1
|
Shu Y, Wang Q, He J, Zhang H, Hong P, Leung KMY, Chen L, Wu H. Perfluorobutanesulfonate Interfering with the Intestinal Remodeling During Lithobates catesbeiana Metamorphosis via the Hypothalamic-Pituitary-Thyroid Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5463-5473. [PMID: 40085680 DOI: 10.1021/acs.est.4c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The intestinal remodeling during amphibian metamorphosis is essential for adapting to various ecological niches of aquatic and terrestrial habitats. However, whether and how the widespread contaminant, perfluorobutanesulfonate (PFBS) affects intestinal remodeling remains unknown. In this study, tadpoles (Lithobates catesbeianus) at the G26 stage were exposed to environmentally relevant concentrations of PFBS (0, 1, 3, and 10 μg/L) until the end of metamorphosis. PFBS exposure resulted in reduced thyroid follicular glia; down-regulation of gene transcripts related to thyroid hormone synthesis; decreased blood hormone (corticotropin-releasing hormone, thyroid-stimulating hormone, and 3,5,3'-triiodothyronine (T3)) and transthyretin concentrations; and up-regulation of gene transcripts related to thyroid hormone degrading enzymes. Moreover, exposure to PFBS induced apoptosis in single-layer columnar epithelial cells, suppressed the proliferation of intestinal stem cells, and hindered their differentiation into adult epithelial cells during intestinal remodeling. The responses of Notch and Wnt signaling pathways regulated by T3 were downregulated, and key gene transcripts (msi, pcna, and lgr5) involved in intestinal remodeling regulated by these two pathways were also downregulated. This is the first report on the effects of PFBS on amphibian metamorphosis. Overall, PFBS reduced thyroid hormone synthesis and transport by interfering with the hypothalamic-pituitary-thyroid axis and transthyretin expression, inhibited downstream Notch and Wnt signaling pathway responses, and ultimately led to incomplete intestinal remodeling to some extent.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
2
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Haselman JT, Nichols JW, Mattingly KZ, Hornung MW, Degitz SJ. A biologically based computational model for the hypothalamic-pituitary-thyroid (HPT) axis in Xenopus laevis larvae. Math Biosci 2023; 362:109021. [PMID: 37201649 PMCID: PMC11556306 DOI: 10.1016/j.mbs.2023.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
A biologically based computational model was developed to describe the hypothalamic-pituitary-thyroid (HPT) axis in developing Xenopus laevis larvae. The goal of this effort was to develop a tool that can be used to better understand mechanisms of thyroid hormone-mediated metamorphosis in X. laevis and predict organismal outcomes when those mechanisms are perturbed by chemical toxicants. In this report, we describe efforts to simulate the normal biology of control organisms. The structure of the model borrows from established models of HPT axis function in mammals. Additional features specific to X. laevis account for the effects of organism growth, growth of the thyroid gland, and developmental changes in regulation of thyroid stimulating hormone (TSH) by circulating thyroid hormones (THs). Calibration was achieved by simulating observed changes in stored and circulating levels of THs during a critical developmental window (Nieuwkoop and Faber stages 54-57) that encompasses widely used in vivo chemical testing protocols. The resulting model predicts that multiple homeostatic processes, operating in concert, can act to preserve circulating levels of THs despite profound impairments in TH synthesis. Represented in the model are several biochemical processes for which there are high-throughput in vitro chemical screening assays. By linking the HPT axis model to a toxicokinetic model of chemical uptake and distribution, it may be possible to use this in vitro effects information to predict chemical effects in X. laevis larvae resulting from defined chemical exposures.
