1
|
Pouso P, Cabana Á, Francia V, Silva A. Vasotocin but not isotocin is involved in the emergence of the dominant-subordinate status in males of the weakly electric fish, Gymnotus omarorum. Horm Behav 2024; 158:105446. [PMID: 37945472 DOI: 10.1016/j.yhbeh.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The establishment of the dominant-subordinate status implies a clear behavioral asymmetry between contenders that arises immediately after the resolution of the agonistic encounter and persists during the maintenance of stable dominance hierarchies. Changes in the activity of the brain social behavior network (SBN) are postulated to be responsible for the establishment and maintenance of the dominant-subordinate status. The hypothalamic nonapeptides of the vasopressin (AVP) and oxytocin (OT) families are known to modulate the activity of the SBN in a context-dependent manner across vertebrates, including status-dependent modulations. We searched for status-dependent asymmetries in AVP-like (vasotocin, AVT) and OT-like (isotocin, IT) cell number and activation immediately after the establishment of dominance in males of the weakly electric fish, Gymnotus omarorum, which displays the best understood example of non-breeding territorial aggression among teleosts. We used immunolabeling (FOS, AVT, and IT) of preoptic area (POA) neurons after dyadic agonistic encounters. This study is among the first to show in teleosts that AVT, but not IT, is involved in the establishment of the dominant-subordinate status. We also found status-dependent subregion-specific changes of AVT cell number and activation. These results confirm the involvement of AVT in the establishment of dominance and support the speculation that AVT is released from dominants' AVT neurons.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Álvaro Cabana
- Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República, Montevideo 11800, Uruguay
| | - Virginia Francia
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
2
|
Sex-specific morphs: the genetics and evolution of intra-sexual variation. Nat Rev Genet 2023; 24:44-52. [PMID: 35971002 DOI: 10.1038/s41576-022-00524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Sex-specific morphs exhibit discrete phenotypes, often including many disparate traits, that are observed in only one sex. These morphs have evolved independently in many different animals and are often associated with alternative mating strategies. The remarkable diversity of sex-specific morphs offers unique opportunities to understand the genetic basis of complex phenotypes, as the distinct nature of many morphs makes it easier to both categorize and compare genomes than for continuous traits. Sex-specific morphs also expand the study of sexual dimorphism beyond traditional bimodal comparisons of male and female averages, as they allow for a more expansive range of sexualization. Although ecological and endocrinological studies of sex-specific morphs have been advancing for some time, genomic and transcriptomic studies of morphs are far more recent. These studies reveal not only many different paths to the evolution of sex-specific morphs but also many commonalities, such as the role of sex-determining genes and hormone signalling in morph development, and the mixing of male and female traits within some morphs.
Collapse
|
3
|
Schuppe ER, Zhang MD, Perelmuter JT, Marchaterre MA, Bass AH. Oxytocin-like receptor expression in evolutionarily conserved nodes of a vocal network associated with male courtship in a teleost fish. J Comp Neurol 2022; 530:903-922. [PMID: 34614539 PMCID: PMC8898023 DOI: 10.1002/cne.25257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Neuropeptides, including oxytocin-like peptides, are a conserved group of hormones that regulate a wide range of social behaviors, including vocal communication. In the current study, we evaluate whether putative brain sites for the actions of isotocin (IT), the oxytocin (OT) homolog of teleost fishes are associated with vocal courtship and circuitry in the plainfin midshipman fish (Porichthys notatus). During the breeding season, nesting males produce advertisement calls known as "hums" to acoustically court females at night and attract them to nests. We first identify IT receptor (ITR) mRNA in evolutionarily conserved regions of the forebrain preoptic area (POA), anterior hypothalamus (AH), and midbrain periaqueductal gray (PAG), and in two topographically separate populations within the hindbrain vocal pattern generator- duration-coding vocal prepacemaker (VPP) and amplitude-coding vocal motor nuclei (VMN) that also innervate vocal muscles. We also verify that ITR expression overlaps known distribution sites of OT-like immunoreactive fibers. Next, using phosphorylated ribosomal subunit 6 (pS6) as a marker for activated neurons, we demonstrate that ITR-containing neurons in the anterior parvocellular POA, AH, PAG, VPP, and VMN are activated in humming males. Posterior parvocellular and magno/gigantocellular divisions of the POA remain constitutively active in nonhumming males that are also in a reproductive state. Together with prior studies of midshipman fish and other vertebrates, our findings suggest that IT-signaling influences male courtship behavior, in part, by acting on brain regions that broadly influence behavioral state (POA) as well as the initiation (POA and PAG) and temporal structure (VPP and VMN) of advertisement hums.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H. Bass
- Department of Neurobiology and Behavior, Cornell University
| |
Collapse
|
4
|
Pouso P, Perrone R, Silva A. Immunohistochemical description of isotocin neurons and the anatomo-functional comparative analysis between isotocin and vasotocin systems in the weakly electric fish, Gymnotus omaroum. Gen Comp Endocrinol 2021; 313:113886. [PMID: 34411583 DOI: 10.1016/j.ygcen.2021.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
The vasopressin-vasotocin (AVP-AVT) and oxytocin-mesotocin-isotocin (OT-MT-IT) families of nonapeptides are of great importance in shaping context-dependent modulations of a conserved and yet highly plastic network of brain areas involved in social behavior: the social behavior network. The nonapeptide systems of teleost fish are highly conserved and share a common general organization. In this study, we first describe the presence of IT cells and projections in the brain of an electric fish, Gymnotus omarorum. Second, we confirm that IT neuron types and distribution in the preoptic area (POA) follow the same general pattern previously described in other teleost species. Third, we show that although IT and AVT neurons occur intermingled within the POA of G. omarorum and can be classified into the same subgroups, they present subtle but remarkable differences in size, number, and location. Finally, we show that unlike AVT, IT has no effect on basal electric signaling, reinforcing the specificity in the actions that each one of these nonapeptides has on social behavior and communication.
Collapse
Affiliation(s)
- Paula Pouso
- Depto. Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay.
| | - Rossana Perrone
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Instituto de Fundamentos y Métodos, Facultad de Psicología, Universidad de la República
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Lozier NR, Sisneros JA. Ontogeny of Inner Ear Saccular Development in the Plainfin Midshipman (Porichthys notatus). BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:330-340. [PMID: 34161950 PMCID: PMC10494869 DOI: 10.1159/000516477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/11/2021] [Indexed: 11/19/2022]
Abstract
The auditory system of the plainfin midshipman fish (Porichthys notatus) is an important sensory system used to detect and encode biologically relevant acoustic stimuli important for survival and reproduction including social acoustic signals used for intraspecific communication. Previous work showed that hair cell (HC) density in the midshipman saccule increased seasonally with reproductive state and was concurrent with enhanced auditory saccular sensitivity in both females and type I males. Although reproductive state-dependent changes in HC density have been well characterized in the adult midshipman saccule, less is known about how the saccule changes during ontogeny. Here, we examined the ontogenetic development of the saccule in four relative sizes of midshipman (larvae, small juveniles, large juveniles, and nonreproductive adults) to determine whether the density, total number, and orientation patterns of saccular HCs change during ontogeny. In addition, we also examined whether the total number of HCs in the saccule differ from that of the utricle and lagena in nonreproductive adults. We found that HC density varied across developmental stage. The ontogenetic reduction in HC density was concurrent with an ontogenetic increase in macula area. The orientation pattern of saccular HCs was similar to the standard pattern previously described in other teleost fishes, and this pattern of HC orientation was retained during ontogeny. Lastly, the estimated number of saccular HCs increased with developmental stage from the smallest larvae (2,336 HCs) to the largest nonreproductive adult (145,717 HCs), and in nonreproductive adults estimated HC numbers were highest in the saccule (mean ± SD = 28,479 ± 4,809 HCs), intermediate in the utricle (mean ± SD = 11,008 ± 1,619 HCs) and lowest in the lagena (mean ± SD = 4,560 ± 769 HCs).
