FSH mRNA of olive flounder, under natural photoperiod group, showed a significantly higher expression but no significant difference under long photoperiod group. The LHβ mRNA showed a significantly higher expression only under natural photoperiod group. These results may suggest that long photoperiodic information regulates secretion of pituitary FSH and LH and maintain early growing stage of gonadal development in this species.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Chi-Hoon Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Sang-Woo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Sung-Pyo Hur
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| | - Dae-Hwan Kim
- Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hae-Lip Suh
- Department of Oceanography, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sung-Yeon Kim
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Young-Don Lee
- Marine and Environmental Research Institute, Jeju National University, Jeju 695-965, Republic of Korea
| |
Collapse
|
36
|
Ohkubo M, Yabu T, Yamashita M, Shimizu A. Molecular cloning of two gonadotropin receptors in mummichog Fundulus heteroclitus and their gene expression during follicular development and maturation. Gen Comp Endocrinol 2013; 184:75-86. [PMID: 23337032 DOI: 10.1016/j.ygcen.2012.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Two cDNAs encoding gonadotropin receptors, follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) were cloned from mummichog (Fundulus heteroclitus) ovary. Deduced amino acid sequences of the mummichog FSHR (fhFSHR) and LHR (fhLHR) showed high homologies to teleost FSHRs (77-53%) and teleost LHRs (76-62%), respectively. Both the fhFSHR and fhLHR are composed of a typical structural architecture of glycoprotein hormone receptors consisting of the large N-terminal extracellular domain, the transmembrane domain containing seven cell surface membrane-spanning regions, and the intracellular domain. Functional analysis using HEK293 cells stably expressing the fhFSHR or fhLHR demonstrated that both the receptors are specifically activated by mummichog FSH or LH, respectively. Reverse transcription-polymerase chain reaction revealed that both the fhFSHR and fhLHR were expressed in the ovary, testis, and pituitary, and the fhLHR was also expressed in several extra-gonadal tissues. Real-time quantitative-PCR analysis revealed that the fhFSHR gene was abundantly expressed in developing follicles whereas expression of the fhLHR gene markedly increased in follicles of the final maturational stage. These results indicate that gonadotropin stimulation on follicles is regulated by the two distinct pathways via their cognate receptors.
Collapse
Affiliation(s)
- Makoto Ohkubo
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa 236-8648, Japan
| | | | | | | |
Collapse
|
37
|
Pereira TSB, Moreira RG, Batlouni SR. Dynamics of ovarian maturation during the reproductive cycle of Metynnis maculatus, a reservoir invasive fish species (Teleostei: Characiformes). NEOTROPICAL ICHTHYOLOGY 2013. [DOI: 10.1590/s1679-62252013000400010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we evaluated the dynamics of ovarian maturation and the spawning processes during the reproductive cycle of Metynnis maculatus. Adult females (n = 36) were collected bimonthly between April 2010 and March 2011. The mean gonadosomatic index (GSI) was determined, ovarian and blood samples were submitted for morphometric evaluation and the steroid plasma concentration was determined by ELISA. This species demonstrated asynchronous ovarian development with multiple spawns. This study revealed that, although defined as a multiple spawning species, the ovaries of M. maculatus have a pattern of development with a predominance of vitellogenesis between April and August and have an intensification in spawning in September; in October, a drop in the mean GSI values occurred, and the highest frequencies of post-ovulatory follicles (POFs) were observed. We observed a positive correlation between the POF and the levels of 17α-hydroxyprogesterone. Metynnis maculatus has the potential to be used as a source of pituitary tissue for the preparation of crude extracts for hormonal induction; the theoretical period for use is from September to December, but specific studies to determine the feasibility of this approach must be conducted.