Collapse
Affiliation(s)
- Jonathan T Haselman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America.
| | - John W Nichols
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Kali Z Mattingly
- SpecPro Professional Services (SPS), Contractor to U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| |
Collapse
|
4
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
5
|
Nakajima A, Okada M, Ishihara A, Yamauchi K. Modulation of plasma protein expression in bullfrog (Rana catesbeiana) tadpoles during seasonal acclimatization and thermal acclimation. Gen Comp Endocrinol 2020; 290:113396. [PMID: 31987871 DOI: 10.1016/j.ygcen.2020.113396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Biological activities in ectothermic vertebrates depend to a great extent on ambient temperature. Adapting their biological systems to annual or short-term alterations in temperature may play an important role in thermal resistance or overwintering survival. Using SDS-PAGE and western blot, we examined plasma proteins in bullfrog (Rana catesbeiana) tadpoles that were seasonally acclimatized (winter vs. summer) or thermally acclimated (4 °C vs. 21 °C) and identified two season-responsive proteins. The first, transthyretin (TTR), is a plasma thyroid hormone distributor protein that was abundant in summer, and the second is a protein containing C-type lectin-like domain (CTLD) that was abundant in winter and cold acclimation of 4 weeks. Sequence analysis revealed that the C-terminal carbohydrate recognition domain of this CTLD protein (termed collectin X) was highly similar to those of the collectin family members, which participate in complement activation of the innate immune system; however, it lacked most of collagen-like domain. Among the hepatic genes involved in the thyroid system, ttr and dio3 were up-regulated, whereas thra and thrb were down-regulated, in summer acclimatization or warm acclimation. In contrast, the collectin X gene (colectx), as well as colect10 and colect11 in the collectin family involved in the innate immune system, were down-regulated during warm acclimation, although fcn2 in the ficolin family was up-regulated during summer acclimatization and warm acclimation. These findings indicate that seasonal acclimatization and thermal acclimation differentially affect some components of the thyroid and innate immune systems at protein and transcript levels.
Collapse
Affiliation(s)
- Ami Nakajima
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Masako Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
6
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
|
9
|
The genomic structure and the expression profile of the Xenopus laevis transthyretin gene. Gene 2012; 510:126-32. [DOI: 10.1016/j.gene.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/03/2012] [Accepted: 09/01/2012] [Indexed: 11/18/2022]
|
10
|
Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 2012. [PMID: 23190036 DOI: 10.3109/10408444.2012.737762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.
Collapse
Affiliation(s)
- S Scholz
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miyata K, Ose K. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay. J Toxicol Pathol 2012; 25:1-9. [PMID: 22481853 PMCID: PMC3320151 DOI: 10.1293/tox.25.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach.
Collapse
Affiliation(s)
- Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, 1-98 Kasugadenaka 3 chome, Konohana-ku, Osaka 554-8558, Japan
| | | |
Collapse
|
12
|
Lübcke-von Varel U, Machala M, Ciganek M, Neca J, Pencikova K, Palkova L, Vondracek J, Löffler I, Streck G, Reifferscheid G, Flückiger-Isler S, Weiss JM, Lamoree M, Brack W. Polar compounds dominate in vitro effects of sediment extracts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2384-2390. [PMID: 21348526 DOI: 10.1021/es103381y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sediment extracts from three polluted sites of the river Elbe basin were fractionated using a novel online fractionation procedure. Resulting fractions were screened for mutagenic, aryl hydrocarbon receptor (AhR)-mediated, transthyretin (TTR)-binding, and estrogenic activities and their potency to inhibit gap junctional intercellular communication (GJIC) to compare toxicity patterns and identify priority fractions. Additionally, more than 200 compounds and compound classes were identified using GC-MS/MS, LC-MS/MS, and HPLC-DAD methods. For all investigated end points, major activities were found in polar fractions, which are defined here as fractions containing dominantly compounds with at least one polar functional group. Nonpolar PAH fractions contributed to mutagenic and AhR-mediated activities while inhibition of GJIC and estrogenic and TTR-binding activities were exclusively observed in the polar fractions. Known mutagens in polar fractions included nitro- and dinitro-PAHs, azaarenes, and keto-PAHs, while parent and monomethylated PAHs such as benzo[a]pyrene and benzofluoranthenes were identified in nonpolar fractions. Additionally, for one sample, high AhR-mediated activities were determined in one fraction characterized by PCDD/Fs, PCBs, and PCNs. Estrone, 17β-estradiol, 9H-benz[de]anthracen-7-one, and 4-nonylphenol were identified as possible estrogenic and TTR-binding compounds. Thus, not only nonpolar compounds such as PAHs, PCBs, and PCDD/Fs but also the less characterized and investigated more polar substances should be considered as potent mutagenic, estrogenic, AhR-inducing, TTR-binding, and GJIC-inhibiting components for future studies.