Collapse
Affiliation(s)
- Nicholas R. Lozier
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, WA 98195-7923, USA
| |
Collapse
|
6
|
Abrahão VP, Ballen GA, Pastana MNL, Shibatta OA. Ontogeny of the brain of Microglanis garavelloi Shibatta and Benine 2005 (Teleostei: Siluriformes: Pseudopimelodidae). J Morphol 2021; 282:489-499. [PMID: 33432686 DOI: 10.1002/jmor.21321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/11/2022]
Abstract
The gross brain morphology and the peripheral olfactory organ of Microglanis garavelloi are described throughout development, and the relationship of these organs to the general behaviour of the species is discussed. During the development, the main brain subdivisions undergo a series of morphological changes keeping a relatively constant volume increase. However, we observed different growth rates in the brains of males and females when these were compared. During the maturation process, a series of hormonal events result in the development of some secondary sexual traits in the brain of male specimens, like faster growth rate of brain areas linked to motor control, olfactory and visual responses. The number of olfactory-organ lamellae increases continuously in both males and females, during their maturation period. These results suggest that changes may be caused by cognitive demands that this species is exposed to throughout its lifespan. The gross morphological arrangement of the central nervous system indicates shared patterns with other members of the family Pseudopimelodidae.
Collapse
Affiliation(s)
- Vitor P Abrahão
- Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo A Ballen
- Ichthyology Department, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Murilo N L Pastana
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - Oscar A Shibatta
- Museu de Zoologia, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
7
|
Lyu LK, Li JS, Wang XJ, Yao YJ, Li JF, Li Y, Wen HS, Qi X. Arg-Vasotocin Directly Activates Isotocin Receptors and Induces COX2 Expression in Ovoviviparous Guppies. Front Endocrinol (Lausanne) 2021; 12:617580. [PMID: 33967951 PMCID: PMC8104081 DOI: 10.3389/fendo.2021.617580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Oxytocin (OT) is a crucial regulator of reproductive behaviors, including parturition in mammals. Arg-vasopressin (AVP) is a nonapeptide homologous to Arg-vasotocin (AVT) in teleosts that has comparable affinity for the OT receptor. In the present study, ovoviviparous guppies (Poecilia reticulata) were used to study the effect of AVT on delivery mediated by the activation of prostaglandin (PG) biosynthesis via isotocin (IT) receptors (ITRs). One copy each of it and avt and two copies of itrs were identified in guppies. The results of the affinity assay showed that various concentrations of AVT and IT (10-6, 10-7, and 10-8 mol/L) significantly activated itr1 (P < 0.05). In vitro experiments revealed significant upregulation (P < 0.05) of cyclooxygenase 2 (cox2), which is the rate-limiting enzyme involved in PG biosynthesis, and itr1 by AVT and IT. Furthermore, dual in situ hybridization detected positive signals for itr1 and cox2 at the same site, implying that ITR1 may regulate cox2 gene expression. Measurement of prostaglandin F2a (PGF2a) concentrations showed that AVT induced PGF2a synthesis (P < 0.05) and that the effect of IT was not significant. Finally, intraperitoneal administration of PGF2a significantly induced premature parturition of guppies. This study is the first to identify and characterize AVT and ITRs in guppies. The findings suggest that AVT promotes PG biosynthesis via ITR and that PGF2a induces delivery behavior in ovoviviparous guppies.
Collapse
|
8
|
Butler JM, Anselmo CM, Maruska KP. Female reproductive state is associated with changes in distinct arginine vasotocin cell types in the preoptic area of Astatotilapia burtoni. J Comp Neurol 2020; 529:987-1003. [PMID: 32706120 DOI: 10.1002/cne.24995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Nonapeptides play a crucial role in mediating reproduction, aggression, and parental care across taxa. In fishes, arginine vasotocin (AVT) expression is related to social and/or reproductive status in most male fishes studied to date, and is linked to territorial defense, paternal care, and courtship. Despite a plethora of studies examining AVT in male fishes, relatively little is known about how AVT expression varies with female reproductive state or its role in female social behaviors. We used multiple methods for examining the AVT system in female African cichlid fish Astatotilapia burtoni, including immunohistochemistry for AVT, in situ hybridization for avt-mRNA, and quantitative PCR. Ovulated and mouthbrooding females had similar numbers of parvocellular, magnocellular, and gigantocellular AVT cells in the preoptic area. However, ovulated females had larger magnocellular and gigantocellular cells compared to mouthbrooding females, and gigantocellular AVT cell size correlated with the number of days brooding, such that late-stage brooding females had larger AVT cells than mid-stage brooding females. In addition, we found that ventral hypothalamic cells were more prominent in females compared to males, and were larger in mouthbrooding compared to ovulated females, suggesting a role in maternal care. Together, these data indicate that AVT neurons change across the reproductive cycle in female fishes, similar to that seen in males. These data on females complement studies in male A. burtoni, providing a comprehensive picture of the regulation and potential function of different AVT cell types in reproduction and social behaviors in both sexes.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Chase M Anselmo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
9
|
Dussenne M, Gennotte V, Rougeot C, Mélard C, Cornil CA. Consequences of temperature-induced sex reversal on hormones and brain in Nile tilapia (Oreochromis niloticus). Horm Behav 2020; 121:104728. [PMID: 32119880 DOI: 10.1016/j.yhbeh.2020.104728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
Fish present a wide variety of sex determination systems ranging from strict genetic control (genetic sex determination, GSD) to strict environmental control (environmental sex determination, ESD). Temperature is the most frequent environmental factor influencing sex determination. Nile tilapia (Oreochromis niloticus) is characterized by GSD with male heterogamety (XY/XX), which can be overridden by exposure to high masculinizing temperatures. Sex reversed Nile tilapia (XX males; neomales) have been described in the wild and seem undistinguishable from XY males, but little is known about their physiology. The consideration of climate change urges the need to understand the possible physiological and behavioral consequences of such a sex reversal. The present study compared XX females, XY males and XX neomales for testis maturation, circulating sex -steroid concentrations as well as the size and number of neurons expressing arginine-vasotocin [AVT] and gonadotropin releasing hormone [GnRH] which are involved in sociosexual pathways. The results revealed that temperature-induced sex reversal does not affect testis maturation nor circulating sex steroid concentrations. Neomales show dramatically fewer GnRH1-immunoreactive (-ir) neurons than males and females, despite the observed normal testis physiology. Neomales also present fewer AVT-ir neurons in the magnocellular preoptic area than females and bigger AVT-ir neurons in the parvocellular POA (pPOA) compared to both males and females. The absence of consequences of sex reversal on testis development and secretions despite the reduced numbers of GnRH1 neurons suggests the existence of compensatory mechanisms in the hypothalamic-pituitary-gonadal axis, while the larger pPOA AVT neurons might predict a more submissive behavior in neomales.
Collapse
Affiliation(s)
- M Dussenne
- Neuroendocrinology Laboratory, GIGA Neurosciences, Avenue Hippocrate, 15 (B36), University of Liège, Liège, Belgium; Aquaculture Research and Education Center (CEFRA), University of Liège, Tihange, Belgium; Laboratory of Functional and Evolutionary Morphology, UR FOCUS, Allée du six Août 11, University of Liège, Liège, Belgium; Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Quai Van Beneden 22, University of Liège, Liège, Belgium
| | - V Gennotte
- Aquaculture Research and Education Center (CEFRA), University of Liège, Tihange, Belgium
| | - C Rougeot
- Aquaculture Research and Education Center (CEFRA), University of Liège, Tihange, Belgium
| | - C Mélard
- Aquaculture Research and Education Center (CEFRA), University of Liège, Tihange, Belgium
| | - C A Cornil
- Neuroendocrinology Laboratory, GIGA Neurosciences, Avenue Hippocrate, 15 (B36), University of Liège, Liège, Belgium.
