1
|
Barazesh M, Abbasi M, Mohammadi M, Nasiri MN, Rezaei F, Mohammadi S, Kavousipour S. Bioinformatics analysis to design a multi-epitope mRNA vaccine against S. agalactiae exploiting pathogenic proteins. Sci Rep 2024; 14:28294. [PMID: 39550419 PMCID: PMC11569170 DOI: 10.1038/s41598-024-79503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Antibiotic resistance in bacterial pathogen infections is a growing global issue that occurs due to their adaptation to changing environmental conditions. Therefore, producing an efficient vaccine as an alternative approach can improve the immune system, eradicate related pathogens, and overcome this growing problem. Streptococcus agalactiae belongs to group B Streptococcus (GBS). Colonization of GBS during pregnancy is a significant risk factor for infants and young children. S. agalactiae infected population exhibits resistance to beta-lactams, including penicillin and the second-line antibiotics erythromycin and clindamycin. On the other hand, there are currently no commercial vaccines against this pathogen. Vaccination of pregnant women is a highly effective method to protect newborns and infants from S. agalactiae infection, and it has been identified as an urgent demand by the World Health Organization. This study employed various immunoinformatic tools to develop an effective vaccine that could trigger both humoral and cell-mediated immunity and prevent disease. For this purpose, three conserved antigenic proteins of the main pathogenic strains of S. agalactiae were utilized to predict CTL, HTL, and B-cell epitopes for producing an mRNA vaccine against different strains of S. agalactiae. The selected epitopes were fused using proper linkers. The Resuscitation promoting factor E (RpfE) sequence was incorporated in the designed vaccine construct as an adjuvant to boost its immune response. Different physicochemical characteristics of the final designed vaccine, modeling of the three-dimensional structure, molecular docking, molecular dynamics simulation, and immunological response simulation were screened following vaccine administration in an in vivo model. Computational immune simulation data identified that IgG1, IgM, INF γ, IL-2, T helper, and B-cell populations increased significantly after vaccination. These findings suggested that the vaccine candidate may provide good protection against S. agalactiae infection. However, experimental and animal model studies are required for additional validation and implementation in human vaccination programs.
Collapse
Affiliation(s)
- Mahdi Barazesh
- Department of Medical Biotechnology, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Maryam Abbasi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohsen Mohammadi
- Hepatitis Research Center and Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Naser Nasiri
- Department of Clinical pharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faranak Rezaei
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Mohammadi
- Hepatitis Research Center, Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, BandarAbbas, Iran
| |
Collapse
|
2
|
Altun B, Zengin K, Yayli Dabag S, Yesilyurt A, Nalcacioglu R, Demirbag Z. Characterization of an envelope protein 118L in invertebrate iridescent virus 6 (IIV6). Virus Genes 2024; 60:549-558. [PMID: 38922563 DOI: 10.1007/s11262-024-02082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic insect virus and a member of the family Iridoviridae. The IIV6 genome consists of 212,482 bp of linear dsDNA with 215 non-overlapping and putative protein-encoding ORFs. The IIV6 118L ORF is conserved in all sequenced members of the Iridoviridae and encodes a 515 amino acid protein with three predicted transmembrane domains and several N-glycosylation/N-myristoylation sites. In this study, we characterized the 118L ORF by both deleting it from the viral genome and silencing its expression with dsRNA in infected insect cells. The homologous recombination method was used to replace 118L ORF with the green fluorescent protein (gfp) gene. Virus mutants in which the 118L gene sequence had been replaced with gfp were identified by fluorescence microscopy but could not be propagated separately from the wild-type virus in insect cells. Unsuccessful attempts to isolate the mutant virus with the 118L gene deletion suggested that the protein is essential for virus replication. To support this result, we used dsRNA to target the 118L gene and showed that treatment resulted in a 99% reduction in virus titer. Subsequently, we demonstrated that 118L-specific antibodies produced against the 118L protein expressed in the baculovirus vector system were able to neutralize the virus infection. All these results indicate that 118L is a viral envelope protein that is required for the initiation of virus replication.
Collapse
Affiliation(s)
- Betul Altun
- Department of Molecular Biology and Genetic, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Kubra Zengin
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Sevde Yayli Dabag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Aydin Yesilyurt
- Tonya Vocational School, Trabzon University, Trabzon, Turkey
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
3
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Zhang Z, Ji J, Hossain MS, Bailey B, Nangia S, Mozhdehi D. Lipidation alters the phase-separation of resilin-like polypeptides. SOFT MATTER 2024; 20:4007-4014. [PMID: 38690757 PMCID: PMC11095499 DOI: 10.1039/d4sm00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Biology exploits biomacromolecular phase separation to form condensates, known as membraneless organelles. Despite significant advancements in deciphering sequence determinants for phase separation, modulating these features in vivo remains challenging. A promising approach inspired by biology is to use post-translational modifications (PTMs)-to modulate the amino acid physicochemistry instead of altering protein sequences-to control the formation and characteristics of condensates. However, despite the identification of more than 300 types of PTMs, the detailed understanding of how they influence the formation and material properties of protein condensates remains incomplete. In this study, we investigated how modification with myristoyl lipid alters the formation and characteristics of the resilin-like polypeptide (RLP) condensates, a prototypical disordered protein with upper critical solution temperature (UCST) phase behaviour. Using turbidimetry, dynamic light scattering, confocal and electron microscopy, we demonstrated that lipidation-in synergy with the sequence of the lipidation site-significantly influences RLPs' thermodynamic propensity for phase separation and their condensate properties. Molecular simulations suggested these effects result from an expanded hydrophobic region created by the interaction between the lipid and lipidation site rather than changes in peptide rigidity. These findings emphasize the role of "sequence context" in modifying the properties of PTMs, suggesting that variations in lipidation sequences could be strategically used to fine-tune the effect of these motifs. Our study advances understanding of lipidation's impact on UCST phase behaviour, relevant to proteins critical in biological processes and diseases, and opens avenues for designing lipidated resilins for biomedical applications like heat-mediated drug elution.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA.
| | | | - Briah Bailey
- Department of Biomedical Engineering, Augusta University, Augusta, Georgia 30912, USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA.
| | - Davoud Mozhdehi
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
5
|
Klössel S, Zhu Y, Amado L, Bisinski DD, Ruta J, Liu F, González Montoro A. Yeast TLDc domain proteins regulate assembly state and subcellular localization of the V-ATPase. EMBO J 2024; 43:1870-1897. [PMID: 38589611 PMCID: PMC11066047 DOI: 10.1038/s44318-024-00097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Yeast vacuoles perform crucial cellular functions as acidic degradative organelles, storage compartments, and signaling hubs. These functions are mediated by important protein complexes, including the vacuolar-type H+-ATPase (V-ATPase), responsible for organelle acidification. To gain a more detailed understanding of vacuole function, we performed cross-linking mass spectrometry on isolated vacuoles, detecting many known as well as novel protein-protein interactions. Among these, we identified the uncharacterized TLDc-domain-containing protein Rtc5 as a novel interactor of the V-ATPase. We further analyzed the influence of Rtc5 and of Oxr1, the only other yeast TLDc-domain-containing protein, on V-ATPase function. We find that both Rtc5 and Oxr1 promote the disassembly of the vacuolar V-ATPase in vivo, counteracting the role of the RAVE complex, a V-ATPase assembly chaperone. Furthermore, Oxr1 is necessary for the retention of a Golgi-specific subunit of the V-ATPase in this compartment. Collectively, our results shed light on the in vivo roles of yeast TLDc-domain proteins as regulators of the V-ATPase, highlighting the multifaceted regulation of this crucial protein complex.
Collapse
Affiliation(s)
- Samira Klössel
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Ying Zhu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Lucia Amado
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Daniel D Bisinski
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany
| | - Ayelén González Montoro
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany.
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
6
|
Chang I, Loo YL, Patel J, Nguyen JT, Kim JK, Krebsbach PH. Targeting of lysosomal-bound protein mEAK-7 for cancer therapy. Front Oncol 2024; 14:1375498. [PMID: 38532930 PMCID: PMC10963491 DOI: 10.3389/fonc.2024.1375498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an evolutionarily conserved lysosomal membrane protein that is highly expressed in several cancer cells. Multiple recent studies have identified mEAK-7 as a positive activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an alternative mTOR complex, implying that mEAK-7 plays an important role in the promotion of cancer proliferation and migration. In addition, structural analyses investigating interactions between mEAK-7 and V-ATPase, a protein complex responsible for regulating pH homeostasis in cellular compartments, have suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1 activation. The C-terminal α-helix of mEAK-7 binds to the D and B subunits of the V-ATPase, creating a pincer-like grip around its B subunit. This binding undergoes partial disruption during ATP hydrolysis, potentially enabling other proteins such as mTOR to bind to the α-helix of mEAK-7. mEAK-7 also promotes chemoresistance and radiation resistance by sustaining DNA damage-mediated mTOR signaling through interactions with DNA-PKcs (DNA-dependent protein kinase catalytic subunit). Taken together, these findings indicate that mEAK-7 may be a promising therapeutic target against tumors. However, the precise molecular mechanisms and signal transduction pathways of mEAK-7 in cancer remain largely unknown, motivating the need for further investigation. Here, we summarize the current known roles of mEAK-7 in normal physiology and cancer development by reviewing the latest studies and discuss potential future developments of mEAK-7 in targeted cancer therapy.