Collapse
|
38
|
Zapater C, Chauvigné F, Scott AP, Gómez A, Katsiadaki I, Cerdà J. Piscine Follicle-Stimulating Hormone Triggers Progestin Production in Gilthead Seabream Primary Ovarian Follicles1. Biol Reprod 2012; 87:111. [DOI: 10.1095/biolreprod.112.102533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
Shimizu A, Ohkubo M, Hamaguchi M. Development of non-competitive enzyme-linked immunosorbent assays for mummichog Fundulus heteroclitus gonadotropins - examining seasonal variations in plasma FSH and LH levels in both sexes. Gen Comp Endocrinol 2012; 178:463-9. [PMID: 22819935 DOI: 10.1016/j.ygcen.2012.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/31/2022]
Abstract
The mummichog Fundulus heteroclitus is an excellent experimental fish for reproductive physiology because of its adequate size, easiness for rearing, and controllable reproduction under laboratory conditions. Furthermore, it is the only species that the native GtHs and their subunits have been purified among small experimental fishes. In this study, homologous non-competitive enzyme-linked immunosorbent assays (ELISAs) for the mummichog FSH and LH were developed by raising monoclonal and polyclonal antibodies against the purified GtHs or their subunits, and the plasma hormone levels in various seasons were examined. The cross-reactivity of LH in the FSH ELISA and the cross-reactivity of FSH in the LH ELISA were low, 2.3% and 0.2% respectively, indicating high specificities of both GtH assays. The practical detection limits were 10 pg/well (0.125 ng/ml plasma) for the FSH ELISA and 8 pg/well (0.1 ng/ml plasma) for the LH ELISA. Plasma FSH levels in females indicated distinct correlations with ovarian stages: they were almost undetectable (<0.125 ng/ml) during the post-spawning immature phase (September), low values (0.3 ng/ml) during the cortical alveoli accumulation phase (December), considerably high (1.8 ng/ml) in the vitellogenic phase (February), and very high values (12 ng/ml) during the spawning season (June). The male FSH levels showed similar pattern of changes to that of females, also indicating distinct correlations with testicular activities. Plasma LH levels were considerably high during the spawning period in both sexes (3.3 ng/ml in females and 4.5 ng/ml in males). They were low or undetectable values in non-spawning seasons, and clear correlation with the gonadal stages was not observed. These results indicate the importance of FSH for various reproductive events in multiple spawning fishes, and are consistent with the general understanding that the LH is responsible for final gametes maturation in both sexes. Nonetheless, they further suggest that the role of LH for various reproductive events other than the final maturation may be limited.
Collapse
Affiliation(s)
- Akio Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama 236-8648, Japan.
| | | | | |
Collapse
|
40
|
Ohga H, Kaneko K, Shimizu A, Kitano H, Selvaraj S, Nyuji M, Adachi H, Yamaguchi A, Matsuyama M. Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus. Reprod Biol Endocrinol 2012; 10:71. [PMID: 22950645 PMCID: PMC3495025 DOI: 10.1186/1477-7827-10-71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 08/30/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. METHODS Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. RESULTS Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles. CONCLUSIONS Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kensuke Kaneko
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akio Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa, Yokohama 236-8648, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hayato Adachi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
41
|
Forsgren KL, Young G. Stage-Specific Effects of Androgens and Estradiol-17beta on the Development of Late Primary and Early Secondary Ovarian Follicles of Coho Salmon (Oncorhynchus kisutch) In Vitro1. Biol Reprod 2012; 87:64. [DOI: 10.1095/biolreprod.111.098772] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
42
|
Aizen J, Kobayashi M, Selicharova I, Sohn YC, Yoshizaki G, Levavi-Sivan B. Steroidogenic response of carp ovaries to piscine FSH and LH depends on the reproductive phase. Gen Comp Endocrinol 2012; 178:28-36. [PMID: 22522050 DOI: 10.1016/j.ygcen.2012.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/06/2012] [Accepted: 04/06/2012] [Indexed: 01/07/2023]
Abstract
The gonadotropins (GTHs) follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the key regulators of reproduction. We determined the competence of heterologous recombinant GTHs at eliciting steroid secretion from carp ovaries at different reproductive stages. We collected carp ovaries at: early, mid and end vitellogenesis, when most of the oocytes still contained a germinal vesicle (GV) at a central stage, and mature ovaries with a migrating GV. Plasma estradiol (E2) levels at early vitellogenesis were high and decreased thereafter. Basal secretion levels of E2 increased with oocyte diameter and GSI value, whereas 17α,20β-dihydroxy-4-pregnen-3-one (DHP) was detected only in females with mature follicles. Carp ovary fragments were exposed to recombinant fish GTHs belonging to different teleost orders: Japanese eel (Anguilla japonica, Anguilliformes), Manchurian trout (Brachymystax lenok, Salmoniformes), and Nile tilapia (Oreochromis niloticus); to mammalian GTHs (pFSH and hCG), or to carp and tilapia pituitary extract (CPE and TPE, respectively). All of the recombinant GTHs tested stimulated steroid secretion. However, the steroid secretion differed according to the type of GTH and the developmental state of the ovary. CPE increased the secretion of both E2 and DHP at almost all stages of ovarian maturity. In mature ovarian fragments, DHP secretion was higher in response to recombinant LHs (eel and tilapia) than to recombinant FSH. Early- and mid-vitellogenic ovaries showed no secretion of DHP and high secretion of E2 in response to all recombinant GTHs tested. This is in line with the hypothesis that LH regulates the final stages of maturation, when the involvement of FSH is marginal. These results may contribute to understanding the mechanisms that determine differential activation of steroid secretion and specificity in fish.
