1
|
Zhang D, Cheng C, Yang M, Zhang X, Yu X, Wang M. MicroRNA-181b-5p/HEY2 axis is involved in the progress of deep venous thrombosis via mediating vascular endothelial injury. Hematology 2024; 29:2423438. [PMID: 39495146 DOI: 10.1080/16078454.2024.2423438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Deep-venous thrombosis (DVT) refers to abnormal blood clotting in the deep vein cavity, and post-thrombotic syndrome (PTS) is the most frequent complication. The study explored the impact of microRNA 181b-5p on DVT progression based on human umbilical vein endothelial cells (HUVECs). METHODS Levels of miR-181b-5p were examined in 150 cases with acute lower extremity DVT. ROC curve and K-M plot were drawn for clinical value assessment. The role of miR-181b-5p in HUVECs viability, migration, apoptosis, inflammatory response and adhesion factors' release was investigated. Target gene of miR-181b-5p was predicted, and its role in cell function was explored. RESULTS Low-expressed miR-181b-5p showed favorable diagnostic performance in differentiating DVT with the AUC of 0.948. Patients with low miR-181b-5p had a high incidence of PTS. miR-181b-5p overexpression promoted HUVECs' viability and migration, while inhibiting cell apoptosis and release of inflammatory and adhesion cytokines. As the target gene of miR-181b-5p, HEY2 overexpression reversed the role of miR-181b-5p in HUVECs. CONCLUSION MiR-181b-5p serves as a potential biomarker for DVT diagnosis and PTS development. Overexpression of this miRNA targeted HEY2 to alleviate endothelial cell damage.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Orthopedics, Zibo Central Hospital, Zibo, People's Republic of China
| | - Cheng Cheng
- Department of Cardiovascular Medicine, Zibo Central Hospital, Zibo, People's Republic of China
| | - Meiying Yang
- Department of Orthopedics, Zibo Central Hospital, Zibo, People's Republic of China
| | - Xiuyin Zhang
- Department of Burn Plastic Surgery, Zibo Central Hospital, Zibo, People's Republic of China
| | - Xinming Yu
- Department of Vascular Surgery, Zibo Central Hospital, Zibo, People's Republic of China
| | - Min Wang
- Department of Vascular Surgery, Zibo Central Hospital, Zibo, People's Republic of China
| |
Collapse
|
2
|
Zhang J, Huang S, Zhu Z, Gatt A, Liu J. E-selectin in vascular pathophysiology. Front Immunol 2024; 15:1401399. [PMID: 39100681 PMCID: PMC11294169 DOI: 10.3389/fimmu.2024.1401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Selectins are a group of Ca2+-dependent, transmembrane type I glycoproteins which attract cell adhesion and migration. E-selectin is exclusively expressed in endothelial cells, and its expression is strongly enhanced upon activation by pro-inflammatory cytokines. The interaction of E-selectin with its ligands on circulating leukocytes captures and slows them down, further facilitating integrin activation, firm adhesion to endothelial cells and transmigration to tissues. Oxidative stress induces endothelial cell injury, leading to aberrant expression of E-selectin. In addition, the elevated level of E-selectin is positively related to high risk of inflammation. Dysregulation of E-selectin has been found in several pathological conditions including acute kidney injury (AKI), pulmonary diseases, hepatic pathology, Venous thromboembolism (VTE). Deletion of the E-selectin gene in mice somewhat ameliorates these complications. In this review, we describe the mechanisms regulating E-selectin expression, the interaction of E-selectin with its ligands, the E-selectin physiological and pathophysiological roles, and the therapeutical potential of targeting E-selectin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shengshi Huang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| | - Zhiying Zhu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Alex Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Haematology Laboratory, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Ju Liu
- Department of Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, China
| |
Collapse
|
3
|
