1
|
SikanderAzam S, Ahmad S, Navid A, Sajid NUA, Ahmad I, Wadood A. Implications of sequence conservation patterns of serpin B family leading to structural and functional importance. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Finno CJ, Stevens C, Young A, Affolter V, Joshi NA, Ramsay S, Bannasch DL. SERPINB11 frameshift variant associated with novel hoof specific phenotype in Connemara ponies. PLoS Genet 2015; 11:e1005122. [PMID: 25875171 PMCID: PMC4395385 DOI: 10.1371/journal.pgen.1005122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023] Open
Abstract
Horses belong to the order Perissodactyla and bear the majority of their weight on their third toe; therefore, tremendous force is applied to each hoof. An inherited disease characterized by a phenotype restricted to the dorsal hoof wall was identified in the Connemara pony. Hoof wall separation disease (HWSD) manifests clinically as separation of the dorsal hoof wall along the weight-bearing surface of the hoof during the first year of life. Parents of affected ponies appeared clinically normal, suggesting an autosomal recessive mode of inheritance. A case-control allelic genome wide association analysis was performed (ncases = 15, ncontrols = 24). Population stratification (λ = 1.48) was successfully improved by removing outliers (ncontrols = 7) identified on a multidimensional scaling plot. A genome-wide significant association was detected on chromosome 8 (praw = 1.37x10-10, pgenome = 1.92x10-5). A homozygous region identified in affected ponies spanned from 79,936,024-81,676,900 bp and contained a family of 13 annotated SERPINB genes. Whole genome next-generation sequencing at 6x coverage of two cases and two controls revealed 9,758 SNVs and 1,230 indels within the ~1.7-Mb haplotype, of which 17 and 5, respectively, segregated with the disease and were located within or adjacent to genes. Additional genotyping of these 22 putative functional variants in 369 Connemara ponies (ncases = 23, ncontrols = 346) and 169 horses of other breeds revealed segregation of three putative variants adjacent or within four SERPIN genes. Two of the variants were non-coding and one was an insertion within SERPINB11 that introduced a frameshift resulting in a premature stop codon. Evaluation of mRNA levels at the proximal hoof capsule (ncases = 4, ncontrols = 4) revealed that SERPINB11 expression was significantly reduced in affected ponies (p<0.001). Carrier frequency was estimated at 14.8%. This study describes the first genetic variant associated with a hoof wall specific phenotype and suggests a role of SERPINB11 in maintaining hoof wall structure.
Collapse
Affiliation(s)
- Carrie J. Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Carlynn Stevens
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Amy Young
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Verena Affolter
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Nikhil A. Joshi
- Genome Center Bioinformatics Core, University of California Davis, Davis, California United States of America
| | - Sheila Ramsay
- Institute of Veterinary, Animal and Biomedical Sciences (IVABS) Massey University, Palmerston North, New Zealand
| | - Danika L. Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
3
|
Gatto M, Iaccarino L, Ghirardello A, Bassi N, Pontisso P, Punzi L, Shoenfeld Y, Doria A. Serpins, immunity and autoimmunity: old molecules, new functions. Clin Rev Allergy Immunol 2014; 45:267-80. [PMID: 23325331 DOI: 10.1007/s12016-013-8353-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serine protease inhibitors (serpins) are evolutionary old, structurally conserved molecules which encompass nearly all branches of life. More than 1,000 serpins were characterized to date which are subdivided into 16 subgroups (A-P) according to their common ancestry; among them, 37 are found in humans. Serpins were termed after their capability to inhibit serine proteases, but mounting evidence suggests that they may achieve a greater deal of functions, ranging from embryological growth to synaptic plasticity, development of both myeloid and lymphoid immune cells, and modulation of apoptosis. Serpins are mainly extracellular molecules, although some of them (namely, ov-serpins or clade B serpins) mostly act inside the cells, being either ubiquitously or tissue-specifically expressed. Among newly characterized serpin functions, regulation of cellular proliferation through apoptosis modulation and proteasome disturbance seems to play a major role. Accordingly, several serpins were found to be hyperexpressed in tumor cells. Indeed, apoptosis dysregulation is likely to be a cornerstone in both tumorigenesis and autoimmunity, since uncontrolled cellular viability results in tumor proliferation, while inefficient disposal of apoptotic debris may favor the rescue of autoreactive immune cells. Such a process was widely documented in systemic lupus erythematosus (SLE). Interestingly, alterations in the expression of some serpins, e.g., the ov-serpin SERPINB3, are being unraveled in patients affected with SLE and other autoimmune disorders, suggesting that a failure in serpin function might affect immune homeostasis and self-tolerance, thereby contributing to autoimmunity. Here, we provide an overview of serpin origin, function, and dysfunction, focusing on human serpins and ov-serpins, with a hub on SERPINB3.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, Department of Medicine, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sargurupremraj M, Pukelsheim K, Hofer T, Wjst M. Intermediary quantitative traits--an alternative in the identification of disease genes in asthma? Genes Immun 2013; 15:1-7. [PMID: 24131956 DOI: 10.1038/gene.2013.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/23/2013] [Accepted: 09/09/2013] [Indexed: 01/14/2023]
Abstract
Intermediary quantitative traits are a possible alternative for the identification of disease genes. This may be particularly relevant when diagnostic criteria are not very well defined as described for asthma. We analyzed serum samples from 944 individuals of 218 asthma families for 17 cytokines (eotaxin, GM-CSF, IFNγ, IL1B, IL1RA, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12(p40), IL-13, IL-17, IL-23, IL-33, TSLP and TNF-α) and determined the heritability. Linked chromosomal regions were identified by a genome-wide analysis using 334 autosomal microsatellite marker and association tested by further 550 SNP marker at genes implicated earlier with immune response. Heritability varied with TNF-α and IL-8 levels having the highest and TSLP having the lowest heritability. Linkage was significantly increased only for IL-12(p40) at D17S949. There were multiple significant single-nucleotide polymorphisms (SNP) associations (P<0.05) as found in the transmission disequilibrium test, whereas only a few replicated in parents or children only. These include SNPs in IL1RN that were associated with IL-33 and TSLP levels, and a SNP in NR3C2 that was associated with eotaxin, IL-13 and IFN-γ levels. Circulating level of serum cytokines exhibits genetic associations with asthma traits that are otherwise not detected using clinical diagnosis or when the clinical details are ambiguous.