Collapse
|
13
|
Alworth LC, Vazquez VM. A novel system for individually housing bullfrogs. Lab Anim (NY) 2009; 38:329-33. [DOI: 10.1038/laban1009-329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/13/2009] [Indexed: 11/09/2022]
|
14
|
Morgado I, Hamers T, Van der Ven L, Power DM. Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. CHEMOSPHERE 2007; 69:155-63. [PMID: 17553549 DOI: 10.1016/j.chemosphere.2007.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/09/2007] [Accepted: 04/04/2007] [Indexed: 05/15/2023]
Abstract
A number of chemicals released into the environment share structural similarity to the thyroid hormones (THs), thyroxine (T(4)) and triiodothyronine (T(3)) and it is thought that they may interfere with the thyroid axis and behave as endocrine disruptors (EDs). One of the ways by which such environmental contaminants may disrupt the TH axis is by binding to TH transporter proteins. Transthyretin (TTR) is one of the thyroid hormone binding proteins responsible for TH transport in the blood. TTR forms a stable tetramer that binds both T(4) and T(3) and in fish it is principally synthesized in the liver but is also produced by the brain and intestine. In the present study, we investigate the ability of some chemicals arising from pharmaceutical, industrial or agricultural production and classified as EDs, to compete with [I(125)]-T(3) for sea bream recombinant TTR (sbrTTR). Ioxinyl, a common herbicide and several polybrominated diphenyl ethers were strong inhibitors of [I(125)]-T(3) binding to TTR and some showed even greater affinity than the natural ligand T(3). The TTR competitive binding assay developed offers a quick and effective tool for preliminary risk assessment of chemicals which may disrupt the thyroid axis in teleost fish inhabiting vulnerable aquatic environments.
Collapse
Affiliation(s)
- Isabel Morgado
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
15
|
Mastorakos G, Karoutsou EI, Mizamtsidi M, Creatsas G. The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development. Endocrine 2007; 31:219-37. [PMID: 17906368 DOI: 10.1007/s12020-007-0030-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 04/19/2007] [Accepted: 05/01/2007] [Indexed: 10/22/2022]
Abstract
The delivery of the appropriate thyroid hormones quantity to target tissues in euthyroidism is the result of unopposed synthesis, transport, metabolism, and excretion of these hormones. Thyroid hormones homeostasis depends on the maintenance of the circulating 'free' thyroid hormone reserves and on the development of a dynamic balance between the 'free' hormones reserves and those of the 'bound' hormones with the transport proteins. Disturbance of this hormone system, which is in constant interaction with other hormone systems, leads to an adaptational counter-response targeting to re-establish a new homeostatic equilibrium. An excessive disturbance is likely to result, however, in hypo- or hyper- thyroid clinical states. Endocrine disruptors are chemical substances forming part of 'natural' contaminating agents found in most ecosystems. There is abundant evidence that several key components of the thyroid hormones homeostasis are susceptible to the action of endocrine disruptors. These chemicals include some chlorinated organic compounds, polycyclic aromatic hydrocarbons, herbicides, and pharmaceutical agents. Intrauterine exposure to endocrine disruptors that either mimic or antagonize thyroid hormones can produce permanent developmental disorders in the structure and functioning of the brain, leading to behavioral changes. Steroid receptors are important determinants of the consequences of endocrine disruptors. Their interaction with thyroid hormones complicates the effect of endocrine disruptors. The aim of this review is to present the effect of endocrine disruptors on thyroid hormones physiology and their potential impact on intrauterine development.
Collapse
Affiliation(s)
- George Mastorakos
- Endocrine Unit, Second Department of Obstretics and Gynecology, Aretaieion Hospital, Athens University Medical School, Athens 10674, Greece.