Hanna J, Rashid R, Hanna M, Elkomos BE, Ebeidallah G. Aspirin Compared to Other Thromboprophylactic Agents in Patients Following Total Hip Arthroplasty: A Literature Review. Cureus 2024; 16:e65645. [PMID: 39205760 PMCID: PMC11351391 DOI: 10.7759/cureus.65645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Total hip arthroplasty (THA) is a common but major surgery performed in the United Kingdom and around the globe. THA is associated with several postoperative complications, with one of the most common being venous thromboembolism (VTE) in the form of deep venous thrombosis (DVT) or pulmonary embolism (PE). VTE following orthopaedic surgery can have major consequences in terms of patient morbidity and may even cause mortality. It carries a significant cost to the health service, and thromboprophylactic agents are used to decrease the risk. Several different options are available for chemical thromboprophylaxis, including aspirin, low-molecular-weight heparin (LMWH), direct oral anticoagulants (DOACs), and warfarin. This study aims to review the literature to determine if aspirin is less superior to the other available chemical thromboprophylaxis in postoperative patients following THA. The primary outcome assessed in this review is rates of symptomatic 90-day VTE in the form of PE or DVT. A literature review was conducted using PubMed, Scopus, and Google Scholar using the following terms: 'Aspirin AND (low molecular weight heparin OR LMWH OR Enoxaparin OR Apixaban OR DOAC OR direct oral anticoagulant OR warfarin) AND (orthopaedic OR orthopedic) AND (Total hip replacement OR THR OR THA OR total hip arthroplasty) AND ('venous thromboembolism' OR VTE).' Aspirin appears to have promising results as thromboprophylaxis in cases of THA. However, it is still up for debate as to whether it is non-inferior to other forms of thromboprophylaxis.
Collapse
Affiliation(s)
- Joseph Hanna
- Trauma and Orthopaedics, Wirral University Teaching Hospital NHS Foundation Trust, Wirral, GBR
| | - Rahel Rashid
- General and Colorectal Surgery, Arrowe Park Hospital, Wirral, GBR
| | - Mark Hanna
- Vascular Surgery, Countess of Chester Hospital, Chester, GBR
| | | | | |
Collapse
|
4
|
Stępień K, Ząbczyk M, Kopytek M, Natorska J, Zalewski J, Undas A. Reduced fibrin clot permeability on admission and elevated E-selectin at 3 months as novel risk factors of residual pulmonary vascular obstruction in patients with acute pulmonary embolism. J Thromb Thrombolysis 2024; 57:248-259. [PMID: 37932588 PMCID: PMC10869393 DOI: 10.1007/s11239-023-02901-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Residual pulmonary vascular obstruction (RPVO) is common following pulmonary embolism (PE) but its association with fibrin clot properties is poorly understood. We investigated whether prothrombotic state and hypofibrinolysis markers can identify patients with RPVO. METHODS In 79 normotensive noncancer patients (aged 56 ± 13.3 years) with acute PE, we determined fibrin clot permeability (Ks), clot lysis time (CLT), endogenous thrombin potential (ETP), fibrinolysis proteins, oxidative stress markers, and E-selectin on admission before initiation of anticoagulant therapy, after 5-7 days, and 3 months of anticoagulation. RPVO was diagnosed using computed tomography angiography 3-6 months since PE. RESULTS Patients with RPVO (n = 23, 29.1%) had at baseline higher simplified Pulmonary Embolism Severity Index (sPESI) (P = 0.004), higher N-terminal brain natriuretic propeptide (P = 0.006) and higher D-dimer (P = 0.044). Patients with versus without RPVO had lower Ks (P < 0.001) and longer CLT (P < 0.05), both at baseline and 5-7 days since admission, but not at 3 months. Patients with RPVO showed 40.6% higher E-selectin (P < 0.001) solely at 3 months. By multivariable logistic regression, baseline Ks (odds ratio [OR] 0.010, 95% confidence interval [CI] 0.001-0.837, P = 0.042, per 10- 9 cm2), baseline D-dimer (OR 1.105, 95% CI 1.000-1.221, P = 0.049, per 100 ng/ml), and E-selectin levels after 3 months (OR 3.874, 95% CI 1.239-12.116, P = 0.020, per 1 ng/ml) were associated with RPVO. CONCLUSIONS RPVO patients despite anticoagulation characterize with the formation of denser fibrin clots on admission and higher E-selectin at 3 months. Those parameters could be the potential novel RPVO risk factors that warrant further evaluation in an independent cohort.