Collapse
Affiliation(s)
- M Sargurupremraj
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - K Pukelsheim
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - T Hofer
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| | - M Wjst
- Institute of Lung Biology and Health (iLBD), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Munich-Neuherberg, Germany
| |
Collapse
|
5
|
Bodenstine TM, Seftor REB, Khalkhali-Ellis Z, Seftor EA, Pemberton PA, Hendrix MJC. Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev 2013; 31:529-51. [PMID: 22752408 DOI: 10.1007/s10555-012-9361-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maspin, a non-inhibitory member of the serine protease inhibitor superfamily, has been characterized as a tumor suppressor gene in multiple cancer types. Among the established anti-tumor effects of Maspin are the inhibition of cancer cell invasion, attachment to extracellular matrices, increased sensitivity to apoptosis, and inhibition of angiogenesis. However, while significant experimental data support the role of Maspin as a tumor suppressor, clinical data regarding the prognostic implications of Maspin expression have led to conflicting results. This highlights the need for a better understanding of the context dependencies of Maspin in normal biology and how these are perturbed in the context of cancer. In this review, we outline the regulation and roles of Maspin in normal and developmental biology while discussing novel evidence and emerging theories related to its functions in cancer. We provide insight into the immense therapeutic potential of Maspin and the challenges related to its successful clinical translation.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
6
|
McDonough CW, Bostrom MA, Lu L, Hicks PJ, Langefeld CD, Divers J, Mychaleckyj JC, Freedman BI, Bowden DW. Genetic analysis of diabetic nephropathy on chromosome 18 in African Americans: linkage analysis and dense SNP mapping. Hum Genet 2011; 126:805-17. [PMID: 19690890 DOI: 10.1007/s00439-009-0732-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/07/2009] [Indexed: 12/23/2022]
Abstract
Genetic studies in Turkish, Native American, European American, and African American (AA) families have linked chromosome 18q21.1-23 to susceptibility for diabetes-associated nephropathy. In this study, we have carried out fine linkage mapping in the 18q region previously linked to diabetic nephropathy in AAs by genotyping both microsatellite and single nucleotide polymorphisms (SNPs) for linkage analysis in an expanded set of 223 AA families multiplexed for type 2 diabetes associated ESRD (T2DM-ESRD). Several approaches were used to evaluate evidence of linkage with the strongest evidence for linkage in ordered subset analysis with an earlier age of T2DM diagnosis compared to the remaining pedigrees (LOD 3.9 at 90.1 cM, ΔP = 0.0161, NPL P value = 0.00002). Overall, the maximum LODs and LOD-1 intervals vary in magnitude and location depending upon analysis. The linkage mapping was followed up by performing a dense SNP map, genotyping 2,814 SNPs in the refined LOD-1 region in 1,029 AA T2DM-ESRD cases and 1,027 AA controls. Of the top 25 most associated SNPs, 10 resided within genic regions. Two candidate genes stood out: NEDD4L and SERPINB7. SNP rs512099, located in intron 1 of NEDD4L, was associated under a dominant model of inheritance [P value = 0.0006; Odds ratio (95% Confidence Interval) OR (95% CI) = 0.70 (0.57-0.86)]. SNP rs1720843, located in intron 2 of SERPINB7, was associated under a recessive model of inheritance [P value = 0.0017; OR (95% CI) = 0.65 (0.50-0.85)]. Collectively, these results suggest that multiple genes in this region may influence diabetic nephropathy susceptibility in AAs.