Collapse
Affiliation(s)
- Insoon Chang
- Section of Endodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yi-Ling Loo
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jay Patel
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joe Truong Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Oral Immunobiology Unit, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Jin Koo Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Krebsbach
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Xu S, Xu X, Wang Z, Wu R. A Systematic Investigation of Proteoforms with N-Terminal Glycine and Their Dynamics Reveals Its Impacts on Protein Stability. Angew Chem Int Ed Engl 2024; 63:e202315286. [PMID: 38117010 PMCID: PMC10981938 DOI: 10.1002/anie.202315286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
The N-termini of proteins can regulate their degradation, and the same protein with different N-termini may have distinct dynamics. Recently, it was found that N-terminal glycine can serve as a degron recognized by two E3 ligases, but N-terminal glycine was also reported to stabilize proteins. Here we developed a chemoenzymatic method for selective enrichment of proteoforms with N-terminal glycine and integrated dual protease cleavage to further improve the enrichment specificity. Over 2000 unique peptides with protein N-terminal glycine were analyzed from >1000 proteins, and most of them are previously unknown, indicating the effectiveness of the current method to capture low-abundance proteoforms with N-terminal glycine. The degradation rates of proteoforms with N-terminal glycine were quantified along with those of proteins from the whole proteome. Bioinformatic analyses reveal that proteoforms with N-terminal glycine with the fastest and slowest degradation rates have different functions and localizations. Membrane proteins with N-terminal glycine and proteins with N-terminal glycine from the N-terminal methionine excision degrade more rapidly. Furthermore, the secondary structures, adjacent amino acid residues, and protease specificities for N-terminal glycine are also vital for protein degradation. The results advance our understanding of the effects of N-terminal glycine on protein properties and functions.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Xing Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zeyu Wang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
8
|
Aarthy M, Pandiyan GN, Paramasivan R, Kumar A, Gupta B. Identification and prioritisation of potential vaccine candidates using subtractive proteomics and designing of a multi-epitope vaccine against Wuchereria bancrofti. Sci Rep 2024; 14:1970. [PMID: 38263422 PMCID: PMC10806236 DOI: 10.1038/s41598-024-52457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
This study employed subtractive proteomics and immunoinformatics to analyze the Wuchereria bancrofti proteome and identify potential therapeutic targets, with a focus on designing a vaccine against the parasite species. A comprehensive bioinformatics analysis of the parasite's proteome identified 51 probable therapeutic targets, among which "Kunitz/bovine pancreatic trypsin inhibitor domain-containing protein" was identified as the most promising vaccine candidate. The candidate protein was used to design a multi-epitope vaccine, incorporating B-cell and T-cell epitopes identified through various tools. The vaccine construct underwent extensive analysis of its antigenic, physical, and chemical features, including the determination of secondary and tertiary structures. Docking and molecular dynamics simulations were performed with HLA alleles, Toll-like receptor 4 (TLR4), and TLR3 to assess its potential to elicit the human immune response. Immune simulation analysis confirmed the predicted vaccine's strong binding affinity with immunoglobulins, indicating its potential efficacy in generating an immune response. However, experimental validation and testing of this multi-epitope vaccine construct would be needed to assess its potential against W. bancrofti and even for a broader range of lymphatic filarial infections given the similarities between W. bancrofti and Brugia.
Collapse
Affiliation(s)
- Murali Aarthy
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - G Navaneetha Pandiyan
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - R Paramasivan
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre (VCRC), Puducherry, India
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Tandhalam, Chennai, Tamil Nadu, 602105, India
| | - Bhavna Gupta
- ICMR-Vector Control Research Centre (VCRC), Field Station, Madurai, Tamil Nadu, 625002, India.
| |
Collapse
|
9
|
Chang YH. Impact of Protein N α-Modifications on Cellular Functions and Human Health. Life (Basel) 2023; 13:1613. [PMID: 37511988 PMCID: PMC10381334 DOI: 10.3390/life13071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Most human proteins are modified by enzymes that act on the α-amino group of a newly synthesized polypeptide. Methionine aminopeptidases can remove the initiator methionine and expose the second amino acid for further modification by enzymes responsible for myristoylation, acetylation, methylation, or other chemical reactions. Specific acetyltransferases can also modify the initiator methionine and sometimes the acetylated methionine can be removed, followed by further modifications. These modifications at the protein N-termini play critical roles in cellular protein localization, protein-protein interaction, protein-DNA interaction, and protein stability. Consequently, the dysregulation of these modifications could significantly change the development and progression status of certain human diseases. The focus of this review is to highlight recent progress in our understanding of the roles of these modifications in regulating protein functions and how these enzymes have been used as potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Yie-Hwa Chang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Medical School, Saint Louis, MO 63104, USA
| |
Collapse
|
10
|
Mohammadi Y, Nezafat N, Negahdaripour M, Eskandari S, Zamani M. In silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunol Res 2023; 71:422-441. [PMID: 36580228 PMCID: PMC9797904 DOI: 10.1007/s12026-022-09351-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Human polyomavirus type 1, or BK virus (BKV), is a ubiquitous pathogen belonging to the polyomaviridae family mostly known for causing BKV-associated nephropathy (BKVN) and allograft rejection in kidney transplant recipients (KTRs) following the immunosuppression regimens recommended in these patients. Reduction of the immunosuppression level and anti-viral agents are the usual approaches for BKV clearance, which have not met a desired outcome yet. There are also debating matters such as the effect of this pathogen on emerging various comorbidities and the related malignancies in the human population. In this study, a reverse vaccinology approach was implemented to design a mRNA vaccine against BKV by identifying the most antigenic proteins of this pathogen. Potential immunogenic T and B lymphocyte epitopes were predicted through various immunoinformatic tools. The final epitopes were selected according to antigenicity, toxicity, allergenicity, and cytokine inducibility scores. According to the obtained results, the designed vaccine was antigenic, neutral at the physiological pH, non-toxic, and non-allergenic with a world population coverage of 93.77%. Since the mRNA codon optimization ensures the efficient expression of the vaccine in a host cell, evaluation of different parameters showed our designed mRNA vaccine has a stable structure. Moreover, it had strong interactions with toll-like receptor 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate is ready to be tested as a promising novel mRNA therapeutic vaccine against BKV.
Collapse
Affiliation(s)
- Yasaman Mohammadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
11
|
Fang J, Chai Z, Huang R, Huang C, Ming Z, Chen B, Yao W, Zhang M. Receptor-like cytoplasmic kinase ScRIPK in sugarcane regulates disease resistance and drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1191449. [PMID: 37304725 PMCID: PMC10248867 DOI: 10.3389/fpls.2023.1191449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Introduction Receptor-like cytoplastic kinases (RLCKs) are known in many plants to be involved in various processes of plant growth and development and regulate plant immunity to pathogen infection. Environmental stimuli such as pathogen infection and drought restrict the crop yield and interfere with plant growth. However, the function of RLCKs in sugarcane remains unclear. Methods and results In this study, a member of the RLCK VII subfamily, ScRIPK, was identified in sugarcane based on sequence similarity to the rice and Arabidopsis RLCKs. ScRIPK was localized to the plasma membrane, as predicted, and the expression of ScRIPK was responsive to polyethylene glycol treatment and Fusarium sacchari infection. Overexpression of ScRIPK in Arabidopsis enhanced drought tolerance and disease susceptibility of seedlings. Moreover, the crystal structure of the ScRIPK kinase domain (ScRIPK KD) and the mutant proteins (ScRIPK-KD K124R and ScRIPK-KD S253A|T254A) were characterized in order to determine the activation mechanism. We also identified ScRIN4 as the interacting protein of ScRIPK. Discussion Our work identified a RLCK in sugarcane, providing a potential target for sugarcane responses to disease infection and drought, and a structural basis for kinase activation mechanisms.