Collapse
Affiliation(s)
- Konrad Stępień
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Kraków, Poland
| | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland
| | - Magdalena Kopytek
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland
| | - Jarosław Zalewski
- Department of Coronary Artery Disease and Heart Failure, John Paul II Hospital, Kraków, Poland
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland.
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Kraków, Poland.
| |
Collapse
|
5
|
Zhang J, Zhang S, Xu S, Zhu Z, Li J, Wang Z, Wada Y, Gatt A, Liu J. Oxidative Stress Induces E-Selectin Expression through Repression of Endothelial Transcription Factor ERG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1835-1843. [PMID: 37930129 PMCID: PMC10694031 DOI: 10.4049/jimmunol.2300043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Oxidative stress induces a prothrombotic state through enhancement of adhesion properties of the endothelium. E-selectin, an endothelial cell adhesion molecule, becomes a therapeutic target for venous thrombosis, whereas the regulatory mechanisms of its expression have not been fully understood. In the present study, we report that H2O2 treatment increases expression of E-selectin but decreases expression of the endothelial transcription factor ETS-related gene (ERG) in HUVECs in a dose- and time-dependent manner. In BALB/c mice treated with hypochlorous acid, E-selectin expression is increased and ERG expression is decreased in endothelial cells of the brain and lung. RNA interference of ERG upregulates E-selectin expression, whereas transfection of ERG-expressing plasmid downregulates E-selectin expression in HUVECs. Knockdown or overexpression of ERG comprises H2O2-induced E-selectin expression in HUVECs. Deletion of the Erg gene in mice results in embryonic lethality at embryonic days 10.5-12.5, and E-selectin expression is increased in the Erg-/- embryos. No chromatin loop was found on the E-selectin gene or its promoter region by capture high-throughput chromosome conformation capture. Chromatin immunoprecipitation and luciferase reporter assay determined that the -127 ERG binding motif mediates ERG-repressed E-selectin promoter activity. In addition, ERG decreases H2O2-induced monocyte adhesion. Together, ERG represses the E-selectin gene transcription and inhibits oxidative stress-induced endothelial cell adhesion.
Collapse
Affiliation(s)
- Jinjin Zhang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shuo Zhang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shanhu Xu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhiying Zhu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jiang Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zengjin Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Alex Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
- Hematology Laboratory, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Henke PK, Nicklas JM, Obi A. Immune cell-mediated venous thrombus resolution. Res Pract Thromb Haemost 2023; 7:102268. [PMID: 38193054 PMCID: PMC10772895 DOI: 10.1016/j.rpth.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Herein, we review the current processes that govern experimental deep vein thrombus (DVT) resolution. How the human DVT resolves at the molecular and cellular level is not well known due to limited specimen availability. Experimentally, the thrombus resolution resembles wound healing, with early neutrophil-mediated actions followed by monocyte/macrophage-mediated events, including neovascularization, fibrinolysis, and eventually collagen replacement. Potential therapeutic targets are described, and coupling with site-directed approaches to mitigate off-target effects is the long-term goal. Similarly, timing of adjunctive agents to accelerate DVT resolution is an area that is only starting to be considered. There is much critical research that is needed in this area.