Collapse
Affiliation(s)
- Caitrin W McDonough
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Somatic DNA alterations in lung epithelial barrier cells in COPD patients. Pulm Pharmacol Ther 2010; 23:208-14. [DOI: 10.1016/j.pupt.2009.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 10/22/2009] [Accepted: 12/05/2009] [Indexed: 11/21/2022]
|
8
|
Sirmaci A, Erbek S, Price J, Huang M, Duman D, Cengiz FB, Bademci G, Tokgöz-Yilmaz S, Hişmi B, Ozdağ H, Oztürk B, Kulaksizoğlu S, Yildirim E, Kokotas H, Grigoriadou M, Petersen MB, Shahin H, Kanaan M, King MC, Chen ZY, Blanton SH, Liu XZ, Zuchner S, Akar N, Tekin M. A truncating mutation in SERPINB6 is associated with autosomal-recessive nonsyndromic sensorineural hearing loss. Am J Hum Genet 2010; 86:797-804. [PMID: 20451170 DOI: 10.1016/j.ajhg.2010.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022] Open
Abstract
More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromosome 6p25 in a consanguineous Turkish family. The degree of hearing loss was moderate to severe in affected individuals. We subsequently identified a nonsense mutation (p.E245X) in SERPINB6, which is located within the linkage interval for DFNB91 and encodes for an intracellular protease inhibitor. The p.E245X mutation cosegregated in the family as a completely penetrant autosomal-recessive trait and was absent in 300 Turkish controls. The mRNA expression of SERPINB6 was reduced and production of protein was absent in the peripheral leukocytes of homozygotes, suggesting that the hearing loss is due to loss of function of SERPINB6. We also demonstrated that SERPINB6 was expressed primarily in the inner ear hair cells. We propose that SERPINB6 plays an important role in the inner ear in the protection against leakage of lysosomal content during stress and that loss of this protection results in cell death and sensorineural hearing loss.
Collapse
Affiliation(s)
- Asli Sirmaci
- Dr. John T. Macdonald Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Przygodzka P, Ramstedt B, Tengel T, Larsson G, Wilczynska M. Bomapin is a redox-sensitive nuclear serpin that affects responsiveness of myeloid progenitor cells to growth environment. BMC Cell Biol 2010; 11:30. [PMID: 20433722 PMCID: PMC2874763 DOI: 10.1186/1471-2121-11-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haematopoiesis is a process of formation of mature blood cells from hematopoietic progenitors in bone marrow. Haematopoietic progenitors are stimulated by growth factors and cytokines to proliferate and differentiate, and they die via apoptosis when these factors are depleted. An aberrant response to growth environment may lead to haematological disorders. Bomapin (serpinb10) is a hematopoietic- and myeloid leukaemia-specific protease inhibitor with unknown function. RESULTS We found that the majority of naturally expressed bomapin was located in the nucleus. Both the natural and recombinant bomapin had a disulfide bond which linked the only two bomapin cysteines: one located in the CD-loop and the other near the C-terminus. Computer modelling showed that the cysteines are distant in the reduced bomapin, but can easily be disulfide-linked without distortion of the overall bomapin structure. Low-level ectopic expression of bomapin in bomapin-deficient K562 cells resulted in about 90% increased cell proliferation under normal growth conditions. On the other hand, antisense-downregulation of natural bomapin in U937 cells resulted in a decreased cell proliferation. Bomapin C395S mutant, representing the reduced form of the serpin, had no effect on cell proliferation, suggesting that the disulfide bond-linked conformation of bomapin is biologically important. The bomapin-dependent effect was specific for myeloid cells, since ectopic expression of the serpin in HT1080 cells did not change cell proliferation. In contrast to the survival-promoting activity of bomapin in cells cultured under optimal growth conditions, bomapin enhanced cell apoptosis following growth factor withdrawal. CONCLUSIONS We propose that bomapin is a redox-sensitive nuclear serpin that augments proliferation or apoptosis of leukaemia cells, depending on growth factors availability.
Collapse
Affiliation(s)
- Patrycja Przygodzka
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
10
|
Abstract
Serine protease inhibitors (serpins) are a family of proteins that are important in the regulation of several biological processes. This mainly involves the inhibition of serine proteases, although some serpins inhibit a different class of proteases or even function without inhibitory activity. In contrast to other protease inhibitor families, serpins inhibit their target proteases by a specific mechanism, which depends on a change in conformation. This review primarily focuses on one subgroup of serpins--ovalbumin (ov)-serpins. Different than most members of the family, this group of serpins lacks secretion signal sequences and therefore, mainly functions intracellularly. In addition to expression in most normal tissues, ov-serpins can be found in multiple different cells of the immune system. Interestingly, expression of ov-serpins in these cells is tightly regulated, indicating a role for these serpins in the regulation of immune responses. The role of serpins in the immune response will be the topic of this review.
