1
|
Roesel T, Cao C, Bada Juarez JF, Dal Peraro M, Roke S. Dissecting the Membrane Association Mechanism of Aerolysin Pores at Femtomolar Concentrations Using Water as a Probe. NANO LETTERS 2024; 24:13888-13894. [PMID: 39469905 PMCID: PMC11544699 DOI: 10.1021/acs.nanolett.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Aerolysin is a bacterial toxin that forms transmembrane pores at the host plasma membrane and has a narrow internal diameter and great stability. These assets make it a highly promising nanopore for detecting biopolymers such as nucleic acids and peptides. Although much is known about aerolysin from a microbiological and structural perspective, its membrane association and pore-formation mechanism are not yet fully understood. Here, we used angle-resolved second harmonic scattering (AR-SHS) and single-channel current measurements to investigate how wild-type (wt) aerolysin and its mutants interact with liposomes in aqueous solutions at femtomolar concentrations. Our AR-SHS experiments were sensitive enough to detect changes in the electrostatic properties of membrane-bound aerolysin, which were induced by variations in pH levels. We reported for the first time the membrane binding affinity of aerolysin at different stages of the pore formation mechanism: while wt aerolysin has a binding affinity as high as 20 fM, the quasi-pore and the prepore states show gradually decreasing membrane affinities, incomplete insertion, and a pore opening signature. Moreover, we quantitatively characterized the membrane affinity of mutants relevant for applications to nanopore sensing. Our study provides a label-free method for efficiently screening biological pores suitable for conducting molecular sensing and sequencing measurements as well as for probing pore-forming processes.
Collapse
Affiliation(s)
- Tereza Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chan Cao
- Department
of Inorganic and Analytical Chemistry, School of Chemistry and Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Juan F. Bada Juarez
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Legario FS, Choresca CH, Grace K, Turnbull JF, Crumlish M. Identification and characterization of motile Aeromonas spp. isolated from farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Appl Microbiol 2023; 134:lxad279. [PMID: 38012120 DOI: 10.1093/jambio/lxad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
AIMS Motile Aeromonas septicaemia (MAS) caused by motile Aeromonas species is an important disease in farmed freshwater fish due to intensification of culture and improper farm practices. This study characterized and profiled motile Aeromonas species recovered from clinically sick tilapia farmed in the Philippines, with a view to identifying targeted disease prevention and control measures against MAS in farmed tilapia species. METHODS AND RESULTS Sixteen isolates from diseased farmed Nile tilapia were identified as Aeromonas veronii (n = 14), Aeromonas caviae (n = 1), and Aeromonas dhakensis (n = 1). Five biochemical profiles using API 20E were exhibited by the A. veronii strains giving an unreliable identification. A high level of agreement was observed in identifying the Aeromonas strains using 16S rRNA and rpoD gene sequencing, although the latter has a higher discriminatory value. Three or more virulence genes dominated by cytotoxic enterotoxin act and aerolysin aer were detected. Different genotypes based on virulence gene clustering suggested varied mechanisms used by Aeromonas to colonize and infect or to mutualistically co-exist with the fish. Acquired multiple antibiotic resistance was found in a single A. veronii isolate. All were susceptible to enrofloxacin, oxolinic acid, florfenicol, and chloramphenicol. Tetracycline and sulfonamide resistances and class 1 integron were detected in three A. veronii isolates. CONCLUSION Several strains of motile aeromonads, especially A. veronii, which have varied genotypes based on virulence, biochemical profile, and antibiotic resistance, are involved in MAS in natural disease outbreaks in farmed Nile tilapia in the Philippines.
Collapse
Affiliation(s)
- Francis S Legario
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
- Natural Sciences Department, Iloilo Science and Technology University, Iloilo City, 5000, The Philippines
| | - Casiano H Choresca
- National Fisheries Research and Development Institute-Fisheries Biotechnology Centre, Science City of Muñoz, 3120, The Philippines
| | - Kathryn Grace
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - James F Turnbull
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| |
Collapse
|
3
|
Miyazaki M, Asakura M, Ide T, Hayakawa T. Random Mutational Analysis Targeting Residue K 155 within the Transmembrane β-Hairpin of the Mosquitocidal Mpp46Ab Toxin. BIOLOGY 2023; 12:1481. [PMID: 38132307 PMCID: PMC10741074 DOI: 10.3390/biology12121481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Mpp46Ab is a mosquito-larvicidal pore-forming toxin derived from Bacillus thuringiensis TK-E6. Pore formation is believed to be a central mode of Mpp46Ab action, and the cation selectivity of the channel pores, in particular, is closely related to its mosquito-larvicidal activity. In the present study, we constructed a mutant library in which residue K155 within the transmembrane β-hairpin was randomly replaced with other amino acid residues. Upon mutagenesis and following primary screening using Culex pipiens mosquito larvae, we obtained 15 mutants in addition to the wild-type toxin. Bioassays using purified proteins revealed that two mutants, K155E and K155I, exhibited toxicity significantly higher than that of the wild-type toxin. Although increased cation selectivity was previously reported for K155E channel pores, we demonstrated in the present study that the cation selectivity of K155I channel pores was also significantly increased. Considering the characteristics of the amino acids, the charge of residue 155 may not directly affect the cation selectivity of Mpp46Ab channel pores. Replacement of K155 with glutamic acid or isoleucine may induce a similar conformational change in the region associated with the ion selectivity of the Mpp46Ab channel pores. Mutagenesis targeting the transmembrane β-hairpin may be an effective strategy for enhancing the ion permeability of the channel pores and the resulting mosquito-larvicidal activity of Mpp46Ab.