| |
Collapse
|
10
|
Tripp JA, Salas-Allende I, Makowski A, Bass AH. Mating Behavioral Function of Preoptic Galanin Neurons Is Shared between Fish with Alternative Male Reproductive Tactics and Tetrapods. J Neurosci 2020; 40:1549-1559. [PMID: 31911461 PMCID: PMC7044739 DOI: 10.1523/jneurosci.1276-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding the contribution of neuropeptide-containing neurons to variation in social behavior remains critically important. Galanin has gained increased attention because of the demonstration that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. How widespread these mechanisms are among vertebrates essentially remains unexplored, especially among teleost fishes, which comprise nearly one-half of living vertebrate species. Teleosts with alternative reproductive tactics exhibit stereotyped patterns of social behavior that diverge widely between individuals within a sex. This includes midshipman that have two male morphs. Type I males mate using either acoustic courtship to attract females to enter a nest they guard or cuckoldry during which they steal fertilizations from a nest-holding male using a sneak or satellite spawning tactic, whereas type II males only cuckold. Using the neural activity marker phospho-S6, we show increased galanin neuron activation in courting type I males during mating that is not explained by their courtship vocalizations, parental care of eggs, or nest defense against cuckolders. This increase is not observed during mating in cuckolders of either morph or females (none of which show parental care). Together with their role in mating in male mammals, the results demonstrate an unexpectedly specific and deep-rooted, phylogenetically shared behavioral function for POA galanin neurons. The results also point to galanin-dependent circuitry as a potential substrate for the evolution of divergent phenotypes within one sex and provide new functional insights into how POA populations in teleosts compare to the POA and anterior hypothalamus of tetrapods.SIGNIFICANCE STATEMENT Studies of neuropeptide regulation of vertebrate social behavior have mainly focused on the vasopressin-oxytocin family. Recently, galanin has received attention as a regulator of social behavior largely because of studies demonstrating that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. Species with alternative reproductive tactics (ARTs) exhibit robust, consistent differences in behavioral phenotypes between individuals within a sex. Taking advantage of this trait, we show POA galanin neurons are specifically active during mating in one of two male reproductive tactics, but not other mating-related behaviors in a fish with ARTs. The results demonstrate a deep, phylogenetically shared role for POA galanin neurons in reproductive-related social behaviors with implications for the evolution of ARTs.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | | | - Andrea Makowski
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
11
|
Okubo K, Miyazoe D, Nishiike Y. A conceptual framework for understanding sexual differentiation of the teleost brain. Gen Comp Endocrinol 2019; 284:113129. [PMID: 30825478 DOI: 10.1016/j.ygcen.2019.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
Vertebrate brains are sexually differentiated, giving rise to differences in various physiological and behavioral phenotypes between the sexes. In developing mammals and birds, the neural substrate underlying sex-dependent physiology and behavior undergoes an irreversible process of sexual differentiation due to the effects of perinatal gonadal steroids and sex chromosome complement. The differentiated neural substrate is then activated in the adult by the sex-specific steroid milieu to facilitate the expression of sex-typical phenotypes. However, this well-established concept does not hold for teleost fish, whose sexual phenotypes (behavioral or otherwise) are highly labile throughout life and can be reversed even in adulthood. Indeed, the available evidence suggests that, in teleosts, neither gonadal steroids early in development nor the sex chromosome complement contribute much to brain sexual differentiation; instead, steroids in adulthood serve to both differentiate the neural substrate and activate it to elicit sex-typical phenotypes in a transient and reversible manner. Evidence further suggests that marked sexual dimorphisms and adult steroid-dependent lability in the neural expression of sex steroid receptors constitute the primary molecular basis for sexual differentiation and lability of the teleost brain. The consequent sexually dimorphic but reversible steroid sensitivity in response to the adult steroid milieu may enable the teleost brain to maintain lifelong sexual lability and to undergo phenotypic sex reversal.
Collapse
Affiliation(s)
- Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Daichi Miyazoe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Tripp JA, Bass AH. Galanin immunoreactivity is sexually polymorphic in neuroendocrine and vocal-acoustic systems in a teleost fish. J Comp Neurol 2019; 528:433-452. [PMID: 31469908 PMCID: PMC10128891 DOI: 10.1002/cne.24765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Galanin is a peptide that regulates pituitary hormone release, feeding, and reproductive and parental care behaviors. In teleost fish, increased galanin expression is associated with territorial, reproductively active males. Prior transcriptome studies of the plainfin midshipman (Porichthys notatus), a highly vocal teleost fish with two male morphs that follow alternative reproductive tactics, show that galanin is upregulated in the preoptic area-anterior hypothalamus (POA-AH) of nest-holding, courting type I males during spawning compared to cuckolding type II males. Here, we investigate possible differences in galanin immunoreactivity in the brain of both male morphs and females with a focus on vocal-acoustic and neuroendocrine networks. We find that females differ dramatically from both male morphs in the number of galanin-expressing somata and in the distribution of fibers, especially in brainstem vocal-acoustic nuclei and other sensory integration sites that also differ, though less extensively, between the male morphs. Double labeling shows that primarily separate populations of POA-AH neurons express galanin and the nonapeptides arginine-vasotocin or isotocin, homologues of mammalian arginine vasopressin and oxytocin that are broadly implicated in neural mechanisms of vertebrate social behavior including morph-specific actions on vocal neurophysiology in midshipman. Finally, we report a small population of POA-AH neurons that coexpress galanin and the neurotransmitter γ-aminobutyric acid. Together, the results indicate that galanin neurons in midshipman fish likely modulate brain activity at a broad scale, including targeted effects on vocal motor, sensory and neuroendocrine systems; are unique from nonapeptide-expressing populations; and play a role in male-specific behaviors.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology & Behavior, Cornell University, Ithaca, New York
| | - Andrew H Bass
- Department of Neurobiology & Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
13
|
Skrzynska AK, Martínez-Rodríguez G, Gozdowska M, Kulczykowska E, Mancera JM, Martos-Sitcha JA. Aroclor 1254 inhibits vasotocinergic pathways related to osmoregulatory and stress functions in the gilthead sea bream (Sparus aurata, Linnaeus 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:98-109. [PMID: 31082703 DOI: 10.1016/j.aquatox.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/01/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
The present study assesses the response of vasotocinergic system in the gilthead sea bream (Sparus aurata) after administering two doses of the polychlorinated biphenyl Aroclor 1254 (15 or 50 μg g-1 fresh body mass). Seven days post-administration, eight fish of each experimental group were sampled, and the remaining animals were challenged with a hyperosmotic stress by being transferred from seawater (36 ppt) to high salinity water (55 ppt) and being sampled 3 days post-transfer. Aroclor 1254 affected gene expression of avt, together with Avt concentrations in pituitary and plasma, inhibiting the stimulation observed in vasotocinergic system after hyperosmotic challenge. This was noted by the accumulation of Avt at hypophyseal level as well as by its undetectable values in plasma. Hyperosmotic transfer significantly changed branchial avtrv1a, avtrv2, atp1a and cftr mRNA expression levels in control fish, while in Aroclor 1254-treated fish they remained mostly unchanged. This desensitization also occurred for avtrs in hypothalamus, caudal kidney and liver. In addition, an enhancement in plasma cortisol concentration, together with the orchestration of several players of the Hypothalamic-Pituitary-Interrenal axis (crh, crhbp, trh, star), was also observed mostly at the highest dose used (50 μg g-1 body mass), affecting plasma and hepatic metabolites. Our results demonstrated that Aroclor 1254 compromises the hypoosmoregulatory function of vasotocinergic system in S. aurata, also inducing a concomitant stress response. In summary, this study demonstrates that Aroclor 1254 can be considered an important endocrine disruptor in relation with the correct arrangement of vasotocinergic, metabolic and stress pathways after their stimulation by transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Institute of Marine Sciences of Andalusia, Spanish National Research Council (ICMAN-CSIC), E-11519, Puerto Real, Cádiz, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, 81-712, Sopot, Poland
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
14
|
Tripp JA, Feng NY, Bass AH. Behavioural tactic predicts preoptic-hypothalamic gene expression more strongly than developmental morph in fish with alternative reproductive tactics. Proc Biol Sci 2019; 285:rspb.2017.2742. [PMID: 29343607 DOI: 10.1098/rspb.2017.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman (Porichthys notatus) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| |
Collapse
|
15
|
Reddon AR, O'Connor CM, Nesjan E, Cameron J, Hellmann JK, Ligocki IY, Marsh-Rollo SE, Hamilton IM, Wylie DR, Hurd PL, Balshine S. Isotocin neuronal phenotypes differ among social systems in cichlid fishes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170350. [PMID: 28573041 PMCID: PMC5451842 DOI: 10.1098/rsos.170350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Social living has evolved numerous times across a diverse array of animal taxa. An open question is how the transition to a social lifestyle has shaped, and been shaped by, the underlying neurohormonal machinery of social behaviour. The nonapeptide neurohormones, implicated in the regulation of social behaviours, are prime candidates for the neuroendocrine substrates of social evolution. Here, we examined the brains of eight cichlid fish species with divergent social systems, comparing the number and size of preoptic neurons that express the nonapeptides isotocin and vasotocin. While controlling for the influence of phylogeny and body size, we found that the highly social cooperatively breeding species (n = 4) had fewer parvocellular isotocin neurons than the less social independently breeding species (n = 4), suggesting that the evolutionary transition to group living and cooperative breeding was associated with a reduction in the number of these neurons. In a complementary analysis, we found that the size and number of isotocin neurons significantly differentiated the cooperatively breeding from the independently breeding species. Our results suggest that isotocin is related to sociality in cichlids and may provide a mechanistic substrate for the evolution of sociality.