Collapse
Affiliation(s)
- Michael Bots
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
11
|
Pelissier P, Delourme D, Germot A, Blanchet X, Becila S, Maftah A, Leveziel H, Ouali A, Bremaud L. An original SERPINA3 gene cluster: elucidation of genomic organization and gene expression in the Bos taurus 21q24 region. BMC Genomics 2008; 9:151. [PMID: 18384666 PMCID: PMC2373789 DOI: 10.1186/1471-2164-9-151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/02/2008] [Indexed: 12/18/2022] Open
Abstract
Background The superfamily of serine proteinase inhibitors (serpins) is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. Our interest is focused on the SERPINA3 sub-family. The major human plasma protease inhibitor, α1-antichymotrypsin, encoded by the SERPINA3 gene, is homologous to genes organized in clusters in several mammalian species. However, although there is a similar genic organization with a high degree of sequence conservation, the reactive-centre-loop domains, which are responsible for the protease specificity, show significant divergences. Results We provide additional information by analyzing the situation of SERPINA3 in the bovine genome. A cluster of eight genes and one pseudogene sharing a high degree of identity and the same structural organization was characterized. Bovine SERPINA3 genes were localized by radiation hybrid mapping on 21q24 and only spanned over 235 Kilobases. For all these genes, we propose a new nomenclature from SERPINA3-1 to SERPINA3-8. They share approximately 70% of identity with the human SERPINA3 homologue. In the cluster, we described an original sub-group of six members with an unexpected high degree of conservation for the reactive-centre-loop domain, suggesting a similar peptidase inhibitory pattern. Preliminary expression analyses of these bovSERPINA3s showed different tissue-specific patterns and diverse states of glycosylation and phosphorylation. Finally, in the context of phylogenetic analyses, we improved our knowledge on mammalian SERPINAs evolution. Conclusion Our experimental results update data of the bovine genome sequencing, substantially increase the bovSERPINA3 sub-family and enrich the phylogenetic tree of serpins. We provide new opportunities for future investigations to approach the biological functions of this unusual subset of serine proteinase inhibitors.
Collapse
Affiliation(s)
- Patrick Pelissier
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, 87060 Limoges, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Serpins in plants and green algae. Funct Integr Genomics 2007; 8:1-27. [PMID: 18060440 DOI: 10.1007/s10142-007-0059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/06/2007] [Accepted: 09/15/2007] [Indexed: 01/02/2023]
Abstract
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.
Collapse
|
13
|
Chen PY, Chang WSW, Chou RH, Lai YK, Lin SC, Chi CY, Wu CW. Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol 2007; 8:2. [PMID: 17212813 PMCID: PMC1796892 DOI: 10.1186/1471-2199-8-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite of the fact that mammalian genomes are far more spacious than prokaryotic genomes, recent nucleotide sequencing data have revealed that many mammalian genes are arranged in a head-to-head orientation and separated by a small intergenic sequence. Extensive studies on some of these neighboring genes, in particular homologous gene pairs, have shown that these genes are often co-expressed in a symmetric manner and regulated by a shared promoter region. Here we report the identification of two non-homologous brain disease-related genes, with one coding for a serine protease inhibitor (SERPINI1) and the other for a programmed cell death-related gene (PDCD10), being tightly linked together by an asymmetric bidirectional promoter in an evolutionarily conserved fashion. This asymmetric bidirectional promoter, in cooperation with some cis-acting elements, is responsible for the co-regulation of the gene expression pattern as well as the tissue specificity of SERPINI1 and PDCD10. RESULTS While SERPINI1 is predominantly expressed in normal brain and down-regulated in brain tumors, PDCD10 is ubiquitously expressed in all normal tissues but its gene transcription becomes aberrant in different types of cancers. By measuring the luciferase activity in various cell lysates, their 851-bp intergenic sequence was shown to be capable of driving the reporter gene expression in either direction. A 175-bp fragment from nt 1 to 175 in the vicinity of PDCD10 was further determined to function as a minimal bidirectional promoter. A critical regulatory fragment, from nt 176-473 outside the minimal promoter in the intergenic region, was identified to contain a strong repressive element for SERPINI1 and an enhancer for PDCD10. These cis-acting elements may exist to help coordinate the expression and regulation of the two flanking genes. CONCLUSION For all non-homologous genes that have been described to be closely adjacent in the mammalian genomes, the intergenic region of the head-to-head PDCD10-SERPINI1 gene pair provides an interesting and informative example of a complex regulatory system that governs the expression of both genes not only through an asymmetric bidirectional promoter, but also through fine-tuned regulations with some cis-acting elements.
Collapse
Affiliation(s)
- Ping-Yen Chen
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wun-Shaing W Chang
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ruey-Hwang Chou
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yiu-Kay Lai
- Department of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
- Department of Bioresources, Da-Yeh University, Changhua County 515, Taiwan, ROC
| | - Sheng-Chieh Lin
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yi Chi
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Cheng-Wen Wu
- President's Laboratory and Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
14
|
Kaiserman D, Bird PI. Analysis of vertebrate genomes suggests a new model for clade B serpin evolution. BMC Genomics 2005; 6:167. [PMID: 16305753 PMCID: PMC1308813 DOI: 10.1186/1471-2164-6-167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 11/23/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human genome contains 13 clade B serpin genes at two loci, 6p25 and 18q21. The three genes at 6p25 all conform to a 7-exon gene structure with conserved intron positioning and phasing, however, at 18q21 there are two 7-exon genes and eight genes with an additional exon yielding an 8-exon structure. Currently, it is not known how these two loci evolved, nor which gene structure arose first--did the 8-exon genes gain an exon, or did the 7-exon genes lose one? Here we use the genomes of diverse vertebrate species to plot the emergence of clade B serpin genes and to identify the point at which the two genomic structures arose. RESULTS Analysis of the chicken genome indicated the presence of a single clade B serpin gene locus, containing orthologues of both human loci and both genomic structures. The frog genome and the genomes of three fish species presented progressively simpler loci, although only the 7-exon structure could be identified. The Serpinb12 gene contains seven exons in the frog genome, but eight exons in chickens and humans, indicating that the additional exon evolved in this gene. CONCLUSION We propose a new model for clade B serpin evolution from a single 7-exon gene (either Serpinb1 or Serpinb6). An additional exon was gained in the Serpinb12 gene between the tetrapoda and amniota radiations to produce the 8-exon structure. Both structures were then duplicated at a single locus until a chromosomal breakage occurred at some point along the mammalian lineage resulting in the two modern loci.