| | | | | | | |
Collapse
|
16
|
Schriks M, Roessig JM, Murk AJ, Furlow JD. Thyroid hormone receptor isoform selectivity of thyroid hormone disrupting compounds quantified with an in vitro reporter gene assay. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 23:302-7. [PMID: 21783772 DOI: 10.1016/j.etap.2006.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/14/2006] [Indexed: 05/15/2023]
Abstract
Some compounds, including brominated diphenyl ethers (BDEs), can interfere with thyroid hormone (TH) receptor (TR)-mediated TH-signalling. In this study, the TR isoform selectivity of some TH disrupting compounds was investigated with TRα/β specific reporter gene assays. For this purpose, the effects of compounds on 3,3',5-triiodothyronine (T(3))-induced TRα- or TRβ-activation were tested in green monkey kidney fibroblast (CV-1) cells transiently transfected with Xenopus TRs and a luciferase reporter gene. The T(3)-like BDE-OH and diiodobiphenyl (DIB) increased T(3)-induced TRα-activation, but not T(3)-induced TRβ-activation. BDE28 (100nM) did not act via TRα, but almost tripled T(3)-induced TRβ-activation relative to T(3) at its EC(50). BDE206 (100nM) was antagonistic on both TRs with a maximum repression -54% relative to T(3) at its EC(50). Contrary to previous results obtained with the T-screen, HBCD was inactive. The present study illustrates the importance of testing potential TH disrupting compounds in model systems that enable independent characterization of effects on both T(3)-induced TRs.
Collapse
Affiliation(s)
- Merijn Schriks
- Toxicology Section, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Kloas W, Lutz I. Amphibians as model to study endocrine disrupters. J Chromatogr A 2006; 1130:16-27. [PMID: 16701677 DOI: 10.1016/j.chroma.2006.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 11/29/2022]
Abstract
Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.
Collapse
Affiliation(s)
- Werner Kloas
- Department of Endocrinology, Institute of Biology, Humboldt University, Invalidenstrasse 42, Berlin 10099, Germany.
| | | |
Collapse
|
18
|
Balch GC, Vélez-Espino LA, Sweet C, Alaee M, Metcalfe CD. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs). CHEMOSPHERE 2006; 64:328-38. [PMID: 16455129 DOI: 10.1016/j.chemosphere.2005.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tadpoles of the African clawed frog, Xenopus laevis were exposed, beginning at stage 50, to a commercial pentabromodiphenyl ether mixture (DE-71) through the diet. Subsequent experiments were conducted using a single intraperitoneal injection at stage 58 with limited quantities of two purified brominated diphenyl ether (BDE) congeners, BDE47 and BDE99 and DE-71 to determine the relative potency of these BDE congeners within the commercial mixture. Significant inhibition of tail resorption, delayed metamorphosis and impacts on skin pigmentation were observed in Xenopus exposed to DE-71 in the diet at nominal doses of 1000 and 5000 microgg(-1) of food. The estimated time required for 50% of the tadpoles to complete metamorphosis was significantly lengthened in Xenopus exposed to a dietary concentration of 1 microg DE-71 per gram of food. Analysis of PBDEs (sum of 32 congeners) in Xenopus from the treatment with 5000 microgg(-1) of DE-71 indicated that the frogs accumulated an average of 1030 microgg(-1) (wet weight) of PBDEs. In the intraperitoneal injection trials, similar inhibitory responses were observed in Xenopus injected with DE-71 at a nominal dose of 60 microg per tadpole, or injected with BDE47 at a nominal dose of 100 microg per tadpole. No responses were observed in Xenopus injected with BDE99 at doses up to 100 microg per tadpole. Complete inhibition of metamorphosis was observed only in the highest DE-71 dietary treatment. The results of this study are consistent with a mechanism of action of PBDEs involving competitive inhibition of binding of thyroid hormones to transporter proteins, although the mechanism cannot be definitively determined from this study. The observed effects may have occurred through other mechanisms, including sublethal toxicity. The doses used in this study are greater than the levels of PBDEs to which anurans are exposed in the environment, so further studies are required to determine whether exposure to PBDEs at environmentally relevant concentrations can affect frog metamorphosis.