Collapse
Affiliation(s)
- Adam R. Reddon
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Constance M. O'Connor
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
- Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Erin Nesjan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jason Cameron
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer K. Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Animal Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Isaac Y. Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | - Susan E. Marsh-Rollo
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ian M. Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Douglas R. Wylie
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Peter L. Hurd
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Pouso P, Radmilovich M, Silva A. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio. Tissue Cell 2017; 49:257-269. [PMID: 28242105 DOI: 10.1016/j.tice.2017.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/21/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system.
Collapse
Affiliation(s)
- Paula Pouso
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay; Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay
| | - Milka Radmilovich
- Depto Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
17
|
Banerjee P, Joy KP, Chaube R. Structural and functional diversity of nonapeptide hormones from an evolutionary perspective: A review. Gen Comp Endocrinol 2017; 241:4-23. [PMID: 27133544 DOI: 10.1016/j.ygcen.2016.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.
Collapse
Affiliation(s)
- P Banerjee
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| | - R Chaube
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
18
|
Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish. PLoS One 2016; 11:e0167509. [PMID: 27907106 PMCID: PMC5132329 DOI: 10.1371/journal.pone.0167509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.
Collapse
|
19
|
O'Connor CM, Marsh-Rollo SE, Aubin-Horth N, Balshine S. Species-specific patterns of nonapeptide brain gene expression relative to pair-bonding behavior in grouping and non-grouping cichlids. Horm Behav 2016; 80:30-38. [PMID: 26519858 DOI: 10.1016/j.yhbeh.2015.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/18/2015] [Accepted: 10/24/2015] [Indexed: 11/16/2022]
Abstract
Comparative studies have revealed that vasopressin-oxytocin pathways are associated with both pair bonding and grouping behavior. However, the relationship between pair bonding and grouping behavior remains unclear. In this study, our aim was to identify whether two species that differ in grouping behavior display a corresponding difference in their pair bonds, and in the underlying vasopressin-oxytocin hormonal pathways. Using two species of cichlid fishes, the highly social Neolamprologus pulcher and the non-social Telmatochromis temporalis, we measured proximity of pairs during pair bond formation, and then measured social behaviors (proximity, aggression, submission, affiliation) and brain gene expression of isotocin and arginine vasotocin (the teleost homologues of oxytocin and vasopressin, respectively), as well as their receptors, after a temporary separation and subsequent reunion of the bonded pairs. Pairs of the social species spent more time in close proximity relative to the non-social species. Rates of aggression increased in both species following the separation and reunion treatment, relative to controls that were not separated. Overall, whole brain expression of isotocin was higher in the social species relative to the non-social species, and correlated with proximity, submission, and affiliation, but only in the social species. Our results suggest that both a social and a non-social cichlid species have similar behavioral responses to a temporary separation from a mate, and we found no difference in the brain gene expression of measured hormones and receptors based on our separation-reunion treatment. However, our results highlight the importance of isotocin in mediating submissive and affiliative behaviors in cichlid fishes, and demonstrate that isotocin has species-specific correlations with socially relevant behaviors.
Collapse
Affiliation(s)
- Constance M O'Connor
- Aquatic Behavioural Ecology Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Susan E Marsh-Rollo
- Aquatic Behavioural Ecology Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sigal Balshine
- Aquatic Behavioural Ecology Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
20
|
Kline RJ, Holt GJ, Khan IA. Arginine vasotocin V1a2 receptor and GnRH-I co-localize in preoptic neurons of the sex changing grouper, Epinephelus adscensionis. Gen Comp Endocrinol 2016; 225:33-44. [PMID: 26361870 DOI: 10.1016/j.ygcen.2015.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 11/21/2022]
Abstract
The arginine vasotocin/vasopressin (AVT/AVP) and gonadotropin releasing hormone (GnRH) systems are known to control sexual behaviors and reproduction, respectively, in different vertebrate groups. However, a direct functional connection between these two neuroendocrine systems has not been demonstrated for any vertebrate species. Therefore, the objective of this research was to test the hypothesis that AVT acts on the GnRH system via an AVT V1a receptor in a sex changing grouper species, the rock hind, Epinephelus adscensionis. AVT V1a2 receptors were co-localized with GnRH-I on neurons in the preoptic anterior hypothalamus identifying a structural linkage between the AVT system and GnRH-I. Transcripts for avt, gnrh-I, and two AVT receptor subtypes (v1a1 and v1a2) were isolated and characterized for E. adscensionis and their expression was measured in males and females by q-RT-PCR. Translation of V1a-type cDNA sequences revealed two distinct forms of the AVT V1a receptor in E. adscensionis brain similar to those reported for other species. The observation of significantly higher gnrh-I mRNA in the POA+H of rock hind males as compared to females suggests differential regulation of the gnrh-I transcripts in the two sexes of this protogynous species. In male E. adscensionis, but not in females, a negative relationship was seen between plasma 11-ketotestosterone (11-KT) and the v1a1 receptor mRNA levels in the POA+H, while a positive trend was observed between 11-KT and v1a2 receptor mRNA levels, indicating that these receptor forms may be differentially regulated.
Collapse
Affiliation(s)
- Richard J Kline
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520, USA.
| | - G Joan Holt
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Izhar A Khan
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX 75428, USA
| |
Collapse
|
21
|
Kagawa N, Honda A, Zenno A, Omoto R, Imanaka S, Takehana Y, Naruse K. Arginine vasotocin neuronal development and its projection in the adult brain of the medaka. Neurosci Lett 2015; 613:47-53. [PMID: 26739197 DOI: 10.1016/j.neulet.2015.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
The neurohypophysial peptide arginine vasotocin (AVT) and its mammalian ortholog arginine vasopressin function in a wide range of physiological and behavioral events. Here, we generated a new line of transgenic medaka (Oryzias latipes), which allowed us to monitor AVT neurons by enhanced green fluorescent protein (EGFP) and demonstrate AVT neuronal development in the embryo and the projection of AVT neurons in the adult brain of avt-egfp transgenic medaka. The onset of AVT expression manifested at 2 days postfertilization (dpf) as a pair of signals in the telencephalon of the brain. The telencephalic AVT neurons migrated and converged on the preoptic area (POA) by 4dpf. At the same stage, another onset of AVT expression manifested in the central optic tectum (OT), and they migrated to the ventral part of the hypothalamus (VH) by 6dpf. In the adult brain, the AVT somata with EGFP signals existed in the gigantocellular POA (gPOA), magnocellular POA (mPOA), and parvocellular POA (pPOA) and in the VH. Whereas the major projection of AVT fibers was found from the pPOA and VH to the posterior pituitary, it was also found that AVT neurons in the three POAs send their fibers into wide regions of the brain such as the telencephalon, mesencephalon and diencephalon. This study suggests that the avt-egfp transgenic medaka is a useful model to explore AVT neuronal development and function.
Collapse
Affiliation(s)
- Nao Kagawa
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Akira Honda
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Akiko Zenno
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Ryosuke Omoto
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Saya Imanaka
- Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan.
| | - Yusuke Takehana
- Laboratory of Bioresources, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
22
|
Ghahramani ZN, Timothy M, Kaur G, Gorbonosov M, Chernenko A, Forlano PM. Catecholaminergic Fiber Innervation of the Vocal Motor System Is Intrasexually Dimorphic in a Teleost with Alternative Reproductive Tactics. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:131-44. [PMID: 26355302 DOI: 10.1159/000438720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023]
Abstract
Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.
Collapse
|
23
|
Oldfield RG, Harris RM, Hofmann HA. Integrating resource defence theory with a neural nonapeptide pathway to explain territory-based mating systems. Front Zool 2015; 12 Suppl 1:S16. [PMID: 26813803 PMCID: PMC4722349 DOI: 10.1186/1742-9994-12-s1-s16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ultimate-level factors that drive the evolution of mating systems have been well studied, but an evolutionarily conserved neural mechanism involved in shaping behaviour and social organization across species has remained elusive. Here, we review studies that have investigated the role of neural arginine vasopressin (AVP), vasotocin (AVT), and their receptor V1a in mediating variation in territorial behaviour. First, we discuss how aggression and territoriality are a function of population density in an inverted-U relationship according to resource defence theory, and how territoriality influences some mating systems. Next, we find that neural AVP, AVT, and V1a expression, especially in one particular neural circuit involving the lateral septum of the forebrain, are associated with territorial behaviour in males of diverse species, most likely due to their role in enhancing social cognition. Then we review studies that examined multiple species and find that neural AVP, AVT, and V1a expression is associated with territory size in mammals and fishes. Because territoriality plays an important role in shaping mating systems in many species, we present the idea that neural AVP, AVT, and V1a expression that is selected to mediate territory size may also influence the evolution of different mating systems. Future research that interprets proximate-level neuro-molecular mechanisms in the context of ultimate-level ecological theory may provide deep insight into the brain-behaviour relationships that underlie the diversity of social organization and mating systems seen across the animal kingdom.