Collapse
Affiliation(s)
| | | | | | - Tohru Hayakawa
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; (M.M.); (M.A.); (T.I.)
| |
Collapse
|
4
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
5
|
Dong J, Yan T, Yang Q, Zhou S, Song Y, Liu Y, Ma L, Xu N, Yang Y, Ai X. Inhibitory Effect of Polydatin Against Aeromonas hydrophila Infections by Reducing Aerolysin Production. Front Vet Sci 2022; 9:937463. [PMID: 35909695 PMCID: PMC9330046 DOI: 10.3389/fvets.2022.937463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The fast-growing demand for aquatic products has led to the rapid development of aquaculture. However, diseases caused by bacterial pathogens result in severe economic losses all over the world. Although the introduction of antibiotics to aquaculture decreased the mortality of infectious diseases, the emergence of antibiotic resistance caused treatment failure. Therefore, drugs with novel strategies are needed for combatting infections caused by resistant bacterial strains. In the present study, aerolysin was identified as a target for developing drugs from natural compounds against Aeromonas hydrophila (A. hydrophila) infections. We found that polydatin without an inhibitory effect against A. hydrophila growth could decrease the hemolysis mediated by aerolysin. In both western blot and qPCR assays, the addition of polydatin decreased the production of aerolysin by downregulating the aerolysin encoding gene. Moreover, cell viability and animal studies found that polydatin could reduce the pathogenesis of A. hydrophila both in vitro and in vivo. Taken together, these findings provided a novel approach and candidate for treating resistant A. hydrophila infections in aquaculture.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Tianhui Yan
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liang Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
6
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
7
|
Lv P, Yang Y, Li S, Tan CS, Ming D. Biological nanopore approach for single‐molecule analysis of nucleobase modifications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Pengrui Lv
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Yongyi Yang
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
- Department of Biomedical Engineering College of Precision Instruments and Optoelectronics Engineering Tianjin University Tianjin China
| |
Collapse
|
8
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
9
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
10
|
Hayakawa T, Miyazaki M, Harada S, Asakura M, Ide T. Channel-pore cation selectivity is a major determinant of Bacillus thuringiensis Cry46Ab mosquitocidal activity. Appl Microbiol Biotechnol 2020; 104:8789-8799. [DOI: 10.1007/s00253-020-10893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 10/23/2022]
|
11
|
Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, Wang Y, Li S, Liu L, Fu X, Lin Q, Li N, Liles MR, Zhou Z. Aeromonas veroniiand aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ Microbiol 2018; 20:3442-3456. [DOI: 10.1111/1462-2920.14390] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Chubin Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Mingxu Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jinxiong Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Jie Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yadong Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Yibing Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Shuning Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| | - Lihui Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Xiaozhe Fu
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Qiang Lin
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Ningqiu Li
- Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology; Pearl River Fisheries Research Institute; Guangdong Province, Guangzhou 510380 People's Republic of China
| | - Mark R. Liles
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture; Feed Research Institute, Chinese Academy of Agricultural Sciences; Beijing 100081 People's Republic of China
| |
Collapse
|
12
|
Rai AK, Chattopadhyay K. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxinVibrio choleraecytolysin. Mol Microbiol 2015; 97:1051-62. [DOI: 10.1111/mmi.13084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anand Kumar Rai
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| |
Collapse
|
13
|
Natarajan P, Punta M, Kumar A, Yeh AP, Godzik A, Aravind L. Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions. BMC Bioinformatics 2015; 16:7. [PMID: 25592227 PMCID: PMC4387736 DOI: 10.1186/s12859-014-0434-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022] Open
Abstract
Background N-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown. The C-terminal half of BVU_4064 is assigned to protein family PF12986 (DUF3870); the equivalent part of BF1687 was unclassified. Results Crystal structures of both BVU_4064 and BF1687 proteins, solved at the JCSG center, show strikingly similar three-dimensional structures. The main difference between the two is that the two domains in the BVU_4064 protein are connected by a short linker, as opposed to a longer insertion made of 4 helices placed linearly along with a strand that is added to the C-terminal domain in the BF1687 protein. The N-terminal domain in both proteins, corresponding to the PF12985 (DUF3869) domain is a β–sandwich with pre-albumin-like fold, found in many proteins belonging to the Transthyretin clan of Pfam. The structures of C-terminal domains of both proteins, corresponding to the PF12986 (DUF3870) domain in BVU_4064 protein and an unclassified domain in the BF1687 protein, show significant structural similarity to bacterial pore-forming toxins. A helix in this domain is in an analogous position to a loop connecting the second and third strands in the toxin structures, where this loop is implicated to play a role in the toxin insertion into the host cell membrane. The same helix also points to the groove between the N- and C-terminal domains that are loosely held together by hydrophobic and hydrogen bond interactions. The presence of several conserved residues in this region together with these structural determinants could make it a functionally important region in these proteins. Conclusions Structural analysis of BVU_4064 and BF1687 points to possible roles in mediating multiple interactions on the cell-surface/extracellular matrix. In particular the N-terminal domain could be involved in adhesive interactions, the C-terminal domain and the inter-domain groove in lipid or carbohydrate interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0434-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Padmaja Natarajan
- Joint Center for Structural Genomics, San Diego, USA. .,Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| | - Marco Punta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Abhinav Kumar
- Joint Center for Structural Genomics, San Diego, USA. .,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| | - Andrew P Yeh
- Joint Center for Structural Genomics, San Diego, USA. .,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| | - Adam Godzik
- Joint Center for Structural Genomics, San Diego, USA. .,Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Building 38A, Bethesda, MD, 20894, USA.