Collapse
Affiliation(s)
- Jinlan Fang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhe Chai
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Run Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Cuilin Huang
- College of Agricultural, Guangxi University, Nanning, China
| | - Zhenhua Ming
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- College of Agricultural, Guangxi University, Nanning, China
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
13
|
Protein Myristoylation Plays a Role in the Nuclear Entry of the Parvovirus Minute Virus of Mice. J Virol 2022; 96:e0111822. [PMID: 35950857 PMCID: PMC9472656 DOI: 10.1128/jvi.01118-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Being nonpathogenic to humans, rodent parvoviruses (PVs) are naturally oncolytic viruses with great potential as anti-cancer agents. As these viruses replicate in the host cell nucleus, they must gain access to the nucleus during infection. The PV minute virus of mice (MVM) and several other PVs transiently disrupt the nuclear envelope (NE) and enter the nucleus through the resulting breaks. However, the molecular basis of this unique nuclear entry pathway remains uncharacterized. In this study, we used MVM as a model to investigate the molecular mechanism by which PVs induce NE disruption during viral nuclear entry. By combining bioinformatics analyses, metabolic labeling assays, mutagenesis, and pharmacological inhibition, we identified a functional myristoylation site at the sequence 78GGKVGH83 of the unique portion of the capsid protein VP1 (VP1u) of MVM. Performing proteolytic cleavage studies with a peptide containing this myristoylation site or with purified virions, we found tryptophan at position 77 of MVM VP1u is susceptible to chymotrypsin cleavage, implying this cleavage exposes G (glycine) 78 at the N-terminus of VP1u for myristoylation. Subsequent experiments using inhibitors of myristoylation and cellular proteases with MVM-infected cells, or an imaging-based quantitative NE permeabilization assay, further indicate protein myristoylation and a chymotrypsin-like activity are essential for MVM to locally disrupt the NE during viral nuclear entry. We thus propose a model for the nuclear entry of MVM in which NE disruption is mediated by VP1u myristoylation after the intact capsid undergoes proteolytic processing to expose the required N-terminal G for myristoylation. IMPORTANCE Rodent parvoviruses (PVs), including minute virus of mice (MVM), have the ability to infect and kill cancer cells and thereby possess great potential in anti-cancer therapy. In fact, some of these viruses are currently being investigated in both preclinical studies and clinical trials to treat a wide variety of cancers. However, the detailed mechanism of how PVs enter the cell nucleus remains unknown. In this study, we for the first time demonstrated a chemical modification called "myristoylation" of a MVM protein plays an essential role in the nuclear entry of the virus. We also showed, in addition to protein myristoylation, a chymotrypsin-like activity, which may come from cellular proteasomes, is required for MVM to get myristoylated and enter the nucleus. These findings deepen our understanding on how MVM and other related PVs infect host cells and provide new insights for the development of PV-based anti-cancer therapies.
Collapse
|
14
|
Verma S, Sowdhamini R. A genome-wide search of Toll/Interleukin-1 receptor (TIR) domain-containing adapter molecule (TICAM) and their evolutionary divergence from other TIR domain containing proteins. Biol Direct 2022; 17:24. [PMID: 36056415 PMCID: PMC9440496 DOI: 10.1186/s13062-022-00335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Toll/Interleukin-1 receptor (TIR) domains are cytoplasmic domain that mediates receptor signalling. These domains are present in proteins like Toll-like receptors (TLR), its signaling adaptors and Interleukins, that form a major part of the immune system. These TIR domain containing signaling adaptors binds to the TLRs and interacts with their TIR domains for downstream signaling. We have examined the evolutionary divergence across the tree of life of two of these TIR domain containing adaptor molecules (TICAM) i.e., TIR domain-containing adapter-inducing interferon-β (TRIF/TICAM1) and TIR domain containing adaptor molecule2 (TRAM/TICAM2), by using computational approaches. We studied their orthologs, domain architecture, conserved motifs, and amino acid variations. Our study also adds a timeframe to infer the duplication of TICAM protein from Leptocardii and later divergence into TICAM1/TRIF and TICAM2/TRAM. More evidence of TRIF proteins was seen, but the absence of conserved co-existing domains such as TRIF-NTD, TIR, and RHIM domains in distant relatives hints on diversification and adaptation to different biological functions. TRAM was lost in Actinopteri and has conserved domain architecture of TIR across species except in Aves. An additional isoform of TRAM, TAG (TRAM adaptor with the GOLD domain), could be identified in species in the Mesozoic era. Finally, the Hypothesis based Likelihood ratio test was applied to look for selection pressure amongst orthologues of TRIF and TRAM to search for positively selected sites. These residues were mostly seen in the non-structural region of the proteins. Overall, this study unravels evolutionary information on the adaptors TRAM and TRIF and how well they had duplicated to perform diverse functions by changes in their domain architecture across lineages.
Collapse
Affiliation(s)
- Shailya Verma
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560065, India. .,Institute of Bioinformatics and Applied Biotechnology, Bangalore, 560100, India. .,Molecular Biophysics Unit, Indian Institute of Science, CV Raman Road, Karnataka, 560012, Bangalore, India.
| |
Collapse
|
15
|
Madeo G, Savojardo C, Luigi Martelli P, Casadio R. SVMyr: a web server detecting co- and post-translational myristoylation in proteins. J Mol Biol 2022; 434:167605. [DOI: 10.1016/j.jmb.2022.167605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 12/31/2022]
|
16
|
Kiryanov SA, Levina TA, Konopleva MV, Suslov AP. Identification of Hotspot Mutations in the N Gene of SARS-CoV-2 in Russian Clinical Samples That May Affect the Detection by Reverse Transcription-PCR. Diagnostics (Basel) 2022; 12:diagnostics12010147. [PMID: 35054314 PMCID: PMC8774456 DOI: 10.3390/diagnostics12010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Sensitive and reliable diagnostic test systems based on real-time PCR are of great importance in the fight against the ongoing SARS-CoV-2 pandemic. The genetic variability of the SARS-CoV-2 virus leads to the accumulation of mutations, some of which may affect the sensitivity of modern PCR assays. The aim of this study was to search in Russian clinical samples for new mutations in SARS-CoV-2 gene N that can affect the detection by RT-PCR. In this study, the polymorphisms in the regions of the target gene N causing failed or poor detection of the target N in the RT-PCR assay on 12 selected samples were detected. Sequencing the entire N and E genes in these samples along with other 195 samples that were positive for both target regions was performed. Here, we identified a number of nonsynonymous mutations and one novel deletion in the N gene that affected the ability to detect a target in the N gene as well a few mutations in the E gene of SARS-CoV-2 that did not affect detection. Sequencing revealed that majority of the mutations in the N gene were located in the variable region between positions 193 and 235 aa, inside and nearby the phosphorylated serine-rich region of the protein N. This study highlights the importance of the further characterization of the genetic variability and evolution of gene N, the most common target for detecting SARS-CoV-2. The use of at least two targets for detecting SARS-CoV-2, including one for the E gene, will be necessary for reliable diagnostics.
Collapse
Affiliation(s)
- Sergei A. Kiryanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
- Correspondence:
| | - Tatiana A. Levina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
- OOO “DNA-Technology”, 117587 Moscow, Russia
| | - Maria V. Konopleva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
| | - Anatoly P. Suslov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (T.A.L.); (M.V.K.); (A.P.S.)
| |
Collapse
|
17
|
Giovannoni M, Marti L, Ferrari S, Tanaka‐Takada N, Maeshima M, Ott T, De Lorenzo G, Mattei B. The plasma membrane-associated Ca 2+ -binding protein, PCaP1, is required for oligogalacturonide and flagellin-induced priming and immunity. PLANT, CELL & ENVIRONMENT 2021; 44:3078-3093. [PMID: 34050546 PMCID: PMC8457133 DOI: 10.1111/pce.14118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/12/2023]
Abstract
Early signalling events in response to elicitation include reversible protein phosphorylation and re-localization of plasma membrane (PM) proteins. Oligogalacturonides (OGs) are a class of damage-associated molecular patterns (DAMPs) that act as endogenous signals to activate the plant immune response. Previous data on early phosphoproteome changes in Arabidopsis thaliana upon OG perception uncovered the immune-related phospho-regulation of several membrane proteins, among which PCaP1, a PM-anchored protein with actin filament-severing activity, was chosen for its potential involvement in OG- and flagellin-triggered responses. Here, we demonstrate that PCaP1 is required for late, but not early, responses induced by OGs and flagellin. Moreover, pcap1 mutants, unlike the wild type, are impaired in the recovery of full responsiveness to a second treatment with OGs performed 24 h after the first one. Localization studies on PCaP1 upon OG treatment in plants expressing a functional PCaP1-GFP fusion under the control of PCaP1 promoter revealed fluorescence on the PM, organized in densely packed punctate structures, previously reported as microdomains. Fluorescence was found to be associated also with endocytic vesicles, the number of which rapidly increased after OG treatment, suggesting both an endocytic turnover of PCaP1 for maintaining its homeostasis at the PM and an OG-induced endocytosis.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Marti
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Simone Ferrari
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Natsuki Tanaka‐Takada
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Thomas Ott
- Faculty of Biology, Cell BiologyUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
| | - Benedetta Mattei
- Department of Health, Life and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| |
Collapse
|
18
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
19
|
Polit A, Mystek P, Błasiak E. Every Detail Matters. That Is, How the Interaction between Gα Proteins and Membrane Affects Their Function. MEMBRANES 2021; 11:222. [PMID: 33804791 PMCID: PMC8003949 DOI: 10.3390/membranes11030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein-lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.