Collapse
Affiliation(s)
- Ronald G Oldfield
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341 USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106 USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Rayna M Harris
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712 USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
24
|
Almeida O, Oliveira RF. Social Status and Arginine Vasotocin Neuronal Phenotypes in a Cichlid Fish. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:203-13. [PMID: 25997523 DOI: 10.1159/000381251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
Abstract
The nonapeptide arginine vasotocin (AVT) and its mammalian homologue arginine vasopressin play a key role in the regulation of social behaviour across vertebrates. In teleost fishes, three AVT neuronal populations have been described in the preoptic area (POA): the parvocellular (pPOA), the magnocellular (mPOA) and the gigantocellular (gPOA). Neurons from each of these areas project both to the pituitary and to other brain regions, where AVT is supposed to regulate neural circuits underlying social behaviour. However, in the fish species studied so far, there is considerable variation in which AVT neuronal populations are involved in behavioural modulation and in the direction of the effect. In this study, the association between AVT neuronal phenotypes and social status was investigated in the Mozambique tilapia (Oreochromis mossambicus). This species is an African female mouth-brooding cichlid fish in which males form breeding aggregations in which dominant males establish territories and subordinate males to act as floaters. With respect to sex differences in AVT neuronal phenotypes, females have a larger number of AVT neurons in the pPOA and mPOA. Within males, AVT appeared associated with social subordination, as indicated by the larger cell body areas of AVT neurons in mPOA and gPOA nuclei of non-territorial males. There were also positive correlations between submissive behaviour and the soma size of AVT cells in all three nuclei and AVT cell number in the mPOA. In summary, the results provide evidence for an involvement of AVT in the modulation of social behaviour in tilapia, but it was not possible to identify specific roles for specific AVT neuronal populations. The results presented here also contrast with those previously published for another cichlid species with a similar mating system, which highlights the species-specific nature of the pattern of association between AVT and social behaviour even within the same taxonomic family.
Collapse
Affiliation(s)
- Olinda Almeida
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Lisbon, Portugal
| | | |
Collapse
|
25
|
Reddon AR, O'Connor CM, Marsh-Rollo SE, Balshine S, Gozdowska M, Kulczykowska E. Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140072. [PMID: 26064593 PMCID: PMC4448801 DOI: 10.1098/rsos.140072] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 01/07/2015] [Indexed: 05/23/2023]
Abstract
The mammalian nonapeptide hormones, vasopressin and oxytocin, are known to be potent regulators of social behaviour. Teleost fishes possess vasopressin and oxytocin homologues known as arginine vasotocin (AVT) and isotocin (IT), respectively. The role of these homologous nonapeptides in mediating social behaviour in fishes has received far less attention. The extraordinarily large number of teleost fish species and the impressive diversity of their social systems provide us with a rich test bed for investigating the role of nonapeptides in regulating social behaviour. Existing studies, mostly focused on AVT, have revealed relationships between the nonapeptides, and both social behaviour and dominance status in fishes. To date, much of the work on endogenous nonapeptides in fish brains has measured genomic or neuroanatomical proxies of nonapeptide production rather than the levels of these molecules in the brain. In this study, we measure biologically available AVT and IT levels in the brains of Neolamprologus pulcher, a cooperatively breeding cichlid fish, using high performance liquid chromatography with fluorescence detection. We found that brain AVT levels were higher in the subordinate than in dominant animals, and levels of IT correlated negatively with the expression of affiliative behaviour. We contrast these results with previous studies, and we discuss the role the nonapeptide hormones may play in the regulation of social behaviour in this highly social animal.
Collapse
Affiliation(s)
- Adam R. Reddon
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Constance M. O'Connor
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Susan E. Marsh-Rollo
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Sigal Balshine
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | - Magdalena Gozdowska
- Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstanców Warszawy 55 Street, 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Genetics and Marine Biotechnology, Institute of Oceanology of Polish Academy of Sciences, Powstanców Warszawy 55 Street, 81-712 Sopot, Poland
| |
Collapse
|
26
|
Sexually dimorphic distribution of calcium-binding protein, calretinin in the preoptic area of the freshwater catfish, Clarias batrachus (Linn.). Neurosci Lett 2014; 579:86-91. [PMID: 25058431 DOI: 10.1016/j.neulet.2014.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022]
Abstract
Preoptic area (POA) plays an important role in the hormonal regulation of the pituitary gland in vertebrates. In this study we report the sexually dimorphic distribution of calcium-binding proteins calretinin (CR) in the POA in the freshwater catfish, Clarias batrachus. Nissl staining highlighted the presence of the nucleus praeopticus periventricularis (NPP) and other subdivisions of the nucleus praeopticus (NPO), including supraoptic (NPOs), paraventricular (NPOp) and magnocellular (NPOm) divisions. In NPO, CR immunoreactivity was noted only in females but not in males. In both sexes, CR stained perikarya were found in the NPP. Sexually dimorphic localization of CR in the POA supports the notion that CR may play a gender-specific role and may be involved in hormonal regulation in fishes.
Collapse
|
27
|
Sokołowska E, Kleszczyńska A, Kalamarz-Kubiak H, Arciszewski B, Kulczykowska E. Changes in brain arginine vasotocin, isotocin, plasma 11-ketotestosterone and cortisol in round goby, Neogobius melanostomus, males subjected to overcrowding stress during the breeding season. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:237-42. [DOI: 10.1016/j.cbpa.2013.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
28
|
Mendonça R, Soares MC, Bshary R, Oliveira RF. Arginine Vasotocin Neuronal Phenotype and Interspecific Cooperative Behaviour. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:166-76. [DOI: 10.1159/000354784] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022]
|
29
|
Lema SC, Slane MA, Salvesen KE, Godwin J. Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (Thalassoma bifasciatum). Gen Comp Endocrinol 2012; 179:451-64. [PMID: 23063433 DOI: 10.1016/j.ygcen.2012.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/10/2012] [Accepted: 10/01/2012] [Indexed: 01/30/2023]
Abstract
The neurohypophyseal hormone arginine vasotocin (AVT) mediates behavioral and reproductive plasticity in vertebrates, and has been linked to the behavioral changes associated with protogyny in the bluehead wrasse (Thalassoma bifasciatum). In this study, we sequenced full-length cDNAs encoding two distinct V1a-type AVT receptors (v1a1 and v1a2) from the bluehead wrasse, and examined variation in brain and gonadal abundance of these receptor transcripts among sexual phases. End point RT-PCR revealed that v1a1 and v1a2 transcripts varied in tissue distribution, with v1a1 receptor mRNAs at greatest levels in the telencephalon, hypothalamus, optic tectum, cerebellum and testis, and v1a2 receptor transcripts most abundant in the hypothalamus, cerebellum and gills. In the brain, v1a1 and v1a2 mRNAs both localized by in situ hybridization to the dorsal and ventral telencephalon, the preoptic area of the hypothalamus, the ventral hypothalamus and lateral recess of the third ventricle. Quantitative real-time RT-PCR revealed that relative abundance of these two receptor mRNAs varied significantly in brain and gonad with sexual phase. Relative levels of v1a2 mRNAs were greater in whole brain and isolated hypothalamus of terminal phase (TP) male wrasse compared to initial phase (IP) males or females. In the gonad, v1a1 mRNAs were at levels 2.5-fold greater in the testes of IP males - and 4-5-fold greater in the testes of TP males - compared to the ovaries of females. These results provide evidence that V1a-type AVT receptor transcript abundance in the hypothalamus and gonads of bluehead wrasse varies in patterns linked to sexual phase, and bestow a foundation for future studies investigating how differential expression of v1a1 and v1a2 teleost AVT receptors links to behavioral status and gonadal function in fish more broadly.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | | | | | | |
Collapse
|
30
|
Sex differences in the expression of vasotocin/isotocin, gonadotropin-releasing hormone, and tyrosine and tryptophan hydroxylase family genes in the medaka brain. Neuroscience 2012; 218:65-77. [PMID: 22609934 DOI: 10.1016/j.neuroscience.2012.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
In teleost fish, sex differences in several behavioral and physiological traits have been assumed to reflect underlying sex differences in the central expression of neurotransmitter/neuromodulator-related molecules, including vasotocin (VT)/isotocin (IT), gonadotropin-releasing hormone (GnRH), and tyrosine and tryptophan hydroxylases (TH and TPH). However, the sex-dependent expression patterns of these molecules have not been fully characterized in the teleost brain. In the present study, we therefore systematically evaluated sex differences in their expression in the medaka (Oryzias latipes) brain. The most prominent sex difference was observed in vt expression in the nucleus posterior tuberis (NPT) and the posterior part of the nucleus ventral tuberis (NVT) in the hypothalamus, where the expression was completely male-specific. Male-biased expression of gnrh1, tph1, and tph2 was also evident in the supracommissural and posterior nuclei of the ventral telencephalic area (Vs/Vp), medial nucleus of the dorsal telencephalic area (Dm), and thalamic dorsal posterior nucleus (DP), respectively. In contrast, the overall expression levels of it and gnrh3 were higher in the female brain than in the male brain. Equally importantly, no conspicuous sex differences were observed in the expression of gnrh2, th1, and th2, despite several previous reports of their sex-biased expression in the brains of other teleost species. Taken together, these data have uncovered previously unidentified sex differences in the expression of VT/IT, GnRH, and TPH in the teleost brain, which may possibly be relevant to sexual dimorphism in some behavioral and/or physiological traits, and have simultaneously highlighted potential species differences in the roles of these molecules.