Collapse
Affiliation(s)
- Joseph Aizen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Nyuji M, Selvaraj S, Kitano H, Ohga H, Yoneda M, Shimizu A, Kaneko K, Yamaguchi A, Matsuyama M. Changes in the expression of pituitary gonadotropin subunits during reproductive cycle of multiple spawning female chub mackerel Scomber japonicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:883-897. [PMID: 22109677 DOI: 10.1007/s10695-011-9576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHβ, and LHβ) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHβ, and LHβ were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHβ mRNA levels remained high during the vitellogenic stages, while GPα and LHβ mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHβ mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHβ mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hur SP, Lim BS, Hwang IJ, Kim SJ, Ryu YW, Hur SW, Song YB, Jeong HB, Baek HJ, Takemura A, Lee YD. Masculinization in juvenile longtooth grouper,Epinephelus bruneus, with aromatase inhibitor: changes in GtH subunit mRNA expression and steroids hormone levels. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.607515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
45
|
Chen W, Ge W. Ontogenic expression profiles of gonadotropins (fshb and lhb) and growth hormone (gh) during sexual differentiation and puberty onset in female zebrafish. Biol Reprod 2012; 86:73. [PMID: 22116804 DOI: 10.1095/biolreprod.111.094730] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the zebrafish model, the ontogenic expression profiles of all pituitary hormones have been reported except gonadotropins, partly because they are not supposed to be expressed in the embryonic stage. The spatiotemporal expression patterns of gonadotropins, namely follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), in this species therefore remain largely unknown. As the master hormones controlling reproduction, the information on this issue would be valuable for understanding the roles of gonadotropins in early sexual development. Using double-colored fluorescent in situ hybridization (FISH) and real-time quantitative PCR (qPCR), this study was undertaken to analyze the ontogenic expression patterns of FSHbeta (fshb) and LHbeta (lhb) subunits in the zebrafish pituitary, with particular emphasis on the stage of sexual differentiation (∼25-30 dpf [days postfertilization]) and puberty onset (∼45 dpf). As a control, growth hormone (gh) was also examined throughout the study. The zebrafish were collected at different time points of early development, including 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 38, 48, and 53 dpf. The head of each fish, including the brain and pituitary, was sampled for double-colored FISH analysis, whereas the body was fixed for histological examination of sex and gonadal developmental stage. Our results showed that the expression of fshb started much earlier than that of lhb, with its mRNA signal detectable (∼2-3 cells per pituitary) shortly after hatching (4 dpf). In contrast, lhb expression became detectable much later, at the time of sex differentiation (∼25 dpf). In female zebrafish, the first morphological sign for puberty is the first wave of follicle transition from the primary growth to previtellogenic stage, which occurs around 45 dpf and is marked by the appearance of cortical alveoli in the oocytes. Interestingly, the number of lhb-expressing cells was very low (∼5-6 cells per pituitary) before this transition but increased dramatically during and after the transition. In contrast, the expression of fshb was abundant before puberty, with only a slight increase in cell number during puberty onset. The increased expression of fshb and lhb at puberty was also supported by real-time qPCR analysis at the single pituitary level. Interestingly, the fshb-expressing cells changed their spatial distribution significantly during puberty, from a predominantly peripheral to a central location. As the control, the expression of gh was abundant throughout prepubertal and pubertal periods. Our results strongly suggest an important role for Lh at the puberty onset of female zebrafish, similar to the situation in mammals, and its expression could be a sign for puberty at the pituitary level. However, the significance of the location change of Fsh cells during this period will be interesting to investigate.