Collapse
Affiliation(s)
- Gordon C Balch
- Environmental and Resource Studies Program, Trent University, 1600 West Bank Drive, Peterborough, Ont., Canada
| | | | | | | | | |
Collapse
|
19
|
Kudo Y, Yamauchi K, Fukazawa H, Terao Y. In vitro and in vivo analysis of the thyroid system-disrupting activities of brominated phenolic and phenol compounds in Xenopus laevis. Toxicol Sci 2006; 92:87-95. [PMID: 16627555 DOI: 10.1093/toxsci/kfj204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the effects of the brominated phenolic and phenol compounds, some of which are brominated flame retardants, on the binding of (125)I-3,3',5-L-triiodothyronine ((125)I-T(3)) to purified Xenopus laevis transthyretin (xTTR) and to the ligand-binding domain of X. laevis thyroid hormone receptor beta (xTR LBD), on the induction of a T(3)-responsive reporter gene in a recombinant X. laevis cell line (XL58-TRE-Luc) and on T(3)-induced or spontaneous metamorphosis in X. laevis tadpoles. Of the brominated phenolic and phenol compounds tested, 3,3',5-tribromobisphenol A and 3,3'-dibromobisphenol A were the most potent competitors of (125)I-T(3) binding to xTTR and the xTR LBD, respectively. Structures with a bromine in either ortho positions with respect to the hydroxy group competed more efficiently with T(3) binding to xTTR and the xTR LBD. 3,3',5-Tribromobisphenol A and 3,3',5,5'-tetrabromobisphenol A, at 0.1-1.0 microM, exerted both T(3) agonist and antagonist activities in the T(3)-responsive reporter gene assay. Sera obtained from fetal bovine and bullfrog tadpoles weakened the T(3) agonist and antagonist activities of 3,3',5-tribromobisphenol A, but not the T(3) antagonist activity of o-t-butylphenol, for which xTTR has no significant affinity. The T(3) agonist and antagonist activities of 0.5 microM 3,3',5-tribromobisphenol A were confirmed in the in vivo, short-term gene expression assay in premetamorphic X. laevis tadpoles using endogenous, T(3)-responsive genes as molecular markers. Our results suggest that 3,3',5-tribromobisphenol A affects T(3) binding to xTTR and xTR and that it interferes with the intracellular T(3) signaling pathway.
Collapse
Affiliation(s)
- Yumiko Kudo
- Department of Biology, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
20
|
Sugiyama SI, Shimada N, Miyoshi H, Yamauchi K. Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol Sci 2005; 88:367-74. [PMID: 16179385 DOI: 10.1093/toxsci/kfi330] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We developed a thyroid hormone (TH) inducible primary screening assay for the identification and assessment of man-made chemicals that interfere with the TH-signalling pathway within target cells. The assay was developed in a Xenopus laevis cell line that was transduced with a self-inactivating (SIN) lentivirus vector (LV) containing a luciferase gene. The luciferase activation in this cell line was TH-specific: 3,3',5-L-triiodothyronine (T(3)) > 3,3'5-L-triiodothyroacetic acid (Triac) > 3,3',5-D-triiodothyronine (D-T(3)), > L-thyroxine (T(4)) > 3,3',5'-L-triiodothyronine (rT(3)). The application of the ligand-dependent luciferase assay for screening for thyroid system-disrupting chemicals revealed that three phthalates (dicyclohexyl phthalate, n-butylbenzyl phthalate, and di-n-butyl phthalate), two herbicides (ioxynil and pentachlorophenol) and a miticide (dicofol) had 3,3',5-L-triiodothyronine- T(3)- antagonist activity at concentrations ranging from 10(-6) to 10(-5) M. These chemicals also inhibited the expression of the endogenous primary T(3)-response TH nuclear receptor beta (TRbeta) gene. The inhibitory characteristics of these chemicals were similar for both assays performed, although the assay for T(3)-dependent activation of TRbeta gene was more sensitive than the luciferase assay. These results indicate that the luciferase assay was a rapid method with a small intra-assay variation for the primary screening of thyroid system-disrupting chemicals. Of the six chemicals, only n-butylbenzyl phthalate and pentachlorophenol exhibited T(3)-antagonist activity in an in vivo metamorphosis-based assay. It should be noted that chemicals elicited thyroid system-disrupting activity in the luciferase assay did not always interfere with the thyroid system in vivo.