| |
Collapse
|
14
|
Abstract
Due to the propensity of relapse and resistance with prolonged androgen deprivation therapy (ADT), there is a growing interest in developing non-hormonal therapeutic approaches as alternative treatment modalities for hormone refractory prostate cancer (HRPC). Although the standard treatment for HRPC consists of a combination of ADT with taxanes and anthracyclines, the clinical use of chemotherapeutics is limited by systemic toxicity stemming from nondiscriminatory drug exposure to normal tissues. In order to improve the tumor selectivity of chemotherapeutics, various targeted prodrug approaches have been explored. Antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) strategies leverage tumor-specific antigens and transcription factors for the specific delivery of cytotoxic anticancer agents using various prodrug-activating enzymes. In prostate cancer, overexpression of tumor-specific proteases such as prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) is being exploited for selective activation of anticancer prodrugs designed to be activated through proteolysis by these prostate cancer-specific enzymes. PSMA- and PSA-activated prodrugs typically comprise an engineered high-specificity protease peptide substrate coupled to a potent cytotoxic agent via a linker for rapid release of cytotoxic species in the vicinity of prostate cancer cells following proteolytic cleavage. Over the past two decades, various such prodrugs have been developed and they were effective at inhibiting prostate tumor growth in rodent models; several of these prodrug approaches have been advanced to clinical trials and may be developed into effective therapies for HRPC.
Collapse
Affiliation(s)
- Herve Aloysius
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | | |
Collapse
|
15
|
Xu C, Wang BC, Yu Z, Sun M. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins (Basel) 2014; 6:2732-70. [PMID: 25229189 PMCID: PMC4179158 DOI: 10.3390/toxins6092732] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.
Collapse
Affiliation(s)
- Chengchen Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni. PLoS Pathog 2013; 9:e1003216. [PMID: 23555242 PMCID: PMC3605176 DOI: 10.1371/journal.ppat.1003216] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/09/2013] [Indexed: 11/24/2022] Open
Abstract
Aerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni. Schistosomiasis is the second most widespread tropical parasitic disease after malaria. It is caused by flatworms of the genus Schistosoma. Its life cycle is complex and requires certain freshwater snail species as intermediate host. Given the limited options for treating S. mansoni infections, much research has focused on a better understanding of the immunobiological interactions between the invertebrate host Biomphalaria glabrata and its parasite S. mansoni. A number of studies published over the last two decades have contributed greatly to our understanding of B. glabrata innate immune mechanisms involved in the defense against parasite. However, most studies have focused on the identification of recognition molecules or immune receptors involved in the host/parasite interplay. In the present study, we report the first functional description of a mollusk immune effector protein involved in killing S. mansoni, a protein related to the β pore forming toxin that we named Biomphalysin.
Collapse
|
17
|
Srivastava SS, Krishnasastry MV. Cell membrane repair pathway involves sensing of dynamics of caveolae and caspase-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:117-29. [PMID: 22695842 DOI: 10.1007/978-1-4614-3381-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, Horiguchi Y. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 2011; 286:19549-55. [PMID: 21489981 DOI: 10.1074/jbc.m111.228478] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ε-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Kengo Kitadokoro
- Graduate School of Science and Technology, Department of Biomolecular Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Laetiporus sulphureus lectin and aerolysin protein family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:67-80. [PMID: 20687481 DOI: 10.1007/978-1-4419-6327-7_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The parasitic mushroom Laetiporus sulphureus produces a family of lectins (LSL's) sharing 80-90% sequence identity that possesses a low but significant sequence similarity to the bacterial pore-forming toxins mosquitocidal toxin Mtx-2 from Bacillus sphaericus and a toxin from Clostridium septicum. The crystal structure of one member of the L. sulphureus lectins family (LSLa) reveals unexpected structural similarities to the 1-pore-forming toxins from the aerolysin family, namely, aerolysin from the Gram-negative bacterium Aeromonas hydrophila, epsilon-toxin from Clostridium perfringens and parasporin from B. thuringiensis. This similarity presumably indicates that the hemolytic activity of LSLa proceeds through a molecular mechanism that involves the formation of oligomeric transmembrane beta-barrels. Comparison of the crystal structures of the above mentioned proteins reveals common pore-forming modules, which are then distributed both in bacteria and fungi. Currently, it can be stated that the above three dimensional structures have been key in revealing structural similarities that were elusive at the sequence level. A potential corollary from this is that structural studies aimed at determining high resolution structures of aerolysin-like pore-forming toxins, whose biological activity involves large conformational changes, are mandatory to define protein domains or structural motifs with membrane-binding properties.