Collapse
|
31
|
Godwin J, Thompson R. Nonapeptides and social behavior in fishes. Horm Behav 2012; 61:230-8. [PMID: 22285647 DOI: 10.1016/j.yhbeh.2011.12.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/20/2022]
Abstract
The nonapeptide hormones arginine vasotocin and isotocin play important roles in mediating social behaviors in fishes. Studies in a diverse range of species demonstrate variation in vasotocin neuronal phenotypes across within and between sexes and species as well as effects of hormone administration on aggressive and sexual behaviors. However, patterns vary considerably across species and a general explanatory model for the role of vasotocin in teleost sociosexual behaviors has proven elusive. We review these findings, examine potential explanations for the lack of agreement across studies, and propose a model based on the parvocellular AVT neurons primarily mediating social approach and subordinance functions while the magnocellular and gigantocellular AVT neurons mediate courtship and aggressive behaviors. Isotocin neuronal phenotypes and effects on behavior are relatively unstudied, but research to date suggests this will be a fruitful line of inquiry. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- John Godwin
- Department of Biology and W.M. Keck Center for Behavioral Biology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
32
|
Kleszczyńska A, Sokołowska E, Kulczykowska E. Variation in brain arginine vasotocin (AVT) and isotocin (IT) levels with reproductive stage and social status in males of three-spined stickleback (Gasterosteus aculeatus). Gen Comp Endocrinol 2012; 175:290-6. [PMID: 22137910 DOI: 10.1016/j.ygcen.2011.11.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/13/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022]
Abstract
Arginine vasotocin (AVT) and isotocin (IT) are fish nonapeptides synthesized in separate hypothalamic neurons from where they are transported to the neurohypophysis for storage and release into circulation. AVT is known to modulate aggression, courtship and parental care or social communication in many species, including fish, amphibians and birds. In this paper we examined a link between the level of AVT and IT in the brain and particular reproductive behavior in males of three-spined stickleback (Gasterosteus aculeatus). AVT and IT levels in whole brain of males of three-spined stickleback vary depending on specific breeding behavior of the individuals and their social status. These studies have shown the highest AVT levels in aggressive males that took care of the eggs. Brain AVT concentrations are also increased in nuptial colored subordinate males that fight to change their social status. On the other hand, IT is significantly higher in aggressive dominant males that defend their territory. IT may be also involved in courtship in three-spined stickleback. These findings highlight the importance of determination of "free", bioavailable neuropeptides' level in behavioral studies.
Collapse
Affiliation(s)
- Agnieszka Kleszczyńska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland.
| | | | | |
Collapse
|
33
|
Chaube R, Singh RK, Joy KP. Estrogen regulation of brain vasotocin secretion in the catfish Heteropneustes fossilis: an interaction with catecholaminergic system. Gen Comp Endocrinol 2012; 175:206-13. [PMID: 22138221 DOI: 10.1016/j.ygcen.2011.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/22/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023]
Abstract
Vasotocin (VT) is a basic neurohypophysial nonapeptide in non-mammalian vertebrates and is involved in diverse functions like osmoregulation, reproduction, metabolism and behavior. In this study, we report that estradiol-17β (E(2)) regulates brain and plasma VT secretion through the involvement of the catecholaminergic (CA) system. To demonstrate this, E(2) level was altered through ovariectomy (OVX, 3 weeks) and replacement study with low and high E(2) doses (0.1 and 0.5 μg/g body weight). CA activity was inhibited by treatment with α-methylparatyrosine (α-MPT; 250 μg/g body weight), a competitive inhibitor of tyrosine hydroxylase. VT was assayed by an enzyme immunoassay method. In the sham group, the low E(2) dose produced 82% and 104% increase, respectively, in brain and plasma VT levels. The high E(2) dose decreased the VT levels significantly. The low E(2) dose decreased brain E(2) but elevated plasma E(2). In the high E(2) group, the E(2) level increased further in both brain and plasma. OVX resulted in a significant inhibition (69% and 25%, respectively) of both brain and plasma VT, which was correlated with low E(2) levels. The low E(2) dose not only reversed the inhibition, but increased the VT level in both brain and plasma in comparison to the sham groups. The high E(2) replacement inhibited VT levels further low in both brain and plasma. The α-MPT treatment inhibited VT levels significantly in both sham and OVX groups. The drug treatment abolished partially the restorative effect of the low E(2) dose in the ovariectomized fish. In the high E(2) dose group, α-MPT decreased brain and plasma VT levels further low compared to the sham + 0. 5 μg E(2) group or OVX + 0.5 μg E(2) group except the brain VT level, which increased in the OVX+0.5 μg E(2) group. It is inferred that E(2) may exert biphasic effects on VT through the mediation of the CA system.
Collapse
Affiliation(s)
- Radha Chaube
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
34
|
Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Mérot Y, Kah O. Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neurosci 2010; 32:2105-15. [DOI: 10.1111/j.1460-9568.2010.07519.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Iwata E, Nagai Y, Sasaki H. Social rank modulates brain arginine vasotocin immunoreactivity in false clown anemonefish (Amphiprion ocellaris). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:337-345. [PMID: 19116767 DOI: 10.1007/s10695-008-9298-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 12/10/2008] [Indexed: 05/27/2023]
Abstract
The brain nanopeptide arginine vasotocin (AVT) and its mammalian homolog arginine vasopressin are involved in the regulation of social and reproductive behavior. We investigated the relationship between social rank formation and the brain AVT system in the false clown anemonefish (Amphiprion ocellaris), which forms a social rank that leads to sex differentiation in higher-ranked individuals. Tanks of three sexually immature fish were kept for 90 days and each fish's behavior was observed once a month. The social rank of each individual was distinguishable by behavior, but gonadosomatic index (GSI) did not differ significantly. The number of AVT neurons in the magnocellular layer in the preoptic area (POA) increased in subordinate individuals and declined with increasing hierarchical dominance. These results suggest that social rank formation modulates AVT production in the brain of the clown anemonefish and may influence their later sex differentiation.