Collapse
|
21
|
Mosconi G, Di Rosa I, Bucci S, Morosi L, Franzoni MF, Polzonetti-Magni AM, Pascolini R. Plasma sex steroid and thyroid hormones profile in male water frogs of the Rana esculenta complex from agricultural and pristine areas. Gen Comp Endocrinol 2005; 142:318-24. [PMID: 15935158 DOI: 10.1016/j.ygcen.2005.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 01/25/2005] [Accepted: 02/04/2005] [Indexed: 11/28/2022]
Abstract
Some chemical compounds used in intensive agriculture have been found to induce estrogenic effects; therefore a histological analysis of the testes and an evaluation of plasma levels of sex steroid, thyroid hormones, and vitellogenin were carried out in adult male water frogs of two coexisting taxa (Rana lessonae and the hemiclonal hybrid Rana esculenta) sampled in agricultural and pristine areas. Differences in seasonal profiles of hormones were found in water frogs living in the agricultural area where the presence of endocrine disrupting compounds was suspected on the basis of a previous study. In R. esculenta, sampled in the pristine area, high androgen levels were found in May; the opposite trend was found for R. esculenta sampled in agricultural areas in which the highest androgen levels were found in September, significantly lower compared with those found in R. esculenta sampled in the pristine area. Low androgen levels were also recorded in R. lessonae males sampled both in pristine and agricultural areas, while the highest levels were found in September. Regarding the trend of estradiol-17beta, an increase of this hormone was found in July both in esculenta and lessonae sampled in the agricultural area, and in the same month an estradiol-17beta peak, even though lower, was also found both in esculenta and lessonae males captured in the pristine area; detectable vitellogenin was found neither in males captured in the agricultural area, nor in those sampled in the pristine one. Moreover, while no significant changes of thyroid hormones were found either in the esculenta or lessonae males sampled in the pristine area, increased T3 and T4 titers were found in July in both esculenta and lessonae captured in the agricultural area. Morphological differences of the testes in males of parental species captured in the agricultural area were also observed. These findings indicate alterations in endocrine and reproductive function in frogs in the agricultural area, that could suggest the presence of endocrine disrupting compounds.
Collapse
Affiliation(s)
- G Mosconi
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università di Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Murata T, Yamauchi K. Low-temperature arrest of the triiodothyronine-dependent transcription in Rana catesbeiana red blood cells. Endocrinology 2005; 146:256-64. [PMID: 15471964 DOI: 10.1210/en.2004-1090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We examined possible molecular mechanisms for the low-temperature arrest of T3-induced Rana catesbeiana metamorphosis. Scatchard plots revealed that the ratios of maximum binding capacity/dissociation constant for high-affinity sites of tadpole serum proteins for T3 at 20 and 28 C was 3.3-4.6 times less than that at 4 C, due to the decrease in maximum binding capacity values. Kinetic studies of T3 uptake into tadpole red blood cells demonstrated that the ratio of maximum uptake rate/Michaelis constant at 23 C was approximately 13 times greater than that at 4 C. The process of intracellular transport of T3 into the nucleus was not arrested at 4 C. The ratio of T3 incorporated into nuclei to that taken up into red blood cells was not significantly different at 4, 20, and 28 C, indicating the absence of temperature-sensitive sites in this process. T3 binding to the T3 receptors alpha and beta were not temperature sensitive at least at 4 and 20 C. Transcription of the tr genes, early primary T3 response genes, was activated by 10 nM T3 at 20 and 28 C but was barely detected at 4 C. These results indicate that the major molecular event causing the low-temperature arrest of amphibian metamorphosis occurs after T3 entry into the nucleus but before or during the transcriptional activation of the tr genes. Plasma proteins binding T3 and the cellular thyroid hormone uptake system on the plasma membrane may contribute to the slowing of the incorporation of T3 into nucleus at 4 C by decreasing the uptake velocity of T3.