Collapse
Affiliation(s)
- Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.M.); (E.B.)
| | | | | |
Collapse
|
20
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
21
|
Villalta I, García E, Hornero-Mendez D, Carranco R, Tello C, Mendoza I, De Luca A, Andrés Z, Schumacher K, Pardo JM, Quintero FJ. Distinct Roles of N-Terminal Fatty Acid Acylation of the Salinity-Sensor Protein SOS3. FRONTIERS IN PLANT SCIENCE 2021; 12:691124. [PMID: 34630451 PMCID: PMC8494787 DOI: 10.3389/fpls.2021.691124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 05/07/2023]
Abstract
The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.
Collapse
Affiliation(s)
- Irene Villalta
- Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Tours, France
| | - Elena García
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Dámaso Hornero-Mendez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Raúl Carranco
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | | | - Imelda Mendoza
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Anna De Luca
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
| | - Zaida Andrés
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Universität Heidelberg, Heidelberg, Germany
| | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
- *Correspondence: José M. Pardo,
| | - Francisco J. Quintero
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Seville, Spain
- Francisco J. Quintero,
| |
Collapse
|
22
|
Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell 2020; 31:2597-2629. [PMID: 32877278 PMCID: PMC7851869 DOI: 10.1091/mbc.e18-01-0013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].
Collapse
Affiliation(s)
- Max Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Samantha Dainty
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Natalie Strudwick
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adina D. Mihai
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Jamie N. Watson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Robina Dendooven
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin Schröder
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| |
Collapse
|
23
|
Vladimirov VI, Baksheeva VE, Mikhailova IV, Ismailov RG, Litus EA, Tikhomirova NK, Nazipova AA, Permyakov SE, Zernii EY, Zinchenko DV. A Novel Approach to Bacterial Expression and Purification of Myristoylated Forms of Neuronal Calcium Sensor Proteins. Biomolecules 2020; 10:biom10071025. [PMID: 32664359 PMCID: PMC7407513 DOI: 10.3390/biom10071025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.
Collapse
Affiliation(s)
- Vasiliy I. Vladimirov
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
| | - Viktoriia E. Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Irina V. Mikhailova
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Faculty of BioMedPharmTechnological, Pushchino State Institute of Natural Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ramis G. Ismailov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Ekaterina A. Litus
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Natalia K. Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Aliya A. Nazipova
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Sergei E. Permyakov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Evgeni Yu. Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry V. Zinchenko
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Correspondence:
| |
Collapse
|
24
|
Harupa A, De Las Heras L, Colmenarejo G, Lyons-Abbott S, Reers A, Caballero Hernandez I, Chung CW, Charter D, Myler PJ, Fernández-Menéndez RM, Calderón F, Palomo S, Rodríguez B, Berlanga M, Herreros-Avilés E, Staker BL, Fernández Álvaro E, Kaushansky A. Identification of Selective Inhibitors of Plasmodium N-Myristoyltransferase by High-Throughput Screening. J Med Chem 2020; 63:591-600. [PMID: 31850752 DOI: 10.1021/acs.jmedchem.9b01343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs that target Plasmodium species, the causative agents of malaria, are needed. The enzyme N-myristoyltransferase (NMT) is an essential protein, which catalyzes the myristoylation of protein substrates, often to mediate membrane targeting. We screened ∼1.8 million small molecules for activity against Plasmodium vivax (P. vivax) NMT. Hits were triaged based on potency and physicochemical properties and further tested against P. vivax and Plasmodium falciparum (P. falciparum) NMTs. We assessed the activity of hits against human NMT1 and NMT2 and discarded compounds with low selectivity indices. We identified 23 chemical classes specific for the inhibition of Plasmodium NMTs over human NMTs, including multiple novel scaffolds. Cocrystallization of P. vivax NMT with one compound revealed peptide binding pocket binding. Other compounds show a range of potential modes of action. Our data provide insight into the activity of a collection of selective inhibitors of Plasmodium NMT and serve as a starting point for subsequent medicinal chemistry efforts.
Collapse
Affiliation(s)
- Anke Harupa
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- GlaxoSmithKline , Tres Cantos, Madrid 28760 , Spain
- Novartis Institute for Biomedical Research , Emeryville , California 94608 , United States
| | | | | | - Sally Lyons-Abbott
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- Seattle Structural Genomics Center for Infectious Disease , Seattle , Washington 98109 , United States
| | - Alexandra Reers
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- Seattle Structural Genomics Center for Infectious Disease , Seattle , Washington 98109 , United States
- Seattle Children's Research Institute , Seattle , Washington 98109 , United States
| | | | | | | | - Peter J Myler
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- Seattle Structural Genomics Center for Infectious Disease , Seattle , Washington 98109 , United States
- Seattle Children's Research Institute , Seattle , Washington 98109 , United States
| | | | | | - Sara Palomo
- GlaxoSmithKline , Tres Cantos, Madrid 28760 , Spain
| | | | | | | | - Bart L Staker
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- Seattle Structural Genomics Center for Infectious Disease , Seattle , Washington 98109 , United States
- Seattle Children's Research Institute , Seattle , Washington 98109 , United States
| | | | - Alexis Kaushansky
- Center for Infectious Disease Research , Seattle , Washington 98109 , United States
- Seattle Children's Research Institute , Seattle , Washington 98109 , United States
- Department of Global Health , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
25
|
Baksheeva VE, Nemashkalova EL, Firsov AM, Zalevsky AO, Vladimirov VI, Tikhomirova NK, Philippov PP, Zamyatnin AA, Zinchenko DV, Antonenko YN, Permyakov SE, Zernii EY. Membrane Binding of Neuronal Calcium Sensor-1: Highly Specific Interaction with Phosphatidylinositol-3-Phosphate. Biomolecules 2020; 10:biom10020164. [PMID: 31973069 PMCID: PMC7072451 DOI: 10.3390/biom10020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal calcium sensors are a family of N-terminally myristoylated membrane-binding proteins possessing a different intracellular localization and thereby targeting unique signaling partner(s). Apart from the myristoyl group, the membrane attachment of these proteins may be modulated by their N-terminal positively charged residues responsible for specific recognition of the membrane components. Here, we examined the interaction of neuronal calcium sensor-1 (NCS-1) with natural membranes of different lipid composition as well as individual phospholipids in form of multilamellar liposomes or immobilized monolayers and characterized the role of myristoyl group and N-terminal lysine residues in membrane binding and phospholipid preference of the protein. NCS-1 binds to photoreceptor and hippocampal membranes in a Ca2+-independent manner and the binding is attenuated in the absence of myristoyl group. Meanwhile, the interaction with photoreceptor membranes is less dependent on myristoylation and more sensitive to replacement of K3, K7, and/or K9 of NCS-1 by glutamic acid, reflecting affinity of the protein to negatively charged phospholipids. Consistently, among the major phospholipids, NCS-1 preferentially interacts with phosphatidylserine and phosphatidylinositol with micromolar affinity and the interaction with the former is inhibited upon mutating of N-terminal lysines of the protein. Remarkably, NCS-1 demonstrates pronounced specific binding to phosphoinositides with high preference for phosphatidylinositol-3-phosphate. The binding does not depend on myristoylation and, unexpectedly, is not sensitive to the charge inversion mutations. Instead, phosphatidylinositol-3-phosphate can be recognized by a specific site located in the N-terminal region of the protein. These data provide important novel insights into the general mechanism of membrane binding of NCS-1 and its targeting to specific phospholipids ensuring involvement of the protein in phosphoinositide-regulated signaling pathways.
Collapse
Affiliation(s)
- Viktoriia E. Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (E.L.N.); (S.E.P.)
| | - Alexander M. Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
| | - Arthur O. Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Vasily I. Vladimirov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Pushchino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (D.V.Z.)
| | - Natalia K. Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
| | - Pavel P. Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
| | - Andrey A. Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry V. Zinchenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Pushchino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (D.V.Z.)