Collapse
Affiliation(s)
- Eri Iwata
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan.
| | - Yukiko Nagai
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| | - Hideaki Sasaki
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
36
|
Backström T, Winberg S. Arginine–vasotocin influence on aggressive behavior and dominance in rainbow trout. Physiol Behav 2009; 96:470-5. [DOI: 10.1016/j.physbeh.2008.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 10/24/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
37
|
Maruska KP. Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. Gen Comp Endocrinol 2009; 160:194-204. [PMID: 19071127 DOI: 10.1016/j.ygcen.2008.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/26/2008] [Accepted: 11/18/2008] [Indexed: 11/21/2022]
Abstract
The neuropeptide vasotocin (VT) is an important regulator of reproduction and social behaviors, and hypothesized to function as a neuromodulator of sensory and motor processing. In adult fishes, VT is primarily produced in three different cell groups (parvocellular, magnocellular, and gigantocellular) within preoptic nuclei, but little is known about sex and seasonal variations of these somata and their relationship to sensory and motor processing. I used immunocytochemistry to (1) test for sex and seasonal variations in VT-immunoreactive (-ir) somata number, size, and fiber densities in the brain of a soniferous damselfish, and (2) test the hypothesis that VT-ir axons project to and vary seasonally in sensory and motor regions of the brain. Sex differences in somata number and size were restricted to parvocellular neurons, while seasonal variations were found within parvocellular and gigantocellular, but not magnocellular neurons. Both males and females had more gigantocellular neurons during peak spawning compared to other times. VT-ir fibers were most abundant in sensory and motor processing regions of the auditory-mechanosensory torus semicircularis (TS), facial lobe, and vagal motor nucleus (VMN), while sparse innervation was found to the tectum and hindbrain auditory and mechanosensory nuclei. VT-ir fiber densities in the TS and VMN were higher during peak spawning, and correlated with gigantocellular (TS, VMN) and parvocellular (TS) somata number. These results provide neuroanatomical support for a relationship between temporal changes in specific VT somata and projections to some sensory and motor processing regions in the damselfish brain that may influence complex communicative and social behaviors.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| |
Collapse
|
38
|
Sisneros JA, Alderks PW, Leon K, Sniffen B. Morphometric changes associated with the reproductive cycle and behaviour of the intertidal-nesting, male plainfin midshipman Porichthys notatus. JOURNAL OF FISH BIOLOGY 2009; 74:18-36. [PMID: 20735522 DOI: 10.1111/j.1095-8649.2008.02104.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Morphometric changes in body condition, liver, sonic muscle and gonadal development associated with the annual reproductive cycle and behaviour of the intertidal-nesting male plainfin midshipman Porichthys notatus were investigated. Body condition of type I males rapidly increased during the pre-nesting (PN) period, peaked at the beginning of the summer nesting cycle and then gradually declined to lowest levels during the non-reproductive (NR) period. The gonado-somatic index of type I males peaked during PN and then declined during the summer nesting cycle to lowest levels at the end of the nest cycle and during NR. Indices of sonic muscle and liver of type I males were lowest during NR, gradually increased during PN and then peaked during the summer nesting cycle. Results indicate that body condition and fecundity of type I males were positively correlated with body mass at the end of the nest cycle. These findings as they relate to the annual reproductive cycle and behaviour of the type I male P. notatus are discussed.
Collapse
Affiliation(s)
- J A Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
39
|
|
40
|
Dewan AK, Maruska KP, Tricas TC. Arginine vasotocin neuronal phenotypes among congeneric territorial and shoaling reef butterflyfishes: species, sex and reproductive season comparisons. J Neuroendocrinol 2008; 20:1382-94. [PMID: 19094086 DOI: 10.1111/j.1365-2826.2008.01798.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arginine vasotocin (AVT) and the homologous arginine vasopressin (AVP) neuropeptides are involved in the control of aggression, spacing behaviour and mating systems in vertebrates, but the function of AVT in the regulation of social behaviour among closely-related fish species needs further clarification. We used immunocytochemical techniques to test whether AVT neurones show species, sex or seasonal differences in two sympatric butterflyfish sister species: the territorial monogamous multiband butterflyfish, Chaetodon multicinctus, and the shoaling polygamous milletseed butterflyfish, Chaetodon miliaris. The territorial species had larger AVT-immunoreactive (-ir) somata within the preoptic area, and higher AVT fibre densities within but not limited to the ventral telencephalon, medial and dorsal nucleus of the dorsal telencephalon, torus semicircularis, and tectum compared to the shoaling nonterritorial species. Furthermore, AVT-ir somata size and number did not differ among sexes or spawning periods in the territorial species, and showed only limited variation within the shoaling species. The distinct difference in AVT neuronal characteristics among species is likely to be independent of body size differences, and the lack of sex and seasonal variability is consistent with their divergent but stable social and mating systems. These phenotypic differences among species may be related to the influence of AVT on social spacing, aggression or monogamy, as reported for other fish, avian and mammalian models. The present study provides the first evidence for variation in vasotocin neural organisation in two congeneric and sympatric fish species with different social systems.
Collapse
Affiliation(s)
- A K Dewan
- Department of Zoology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
41
|
Singh V, Joy KP. Immunocytochemical localization, HPLC characterization, and seasonal dynamics of vasotocin in the brain, blood plasma and gonads of the catfish Heteropneustes fossilis. Gen Comp Endocrinol 2008; 159:214-25. [PMID: 18835270 DOI: 10.1016/j.ygcen.2008.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/30/2008] [Accepted: 09/11/2008] [Indexed: 11/26/2022]
Abstract
Immunocytochemical distribution and dynamics of vasotocin (VT) were studied in the air-breathing catfish Heteropneustes fossilis in relation to the reproductive cycle. Vasotocin was localized in the brain and ovary by streptavidin-biotin immunocytochemistry. The immunoreactivity was found throughout the hypothalamo-hypophysial neurosecretory system consisting of the magnocellular and parvocellular neurons of the nucleus preopticus, neurosecretory axonal tract and neurohypophysis (NH). The VT neurons showed seasonal changes; they were numerically less in resting phase but increased during the recrudescent phase. The neurons were hypertrophied and degranulated in pre-spawning phase and heavily degranulated and vacuolated in spawning phase. In the NH, the density of VT fibers increased up to the pre-spawning phase and decreased thereafter. In the ovary, VT immunoreactivity was noticed in the follicular layer and varied with the growth of the follicles. Vasotocin was characterized and quantified by a high performance liquid chromatography with UV detection method in the brain, plasma and ovary. Brain and plasma VT concentrations were also assayed with an EIA method, which was more sensitive than the HPLC method with values about 2-fold higher. Vasotocin levels showed significant seasonal and sexual differences with higher concentrations in females in the recrudescent (preparative, pre-spawning and spawning) phase. Brain VT recorded the highest concentration in the preparative phase (both sexes) while plasma (both sexes) and ovarian VT in the spawning phase. The ovarian concentration of VT was 15- and 25-fold higher in the pre-spawning and spawning phases (when expressed per mg protein), respectively, than plasma but lower than brain levels. In testis, VT concentration was relatively low and apparently did not show any significant seasonal variation. The seasonal activity patterns and gonadal distribution of VT indicate a reproductive function of the peptide.
Collapse
Affiliation(s)
- V Singh
- Center of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | | |
Collapse
|
42
|
Hillsman KD, Sanderson NS, Crews D. Testosterone stimulates mounting behavior and arginine vasotocin expression in the brain of both sexual and unisexual whiptail lizards. Sex Dev 2008; 1:77-84. [PMID: 18391518 DOI: 10.1159/000096241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/01/2006] [Indexed: 11/19/2022] Open
Abstract
In nonmammalian vertebrates the abundance of arginine vasotocin (AVT) neurons in the brain is sexually dimorphic, a pattern that is modulated by testicular androgen. This peptide is thought to be involved in the control of male-typical mounting behaviors. The all-female desert-grasslands whiptail (Cnemidophorus uniparens) reproduces by obligate parthenogenesis and in nature no males exist, but eggs treated with aromatase inhibitor hatch into individuals (called virago C. uniparens) having testes, accessory sex structures, high circulating concentrations of androgens, and exhibiting only male-like copulatory behavior. To examine the 'sexual' dimorphism of AVT-containing neurons in these animals, we compared AVT immunoreactivity in gonadectomized control and virago C. uniparens, with that of gonadectomized male and female Cnemidophorus inornatus, a sexual species that is the maternal ancestor to the parthenogenetic species. Mounting behavior is elicited in both species and both sexes by testosterone, and it was predicted that the distribution and abundance of AVT cell bodies and fibers would reflect the propensity of males and females of the two species to display male-typical copulatory behavior. Since both this propensity and AVT abundance are controlled by androgens, we compared testosterone-implanted and control animals within each group. Testosterone treatment generally increased AVT abundance, except in lab-reared parthenoforms, in which testosterone treatment was the least effective in inducing male-like copulatory behavior.