Collapse
Affiliation(s)
- Peter K. Henke
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - John M. Nicklas
- Department of Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Andrea Obi
- Department of Surgery, University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Held M, Sestan M, Kifer N, Jelusic M. Cerebrovascular involvement in systemic childhood vasculitides. Clin Rheumatol 2023; 42:2733-2746. [PMID: 36884156 DOI: 10.1007/s10067-023-06552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Pediatric vasculitides sometimes involve central nervous system (CNS). The manifestations are diverse, ranging from headache, seizures, vertigo, ataxia, behavioral changes, neuropsychiatric symptoms, consciousness disorders, and even cerebrovascular (CV) accidents that may lead to irreversible impairment and even death. Stroke, on the other hand despite the great progress in prevention and treatment, is still one of the leading causes of morbidity and mortality in the general population. The aim of this article was to summarize CNS manifestations and CV issues observed in primary pediatric vasculitides and the current knowledge of etiology and CV risk factors, preventive strategies, and therapeutic options in this target patient population. Pathophysiological links reveal similar immunological mechanisms involved in both pediatric vasculitides and CV events with endothelial injury and damage being the central point. From the clinical point of view, CV events in pediatric vasculitides were associated with increased morbidity and poor prognosis. If damage has already occurred, the therapeutic approach consists of good management of the vasculitis itself, antiplatelet and anticoagulation therapy, and early rehabilitation. Risk factors for acquiring cerebrovascular disease (CVD) and stroke, particularly hypertension and early atherosclerotic changes, already begin in childhood, with vessel wall inflammation contributing itself, once more emphasizing that appropriate preventive measures are certainly necessary in pediatric vasculitis population to improve their long-term outcome.
Collapse
Affiliation(s)
- Martina Held
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mario Sestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nastasia Kifer
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Jelusic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
- Division of Clinical Immunology, Rheumatology and Allergology, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
8
|
Ma S, Yin S, Zheng Y, Zang R. Establishment of a mouse model for ovarian cancer-associated venous thromboembolism. Exp Biol Med (Maywood) 2023; 248:26-35. [PMID: 36036485 PMCID: PMC9989150 DOI: 10.1177/15353702221118533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Patients with ovarian cancer are at increased risk of venous thromboembolism (VTE), and the cumulative incidence is high, particularly at advanced stages of this disease. Nevertheless, it is challenging to investigate the molecular mechanisms of ovarian cancer-associated VTE (OC-VTE), mainly due to the lack of a well-developed animal model for this disease. We generated a mouse model for developing OC-VTE using ovarian cancer cell injection in combination with the inferior vena cava stenosis method. The rate of thrombosis in the OC-VTE group was 50%, compared with 0 in the control group. Moreover, we conducted a proteomic analysis using platelets from these models and revealed differentially expressed proteins between the OC-VTE and control groups, including upregulated and downregulated proteins. Gene Ontology analysis revealed that these differentially expressed proteins were mostly enriched in the biological process of negative regulation of fibrinolysis and the cellular component of the fibrinogen complex, both of which play key roles in thrombosis. In conclusion, this study lays the foundation for further investigation of the underlying mechanisms of how ovarian cancer promotes VTE formation.
Collapse
Affiliation(s)
- Sining Ma
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sheng Yin
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiyan Zheng
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongyu Zang
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Purdy M, Obi A, Myers D, Wakefield T. P- and E- selectin in venous thrombosis and non-venous pathologies. J Thromb Haemost 2022; 20:1056-1066. [PMID: 35243742 PMCID: PMC9314977 DOI: 10.1111/jth.15689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Venous thromboembolism is a very common and costly health problem worldwide. Anticoagulant treatment for VTE is imperfect: all have the potential for significant bleeding, and none prevent the development of post thrombotic syndrome after deep vein thrombosis or chronic thromboembolic pulmonary hypertension after pulmonary embolism. For these reasons, alternate forms of therapy with improved efficacy and decreased bleeding are needed. Selectins are a family (P-selectin, E-selectin, L-selectin) of glycoproteins that facilitate and augment thrombosis, modulating neutrophil, monocyte, and platelet activity. P- and E-selectin have been investigated as potential biomarkers for thrombosis. Inhibition of P-selectin and E-selectin decrease thrombosis and vein wall fibrosis, with no increase in bleeding. Selectin inhibition is a promising avenue of future study as either a stand-alone treatment for VTE or as an adjunct to standard anticoagulation therapies.