Collapse
|
20
|
Pelish TM, McClain MS. Dominant-negative inhibitors of the Clostridium perfringens epsilon-toxin. J Biol Chem 2009; 284:29446-53. [PMID: 19720828 PMCID: PMC2785577 DOI: 10.1074/jbc.m109.021782] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/24/2009] [Indexed: 01/27/2023] Open
Abstract
The Clostridium perfringens epsilon-toxin is responsible for a severe, often lethal intoxication. In this study, we characterized dominant-negative inhibitors of the epsilon-toxin. Site-specific mutations were introduced into the gene encoding epsilon-toxin, and recombinant proteins were expressed in Escherichia coli. Paired cysteine substitutions were introduced at locations predicted to form a disulfide bond. One cysteine in each mutant was introduced into the membrane insertion domain of the toxin; the second cysteine was introduced into the protein backbone. Mutant proteins with cysteine substitutions at amino acid positions I51/A114 and at V56/F118 lacked detectable cytotoxic activity in a MDCK cell assay. Cytotoxic activity could be reconstituted in both mutant proteins by incubation with dithiothreitol, indicating that the lack of cytotoxic activity was attributable to the formation of a disulfide bond. Fluorescent labeling of the cysteines also indicated that the introduced cysteines participated in a disulfide bond. When equimolar mixtures of wild-type epsilon-toxin and mutant proteins were added to MDCK cells, the I51C/A114C and V56C/F118C mutant proteins each inhibited the activity of wild-type epsilon-toxin. Further analysis of the inhibitory activity of the I51C/A114C and V56C/F118C mutant proteins indicated that these proteins inhibit the ability of the active toxin to form stable oligomeric complexes in the context of MDCK cells. These results provide further insight into the properties of dominant-negative inhibitors of oligomeric pore-forming toxins and provide the basis for developing new therapeutics for treating intoxication by epsilon-toxin.
Collapse
Affiliation(s)
- Teal M. Pelish
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Mark S. McClain
- From the Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
21
|
Akiba T, Abe Y, Kitada S, Kusaka Y, Ito A, Ichimatsu T, Katayama H, Akao T, Higuchi K, Mizuki E, Ohba M, Kanai R, Harata K. Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells. J Mol Biol 2009; 386:121-33. [PMID: 19094993 DOI: 10.1016/j.jmb.2008.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/30/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Toshihiko Akiba
- Biological Information Research Center, AIST, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pore-forming activity of alpha-toxin is essential for clostridium septicum-mediated myonecrosis. Infect Immun 2009; 77:943-51. [PMID: 19139192 DOI: 10.1128/iai.01267-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium septicum alpha-toxin is a beta-barrel pore-forming cytolysin that is functionally similar to aerolysin. Residues important in receptor binding, oligomerization, and pore formation have been identified; however, little is known about the activity of the toxin in an infection, although it is essential for disease. We have now shown that deletion of a small portion of the transmembrane domain, so that the toxin is no longer able to form pores, completely abrogates its ability to contribute to disease, as does replacement of the sole cysteine residue with leucine. However, although previous biochemical and cytotoxicity assays clearly indicated that mutations in residues important in oligomerization, binding, and prepore conversion greatly reduced activity or rendered the toxin inactive, once the mutated toxins were overexpressed by the natural host in the context of an infection it was found they were able to cause disease in a mouse model of myonecrosis. These results highlight the importance of testing the activity of virulence determinants in the normal host background and in an infectious disease context and provide unequivocal evidence that it is the ability of alpha-toxin to form a pore that confers its toxicity in vivo.
Collapse
|
23
|
Hatakeyama T, Unno H, Kouzuma Y, Uchida T, Eto S, Hidemura H, Kato N, Yonekura M, Kusunoki M. C-type Lectin-like Carbohydrate Recognition of the Hemolytic Lectin CEL-III Containing Ricin-type β-Trefoil Folds. J Biol Chem 2007; 282:37826-35. [DOI: 10.1074/jbc.m705604200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Osusky M, Teschke L, Wang X, Wong K, Buckley JT. A chimera of interleukin 2 and a binding variant of aerolysin is selectively toxic to cells displaying the interleukin 2 receptor. J Biol Chem 2007; 283:1572-1579. [PMID: 17981806 DOI: 10.1074/jbc.m706424200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aerolysin is a bacterial toxin that binds to glycosylphosphatidylinositol-anchored proteins (GPI-AP) on mammalian cells and oligomerizes, inserting into the target membranes and forming channels that cause cell death. We have made a variant of aerolysin, R336A, that has greatly reduced the ability to bind to GPI-AP, and as a result it is only very weakly active. Fusion of interleukin 2 (IL2) to the N terminus of R336A-aerolysin results in a hybrid that has little or no activity against cells that do not have an IL2 receptor because it cannot bind to the GPI-AP on the cells. Strikingly, the presence of the IL2 moiety allows this hybrid to bind to cells displaying high affinity IL2 receptors. Once bound, the hybrid molecules form insertion-competent oligomers. Cell death occurs at picomolar concentrations of the hybrid, whereas the same cells are insensitive to much higher concentrations of R336A-aerolysin lacking the IL2 domain. The targeted channel-forming hybrid protein may have important advantages as a therapeutic agent.