Collapse
Affiliation(s)
- Dion Kaiserman
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Phillip I Bird
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Benarafa C, Remold-O'Donnell E. The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates. Proc Natl Acad Sci U S A 2005; 102:11367-72. [PMID: 16055559 PMCID: PMC1183561 DOI: 10.1073/pnas.0502934102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Serpin superfamily proteins, most of which are serine protease inhibitors, share an unusual mechanism rooted in their conserved metastable tertiary structure. Although serpins have been identified in isolated members of archea, bacteria, and plants, a remarkable expansion is found in vertebrates. The chicken protein ovalbumin, a storage protein from egg white, lacking protease inhibitory activity, is an historical member of the superfamily and the founding member of the subgroup known as ov-serpins (ovalbumin-related serpins) or clade B serpins. In the human, ov-serpins include 13 proteins involved in the regulation of inflammation, apoptosis, angiogenesis, and embryogenesis. Here, a detailed analysis of the chicken (Gallus gallus) genome identified 10 clade B serpin genes that map to a single approximately 150-kb locus and contain the signature protein sequence of serpins and the gene structure of ov-serpins, with either seven or eight exons. Orthologues of PAI-2 (SERPINB2), MNEI (SERPINB1), PI-6 (SERPINB6), and maspin (SERPINB5) are highly conserved. Comparison with human ov-serpins identified avian-specific and mammal-specific genes. Importantly, a unique model of mammalian ov-serpin evolution is revealed from the comparative analysis of the chicken and human loci. The presence of a subset of ov-serpin genes in zebrafish (Danio rerio) gives insight into the ancestral locus. This comparative genomic study provides a valuable perspective on the evolutionary pathway for the clade B serpins, allowing the identification of genes with functions that may have been conserved since the origin of vertebrates. In addition, it suggests that "newer" serpins, such as ovalbumin, have contributed to vertebrate adaptation.
Collapse
Affiliation(s)
- Charaf Benarafa
- CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
16
|
Askew DJ, Askew YS, Kato Y, Turner RF, Dewar K, Lehoczky J, Silverman GA. Comparative genomic analysis of the clade B serpin cluster at human chromosome 18q21: amplification within the mouse squamous cell carcinoma antigen gene locus. Genomics 2005; 84:176-84. [PMID: 15203215 DOI: 10.1016/j.ygeno.2004.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 01/31/2004] [Indexed: 10/26/2022]
Abstract
The human clade B serpins neutralize serine or cysteine proteinases and reside predominantly within the intracellular compartment. Genomic analysis shows that the 13 human clade B serpins map to either 6p25 (n = 3) or 18q21 (n = 10). Similarly, the mouse clade B serpins map to syntenic loci at 13A3.2 and 1D, respectively. The mouse clade B cluster at 13A3.2 shows a marked expansion in the number of serpin genes (n = 15). The purpose of this study was to determine whether a similar expansion occurred at 1D. Using STS-content mapping, comparative genomic DNA sequence analysis, and cDNA cloning, we found that the mouse clade B cluster at 1D showed nearly complete conservation of gene number, order, and orientation relative to those of 18q21. The only exception was the squamous cell carcinoma antigen (SCCA) locus. The human SCCA locus contains two genes, SERPINB3 (SCCA1) and SERPINB4 (SCCA2), whereas the mouse locus contains four serpins and three pseudogenes. Based on phylogenetic analysis and predicted amino acid sequences, amplification of the mouse SCCA locus occurred after rodents and primates diverged and was associated with some diversification of proteinase inhibitory activity relative to that of humans.
Collapse
Affiliation(s)
- David J Askew
- Department of Pediatrics and the Division of Newborn Medicine, Harvard Medical School, Children's Hospital, 300 Longwood Avenue, Enders 9, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Lobov S, Wilczynska M, Bergström F, Johansson LBA, Ny T. Structural Bases of the Redox-dependent Conformational Switch in the Serpin PAI-2. J Mol Biol 2004; 344:1359-68. [PMID: 15561148 DOI: 10.1016/j.jmb.2004.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/04/2004] [Accepted: 10/06/2004] [Indexed: 11/16/2022]
Abstract
Depending on the redox-status, the serpin plasminogen activator inhibitor type 2 (PAI-2) can exist in either a stable monomeric or polymerogenic form. The latter form, which spontaneously forms loop-sheet polymers, has an open beta-sheet A and is stabilized by a disulfide bond between C79 (in the CD-loop) and C161 (at the bottom of PAI-2). Reduction of this bond results in a closing of the beta-sheet A and converts PAI-2 to a stable monomeric form. Here we show that the stable monomeric and polymerogenic forms of PAI-2 are fully interconvertible, depending on redox-status of the environment. Our intramolecular distance measurements indicate that the CD-loop folds mainly on one side of the stable monomeric form of the inhibitor. However, the loop can translocate about 54A to the bottom of PAI-2 so that the C79-C161 disulfide bond can form under oxidizing conditions. We show also that the redox-active C79 can form a disulfide-link to the matrix protein vitronectin, suggesting that vitronectin can stabilize active PAI-2 in extracellular compartments. PAI-2 is therefore a rare example of a redox-sensitive protein for which the activity and polymerization ability are regulated by reversible disulfide bond formation leading to major translocation of a loop and significant conformational changes in the molecule.