Collapse
Affiliation(s)
- K D Hillsman
- Section of Integrative Biology, University of Texas, Austin, Tex. 78712, USA
| | | | | |
Collapse
|
43
|
Motohashi E, Hamabata T, Ando H. Structure of neurohypophysial hormone genes and changes in the levels of expression during spawning season in grass puffer (Takifugu niphobles). Gen Comp Endocrinol 2008; 155:456-63. [PMID: 17889868 DOI: 10.1016/j.ygcen.2007.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/09/2007] [Accepted: 07/28/2007] [Indexed: 10/23/2022]
Abstract
Vasotocin (VT) has been shown to influence various aspects of social and sexual behaviors in a broad range of vertebrate species, but less is known about the mechanisms through which this peptide modulates behavior. Additionally, much less is known about roles of isotocin (IT) in regulation of behavior. Grass puffer, Takifugu niphobles, has unique spawning behavior; spawning occurs on beach only for several days around the spring tide and is conducted by a group of 10-60 individuals, of which one is female. As a first step toward investigating the roles of VT and IT in this species' spawning behavior, we determined the structures of the VT and IT genes from grass puffer using the genome resources of the closely related tiger puffer and green puffer. We then used these sequences to develop real-time PCR assays and examined changes in expression of the VT and IT genes over the spawning season. The structures of VT and IT genes are well conserved among three puffer species. Particularly, the sequence similarities between grass and tiger puffers were very high not only in the coding region (85-99%), but also in the non-coding regions (92-98%) that include the 5'-upstream regions. The levels of expression of VT gene increased in the brain of pre-spawning females. The levels of VT mRNA in the spawning females tended to be higher than that in the spawning males. In contrast, the levels of IT mRNA did not show such variation. The present results suggest that VT gene expression augments in the brain of females during the spawning period. The unique spawning behavior of grass puffer provides a useful model for studying the molecular mechanism of sexual behavior utilizing the genome resources of tiger puffer.
Collapse
Affiliation(s)
- Eiji Motohashi
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
44
|
Fitzpatrick JL, Desjardins JK, Milligan N, Montgomerie R, Balshine S. Reproductive-tactic-specific variation in sperm swimming speeds in a shell-brooding cichlid. Biol Reprod 2007; 77:280-4. [PMID: 17460159 DOI: 10.1095/biolreprod.106.059550] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Theory predicts that males experiencing elevated levels of sperm competition will invest more in gonads and produce faster-swimming sperm. Although there is ample evidence in support of the first prediction, few studies have examined sperm swimming speed in relation to sperm competition. In this study, we tested these predictions from sperm competition theory by examining sperm characteristics in Telmatochromis vittatus, a small shell-brooding cichlid fish endemic to Lake Tanganyika. Males exhibit four different reproductive tactics: pirate, territorial, satellite, and sneaker. Pirate males temporarily displace all other competing males from a shell nest, whereas sneaker males always release sperm in the presence of territorial and satellite males. Due to the fact that sneakers spawn in the presence of another male, sneakers face the highest levels of sperm competition and pirates the lowest, whereas satellites and territorials experience intermediate levels. In accordance with predictions, sperm from sneakers swam faster than sperm from males adopting the other reproductive tactics, whereas sperm from pirates was slowest. Interestingly, we were unable to detect any variation in sperm tail length among these reproductive tactics. Thus, sperm competition appears to have influenced sperm energetics in this species without having any influence on sperm size.
Collapse
Affiliation(s)
- J L Fitzpatrick
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | | | |
Collapse
|
45
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
46
|
Sisneros JA. Saccular potentials of the vocal plainfin midshipman fish, Porichthys notatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:413-24. [PMID: 17143623 PMCID: PMC2582148 DOI: 10.1007/s00359-006-0195-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/10/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022]
Abstract
The plainfin midshipman fish, Porichthys notatus, is a vocal species of teleost fish that generates acoustic signals for intraspecific communication during social and reproductive behaviors. All adult morphs (females and males) produce single short duration grunts important for agonistic encounters, but only nesting males produce trains of grunts and growls in agonistic contexts and long duration multiharmonic advertisement calls to attract gravid females for spawning. The midshipman fish uses the saccule as the main acoustic endorgan for hearing to detect and locate vocalizing conspecifics. Here, I examined the response properties of evoked potentials from the midshipman saccule to determine the frequency response and auditory threshold sensitivity of saccular hair cells to behaviorally-relevant single tone stimuli. Saccular potentials were recorded from the rostral, medial and caudal regions of the saccule while sound was presented by an underwater speaker. Saccular potentials of the midshipman, like other teleosts, were evoked greatest at a frequency that was twice the stimulus frequency. Results indicate that midshipman saccular hair cells of non-reproductive adults had a peak frequency sensitivity that ranged from 75 (lowest frequency tested) to 145 Hz and were best suited to detect the low frequency components (<or=105 Hz) of midshipman vocalizations.
Collapse
Affiliation(s)
- Joseph A Sisneros
- Department of Psychology, University of Washington, Guthrie Hall, Box 351525, Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Lema SC. Population divergence in plasticity of the AVT system and its association with aggressive behaviors in a Death Valley pupfish. Horm Behav 2006; 50:183-93. [PMID: 16624314 DOI: 10.1016/j.yhbeh.2006.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/14/2006] [Accepted: 02/27/2006] [Indexed: 11/22/2022]
Abstract
Behavioral differences can evolve rapidly in allopatry, but little is known about the neural bases of such changes. Allopatric populations of Amargosa pupfish (Cyprinodon nevadensis) vary in aggression and courtship behaviors in the wild. Two of these wild populations were recently found to differ in brain expression of arginine vasotocin (AVT)--a peptide hormone shown previously to modulate aggression in pupfish. These populations have been isolated for less than 4000 years, so it remained unclear whether the differences in behavior and neural AVT phenotype were evolved changes or plastic responses to ecologically dissimilar habitats. Here, I tested whether these population differences have a genetic basis by examining how aggressive behavior and neural AVT phenotype responded to ecologically relevant variation in salinity (0.4 ppt or 3 ppt) and temperature (stable or daily fluctuating). Pupfish from Big Spring were more aggressive than pupfish from the Amargosa River when bred and reared under common laboratory conditions. Morphometric analysis of preoptic AVT immunoreactivity showed that the populations differed in how the AVT system responded to salinity and temperature conditions, and revealed that this plasticity differed between parvocellular and magnocellular AVT neuron groups. Both populations also showed relationships between neural AVT phenotype and aggression in the rearing environment, although populations differed in how aggression related to variation in magnocellular AVT neuron size. Together, these results demonstrate that the pupfish populations have diverged in how physical and social conditions affect the AVT system, and provide evidence that the AVT system can evolve quickly to ecologically dissimilar environments.
Collapse
Affiliation(s)
- Sean C Lema
- Center for Animal Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Mank JE, Avise JC. COMPARATIVE PHYLOGENETIC ANALYSIS OF MALE ALTERNATIVE REPRODUCTIVE TACTICS IN RAY-FINNED FISHES. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01209.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Larson ET, O'Malley DM, Melloni RH. Aggression and vasotocin are associated with dominant–subordinate relationships in zebrafish. Behav Brain Res 2006; 167:94-102. [PMID: 16213035 DOI: 10.1016/j.bbr.2005.08.020] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 12/28/2022]
Abstract
Agonistic interactions are present throughout the animal kingdom as well as in humans. In this report, we present a model system to study neurological correlates of dominant-subordinate relationships. Zebrafish, Danio rerio, has been used as a model system for developmental biology for decades. We propose here that it is also an excellent model for studying social behavior. Adult male zebrafish were separated for 5 days and then pairs were formed and allowed to interact for 5 days. Under these conditions, aggression is prevalent and dominant-subordinate relationships are quickly established. Dominant behavior is characterized by a repeated pattern of chasing and biting, whereas subordinates engage in retreats. By day 5, the dominant-subordinate relationship was firmly established and there were differences in behavior over time. Chases, bites and retreats were all less frequent on day 5 of the social interaction than on day 1. Arginine vasotocin is the teleostean homologue of arginine vasopressin, a neuropeptide whose expression has been linked to aggression and social position in mammals. Immunohistochemistry indicated differences in vasotocin staining between dominant and subordinate individuals. Dominant individuals express vasotocin in one to three pairs of large cells in the magnocellular preoptic area whereas subordinate individuals express vasotocin in 7-11 pairs of small cells in the parvocellular preoptic area. These results suggest that the vasotocinergic system may play a role in shaping dominant-subordinate relationships and agonistic behavior in this model organism.
Collapse
Affiliation(s)
- Earl T Larson
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.
| | | | | |
Collapse
|
50
|
Mank JE, Avise JC. COMPARATIVE PHYLOGENETIC ANALYSIS OF MALE ALTERNATIVE REPRODUCTIVE TACTICS IN RAY-FINNED FISHES. Evolution 2006. [DOI: 10.1554/05-042.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|