Collapse
Affiliation(s)
- Milan Osusky
- Protox Therapeutics Incorporated, Vancouver, British Columbia V6C 3E8, Canada
| | - Lisa Teschke
- Protox Therapeutics Incorporated, Vancouver, British Columbia V6C 3E8, Canada
| | - Xiaoying Wang
- Protox Therapeutics Incorporated, Vancouver, British Columbia V6C 3E8, Canada
| | - Kevin Wong
- Protox Therapeutics Incorporated, Vancouver, British Columbia V6C 3E8, Canada
| | - J Thomas Buckley
- Protox Therapeutics Incorporated, Vancouver, British Columbia V6C 3E8, Canada.
| |
Collapse
|
25
|
Williams SA, Merchant RF, Garrett-Mayer E, Isaacs JT, Buckley JT, Denmeade SR. A prostate-specific antigen-activated channel-forming toxin as therapy for prostatic disease. J Natl Cancer Inst 2007; 99:376-85. [PMID: 17341729 PMCID: PMC4133793 DOI: 10.1093/jnci/djk065] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Most men will develop prostatic abnormalities, such as benign prostatic hyperplasia (BPH) or prostate cancer, as they age. Prostate-specific antigen (PSA) is a serine protease that is secreted at high levels by the normal and diseased prostate. Therapies that are activated by PSA may prove effective in treating prostatic malignancies. METHODS We modified proaerolysin (PA), the inactive precursor of a bacterial cytolytic pore-forming protein, to produce a PSA-activated protoxin (PRX302). The viability of the prostate adenocarcinoma cell lines LNCaP, PC-3, CWR22H, and DU145 and the bladder cancer cell line TSU after treatment with PA or PRX302 in the presence or absence of purified PSA was assayed. Mice carrying xenograft tumors derived from LNCaP, CWR22H, or TSU cells were treated with intratumoral injection of PA or PRX302, and tumor size was monitored. To test the safety of PRX302, we administered it into the PSA-secreting prostate glands of cynomolgus monkeys. All statistical tests were two-sided. RESULTS Native PA was highly toxic in vitro but had no tumor-specific effects in vitro or in vivo. Picomolar concentrations of PRX302 led to PSA-dependent decreases in cell viability in vitro (PRX302 versus PRX302 + PSA: DU145 cells, mean viability = 78.7% versus mean = 1.6%, difference = 77.1%, 95% confidence interval [CI] = 70.6% to 86.1%; P<.001; TSU cells, mean = 100.2% versus mean = 1.4%, difference = 98.8%, 95% CI = 96.4% to 104.0%; P<.001). Single intratumoral injections of PRX302 produced substantial and often complete regression of PSA-secreting human prostate cancer xenografts (5 microg dose, complete regression in 6 of 26 mice bearing LNCap or CWR22H xenografts [23%]; 10 microg dose, complete regression in 10 of 26 mice [38.5%]) but not PSA-null bladder cancer xenografts. The prostates of cynomolgus monkeys injected with a single dose of PRX302 displayed extensive but organ-confined damage, with no toxicity to neighboring organs or general morbidity. CONCLUSIONS Our observations demonstrate the potential safe and effective intraprostatic application of this engineered protoxin.
Collapse
Affiliation(s)
- Simon A Williams
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
26
|
Iacovache I, Paumard P, Scheib H, Lesieur C, Sakai N, Matile S, Parker MW, van der Goot FG. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 2006; 25:457-66. [PMID: 16424900 PMCID: PMC1383540 DOI: 10.1038/sj.emboj.7600959] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 12/16/2005] [Indexed: 11/09/2022] Open
Abstract
The bacterial toxin aerolysin kills cells by forming heptameric channels, of unknown structure, in the plasma membrane. Using disulfide trapping and cysteine scanning mutagenesis coupled to thiol-specific labeling on lipid bilayers, we identify a loop that lines the channel. This loop has an alternating pattern of charged and uncharged residues, suggesting that the transmembrane region has a beta-barrel configuration, as observed for Staphylococcal alpha-toxin. Surprisingly, we found that the turn of the beta-hairpin is composed of a stretch of five hydrophobic residues. We show that this hydrophobic turn drives membrane insertion of the developing channel and propose that, once the lipid bilayer has been crossed, it folds back parallel to the plane of the membrane in a rivet-like fashion. This rivet-like conformation was modeled and sequence alignments suggest that such channel riveting may operate for many other pore-forming toxins.
Collapse
Affiliation(s)
- Ioan Iacovache
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Paumard
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Holger Scheib
- Department of Structural Biology, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland
- SBC Lab AG, Winkel, Switzerland
| | - Claire Lesieur
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Michael W Parker
- Biota Structural Biology Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - F Gisou van der Goot
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Department of Genetics & Microbiology, CMU, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 5652; Fax: +41 22 379 5896; E-mail:
| |
Collapse
|
27
|
Sher D, Fishman Y, Zhang M, Lebendiker M, Gaathon A, Mancheño JM, Zlotkin E. Hydralysins, a New Category of β-Pore-forming Toxins in Cnidaria. J Biol Chem 2005; 280:22847-55. [PMID: 15824108 DOI: 10.1074/jbc.m503242200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cnidaria are venomous animals that produce diverse protein and polypeptide toxins, stored and delivered into the prey through the stinging cells, the nematocytes. These include pore-forming cytolytic toxins such as well studied actinoporins. In this work, we have shown that the non-nematocystic paralytic toxins, hydralysins, from the green hydra Chlorohydra viridissima comprise a highly diverse group of beta-pore-forming proteins, distinct from other cnidarian toxins but similar in activity and structure to bacterial and fungal toxins. Functional characterization of hydralysins reveals that as soluble monomers they are rich in beta-structure, as revealed by far UV circular dichroism and computational analysis. Hydralysins bind erythrocyte membranes and form discrete pores with an internal diameter of approximately 1.2 nm. The cytolytic effect of hydralysin is cell type-selective, suggesting a specific receptor that is not a phospholipid or carbohydrate. Multiple sequence alignment reveals that hydralysins share a set of conserved sequence motifs with known pore-forming toxins such as aerolysin, epsilon-toxin, alpha-toxin, and LSL and that these sequence motifs are found in and around the poreforming domains of the toxins. The importance of these sequence motifs is revealed by the cloning, expression, and mutagenesis of three hydralysin isoforms that strongly differ in their hemolytic and paralytic activities. The correlation between the paralytic and cytolytic activities of hydralysin suggests that both are a consequence of receptor-mediated pore formation. Hydralysins and their homologues exemplify the wide distribution of beta-pore formers in biology and provide a useful model for the study of their molecular mode of action.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:91-142. [PMID: 15561302 DOI: 10.1016/j.pbiomolbio.2004.01.009] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.