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
| | - Sergey E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia; (E.L.N.); (S.E.P.)
| | - Evgeni Yu. Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (A.M.F.); (N.K.T.); (P.P.P.); (Y.N.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-2344
| |
Collapse
|
26
|
Pal A, Pal A, Mallick AI, Biswas P, Chatterjee PN. Molecular characterization of Bu-1 and TLR2 gene in Haringhata Black chicken. Genomics 2020; 112:472-483. [PMID: 30902756 DOI: 10.1016/j.ygeno.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
Haringhata Black is the only registered indigenous poultry genetic resource of West Bengal till date. Molecular characterization of HB revealed that Bu-1 to be highly glycoylated transmembrane protein unlike mammalian Bu-1, whereas TLR2 of HB chicken was observed to be rich in Leucine rich repeat. HB chicken was observed to be genetically close to chicken of Japan, while distant to chicken breed of UK and Chicago. Avian species wise evolution study indicates genetic closeness of HB chicken with turkey. Differential mRNA expression profile for the immune response genes (TLR2, TLR4 and Bu1 gene) were studied for HB chicken with respect to other chicken breed and poultry birds, which reveals that HB chicken were better in terms of B cell mediated immunity and hence better response to vaccination. Hence HB chicken is one of the best poultry genetic resources to be reared under backyard system where biosecurity measures are almost lacking.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India.
| | - Abantika Pal
- Indian Institute of technology, Kharagpur, West Bengal, India
| | | | - P Biswas
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| |
Collapse
|
27
|
Yamamoto Y, Morita D, Shima Y, Midorikawa A, Mizutani T, Suzuki J, Mori N, Shiina T, Inoko H, Tanaka Y, Mikami B, Sugita M. Identification and Structure of an MHC Class I-Encoded Protein with the Potential to Present N-Myristoylated 4-mer Peptides to T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3349-3358. [PMID: 31043477 DOI: 10.4049/jimmunol.1900087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022]
Abstract
Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.
Collapse
Affiliation(s)
- Yukie Yamamoto
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Morita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Shima
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiro Midorikawa
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuaki Mizutani
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Juri Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Mori
- Laboratory of Chemical Ecology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; and
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Alonso AM, Turowski VR, Ruiz DM, Orelo BD, Moresco JJ, Yates JR, Corvi MM. Exploring protein myristoylation in Toxoplasma gondii. Exp Parasitol 2019; 203:8-18. [PMID: 31150653 DOI: 10.1016/j.exppara.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen and the causative agent of toxoplasmosis, a potentially severe disease especially in immunocompromised or congenitally infected humans. Current therapeutic compounds are not well-tolerated, present increasing resistance, limited efficacy and require long periods of treatment. On this context, searching for new therapeutic targets is crucial to drug discovery. In this sense, recent works suggest that N-myristoyltransferase (NMT), the enzyme responsible for protein myristoylation that is essential in some parasites, could be the target of new anti-parasitic compounds. However, up to date there is no information on NMT and the extent of this modification in T. gondii. In this work, we decided to explore T. gondii genome in search of elements related with the N-myristoylation process. By a bioinformatics approach it was possible to identify a putative T. gondii NMT (TgNMT). This enzyme that is homologous to other parasitic NMTs, presents activity in vitro, is expressed in both intra- and extracellular parasites and interacts with predicted TgNMT substrates. Additionally, NMT activity seems to be important for the lytic cycle of Toxoplasma gondii. In parallel, an in silico myristoylome predicts 157 proteins to be affected by this modification. Myristoylated proteins would be affecting several metabolic functions with some of them being critical for the life cycle of this parasite. Together, these data indicate that TgNMT could be an interesting target of intervention for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Andrés M Alonso
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Valeria R Turowski
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Diego M Ruiz
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina
| | - Barbara D Orelo
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James J Moresco
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R Yates
- Department of Chemical Physiology, 10550 North Torrey Pines Road, SR11, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - María M Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (INTECH), CONICET, Universidad Nacional de San Martín. Intendente Marino Km 8.2, B7130, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Slotkin EK, Diolaiti D, Shukla NN, Dela Cruz FS, Clark JJ, Gundem G, Yellapantula VD, Levine MF, You D, Ma P, Pachhal S, Ibanez Sanchez G, Benayed R, Jungbluth AA, Smyth LM, Mauguen A, Gushterova I, Ding H, Spraggon L, Darnell R, Califano A, Ladanyi M, Papaemmanuil E, Kung AL, Hyman DM, Roberts SS. Patient-Driven Discovery, Therapeutic Targeting, and Post-Clinical Validation of a Novel AKT1 Fusion-Driven Cancer. Cancer Discov 2019; 9:605-616. [PMID: 30877085 DOI: 10.1158/2159-8290.cd-18-0953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/18/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Despite the important role of the PI3K/AKT/mTOR axis in the pathogenesis of cancer, to date there have been few functional oncogenic fusions identified involving the AKT genes. A 12-year-old female with a histopathologically indeterminate epithelioid neoplasm was found to harbor a novel fusion between the LAMTOR1 and AKT1 genes. Through expanded use access, she became the first pediatric patient to be treated with the oral ATP-competitive pan-AKT inhibitor ipatasertib. Treatment resulted in dramatic tumor regression, demonstrating through patient-driven discovery that the fusion resulted in activation of AKT1, was an oncogenic driver, and could be therapeutically targeted with clinical benefit. Post-clinical validation using patient-derived model systems corroborated these findings, confirmed a membrane-bound and constitutively active fusion protein, and identified potential mechanisms of resistance to single-agent treatment with ipatasertib. SIGNIFICANCE: This study describes the patient-driven discovery of the first AKT1 fusion-driven cancer and its treatment with the AKT inhibitor ipatasertib. Patient-derived in vitro and in vivo model systems are used to confirm the LAMTOR1-AKT1 fusion as a tumorigenic driver and identify potential mechanisms of resistance to AKT inhibition.This article is highlighted in the In This Issue feature, p. 565.
Collapse
Affiliation(s)
- Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Daniel Diolaiti
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Gunes Gundem
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Venkata D Yellapantula
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Max F Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peilin Ma
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sagarika Pachhal
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lillian M Smyth
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hongxu Ding
- Columbia University Medical Center, New York, New York
| | | | | | | | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen S Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Khan SA, Khan YD, Ahmad S, Allehaibi KH. N-MyristoylG-PseAAC: Sequence-based Prediction of N-Myristoyl Glycine Sites in Proteins by Integration of PseAAC and Statistical Moments. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666181217153958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
N-Myristoylation, an irreversible protein modification, occurs by the covalent attachment of myristate with the N-terminal glycine of the eukaryotic and viral proteins, and is associated with a variety of pathogens and disease-related proteins. Identification of myristoylation sites through experimental mechanisms can be costly, labour associated and time-consuming. Due to the association of N-myristoylation with various diseases, its timely prediction can help in diagnosing and controlling the associated fatal diseases. Herein, we present a method named N-MyristoylG-PseAAC in which we have incorporated PseAAC with statistical moments for the prediction of N-Myristoyl Glycine (NMG) sites. A benchmark dataset of 893 positive and 1093 negative samples was collected and used in this study. For feature vector, various position and composition relative features along with the statistical moments were calculated. Later on, a back propagation neural network was trained using feature vectors and scaled conjugate gradient descent with adaptive learning was used as an optimizer. Selfconsistency testing and 10-fold cross-validation were performed to evaluate the performance of N-MyristoylG-PseAAC, by using accuracy metrics. For self-consistency testing, 99.80% Acc, 99.78% Sp, 99.81% Sn and 0.99 MCC were observed, whereas, for 10-fold cross validation, 97.18% Acc, 98.54% Sp, 96.07% Sn and 0.94 MCC were observed. Thus, it was found that the proposed predictor can help in predicting the myristoylation sites in an efficient and accurate way.
Collapse
Affiliation(s)
- Sher Afzal Khan
- Department of Information Technology, Faculty of Computing and Information Technology in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management Technology, Lahore, Pakistan
| | - Shakeel Ahmad
- Department of Computer Sciences, FCITR, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid H. Allehaibi
- Department of Computer Sciences, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Junqueira LO, Costa MOLD, Rando DGG. N-Myristoyltransferases as antileishmanial targets: a piggyback approach with benzoheterocyclic analogues. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000218087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Hughes T, Sønderby IE, Polushina T, Hansson L, Holmgren A, Athanasiu L, Melbø-Jørgensen C, Hassani S, Hoeffding LK, Herms S, Bergen SE, Karlsson R, Song J, Rietschel M, Nöthen MM, Forstner AJ, Hoffmann P, Hultman CM, Landén M, Cichon S, Werge T, Andreassen OA, Le Hellard S, Djurovic S. Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder. Transl Psychiatry 2018; 8:210. [PMID: 30297702 PMCID: PMC6175894 DOI: 10.1038/s41398-018-0175-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/16/2023] Open
Abstract
Ankyrin-3 (ANK3) is one of the few genes that have been consistently identified as associated with bipolar disorder by multiple genome-wide association studies. However, the exact molecular basis of the association remains unknown. A rare loss-of-function splice-site SNP (rs41283526*G) in a minor isoform of ANK3 (incorporating exon ENSE00001786716) was recently identified as protective of bipolar disorder and schizophrenia. This suggests that an elevated expression of this isoform may be involved in the etiology of the disorders. In this study, we used novel approaches and data sets to test this hypothesis. First, we strengthen the statistical evidence supporting the allelic association by replicating the protective effect of the minor allele of rs41283526 in three additional large independent samples (meta-analysis p-values: 6.8E-05 for bipolar disorder and 8.2E-04 for schizophrenia). Second, we confirm the hypothesis that both bipolar and schizophrenia patients have a significantly higher expression of this isoform than controls (p-values: 3.3E-05 for schizophrenia and 9.8E-04 for bipolar type I). Third, we determine the transcription start site for this minor isoform by Pacific Biosciences sequencing of full-length cDNA and show that it is primarily expressed in the corpus callosum. Finally, we combine genotype and expression data from a large Norwegian sample of psychiatric patients and controls, and show that the risk alleles in ANK3 identified by bipolar disorder GWAS are located near the transcription start site of this isoform and are significantly associated with its elevated expression. Together, these results point to the likely molecular mechanism underlying ANK3´s association with bipolar disorder.