Collapse
Affiliation(s)
- Tomonori Murata
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | |
Collapse
|
23
|
Ishihara A, Nishiyama N, Sugiyama SI, Yamauchi K. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen Comp Endocrinol 2003; 134:36-43. [PMID: 13129501 DOI: 10.1016/s0016-6480(03)00197-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated the effect of endocrine disrupting chemicals (EDCs), including medical, industrial, and agricultural chemicals, on 3,3',5-L-[125I]triiodothyronine ([125I]T3) binding to purified Japanese quail transthyretin (qTTR), a major thyroid hormone-binding protein in plasma, and to the ligand-binding domain of thyroid hormone receptor beta (qTR LBD). Scatchard plots of T3 binding to qTTR and qTR LBD revealed two classes of binding sites, with Kd values of 6.9 and 185 nM, and a single class of binding sites, with Kd value of 0.31 nM, respectively. Among the test chemicals, diethylstilbestrol was the most powerful inhibitor of [125I]T3 binding to qTTR (IC50 < 0.4 nM). Diethylstilbestrol, ioxynil (IC50 =1.1+/-0.5 nM) and pentachlorophenol (IC50 = 6.3+/-3.8 nM) displaced [125I]T3 from qTTR more effectively than unlabeled T3 (IC50 = 9.7+/-0.9 nM) did. Although malathion, 4-nonylphenol, bisphenol A and n-butylbenzyl phthalate were effective inhibitors of [125I]T3 binding to qTTR, their potency was two orders of magnitude less than that of T3. All test chemicals except for diethylstilbestrol had either a weak or no effect on [125I]T3 binding to qTR LBD. These results show that several EDCs tested in this study target qTTR rather than qTR LBD.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biology and Geoscience, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
24
|
Yamauchi K, Ishihara A, Fukazawa H, Terao Y. Competitive interactions of chlorinated phenol compounds with 3,3',5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol Appl Pharmacol 2003; 187:110-7. [PMID: 12649043 DOI: 10.1016/s0041-008x(02)00045-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chlorinated phenol compounds, such as the chlorinated derivatives of bisphenol A, have been detected in effluents from paper manufacturing plants. We investigated the effects of bisphenol A, nonylphenol, and their seven chlorinated derivatives on 3,3',5-[(125)I]triiodothyronine ([(125)I]T(3)) binding to purified chicken and bullfrog transthyretin (cTTR and bTTR) and to the ligand-binding domains of chicken and bullfrog thyroid hormone receptor beta (cTR LBD and bTR LBD). The concentrations at which the chlorinated derivatives displaced [(125)I]T(3) from TTR were 10-10(3) times less than those of their parent molecules. 2,6-Dichloro-4-nonylphenol and 3,3',5-trichlorobisphenol A were the most potent competitors of T(3) binding to cTTR and to bTTR, respectively. The interactions of the chlorinated derivatives with the cTR and the bTR LBDs were weaker than those of the chlorinated derivatives with cTTR and bTTR. Chlorinated derivatives with a greater degree of chlorination were more efficient competitors of T(3) binding to TTR and TR. A structure-activity relationship between the phenol compounds and TTR (TTR assay) and TR (TR assay) was established. Structures with chlorine in either ortho position or both ortho positions, with respect to the hydroxy group, were more efficient competitors. Chemicals that interacted with bTTR, cTTR, and Japanese quail TTR were detected in water downstream of effluents from paper manufacturing plants using the TTR assay. As some of the chlorinated bisphenols and nonylphenols were potent competitors of T(3) binding to TTRs, the TTR assay could be applied as primary screening for possible thyroid-disrupting chemicals in environmental waste water.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biology and Geoscience, Faculty of Science, Shizuoka University, Shizuoka, Japan.
| | | | | | | |
Collapse
|
25
|
Ishihara A, Sawatsubashi S, Yamauchi K. Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol 2003; 199:105-17. [PMID: 12581883 DOI: 10.1016/s0303-7207(02)00302-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effects of industrial, medical and agricultural chemicals on 3,5,3'-L-[125I]triiodothyronine ([125I]T(3)) binding to transthyretins (TTRs) and thyroid hormone receptors (TRs). Among the chemicals investigated diethylstilbestrol (DES) was the most powerful inhibitor of [125I]T(3) binding to chicken and bullfrog TTR (cTTR and bTTR). Inhibition of [125I]T(3) binding was more apparent in cTTR than bTTR. Scatchard analysis revealed DES, pentachlorophenol and ioxynil as competitive inhibitors of [125I]T(3) binding to cTTR and bTTR. However, cTTR's affinity for the three chemicals was higher than its affinity for T(3). A miticide dicofol (10(-10)-10(-7) M) activated [125I]T(3) binding to bTTR up to 170%. However, at 4x10(-5) M it inhibited [125I]T(3) binding by 83%. Dicofol's biphasic effect upon [125I]T(3) binding was not detected in TTRs from other species. DES and pentachlorophenol, in the presence of plasma, increased cellular uptake of [125I]T(3) in vitro, by displacing [125I]T(3) from its plasma binding sites. These chemicals did not, however, affect the association of cTTR with chicken retinol-binding protein. All chemicals investigated had little or no influence on [125I]T(3) binding to chicken TR (cTR) and bullfrog TR (bTR). Several endocrine disrupting chemicals that were tested interfered with T(3) binding to TTR rather than to TR. Binding of the endocrine disrupting chemicals to TTR may weaken their intrinsic effects on target cells by depressing their free concentrations in plasma. However, this may affect TH homeostasis in vivo by altering the free concentrations of plasma THs.