Collapse
Affiliation(s)
- Michael W Parker
- Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
29
|
Galdiero S, Gouaux E. High resolution crystallographic studies of alpha-hemolysin-phospholipid complexes define heptamer-lipid head group interactions: implication for understanding protein-lipid interactions. Protein Sci 2005; 13:1503-11. [PMID: 15152085 PMCID: PMC2279993 DOI: 10.1110/ps.03561104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The alpha-hemolysin is an archetypal pore-forming protein that is secreted from Staphylococcus aureus as a water-soluble monomer. When the monomer binds to the membrane of a susceptible cell, the membrane-bound molecules assemble into the lytic heptamer. Although a bilayer or a bilayer-like environment are essential to toxin assembly, there is no high resolution information on toxin-phospholipid complexes. We have determined the structures of detergent-solubilized alpha-hemolysin heptamer bound to glycerophosphocholine or dipropanoyl glycerophosphocholine at 1.75-1.80 A resolution and 110 K. The phosphocholine head group binds to each subunit in a crevice between the rim and the stem domains. The quaternary ammonium group interacts primarily with aromatic residues, whereas the phosphodiester moiety interacts with a conserved arginine residue. These structures provide a molecular basis for understanding why alpha-hemolysin preferentially assembles on membranes comprised of phosphocholine lipids.
Collapse
Affiliation(s)
- Stefania Galdiero
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
30
|
Otzen DE, Oliveberg M. Transient formation of nano-crystalline structures during fibrillation of an Abeta-like peptide. Protein Sci 2004; 13:1417-21. [PMID: 15096642 PMCID: PMC2286749 DOI: 10.1110/ps.03538904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During the first few minutes of fibrillation of a 14-residue peptide homologous to the hydrophobic C-terminal part of the Abeta-peptide, EM micrographs reveal small crystalline areas (100 to 150 nm, repeating unit 47 A) scattered in more amorphous material. On a longer time scale, these crystalline areas disappear and are replaced by tangled clusters resembling protofilaments (hours), and eventually by more regular amyloid fibrils of 60 A to 120 A diameter (days). The transient population of the crystalline areas indicates the presence of ordered substructures in the early fibrillation process, the diameter of which matches the length of the 14-mer peptide in an extended beta-strand conformation.
Collapse
Affiliation(s)
- Daniel E Otzen
- Department of Life Sciences, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
31
|
Morales C, Lee MD, Hofacre C, Maurer JJ. Detection of a Novel Virulence Gene and a Salmonella Virulence Homologue Among Escherichia coli Isolated from Broiler Chickens. Foodborne Pathog Dis 2004; 1:160-5. [PMID: 15992275 DOI: 10.1089/fpd.2004.1.160] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the diversity of Escherichia coli pathotypes, there are many virulence genes common to isolates from food animals and humans, suggesting that opportunity exists for genetic exchange between human and animal isolates to create the next emerging, foodborne pathogen. Hemolytic activity in E. coli has been attributed to hemolysin genes found in either uropathogenic or enterohemorrhagic E. coli. These E. coli hemolysins are classified as RTX toxins due to a repetitive toxin domain and similar gene organization, sequence homology, and mechanism of action and presence in animal and human E. coli isolates. Certain hemolytic animal isolates, however, lack these E. coli hemolysin genes. Recently, we identified a hemolysin from E. coli, isolated from poultry, with significant homology to the K12 "silent" hemolysin gene she. This gene was present only in one of four hemolytic, avian E. coli isolates examined, suggesting that the other three E. coli contain a gene distinct from the RTX toxin genes, hlyA and the she homolog, hlyE. A phagemid library was made from chicken E. coli isolate 963726, which was negative for hemolysin gene hlyA and hlyE. A hemolytic clone was identified from this library, which contained a 3.3-kb Sau3A DNA insert. The nucleotide sequences of this DNA insert revealed two, open reading frames (ORF). The first ORF encoded for a 40-Kdal protein with no significant homology to known hemolysins reported in the Gen- Bank DNA/Protein database. The second ORF specified a 26-Kdal protein with significant homology to a Salmonella regulatory gene mig-14 that had a broad distribution among the pathogenic, animal E. coli isolates. Deletion of the second orf did not abrogate hemolysis, indicating that the first ORF encoded the hemolysin. This new bacterial gene designated hlyF represents a new class of hemolysin.
Collapse
Affiliation(s)
- Cesar Morales
- Poultry Diagnostic Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
32
|
Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak AK. Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol 2004; 11:797-8. [PMID: 15258571 DOI: 10.1038/nsmb804] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 05/20/2004] [Indexed: 11/09/2022]
Abstract
Epsilon-toxin from Clostridium perfringens is a lethal toxin. Recent studies suggest that the toxin acts via an unusually potent pore-forming mechanism. Here we report the crystal structure of epsilon-toxin, which reveals structural similarity to aerolysin from Aeromonas hydrophila. Pore-forming toxins can change conformation between soluble and transmembrane states. By comparing the two toxins, we have identified regions important for this transformation.