Collapse
Affiliation(s)
- Megan Purdy
- University of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrea Obi
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Myers
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
- Unit for Laboratory Animal Medicine and Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Thomas Wakefield
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
10
|
Song W, Ma T, Cheng Q, Wen P, Wu J, Hao L, Zhang B, Wang Y, Wang Q, Zhang Y. Global Research Status and Trends in Venous Thromboembolism After Hip or Knee Arthroplasty From 1990 to 2021: A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:837163. [PMID: 35462997 PMCID: PMC9021752 DOI: 10.3389/fmed.2022.837163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Venous thromboembolism (VTE) after hip or knee arthroplasty has attracted increasing attention over the past few decades. However, there is no bibliometric report on the publications in this field. The purpose of this study was to analyze the global research status, hotspots, and trends in VTE after arthroplasty. Methods All articles about VTE research after hip or knee arthroplasty from 1990 to 2021 were retrieved from the Web of Science Core Collection database. The information of each article including citation, title, author, journal, country, institution, keywords, and level of evidence was extracted for bibliometric analysis. Results A total of 1,245 original articles from 53 countries and 603 institutions were retrieved. The USA contributed most with 457 articles, followed by England and Canada. McMaster University in Canada was the leading institution for publications. The journals with the highest output and citation were the Journal of Arthroplasty and the Thrombosis and Haemostasis, respectively. The median number of citations was significantly different among the levels of evidence (F = 128.957, P < 0.001). The research hotspots switched from VTE diagnosis and heparin to factor Xa inhibitors (fondaparinux, rivaroxaban, apixaban) and direct thrombin inhibitors (dabigatran etexilate, ximelagatran), and finally to aspirin, risk factor studies, which can be observed from the keyword analysis and co-cited reference cluster analysis. Conclusions This study observed an increasing trend of research articles on VTE after arthroplasty. Publications with higher levels of evidence gained further popularity among researchers and orthopedic surgeons. Additionally, individualized VTE prevention and the development of new, safe, effective, and inexpensive oral agents would be emerging trends in the future.
Collapse
Affiliation(s)
- Wei Song
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| | | | - Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
- *Correspondence: Pengfei Wen
| | - Jiayuan Wu
- Department of Spine Surgery, Honghui Hospital, Shaanxi, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Yakang Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| | - Qiuyuan Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
11
|
Ding J, Song B, Xie X, Li X, Chen Z, Wang Z, Pan L, Lan D, Meng R. Inflammation in Cerebral Venous Thrombosis. Front Immunol 2022; 13:833490. [PMID: 35444662 PMCID: PMC9013750 DOI: 10.3389/fimmu.2022.833490] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral venous thrombosis (CVT) is a rare form of cerebrovascular disease that impairs people's wellbeing and quality of life. Inflammation is considered to play an important role in CVT initiation and progression. Several studies have reported the important role of leukocytes, proinflammatory cytokines, and adherence molecules in the CVT-related inflammatory process. Moreover, inflammatory factors exacerbate CVT-induced brain tissue injury leading to poor prognosis. Based on clinical observations, emerging evidence shows that peripheral blood inflammatory biomarkers-especially neutrophil-to-lymphocyte ratio (NLR) and lymphocyte count-are correlated with CVT [mean difference (MD) (95%CI), 0.74 (0.11, 1.38), p = 0.02 and -0.29 (-0.51, -0.06), p = 0.01, respectively]. Moreover, increased NLR and systemic immune-inflammation index (SII) portend poor patient outcomes. Evidence accumulated since the outbreak of coronavirus disease-19 (COVID-19) indicates that COVID-19 infection and COVID-19 vaccine can induce CVT through inflammatory reactions. Given the poor understanding of the association between inflammation and CVT, many conundrums remain unsolved. Further investigations are needed to elucidate the exact relationship between inflammation and CVT in the future.