Collapse
Affiliation(s)
- Sergei Lobov
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
18
|
Scarff KL, Ung KS, Nandurkar H, Crack PJ, Bird CH, Bird PI. Targeted disruption of SPI3/Serpinb6 does not result in developmental or growth defects, leukocyte dysfunction, or susceptibility to stroke. Mol Cell Biol 2004; 24:4075-82. [PMID: 15082799 PMCID: PMC387772 DOI: 10.1128/mcb.24.9.4075-4082.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protease inhibitor 6 (PI-6/SERPINB6) is a widely expressed nucleocytoplasmic serpin. It inhibits granulocyte cathepsin G and neuronal neuropsin, and it is thought to protect cells from death caused by ectopic release or internalization of protease during stress such as infection or cerebral ischemia. To probe the biological functions of PI-6, we generated mice lacking its ortholog (SPI3/Serpinb6). SPI3-deficient mice developed normally and were fertile, and no abnormal pathology or increased sensitivity to cerebral ischemia was observed. There were no perturbations in leukocyte development or numbers, and recruitment of leukocytes to the peritoneal cavity was normal. SPI3-deficient mice were equally susceptible as wild-type mice to systemic Candida albicans infection, although there was a slight decrease in the ability of neutrophils from SPI3-deficient mice to kill C. albicans in vitro. Increased levels of a related inhibitor Serpinb1 (monocyte/neutrophil elastase inhibitor) in the tissues of targeted mice suggests that compensation by other serpins reduces the impact of SPI3 deficiency in these animals and may explain the lack of a more obvious phenotype.
Collapse
Affiliation(s)
- Katrina L Scarff
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Isaksson M, Kalinin S, Lobov S, Wang S, Ny T, Johansson LBÅ. Partial donor–donor energy migration (PDDEM): A novel fluorescence method for internal protein distance measurements. Phys Chem Chem Phys 2004. [DOI: 10.1039/b403264k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
van Gent D, Sharp P, Morgan K, Kalsheker N. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 2003; 35:1536-47. [PMID: 12824063 DOI: 10.1016/s1357-2725(03)00134-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The superfamily of serine proteinase inhibitors (serpins) are involved in a number of fundamental biological processes such as blood coagulation, complement activation, fibrinolysis, angiogenesis, inflammation and tumor suppression and are expressed in a cell-specific manner. The average protein size of a serpin family member is 350-400 amino acids, but gene structure varies in terms of number and size of exons and introns. Previous studies of all known serpins identified 16 clades and 10 orphan sequences. Vertebrate serpins can be conveniently classified into six sub-groups. We provide additional data that updates the phylogenetic analysis in the context of structural and functional properties of the proteins. From these, we can conclude that the functional classification of serpins relies on their protein structure and not on sequence similarity.
Collapse
Affiliation(s)
- Diana van Gent
- Division of Clinical Chemistry, Institute of Genetics, Queen's Medical Centre, University of Nottingham, NG7 2UH Nottingham, UK
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Peter G W Gettins
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, M/C 536, 1819-53 West Polk Street, Chicago, Illinois 60612, USA.
| |
Collapse
|
22
|
Saban R, Gerard NP, Saban MR, Nguyen NB, DeBoer DJ, Wershil BK. Mast cells mediate substance P-induced bladder inflammation through an NK(1) receptor-independent mechanism. Am J Physiol Renal Physiol 2002; 283:F616-29. [PMID: 12217852 DOI: 10.1152/ajprenal.00096.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of neurokinin-1 receptors (NK1R) in the interaction between mast cells and substance P (SP) in bladder inflammation was determined. Mast cell-deficient Kit(W)/Kit(W-v), congenic normal (+/+), and Kit(W)/Kit(W-v) mice that were reconstituted with bone marrow cells isolated from NK1R(-/-) mice were challenged by instillation of SP, antigen, or saline into the urinary bladder. Twenty-four hours after challenge, the bladders were prepared for morphological assessment and gene expression. SP-induced bladder inflammation was mast cell dependent and did not require NK1R expression on the mast cell. Cluster analysis identified functionally significant genes that were dependent on the presence of mast cells for their upregulation regardless of stimulus. Those include serine protein inhibitor 2.2, maspin, mitogen- and stress-activated protein kinase 2, and macrophage colony-stimulating factor 1. Our findings demonstrate that while mast cells are essential for both antigen- and SP-induced bladder inflammation, there are common genes and unique genes expressed in each type of inflammatory reaction. When combined with unique animal models, gene array analysis provides a useful approach for identifying and characterizing pathways involved in bladder inflammation.