Collapse
Affiliation(s)
- Akinori Ishihara
- Department of Biology and Geoscience, Faculty of Science, Shizuoka University, 836 Oya, Japan
| | | | | |
Collapse
|
26
|
Kloas W. Amphibians as a model for the study of endocrine disruptors. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:1-57. [PMID: 12049206 DOI: 10.1016/s0074-7696(02)16002-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Evidence shows that environmental compounds can interfere with the endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disruptors (EDs), which are mainly of anthropogenic origin, is surface water; thus, aquatic vertebrates such as fishes and amphibians are most endangered. Despite numerous reports on EDs in fishes, information about EDs in amphibians is scarce, and this paucity of information is of particular concern in view of the worldwide decline of amphibians. EDs could contribute to changes of amphibian populations via adverse effects on reproduction and the thyroid system. In amphibians, EDs can affect reproduction by (anti)estrogenic and (anti)androgenic modes of action that produce severe effects including abnormal sexual differentiation. ED actions on the thyroid system cause acceleration or retardation of metamorphosis, which may also affect population levels. Our broad knowledge of amphibian biology and endocrinology indicates that amphibians are very suitable models for the study of EDs. In particular, effects of EDs on the thyroid system triggering metamorphosis can be determined easily and most sensitively in amphibians compared to other vertebrates. A new classification of EDs according to their biological modes of action is proposed because EDs have quite heterogeneous chemical structures, which do not allow prediction of their biological effects. Methods and strategies are proposed for identification and risk assessment of EDs, whether as pure test substances or as mixtures from environmental samples. Effects of EDs on the thyroid system of amphibians can be assessed by a single animal model (Xenopus laevis), whereas the various types of reproduction need comparative studies to investigate whether general endocrine principles do exist among several species of anurans and urodeles. Thus, at least one anuran and one urodelean model are needed to determine ED interference with reproduction.
Collapse
Affiliation(s)
- Werner Kloas
- Department of Inland Fisheries, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
27
|
Yamauchi K, Eguchi R, Shimada N, Ishihara A. The effects of endocrine-disrupting chemicals on thyroid hormone binding to Xenopus laevis transthyretin and thyroid hormone receptor. Clin Chem Lab Med 2002; 40:1250-6. [PMID: 12553426 DOI: 10.1515/cclm.2002.216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated the effects of medical, industrial and agricultural chemicals on 3,3',5-L-[125I]triiodothyronine ([125I]T3) binding to purified recombinant Xenopus laevis (X. laevis) transthyretin (xTTR), a plasma thyroid hormone-binding protein, and to the ligand-binding domain of thyroid hormone receptor-beta (xTR LBD). xTTR derived from X. laevis serum had about 80 times higher affinity for T3 than for L-thyroxine. The xTTR's relative affinities for diethylstilbestrol, pentachlorophenol and ioxynil were 10(-1)- to 10(-2)-fold less than that for T3. However, all chemicals investigated had either a weak or no influence on [125I]T3 binding to xTR LBD. The concentration of diethylstilbestrol, the most potent chemical, required for 50% inhibition of [125I]T3 binding to xTR LBD was 10(4) times greater than that of unlabeled T3. These results indicate the existence of several chemicals that interact with xTTR but not with xTR LBD.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biology and Geoscience, Faculty of Science, Shizuoka University, Shizuoka, Japan.
| | | | | | | |
Collapse
|