Collapse
Affiliation(s)
- Jiayue Ding
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiran Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xaingyu Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
12
|
Wong DJ, Park DD, Park SS, Haller CA, Chen J, Dai E, Liu L, Mandhapati AR, Eradi P, Dhakal B, Wever WJ, Hanes M, Sun L, Cummings RD, Chaikof EL. A PSGL-1 glycomimetic reduces thrombus burden without affecting hemostasis. Blood 2021; 138:1182-1193. [PMID: 33945603 PMCID: PMC8570056 DOI: 10.1182/blood.2020009428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Events mediated by the P-selectin/PSGL-1 pathway play a critical role in the initiation and propagation of venous thrombosis by facilitating the accumulation of leukocytes and platelets within the growing thrombus. Activated platelets and endothelium express P-selectin, which binds P-selectin glycoprotein ligand-1 (PSGL-1) that is expressed on the surface of all leukocytes. We developed a pegylated glycomimetic of the N terminus of PSGL-1, PEG40-GSnP-6 (P-G6), which proved to be a highly potent P-selectin inhibitor with a favorable pharmacokinetic profile for clinical translation. P-G6 inhibits human and mouse platelet-monocyte and platelet-neutrophil aggregation in vitro and blocks microcirculatory platelet-leukocyte interactions in vivo. Administration of P-G6 reduces thrombus formation in a nonocclusive model of deep vein thrombosis with a commensurate reduction in leukocyte accumulation, but without disruption of hemostasis. P-G6 potently inhibits the P-selectin/PSGL-1 pathway and represents a promising drug candidate for the prevention of venous thrombosis without increased bleeding risk.
Collapse
Affiliation(s)
- Daniel J Wong
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Simon S Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Liying Liu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Appi R Mandhapati
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pradheep Eradi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Bibek Dhakal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Walter J Wever
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Melinda Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center and
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, MA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Abstract
The association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism. This knowledge has advanced our understanding of both human physiology and pathophysiology, as well as identified mechanisms of anticoagulant resistance and novel therapeutic targets for the prevention and treatment of thrombosis. In this review, we discuss the contributions of inflammation and infection to venous thromboembolism.
Collapse
Affiliation(s)
- Meaghan E. Colling
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Benjamin E. Tourdot
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
E-selectin inhibitor is superior to low-molecular-weight heparin for the treatment of experimental venous thrombosis. J Vasc Surg Venous Lymphat Disord 2021; 10:211-220. [PMID: 33872819 DOI: 10.1016/j.jvsv.2020.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND This study evaluated E-selectin inhibition with GMI-1271 (Uproleselan [GMI]) alone and in combination with the standard of care low-molecular-weight heparin (LMWH) to improve vein recanalization, decrease vein wall inflammation and protect against adverse bleeding in a primate model. We sought to examine this novel treatment of venous thrombosis. METHODS Using a well-documented primate animal model, iliac vein thrombosis was induced by balloon occlusion of the iliac vein for 6 hours. Starting on day 2 after thrombosis, animals began treatment in two phases. In phase one, nontreated controls received no treatment (n = 5) vs animals treated with the E-selectin inhibitor GMI, 25 mg/kg, subcutaneous (SC), once daily (n = 4) for 21 days (previously published data). In phase two, animals were treated with GMI plus a combination of LMWH 1.5 mg/kg or 40 mg (GMI + LMWHc) SC once daily (n = 8) for 19 days; and animals treated with LMWH 1.5 mg/kg or 40 mg (LMWHc) SC once daily (n = 6) for 19 days. Animals were evaluated by magnetic resonance venography for vein recanalization and inflammation by gadolinium extravasation, duplex ultrasound, coagulation tests (thromboelastography, bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen) and complete blood count at baseline, days 2, 7, 14, and 21 at euthanasia. Statistical analysis included using unpaired t test with Welch's correction for direct comparisons and one-way analysis of variance for comparison between the groups. RESULTS Percent vein recanalization by magnetic resonance venography was highest in the GMI alone group followed by GMI + LMWHc, both significantly different from control. On ultrasound examination, animals treated with GMI alone had no decrease in open vein lumen by day 21, whereas decreases were observed in groups GMI + LMWHc (-26%), LMWHc (-27%), and controls (-80%). Vein wall inflammation decreased significantly in all treated groups. Intimal fibrosis and intimal thickness was best preserved in the GMI alone group. An analysis of total vein wall collagen revealed a trend in all treatment groups of decreasing vein wall collagen. No clinically significant bleeding events were noted in any group. The LMWH groups trended to have prolonged coagulation test values, whereas E-selectin inhibition with GMI did not cause clinically significant changes in coagulation measures. CONCLUSIONS Treatment with E-selectin inhibition results in improved vein recanalization, a decrease in vein wall inflammation and vein wall intimal thickness and fibrosis, with no changes in markers of coagulation. E-selectin inhibition with GMI alone is superior to E-selectin inhibition combined with LMWH, LMWH alone, and no treatment in this deep vein thrombosis model of iliac vein thrombosis.