Collapse
Affiliation(s)
- Weiting Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | |
Collapse
|
46
|
Molés G, Gómez A, Carrillo M, Zanuy S. Development of a homologous enzyme-linked immunosorbent assay for European sea bass FSH. Reproductive cycle plasma levels in both sexes and in yearling precocious and non-precocious males. Gen Comp Endocrinol 2012; 176:70-8. [PMID: 22227219 DOI: 10.1016/j.ygcen.2011.12.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022]
Abstract
Since the late 1980s, gonadotropins have been isolated and characterized in several fish species, but specific immunoassays for the follicle-stimulating hormone (FSH) have only been developed for a few. The present study reports the development and use of a specific and homologous competitive ELISA for measuring FSH in European sea bass (Dicentrarchus labrax) using a recombinant FSH and its specific antiserum. Recombinant European sea bass FSHβ and FSH heterodimer were produced in the methylotrophic yeast Pichia pastoris and a baculovirus expression system, respectively. Specific polyclonal antibodies, generated by rabbit immunization against recombinant FSHβ, were used at a final dilution of 1:8000. Recombinant FSH heterodimer was used to generate a standard curve and for coating of microplates (166 μg/ml). The sensitivity of the assay was 0.5 ng/ml [B(0)-2SD], and the intra- and inter-assay coefficients of variation were 2.12% (n=10) and 5.44% (n=16) (B(i)/B(0) ∼45%), respectively. A high degree of parallelism was observed between the standard curve and serially diluted plasma and pituitary samples of European sea bass. The ELISA developed was used to study the plasma FSH profiles of mature males and females during the reproductive cycle, and those of immature juvenile males under different light regimes. The analysis showed that FSH increased significantly during the intermediate stages of spermatogenesis and during vitellogenesis. Analyses in immature juvenile males showed that the continuous light photoperiod significantly reduced plasma FSH levels, and consequently, testicular growth and precocious puberty. In conclusion, the immunoassay developed has proven to be sensitive, specific and accurate for measuring European sea bass FSH, and it represents a valuable tool for future studies on the reproductive endocrinology of this species.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de Sal, Spanish National Research Council (CSIC), Torre de Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain
| | | | | | | |
Collapse
|
47
|
Rosenfeld H, Mylonas CC, Bridges CR, Heinisch G, Corriero A, Vassallo-Aguis R, Medina A, Belmonte A, Garcia A, De la Gándara F, Fauvel C, De Metrio G, Meiri-Ashkenazi I, Gordin H, Zohar Y. GnRHa-mediated stimulation of the reproductive endocrine axis in captive Atlantic bluefin tuna, Thunnus thynnus. Gen Comp Endocrinol 2012; 175:55-64. [PMID: 22015989 DOI: 10.1016/j.ygcen.2011.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
Abstract
A controlled-release implant loaded with GnRH agonist (GnRHa) was used to induce spawning in Atlantic bluefin tuna (Thunnus thynnus) during two consecutive reproductive seasons. The fish were implanted underwater and sampled between days 2 and 8 after treatment. At the time of GnRHa treatment, females were in full vitellogenesis and males in spermiation. There was a rapid burst of pituitary luteinizing hormone (LH) release at day 2 after treatment in GnRHa-treated fish, and circulating LH remained elevated up to day 8 after treatment. In contrast, control fish had significantly lower levels in the plasma, but higher LH content in the pituitary, as observed in many other cultured fishes that fail to undergo oocyte maturation, ovulation and spawning unless induced by an exogenous GnRHa. Plasma testosterone (T) and 17β-estradiol (E(2)) were elevated in response to the GnRHa treatment in females, while 11-ketotestosterone (11-KT) but not T was elevated in males. Even though oocyte maturation and ovulation did occur in GnRHa-induced fish, no significant elevations in 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) or 17,20β,21-trihydroxy-4-pregnen-3-one (20β-S), in either the free, conjugated or 5β-reduced,3α-hydroxylated forms was observed in fish sampled within 6 days after treatment. Interestingly, a significant peak in plasma free 17,20β-P levels occurred in both males and females at day 8 after treatment. Histological sections of the ovaries in these females contained oocytes at the migrating germinal vesicle stage, suggesting the role of this hormone as a maturation-inducing steroid in Atlantic bluefin tuna. In conclusion, the GnRHa implants activated effectively the reproductive endocrine axis in captive Atlantic bluefin tuna broodstocks, through stimulation of sustained elevations in plasma LH, which in turn evoked the synthesis and secretion of the relevant sex steroids leading to gamete maturation and release.