Collapse
Affiliation(s)
- Ricardo Saban
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Miyata T, Inagi R, Nangaku M, Imasawa T, Sato M, Izuhara Y, Suzuki D, Yoshino A, Onogi H, Kimura M, Sugiyama S, Kurokawa K. Overexpression of the serpin megsin induces progressive mesangial cell proliferation and expansion. J Clin Invest 2002. [DOI: 10.1172/jci0214336] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Kaiserman D, Knaggs S, Scarff KL, Gillard A, Mirza G, Cadman M, McKeone R, Denny P, Cooley J, Benarafa C, Remold-O'Donnell E, Ragoussis J, Bird PI. Comparison of human chromosome 6p25 with mouse chromosome 13 reveals a greatly expanded ov-serpin gene repertoire in the mouse. Genomics 2002; 79:349-62. [PMID: 11863365 DOI: 10.1006/geno.2002.6716] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ov-serpins are intracellular proteinase inhibitors implicated in the regulation of tumor progression, inflammation, and cell death. The 13 human ov-serpin genes are clustered at 6p25 (3 genes) and 18q21 (10 genes), and share common structures. We show here that a 1-Mb region on mouse chromosome 13 contains at least 15 ov-serpin genes compared with the three ov-serpin genes within 0.35 Mb at human 6p25 (SERPINB1 (MNEI), SERPINB6 (PI-6), SER-PINB9 (PI-9)). The mouse serpins have characteristics of functional inhibitors and fall into three groups on the basis of similarity to MNEI, PI-6, or PI-9. The genes map between the mouse orthologs of the Werner helicase interacting protein and NAD(P)H menadioine oxidoreductase 2 genes, in a region that contains the markers D13Mit136 and D13Mit116. They have the seven-exon structure typical of human 6p25 ov-serpin genes, with identical intron phasing. Most show restricted patterns of expression, with common sites of synthesis being the placenta and immune tissue. Compared with human, this larger mouse serpin repertoire probably reflects the need to regulate a larger proteinase repertoire arising from differing evolutionary pressures on the reproductive and immune systems.
Collapse
Affiliation(s)
- Dion Kaiserman
- Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miyata T, Inagi R, Nangaku M, Imasawa T, Sato M, Izuhara Y, Suzuki D, Yoshino A, Onogi H, Kimura M, Sugiyama S, Kurokawa K. Overexpression of the serpin megsin induces progressive mesangial cell proliferation and expansion. J Clin Invest 2002; 109:585-93. [PMID: 11877466 PMCID: PMC150894 DOI: 10.1172/jci14336] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mesangial cells maintain normal glomerular function by mediating ECM remodeling and immune complex disposal. We have recently identified megsin, a novel member of the serine protease inhibitor (serpin) superfamily predominantly expressed in the mesangium. While our previous studies suggested a role for megsin in the pathogenesis of human glomerular diseases, its exact biological significance remained unknown. Here we produced two lines of megsin transgenic mice. Overexpression of megsin led to progressive mesangial matrix expansion and an increase in the number of mesangial cells. These glomerular lesions were accompanied by an augmented immune complex deposition, together with Ig's and complement. Binding and functional assays in vitro identified plasmin as one biological substrate of megsin and confirmed its activity as a proteinase inhibitor. Transgenic animals exhibiting nephritis as a result of treatment with anti--glomerular basement membrane antiserum showed significantly more persistent expansion of the mesangial ECM than was seen in parental mice. Megsin therefore exerts a biologically relevant influence on mesangial function, and on the mesangial microenvironment, such that simple overexpression of this endogenous serpin engenders elementary mesangial lesions.
Collapse
Affiliation(s)
- Toshio Miyata
- Molecular and Cellular Nephrology, Institute of Medical Sciences and Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Askew YS, Pak SC, Luke CJ, Askew DJ, Cataltepe S, Mills DR, Kato H, Lehoczky J, Dewar K, Birren B, Silverman GA. SERPINB12 is a novel member of the human ov-serpin family that is widely expressed and inhibits trypsin-like serine proteinases. J Biol Chem 2001; 276:49320-30. [PMID: 11604408 DOI: 10.1074/jbc.m108879200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the human serpin family regulate a diverse array of serine and cysteine proteinases associated with essential biological processes such as fibrinolysis, coagulation, inflammation, cell mobility, cellular differentiation, and apoptosis. Most serpins are secreted and attain physiologic concentrations in the blood and extracellular fluids. However, a subset of the serpin superfamily, the ov-serpins, also resides intracellularly. Using high throughput genomic sequence, we identified a novel member of the human ov-serpin gene family, SERPINB12. The gene mapped to the ov-serpin cluster at 18q21 and resided between SERPINB5 (maspin) and SERPINB13 (headpin). The presence of SERPINB12 in silico was confirmed by cDNA cloning. Expression studies showed that SERPINB12 was expressed in many tissues, including brain, bone marrow, lymph node, heart, lung, liver, pancreas, testis, ovary, and intestines. Based on the presence of Arg and Ser at the reactive center of the RSL, SERPINB12 appeared to be an inhibitor of trypsin-like serine proteinases. This hypothesis was confirmed because recombinant SERPINB12 inhibited human trypsin and plasmin but not thrombin, coagulation factor Xa, or urokinase-type plasminogen activator. The second-order rate constants for the inhibitory reactions were 2.5 +/- 1.6 x 10(5) and 1.6 +/- 0.2 x 10(4) M(-1) S(-1), respectively. These data show that SERPINB12 encodes for a new functional member of the human ov-serpin family.