Collapse
|
15
|
Grambow E, Klee G, Xie W, Schafmayer C, Vollmar B. Hydrogen sulfide reduces the activity of human endothelial cells. Clin Hemorheol Microcirc 2021; 76:513-523. [PMID: 32924989 DOI: 10.3233/ch-200868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The volatile endogenous mediator hydrogen sulfide (H2S) is known to impair thrombus formation by affecting the activity of human platelets. Beside platelets and coagulation factors the endothelium is crucial during thrombogenesis. OBJECTIVE This study evaluates the effect of the H2S donor GYY4137 (GYY) on human umbilical vein endothelial cells (HUVECs) in vitro. METHODS Flow cytometry of resting, stimulated or GYY-treated and subsequently stimulated HUVECs was performed to analyse the expression of E-selectin, ICAM-1 and VCAM-1. To study a potential reversibility of the GYY action, E-selectin expression was further assessed on HUVECs that were stimulated 24 h after GYY exposure. A WST-1 assay was performed to study toxic effects of the H2S donor. By using the biotin switch assay, protein S-sulfhydration of GYY-exposed HUVECs was assessed. Further on, the effects of GYY on HUVEC migration and von Willebrand factor (vWF) secretion were assessed. RESULTS GYY treatment significantly reduced the expression of E-selectin and ICAM-1 but not of VCAM-1. When HUVECs were stimulated 24 h after GYY treatment, E-selectin expression was no longer affected. The WST-1 assay revealed no effects of GYY on endothelial cell viability. Furthermore, GYY impaired endothelial migration, reduced vWF secretion and increased protein S-sulfhydration. CONCLUSIONS Summarizing, GYY dose dependently and reversibly reduces the activity of endothelial cells.
Collapse
Affiliation(s)
- Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of General, Visceral, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| | - Gina Klee
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Wentao Xie
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, People's Republic of China
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
16
|
Bang J, Jeon WK. Mumefural Improves Blood Flow in a Rat Model of FeCl 3-Induced Arterial Thrombosis. Nutrients 2020; 12:nu12123795. [PMID: 33322041 PMCID: PMC7763683 DOI: 10.3390/nu12123795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Mumefural (MF), a bioactive component of the processed fruit of Prunus mume Sieb. et Zucc, is known to inhibit platelet aggregation induced by agonists in vitro. In this study, we investigated the anti-thrombotic effects of MF using a rat model of FeCl3-induced arterial thrombosis. Sprague–Dawley rats were intraperitoneally injected with MF (0.1, 1, or 10 mg/kg) 30 min before 35% FeCl3 treatment to measure the time to occlusion using a laser Doppler flowmeter and to assess the weight of the blood vessels containing thrombus. MF treatment significantly improved blood flow by inhibiting occlusion and thrombus formation. MF also prevented collagen fiber damage in injured vessels and inhibited the expression of the platelet activation-related proteins P-selectin and E-selectin. Moreover, MF significantly reduced the increased inflammatory signal of nuclear factor (NF)-κB, toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in blood vessels. After administration, MF was detected in the plasma samples of rats with a bioavailability of 36.95%. Therefore, we suggest that MF may improve blood flow as a candidate component in dietary supplements for improving blood flow and preventing blood circulation disorders.