Collapse
Affiliation(s)
- Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. .,NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ida E. Sønderby
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tatiana Polushina
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway ,0000 0000 9753 1393grid.412008.fDr Einar Martens Research Group for Biological Psychiatry, Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lars Hansson
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asbjørn Holmgren
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lavinia Athanasiu
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian Melbø-Jørgensen
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sahar Hassani
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Louise K. Hoeffding
- 0000 0004 0646 7373grid.4973.9Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark ,0000 0000 9817 5300grid.452548.aiPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Stefan Herms
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sarah E. Bergen
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jie Song
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marcella Rietschel
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Markus M. Nöthen
- 0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Andreas J. Forstner
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,0000 0004 1937 0642grid.6612.3Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Per Hoffmann
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Christina M. Hultman
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9919 9582grid.8761.8Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Sven Cichon
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
| | - Thomas Werge
- 0000 0004 0646 7373grid.4973.9Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark ,0000 0000 9817 5300grid.452548.aiPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark ,0000 0001 0674 042Xgrid.5254.6Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A. Andreassen
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway ,0000 0000 9753 1393grid.412008.fDr Einar Martens Research Group for Biological Psychiatry, Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Srdjan Djurovic
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Russo AG, Eden JS, Enosi Tuipulotu D, Shi M, Selechnik D, Shine R, Rollins LA, Holmes EC, White PA. Viral Discovery in the Invasive Australian Cane Toad ( Rhinella marina) Using Metatranscriptomic and Genomic Approaches. J Virol 2018; 92:JVI.00768-18. [PMID: 29899109 PMCID: PMC6096826 DOI: 10.1128/jvi.00768-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cane toads are poisonous amphibians that were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threaten many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality rates, yet few cane toad viruses have been characterized. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences that were genetically similar to viruses infecting frogs, reptiles, and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies that investigate their prevalence and potential as agents for biocontrol. Cane toads are a notorious invasive species, inhabiting over 1.2 million km2 of Australia and threatening native biodiversity. The release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile- and amphibian-specific cluster of the Picornaviridae basal to the Kobuvirus-like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, Rhinella marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains 8 complete RMERV proviruses as well as 21 additional truncated insertions. The oldest full-length RMERV provirus was estimated to have inserted 1.9 million years ago (MYA). To screen for these viral sequences in additional toads, we analyzed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, while RMERV transcripts were observed at all six sites. Finally, we scanned the cane toad genome for nonretroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae. This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species. IMPORTANCE Cane toads are poisonous amphibians that were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threaten many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality rates, yet few cane toad viruses have been characterized. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences that were genetically similar to viruses infecting frogs, reptiles, and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies that investigate their prevalence and potential as agents for biocontrol.
Collapse
Affiliation(s)
- Alice G. Russo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- The Westmead Institute of Medical Research, Centre for Virus Research, Westmead, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Selechnik
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Lee Ann Rollins
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A. White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
35
|
Parra-Acero H, Ros-Rocher N, Perez-Posada A, Kożyczkowska A, Sánchez-Pons N, Nakata A, Suga H, Najle SR, Ruiz-Trillo I. Transfection of Capsaspora owczarzaki, a close unicellular relative of animals. Development 2018; 145:dev.162107. [PMID: 29752387 PMCID: PMC6001378 DOI: 10.1242/dev.162107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
How animals emerged from their unicellular ancestor remains a major evolutionary question. New genome data from the closest unicellular relatives of animals have provided important insights into the evolution of animal multicellularity. We know that the unicellular ancestor of animals had an unexpectedly complex genetic repertoire, including many genes that are key to animal development and multicellularity. Thus, assessing the function of these genes among unicellular relatives of animals is key to understanding how they were co-opted at the onset of the Metazoa. However, such analyses have been hampered by the lack of genetic tools. Progress has been made in choanoflagellates and teretosporeans, two of the three lineages closely related to animals, whereas no tools are yet available for functional analysis in the third lineage: the filastereans. Importantly, filastereans have a striking repertoire of genes involved in transcriptional regulation and other developmental processes. Here, we describe a reliable transfection method for the filasterean Capsaspora owczarzaki. We also provide a set of constructs for visualising subcellular structures in live cells. These tools convert Capsaspora into a unique experimentally tractable organism to use to investigate the origin and evolution of animal multicellularity. Summary: Development of genetic tools in a close unicellular relative of animals, the filasterean Capsaspora owczarzaki, will open new opportunities for functional studies to understand the transition to animal multicellularity.
Collapse
Affiliation(s)
- Helena Parra-Acero
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Perez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Aleksandra Kożyczkowska
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Núria Sánchez-Pons
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Azusa Nakata
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 5562, Shobara, Hiroshima 727-0023, Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 5562, Shobara, Hiroshima 727-0023, Japan
| | - Sebastián R Najle
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain .,Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal, 645, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
36
|
Mozhdehi D, Luginbuhl KM, Simon JR, Dzuricky M, Berger R, Varol HS, Huang FC, Buehne KL, Mayne NR, Weitzhandler I, Bonn M, Parekh SH, Chilkoti A. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nat Chem 2018; 10:496-505. [PMID: 29556049 PMCID: PMC6676901 DOI: 10.1038/s41557-018-0005-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 01/11/2018] [Indexed: 11/09/2022]
Abstract
Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials-fatty-acid-modified elastin-like polypeptides-using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.
Collapse
Affiliation(s)
- Davoud Mozhdehi
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kelli M Luginbuhl
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joseph R Simon
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Michael Dzuricky
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rüdiger Berger
- Physics at Interfaces, Max Planck Institute for Polymer Research, Mainz, Germany
| | - H Samet Varol
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Fred C Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kristen L Buehne
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicholas R Mayne
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Isaac Weitzhandler
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sapun H Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ashutosh Chilkoti
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Karki M, Kumar A, Venkatesan G, Arya S, Pandey AB. Genetic analysis of L1R myristoylated protein of Capripoxviruses reveals structural homogeneity among poxviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 58:224-231. [PMID: 29306003 DOI: 10.1016/j.meegid.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Sheeppox virus (SPPV) and goatpox virus (GTPV) are members of the genus Capripoxvirus (CaPV) of the family Poxviridae. CaPVs are responsible for important contagious diseases of small ruminants that are enzootic to the Indian sub-continent, Central and Northern Africa and the Middle East. In the present study, the sequence and phylogenetic analysis of the L1R gene of sixteen CaPV isolates (seven SPPV and nine GTPV) from India were performed along with 3D homology modeling of the L1R protein. L1R is a myristoylated protein responsible for virion assembly and being present on intracellular mature virion (IMV) surface, it is also a potent target for eliciting neutralizing antibodies. Sequence analysis of CaPV L1R gene revealed an ORF of 738bp with >99% and >96% identity within species and between species, respectively, at both nucleotide as well as amino acid levels. Phylogenetic analysis displayed distinct clusters of members of genus Capripoxvirus, as GTPV, SPPV and LSDV. L1R at the protein level showed various species-specific signature residues that may be useful for future grouping or genotyping of CaPV members. CaPV L1R was predicted to possess myristoylation motif GAAASIQTTVNTLNEKI and a potential N-glycosylation site at amino acid residue 50 (Asn). Despite of different host specificity in poxviruses, comparative sequence analysis of L1R proteins revealed highly conserved nature with presence of myristoylation motif (GXXXS) and six cysteine residues forming three disulfide bonds among all poxviruses. The conserved and immunogenic nature of the CaPV L1R gene may prove to be a potential candidate/target for developing molecular diagnostics including recombinant protein based assays and prophylactics for the control of CaPV diseases in tropical countries like India.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - Gnanavel Venkatesan
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India.