Collapse
Affiliation(s)
- H Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, PO Box 1212, Eilat 88112, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pérez L, Peñaranda DS, Dufour S, Baloche S, Palstra AP, Van Den Thillart GEEJM, Asturiano JF. Influence of temperature regime on endocrine parameters and vitellogenesis during experimental maturation of European eel (Anguilla anguilla) females. Gen Comp Endocrinol 2011; 174:51-9. [PMID: 21871894 DOI: 10.1016/j.ygcen.2011.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 08/06/2011] [Accepted: 08/10/2011] [Indexed: 01/03/2023]
Abstract
We examined the effect of temperature in European silver eels during their maturation induced by injections of carp pituitary extract on endocrine parameters: pituitary fshβ and lhβ expression, plasma 17β-estradiol (E2) and vitellogenin, estrogen receptor 1 (esr1), and vitellogenin 2 (vtg2) expression in liver. A variable thermal regime (T10) that increased from 10° to 14° and 17°C was compared with a constant 20°C regime (T20) during 12 weeks. T10 caused a faster development until week 8, higher fshβ, lhβ, esr1 expression, and higher E2 levels. The results strongly suggest that T10 is inducing a higher endogenous FSH level which increases the E2 circulating level during vitellogenesis. A variable thermal regime induced an fshβ expression and E2 profile in vitellogenic hormonally matured eel females that were more similar to the profile observed in other naturally maturing fish.
Collapse
Affiliation(s)
- L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Molés G, Gómez A, Carrillo M, Rocha A, Mylonas CC, Zanuy S. Determination of Fsh Quantity and Bioactivity During Sex Differentiation and Oogenesis in European Sea Bass1. Biol Reprod 2011; 85:848-57. [DOI: 10.1095/biolreprod.111.091868] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
50
|
Yu X, Lin SW, Kobayashi M, Ge W. Expression of recombinant zebrafish follicle-stimulating hormone (FSH) in methylotropic yeast Pichia pastoris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:273-281. [PMID: 20467863 DOI: 10.1007/s10695-008-9244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/13/2008] [Indexed: 05/29/2023]
Abstract
Pituitary gonadotropin follicle-stimulating hormone (FSH) was identified in fish two decades ago, but its functional importance in fish reproduction remains poorly defined, especially in non-salmonid species. This gap in our knowledge is partially due to the lack of the hormone in pure form in most of the species studied. We describe here the production of two different forms of biologically active recombinant zebrafish FSH (zfFSH and zfFSH(HIS)) using methylotrophic yeast, Pichia pastoris, as the bioreactor. One form (zfFSH) was produced as the molecule closer to the native form, with the two subunits (Cga and Fshb) expressed separately under different promoters. The other form (zfFSH(HIS)) was produced as a single polypeptide, with the cDNAs for the two subunits joined to form a fusion gene that contained a 6X His tag as part of the linker between the two subunits. The culture conditions were optimized for pH and incubation time for maximal production of the proteins. Using a zebrafish FSH receptor (Fshr)-based reporter gene assay, we tested and compared the biological activities of the two forms of recombinant zebrafish FSH. Our results provide useful information for the future production of recombinant gonadotropins in other fish species.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|