Collapse
Affiliation(s)
- Ambrose R Cole
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
33
|
Zhang M, Fishman Y, Sher D, Zlotkin E. Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in hydra. Biochemistry 2003; 42:8939-44. [PMID: 12885226 DOI: 10.1021/bi0343929] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Cnidaria, the production of neurotoxic polypeptides is attributed to the ectodermal stinging cells (cnidocytes), which are discharged for offensive (prey capture) and/or defensive purposes. In this study, a new paralysis-inducing (neurotoxic) protein from the green hydra Chlorohydra viridissima was purified, cloned, and expressed. This paralytic protein is unique in that it (1) is derived from a noncnidocystic origin, (2) reveals a clear animal group-selective toxicity, (3) possesses an uncommon primary structure, remindful of pore-forming toxins, and (4) has a fast cytotoxic effect on insect cells but not on the tested mammalian cells. The possible biological role of such a noncnidocystic toxin is discussed.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
34
|
Hardy SP, Lund T, Granum PE. CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett 2001; 197:47-51. [PMID: 11287145 DOI: 10.1111/j.1574-6968.2001.tb10581.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CytK is a cytotoxin isolated from a strain of Bacillus cereus cultured from cases of necrotic enteritis and the amino acid sequence of the protein suggests that it may belong to the family of beta-barrel pore-forming toxins. We show here in planar lipid bilayers the toxin is able to form pores which are weakly anion selective and exhibit an open channel probability close to one. The predicted minimum pore diameter is approximately 7 A. We also show that cytK is a potent cytotoxin against human intestinal Caco-2 epithelia. CytK, like other beta-barrel pore-forming toxins, spontaneously forms oligomers which are resistant to sodium dodecyl sulphate (SDS), but not to boiling. CytK represents a pore-forming toxin linked with human cases of necrotic enteritis.
Collapse
Affiliation(s)
- S P Hardy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, East Sussex, UK.
| | | | | |
Collapse
|
35
|
Bruhn H, Leippe M. Membrane-permeabilizing polypeptides of amoebae – constituents of an archaic antimicrobial system. ZOOLOGY 2001; 104:3-11. [PMID: 16351813 DOI: 10.1078/0944-2006-00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 01/17/2001] [Indexed: 11/18/2022]
Abstract
Amoebae may be viewed as primitive, actively phagocytosing eukaryotic cells, many of which use bacteria as a major nutrient source. At a very archaic level, amoebae exert mechanisms which kill bacteria comparable to those found in phagocytic cells of higher organisms. Accordingly, it is tempting to suggest that the ancestors of effector cells of the innate immune system were bacteria-feeding amoebae and that their molecular armament is ancient. Here, we summarize the characteristics of antimicrobial and cytolytic 77-residue polypeptides from the protozoon Entamoeba histolytica for which correlates were found in effector cells of the mammalian immune systems. Based on the current knowledge about these small membrane-destabilizing proteins of phylogenetically extremely diverse origin, we discuss similarities and differences in their structure and activities.
Collapse
Affiliation(s)
- H Bruhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
36
|
Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT. Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 2000; 299:1005-17. [PMID: 10843854 DOI: 10.1006/jmbi.2000.3801] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibers of pilin monomers (pili) form the dominant adhesin of Pseudomonas aeruginosa, and they play an important role in infections by this opportunistic bacterial pathogen. Blocking adhesion is therefore a target for vaccine development. The receptor-binding site is located in a C-terminal disulphide-bonded loop of each pilin monomer, but functional binding sites are displayed only at the tip of the pilus. A factor complicating vaccination is that different bacterial strains produce distinct, and sometimes highly divergent, pilin variants. It is surprising that all strains still appear to bind a common receptor, asialo-GM1. Here, we present the 1.63 A crystal structure of pilin from P. aeruginosa strain PAK. The structure shows that the proposed receptor-binding site is formed by two beta-turns that create a surface dominated by main-chain atoms. Receptor specificity could therefore be maintained, whilst allowing side-chain variation, if the main-chain conformation is conserved. The location of the binding site relative to the proposed packing of the pilus fiber raises new issues and suggests that the current fiber model may have to be reconsidered. Finally, the structure of the C-terminal disulphide-bonded loop will provide the template for the structure-based design of a consensus sequence vaccine.
Collapse
Affiliation(s)
- B Hazes
- Department of Medical Microbiology and Immunology, Canadian Bacterial Diseases Network, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | | | | | | | | |
Collapse
|
37
|
Abstract
The past three years have shed light on how the pore-forming toxin aerolysin binds to its target cell and then hijacks cellular devices to promote its own polymerization and pore formation. This selective permeabilization of the plasma membrane has unexpected intracellular consequences that might explain the importance of aerolysin in Aeromonas pathogenicity.