| | - Sargam Arya
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| | - A B Pandey
- Division of Virology, ICAR-Indian Veterinary Research Institute, Mukteswar 263 138, Nainital, Uttarakhand, India
| |
Collapse
|
38
|
Chen I, Chen H, Huang Y, Huang H, Shenkwen L, Hsu Y, Tsai C. A thioredoxin NbTRXh2 from Nicotiana benthamiana negatively regulates the movement of Bamboo mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:405-417. [PMID: 28052479 PMCID: PMC6637981 DOI: 10.1111/mpp.12532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 05/05/2023]
Abstract
An up-regulated gene derived from Bamboo mosaic virus (BaMV)-infected Nicotiana benthamiana plants was cloned and characterized in this study. BaMV is a single-stranded, positive-sense RNA virus. This gene product, designated as NbTRXh2, was matched with sequences of thioredoxin h proteins, a group of small proteins with a conserved active-site motif WCXPC conferring disulfide reductase activity. To examine how NbTRXh2 is involved in the infection cycle of BaMV, we used the virus-induced gene silencing technique to knock down NbTRXh2 expression in N. benthamiana and inoculated the plants with BaMV. We observed that, compared with control plants, BaMV coat protein accumulation increased in knockdown plants at 5 days post-inoculation (dpi). Furthermore, BaMV coat protein accumulation did not differ significantly between NbTRXh2-knockdown and control protoplasts at 24 hpi. The BaMV infection foci in NbTRXh2-knockdown plants were larger than those in control plants. In addition, BaMV coat protein accumulation decreased when NbTRXh2 was transiently expressed in plants. These results suggest that NbTRXh2 plays a role in restricting BaMV accumulation. Moreover, confocal microscopy results showed that NbTRXh2-OFP (NbTRXh2 fused with orange fluorescent protein) localized at the plasma membrane, similar to AtTRXh9, a homologue in Arabidopsis. The expression of the mutant that did not target the substrates failed to reduce BaMV accumulation. Co-immunoprecipitation experiments revealed that the viral movement protein TGBp2 could be the target of NbTRXh2. Overall, the functional role of NbTRXh2 in reducing the disulfide bonds of targeting factors, encoded either by the host or virus (TGBp2), is crucial in restricting BaMV movement.
Collapse
Affiliation(s)
- I‐Hsuan Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Hui‐Ting Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Ying‐Ping Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Hui‐Chen Huang
- Biotechnology CenterNational Chung Hsing UniversityTaichung402Taiwan
| | - Lin‐Ling Shenkwen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Ching‐Hsiu Tsai
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| |
Collapse
|
39
|
Dalio RJD, Herlihy J, Oliveira TS, McDowell JM, Machado M. Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:22-33. [PMID: 29023190 DOI: 10.1094/mpmi-07-17-0174-fi] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-pathogen interactions are controlled by a multilayered immune system, which is activated by pathogen recognition in the host. Pathogens secrete effector molecules to interfere with the immune recognition or signaling network and reprogram cell structure or metabolism. Understanding the effector repertoires of diverse pathogens will contribute to unraveling the molecular mechanism of virulence and developing sustainable disease-control strategies for crops and natural ecosystems. Effector functionality has been investigated extensively in only a small number of pathogen species. However, many more pathogen genomes are becoming available, and much can be learned from a broader view of effector biology in diverse pathosystems. The purpose of this review is to summarize methodology for computational prediction of protein effectors, functional characterization of effector proteins and their targets, and the use of effectors as probes to screen for new sources of host resistance. Although these techniques were generally developed in model pathosystems, many of the approaches are directly applicable for exploration and exploitation of effector biology in pathosystems that are less well studied. We hope to facilitate such exploration, which will broaden understanding of the mechanisms that underpin the biological diversity of plant-pathogen interactions, and maximize the impact of new approaches that leverage effector biology for disease control.
Collapse
Affiliation(s)
- Ronaldo J D Dalio
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| | - John Herlihy
- 2 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Tiago S Oliveira
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| | - John M McDowell
- 2 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Marcos Machado
- 1 Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IA, Cordeirópolis-SP, Brazil; and
| |
Collapse
|
40
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid-Peptide Polymer Fusions that Self-Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017; 56:13979-13984. [PMID: 28879687 PMCID: PMC5909378 DOI: 10.1002/anie.201704625] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022]
Abstract
Inspired by biohybrid molecules that are synthesized in Nature through post-translational modification (PTM), we have exploited a eukaryotic PTM to recombinantly synthesize lipid-polypeptide hybrid materials. By co-expressing yeast N-myristoyltransferase with an elastin-like polypeptide (ELP) fused to a short recognition sequence in E. coli, we show robust and high-yield modification of the ELP with myristic acid. The ELP's reversible phase behavior is retained upon myristoylation and can be tuned to span a 30-60 °C. Myristoylated ELPs provide a versatile platform for genetically pre-programming self-assembly into micelles of varied size and shape. Their lipid cores can be loaded with hydrophobic small molecules by passive diffusion. Encapsulated doxorubicin and paclitaxel exhibit cytotoxic effects on 4T1 and PC3-luc cells, respectively, with potencies similar to chemically conjugated counterparts, and longer plasma circulation than free drug upon intravenous injection in mice.
Collapse
Affiliation(s)
- Kelli M Luginbuhl
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Michael Dzuricky
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Fred C Huang
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Nicholas R Mayne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Kristen L Buehne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
41
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid–Peptide Polymer Fusions that Self‐Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kelli M. Luginbuhl
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Michael Dzuricky
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Fred C. Huang
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Nicholas R. Mayne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Kristen L. Buehne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
42
|
Chen CL, Chien SC, Leu TH, Harn HIC, Tang MJ, Hor LI. Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. J Biomed Sci 2017; 24:58. [PMID: 28822352 PMCID: PMC5563386 DOI: 10.1186/s12929-017-0368-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. Methods We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. Results The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. Conclusions MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0368-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Chun Chien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzeng-Horng Leu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Pharmacology College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hans I-Chen Harn
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
43
|
Castañeda‐Ojeda MP, López‐Solanilla E, Ramos C. Differential modulation of plant immune responses by diverse members of the Pseudomonas savastanoi pv. savastanoi HopAF type III effector family. MOLECULAR PLANT PATHOLOGY 2017; 18:625-634. [PMID: 27116193 PMCID: PMC6638205 DOI: 10.1111/mpp.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 05/25/2023]
Abstract
The Pseudomonas savastanoi pv. savastanoi NCPPB 3335 type III secretion system (T3SS) effector repertoire includes 33 candidates, seven of which translocate into host cells and interfere with plant defences. The present study was performed to investigate the co-existence of both plasmid- and chromosomal-encoded members of the HopAF effector family, HopAF1-1 and HopAF1-2, respectively, in the genome of NCPPB 3335. Here, we show that the HopAF1 paralogues are widely distributed in the Pseudomonas syringae complex, where HopAF1-1 is most similar to the homologues encoded by other P. syringae pathovars infecting woody hosts that belong to phylogroups 1 and 3. We show that the expression of both HopAF1-1 and HopAF-2 is transcriptionally dependent on HrpL and demonstrate their delivery into Nicotiana tabacum leaves. Although the heterologous delivery of either HopAF1-1 or HopAF1-2 significantly suppressed the production of defence-associated reactive oxygen species levels, only HopAF1-2 reduced the levels of callose deposition. Moreover, the expression of HopAF1-2 by functionally effectorless P. syringae pv. tomato DC3000D28E completely inhibited the hypersensitive response in tobacco and significantly increased the competitiveness of the strain in Nicotiana benthamiana. Despite their functional differences, subcellular localization studies reveal that green fluorescent protein (GFP) fusions to either HopAF1-1 or HopAF1-2 are targeted to the plasma membrane when they are expressed in plant cells, a process that is completely dependent on the integrity of their N-myristoylation motif. Our results further support the notion that highly similar T3SS effectors might differentially interact with diverse plant targets, even when they co-localize in the same cell compartment.
Collapse
Affiliation(s)
- M. Pilar Castañeda‐Ojeda
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus Teatinos s/nMálagaE‐29010Spain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Campus de MontegancedoPozuelo de AlarcónMadrid28223Spain
- Departamento de BiotecnologíaEscuela Técnica Superior de Ingenieros Agrónomos, UPMAvda. Complutense S/NMadrid28040Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Campus Teatinos s/nMálagaE‐29010Spain
| |
Collapse
|
44
|
Shibata T, Hadano J, Kawasaki D, Dong X, Kawabata SI. Drosophila TG-A transglutaminase is secreted via an unconventional Golgi-independent mechanism involving exosomes and two types of fatty acylations. J Biol Chem 2017; 292:10723-10734. [PMID: 28476891 DOI: 10.1074/jbc.m117.779710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Transglutaminases (TGs) play essential intracellular and extracellular roles by covalently cross-linking many proteins. Drosophila TG is encoded by one gene and has two alternative splicing-derived isoforms, TG-A and TG-B, which contain distinct N-terminal 46- and 38-amino acid sequences, respectively. The TGs identified to date do not have a typical endoplasmic reticulum (ER)-signal peptide, and the molecular mechanisms of their secretion under physiologic conditions are unclear. Immunocytochemistry revealed that TG-A localizes to multivesicular-like structures, whereas TG-B localizes to the cytosol. We also found that TG-A, but not TG-B, was modified concomitantly by N-myristoylation and S-palmitoylation, and N-myristoylation was a pre-requisite for S-palmitoylation. Moreover, TG-A, but not TG-B, was secreted in response to calcium signaling induced by Ca2+ ionophores and uracil, a pathogenic bacteria-derived substance. Brefeldin A and monensin, inhibitors of the ER/Golgi-mediated conventional pathway, did not suppress TG-A secretion, whereas inhibition of S-palmitoylation by 2-bromopalmitate blocked TG-A secretion. Ultracentrifugation, electron microscopy analyses, and treatments with inhibitors of multivesicular body formation revealed that TG-A was secreted via exosomes together with co-transfected mammalian CD63, an exosomal marker, and the secreted TG-A was taken up by other cells. The 8-residue N-terminal fragment of TG-A containing the fatty acylation sites was both necessary and sufficient for the exosome-dependent secretion of TG-A. In conclusion, TG-A is secreted through an unconventional ER/Golgi-independent pathway involving two types of fatty acylations and exosomes.