Collapse
Affiliation(s)
- Y S Askew
- Department of Pediatrics, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 2001; 276:33293-6. [PMID: 11435447 DOI: 10.1074/jbc.r100016200] [Citation(s) in RCA: 894] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- G A Silverman
- Department of Pediatrics, Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Atchley WR, Lokot T, Wollenberg K, Dress A, Ragg H. Phylogenetic analyses of amino acid variation in the serpin proteins. Mol Biol Evol 2001; 18:1502-11. [PMID: 11470841 DOI: 10.1093/oxfordjournals.molbev.a003936] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses of 110 serpin protein sequences revealed clades consistent with independent phylogenetic analyses based on exon-intron structure and diagnostic amino acid sites. Trees were estimated by maximum likelihood, neighbor joining, and partial split decomposition using both the BLOSUM 62 and Jones-Taylor-Thornton substitution matrices. Neighbor-joining trees gave results closest to those based on independent analyses using genomic and chromosomal data. The maximum-likelihood trees derived using the quartet puzzling algorithm were very conservative, producing many small clades that separated groups of proteins that other results suggest were related. Independent analyses based on exon-intron structure suggested that a neighbor-joining tree was more accurate than maximum-likelihood trees obtained using the quartet puzzling algorithm.
Collapse
Affiliation(s)
- W R Atchley
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA.
| | | | | | | | | |
Collapse
|
29
|
Abts HF, Welss T, Scheuring S, Scott FL, Irving JA, Michel G, Bird PI, Ruzicka T. Sequence, organization, chromosomal localization, and alternative splicing of the human serine protease inhibitor gene hurpin (PI13) which is upregulated in psoriasis. DNA Cell Biol 2001; 20:123-31. [PMID: 11313015 DOI: 10.1089/104454901300068924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hurpin (protease inhibitor 13; PI13) is the most recently identified member of the ovalbumin family of serine protease inhibitors (serpins). It is expressed in human epidermal keratinocytes and is downregulated by exposure to ultraviolet irradiation. A role for hurpin in the proliferation or differentiation of keratinocytes has been proposed because of its strong expression in proliferating cells and its deregulated expression in the lesional epidermis of psoriatic patients. Here, we report the cloning, chromosomal localization, and complete sequence of the human hurpin gene. By PCR-based screening of the GeneBridge 4 radiation hybrid panel, we mapped the gene to chromosome 18q21.3, close to a known cluster of ov-serpin genes. Using the full-length cDNA for hurpin, we identified two clones from an arrayed genomic P1 placental library that contain the entire hurpin gene. Sequencing revealed that the gene covers 12.253 kb and is comprised of eight exons and seven introns. The exon--intron boundaries are identical in position and phasing to those in other members of the 18q serpin gene cluster, and analysis of hurpin variants indicated that modified functional inhibitors, differing only in the CD interhelical loop, can be generated by differential splicing of exon 3. These data show that hurpin is a typical member of the 18q ovalbumin-serpins most closely related to the serpins squamous-cell carcinoma antigens 1 and 2.
Collapse
Affiliation(s)
- H F Abts
- Department of Dermatology and Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the Serpin Superfamily: Implications of Patterns of Amino Acid Conservation for Structure and Function. Genome Res 2000. [DOI: 10.1101/gr.147800] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present a comprehensive alignment and phylogenetic analysis of the serpins, a superfamily of proteins with known members in higher animals, nematodes, insects, plants, and viruses. We analyze, compare, and classify 219 proteins representative of eight major and eight minor subfamilies, using a novel technique of consensus analysis. Patterns of sequence conservation characterize the family as a whole, with a clear relationship to the mechanism of function. Variations of these patterns within phylogenetically distinct groups can be correlated with the divergence of structure and function. The goals of this work are to provide a carefully curated alignment of serpin sequences, to describe patterns of conservation and divergence, and to derive a phylogenetic tree expressing the relationships among the members of this family. We extend earlier studies by Huber and Carrell as well as by Marshall, after whose publication the serpin family has grown functionally, taxonomically, and structurally. We used gene and protein sequence data, crystal structures, and chromosomal location where available. The results illuminate structure–function relationships in serpins, suggesting roles for conserved residues in the mechanism of conformational change. The phylogeny provides a rational evolutionary framework to classify serpins and enables identification of conserved amino acids. Patterns of conservation also provide an initial point of comparison for genes identified by the various genome projects. New homologs emerging from sequencing projects can either take their place within the current classification or, if necessary, extend it.
Collapse
|