Collapse
Affiliation(s)
- L Abrami
- Dept of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
38
|
Nomura T, Hamashima H, Okamoto K. Carboxy terminal region of haemolysin of Aeromonas sobria triggers dimerization. Microb Pathog 2000; 28:25-36. [PMID: 10623561 DOI: 10.1006/mpat.1999.0321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Haemolysin of Aeromonas sobria is released into the culture supernatant in the form of prohaemolysin. Removal of a 42 amino acid peptide at the carboxy-terminal end converts prohaemolysin into mature haemolysin. As the role of the peptide removed from the mature haemolysin has not been studied, we mutated the haemolysin genes to delete several amino acid residues from the carboxy terminus, expressed the mutant genes in A. sobria and analysed the haemolysins produced. Deletion of more than three amino acid residues significantly reduced the efficiency of secretion of haemolysin into the culture supernatant. Mutant haemolysins with deletion of 10 amino acids were easily degraded in cells. Furthermore, cross-linking experiments indicated that the haemolysins dimerize in cells, and thus dimerized haemolysins are translocated across the outer membrane and appear in the culture supernatant. These results indicated that the carboxy-terminal end of prohaemolysin triggers dimerization of haemolysin in cells, resulting in the efficient secretion of haemolysin into the culture supernatant.
Collapse
Affiliation(s)
- T Nomura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Yamashiro, Tokushima, 770-8514, Japan
| | | | | |
Collapse
|
39
|
Fivaz M, Velluz MC, van der Goot FG. Dimer dissociation of the pore-forming toxin aerolysin precedes receptor binding. J Biol Chem 1999; 274:37705-8. [PMID: 10608828 DOI: 10.1074/jbc.274.53.37705] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pore-forming toxin aerolysin is secreted by Aeromonas hydrophila as an inactive precursor. Based on chemical cross-linking and gel filtration, we show here that proaerolysin exists as a monomer at low concentrations but is dimeric above 0.1 mg/ml. At intermediate concentrations, monomers and dimers appeared to be in rapid equilibrium. All together our data indicate that, at low concentrations, the toxin is a monomer and that this species is competent for receptor binding. In contrast, a mutant toxin that forms a covalent dimer was unable to bind to target cells.
Collapse
Affiliation(s)
- M Fivaz
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
40
|
Abrami L, van der Goot FG. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 1999; 147:175-84. [PMID: 10508864 PMCID: PMC2164982 DOI: 10.1083/jcb.147.1.175] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It has been proposed that the plasma membrane of many cell types contains cholesterol-sphingolipid-rich microdomains. Here, we analyze the role of these microdomains in promoting oligomerization of the bacterial pore-forming toxin aerolysin. Aerolysin binds to cells, via glycosyl phosphatidylinositol-anchored receptors, as a hydrophilic soluble protein that must polymerize into an amphipathic ring-like complex to form a pore. We first show that oligomerization can occur at >10(5)-fold lower toxin concentration at the surface of living cells than in solution. Our observations indicate that it is not merely the number of receptors on the target cell that is important for toxin sensitivity, but their ability to associate transiently with detergent resistant microdomains. Oligomerization appears to be promoted by the fact that the toxin bound to its glycosyl phosphatidylinositol-anchored receptors, can be recruited into these microdomains, which act as concentration devices.
Collapse
Affiliation(s)
- Laurence Abrami
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
41
|
Abstract
The mechanism by which a soluble protein converts into a protein that spans a membrane remains a central question in understanding the molecular mechanism of toxicity of bacterial protein toxins. Using crystallographic structures of soluble toxins as templates, the past year has seen a number of experiments that are designed to probe the membrane state using other structural methods. In addition, crystallographic information concerning the clostridial neurotoxins has emerged, suggesting a novel mechanism of pore formation and new relationships between toxin binding domains.
Collapse
Affiliation(s)
- D B Lacy
- Department of Chemistry University of California at Berkeley Berkeley CA 94720 USA.
| | | |
Collapse
|
42
|
Müller SA, Engel A. Mass Measurement in the Scanning Transmission Electron Microscope: A Powerful Tool for Studying Membrane Proteins. J Struct Biol 1998; 121:219-30. [PMID: 9618342 DOI: 10.1006/jsbi.1997.3953] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The technique of mass measurement in the scanning transmission electron microscope is briefly presented. Results obtained for membrane proteins, with particular emphasis on the channel forming proteins, are discussed. The data illustrate the versatility of the technique which is applicable to particulate, filamentous, and sheet-like structures. When combined with composition analysis, the absolute mass values measured with the STEM allow protein stoichiometries to be unambiguously defined. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- SA Müller
- Maurice E. Müller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | |
Collapse
|
43
|
Hasler L, Heymann JB, Engel A, Kistler J, Walz T. 2D crystallization of membrane proteins: rationales and examples. J Struct Biol 1998; 121:162-71. [PMID: 9615435 DOI: 10.1006/jsbi.1998.3960] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The difficulty in crystallizing channel proteins in three dimensions limits the use of X-ray crystallography in solving their structures. In contrast, the amphiphilic character of integral membrane proteins promotes their integration into artificial lipid bilayers. Protein-protein interactions may lead to ordering of the proteins within the lipid bilayer into two-dimensional crystals that are amenable to structural studies by electron crystallography and atomic force microscopy. While reconstitution of membrane proteins with lipids is readily achieved, the mechanisms for crystal formation during or after reconstitution are not well understood. The nature of the detergent and lipid as well as pH and counter-ions is known to influence the crystal type and quality. Protein-protein interactions may also promote crystal stacking and aggregation of the sheet-like crystals, posing problems in data collection. Although highly promising, the number of well-studied examples is still too small to draw conclusions that would be applicable to any membrane protein of interest. Here we discuss parameters influencing the outcome of two-dimensional crystallization trials using prominent examples of channel protein crystals and highlight areas where further improvements to crystallization protocols can be made.
Collapse
Affiliation(s)
- L Hasler
- Maurice E. Müller Institute for Microscopy, Biozentrum, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|