Collapse
Affiliation(s)
- Toshio Shibata
- From the Department of Biology, Faculty of Science.,Institute for Advanced Study, and
| | - Jinki Hadano
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daichi Kawasaki
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Xiaoqing Dong
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Department of Biology, Faculty of Science, .,the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
45
|
Liu XX, Wang CY, Luo C, Sheng JQ, Wu D, Hu BJ, Wang JH, Hong YJ. Characterization of cyclophilin D in freshwater pearl mussel ( Hyriopsis schlegelii). Zool Res 2017; 38:103-109. [PMID: 28409506 PMCID: PMC5396027 DOI: 10.24272/j.issn.2095-8137.2017.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclophilin D (referred to as HsCypD) was obtained from the freshwater pearl mussel (Hyriopsis schlegelii). The full-length cDNA was 2 671 bp, encoding a protein consisting of 367 amino acids. HsCypD was determined to be a hydrophilic intracellular protein with 10 phosphorylation sites and four tetratricopeptide repeat (TPR) domains, but no signal peptide. The core sequence region YKGCIFHRIIKDFMVQGG is highly conserved in vertebrates and invertebrates. Phylogenetic tree analysis indicated that CypD from all species had a common origin, and HsCypD had the closest phylogenetic relationship with CypD from Lottia gigantea. The constitutive mRNA expression levels of HsCypD exhibited tissue-specific patterns, with the highest level detected in the intestines, followed by the gonads, and the lowest expression found in the hemocytes.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Chun Luo
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Bei-Juan Hu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Hua Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China; Key Laboratory of Aquatic Animals Resources and Utilization of Jiangxi, Nanchang University, Nanchang Jiangxi 330031, China.
| |
Collapse
|
46
|
Fernández-Lizarbe S, Lecona E, Santiago-Gómez A, Olmo N, Lizarbe MA, Turnay J. Structural and lipid-binding characterization of human annexin A13a reveals strong differences with its long A13b isoform. Biol Chem 2017; 398:359-371. [PMID: 27676605 DOI: 10.1515/hsz-2016-0242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/22/2016] [Indexed: 01/26/2023]
Abstract
Annexin A13 is the founder member of the vertebrate family of annexins, which are comprised of a tetrad of unique conserved domains responsible for calcium-dependent binding to membranes. Its expression is restricted to epithelial intestinal and kidney cells. Alternative splicing in the N-terminal region generates two isoforms, A13a and A13b, differing in a deletion of 41 residues in the former. We have confirmed the expression of both isoforms in human colon adenocarcinoma cells at the mRNA and protein levels. We have cloned, expressed, and purified human annexin A13a for the first time to analyze its structural characteristics. Its secondary structure and thermal stability differs greatly from the A13b isoform. The only tryptophan residue (Trp186) is buried in the protein core in the absence of calcium but is exposed to the solvent after calcium binding even though circular dichroism spectra are quite similar. Non-myristoylated annexin A13a binds in a calcium-dependent manner to acidic phospholipids but not to neutral or raft-like liposomes. Calcium requirements for binding to phosphatidylserine are around 6-fold lower than those required by the A13b isoform. This fact could account for the different subcellular localization of both annexins as binding to basolateral membranes seems to be calcium-dependent and myristoylation-independent.
Collapse
|
47
|
Berezovsky IN, Guarnera E, Zheng Z, Eisenhaber B, Eisenhaber F. Protein function machinery: from basic structural units to modulation of activity. Curr Opin Struct Biol 2016; 42:67-74. [PMID: 27865209 DOI: 10.1016/j.sbi.2016.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Contemporary protein structure is a result of the trade off between the laws of physics and the evolutionary selection. The polymer nature of proteins played a decisive role in establishing the basic structural and functional units of soluble proteins. We discuss how these elementary building blocks work in the hierarchy of protein domain structure, co-translational folding, as well as in enzymatic activity and molecular interactions. Next, we consider modulators of the protein function, such as intermolecular interactions, disorder-to-order transitions, and allosteric signaling, acting via interference with the protein's structural dynamics. We also discuss the post-translational modifications, which is a complementary intricate mechanism evolved for regulation of protein functions and interactions. In conclusion, we assess an anticipated contribution of discussed topics to the future advancements in the field.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
48
|
Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Mol Biol Cell 2016; 27:3926-3936. [PMID: 27733622 PMCID: PMC5170614 DOI: 10.1091/mbc.e16-08-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
Using biophysical methods in live cells and palmitoylation mutants of Src and Fyn, we show that palmitoylation stabilizes the interactions of SFKs with the plasma membrane. Moreover, we show that the amino acid at position 5 regulates the myristoylation and palmitoylation of these proteins, and thereby their targeting to raft domains. The interactions of Src family kinases (SFKs) with the plasma membrane are crucial for their activity. They depend on their fatty-acylated N-termini, containing N-myristate and either a polybasic cluster (in Src) or palmitoylation sites (e.g., Fyn). To investigate the roles of these moieties in SFK membrane association, we used fluorescence recovery after photobleaching beam-size analysis to study the membrane interactions of c-Src-GFP (green fluorescent protein) or Fyn-GFP fatty-acylation mutants. Our studies showed for the first time that the membrane association of Fyn is more stable than that of Src, an effect lost in a Fyn mutant lacking the palmitoylation sites. Unexpectedly, Src-S3C/S6C (containing cysteines at positions 3/6, which are palmitoylated in Fyn) exhibited fast cytoplasmic diffusion insensitive to palmitoylation inhibitors, suggesting defective fatty acylation. Further replacement of the charged Lys-5 by neutral Gln to resemble Fyn (Src-S3C/S6C/K5Q) restored Fyn-like membrane interactions, indicating that Lys-5 in the context of Src-S3C/S6C interferes with its myristoylation/palmitoylation. This was validated by direct myristoylation and palmitoylation studies, which indicated that the residue at position 5 regulates the membrane interactions of Src versus Fyn. Moreover, the palmitoylation levels correlated with targeting to detergent-resistant membranes (rafts) and to caveolin-1. Palmitoylation-dependent preferential containment of Fyn in rafts may contribute to its lower transformation potential.
Collapse
Affiliation(s)
- Efrat Gottlieb-Abraham
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Govind M Pai
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Jena 07745, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
49
|
The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment. Methods Mol Biol 2016; 1415:477-506. [PMID: 27115649 DOI: 10.1007/978-1-4939-3572-7_25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
50
|
Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 2016; 15:2525-46. [PMID: 26038108 PMCID: PMC4745020 DOI: 10.1002/pmic.201400633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
Abstract
Many protein posttranslational modifications (PTMs) are the result of an enzymatic reaction. The modifying enzyme has to recognize the substrate protein's sequence motif containing the residue(s) to be modified; thus, the enzyme's catalytic cleft engulfs these residue(s) and the respective sequence environment. This residue accessibility condition principally limits the range where enzymatic PTMs can occur in the protein sequence. Non‐globular, flexible, intrinsically disordered segments or large loops/accessible long side chains should be preferred whereas residues buried in the core of structures should be void of what we call canonical, enzyme‐generated PTMs. We investigate whether PTM sites annotated in UniProtKB (with MOD_RES/LIPID keys) are situated within sequence ranges that can be mapped to known 3D structures. We find that N‐ or C‐termini harbor essentially exclusively canonical PTMs. We also find that the overwhelming majority of all other PTMs are also canonical though, later in the protein's life cycle, the PTM sites can become buried due to complex formation. Among the remaining cases, some can be explained (i) with autocatalysis, (ii) with modification before folding or after temporary unfolding, or (iii) as products of interaction with small, diffusible reactants. Others require further research how these PTMs are mechanistically generated in vivo.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore.,School of Computer Engineering (SCE), Nanyang Technological University (NTU), Singapore
| |
Collapse
|