Collapse
Affiliation(s)
- Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-2-958-6992
| |
Collapse
|
17
|
Santana DC, Emara AK, Orr MN, Klika AK, Higuera CA, Krebs VE, Molloy RM, Piuzzi NS. An Update on Venous Thromboembolism Rates and Prophylaxis in Hip and Knee Arthroplasty in 2020. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E416. [PMID: 32824931 PMCID: PMC7558636 DOI: 10.3390/medicina56090416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Patients undergoing total hip and knee arthroplasty are at high risk for venous thromboembolism (VTE) with an incidence of approximately 0.6-1.5%. Given the high volume of these operations, with approximately one million performed annually in the U.S., the rate of VTE represents a large absolute number of patients. The rate of VTE after total hip arthroplasty has been stable over the past decade, although there has been a slight reduction in the rate of deep venous thrombosis (DVT), but not pulmonary embolism (PE), after total knee arthroplasty. Over this time, there has been significant research into the optimal choice of pharmacologic VTE prophylaxis for individual patients, with the objective to reduce the rate of VTE while minimizing adverse side effects such as bleeding. Recently, aspirin has emerged as a promising prophylactic agent for patients undergoing arthroplasty due to its similar efficacy and good safety profile compared to other pharmacologic agents. However, there is no evidence to date that clearly demonstrates the superiority of any given prophylactic agent. Therefore, this review discusses (1) the current prevalence and trends in VTE after total hip and knee arthroplasty and (2) provides an update on pharmacologic VTE prophylaxis in regard to aspirin usage.
Collapse
Affiliation(s)
- Daniel C. Santana
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Ahmed K. Emara
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Melissa N. Orr
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Alison K. Klika
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Carlos A. Higuera
- Department of Orthopaedic Surgery, Cleveland Clinic Florida, Weston, FL 33331, USA;
| | - Viktor E. Krebs
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Robert M. Molloy
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| | - Nicolas S. Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA; (D.C.S.); (A.K.E.); (M.N.O.); (A.K.K.); (V.E.K.); (R.M.M.)
| |
Collapse
|
18
|
Lizarralde-Iragorri MA, Shet AS. Sickle Cell Disease: A Paradigm for Venous Thrombosis Pathophysiology. Int J Mol Sci 2020; 21:ijms21155279. [PMID: 32722421 PMCID: PMC7432404 DOI: 10.3390/ijms21155279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism (VTE) is an important cause of vascular morbidity and mortality. Many risk factors have been identified for venous thrombosis that lead to alterations in blood flow, activate the vascular endothelium, and increase the propensity for blood coagulation. However, the precise molecular and cellular mechanisms that cause blood clots in the venous vasculature have not been fully elucidated. Patients with sickle cell disease (SCD) demonstrate all the risk factors for venous stasis, activated endothelium, and blood hypercoagulability, making them particularly vulnerable to VTE. In this review, we will discuss how mouse models have elucidated the complex vascular pathobiology of SCD. We review the dysregulated pathways of inflammation and coagulation in SCD and how the resultant hypercoagulable state can potentiate thrombosis through down-regulation of vascular anticoagulants. Studies of VTE pathogenesis using SCD mouse models may provide insight into the intersection between the cellular and molecular processes involving inflammation and coagulation and help to identify novel mechanistic pathways.
Collapse
|
19
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
20
|
Welsh JD, Hoofnagle MH, Bamezai S, Oxendine M, Lim L, Hall JD, Yang J, Schultz S, Engel JD, Kume T, Oliver G, Jimenez JM, Kahn ML. Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. J Clin Invest 2020; 129:5489-5500. [PMID: 31710307 DOI: 10.1172/jci124791] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Deep venous thrombosis (DVT) and secondary pulmonary embolism cause approximately 100,000 deaths per year in the United States. Physical immobility is the most significant risk factor for DVT, but a molecular and cellular basis for this link has not been defined. We found that the endothelial cells surrounding the venous valve, where DVTs originate, express high levels of FOXC2 and PROX1, transcription factors known to be activated by oscillatory shear stress. The perivalvular venous endothelial cells exhibited a powerful antithrombotic phenotype characterized by low levels of the prothrombotic proteins vWF, P-selectin, and ICAM1 and high levels of the antithrombotic proteins thrombomodulin (THBD), endothelial protein C receptor (EPCR), and tissue factor pathway inhibitor (TFPI). The perivalvular antithrombotic phenotype was lost following genetic deletion of FOXC2 or femoral artery ligation to reduce venous flow in mice, and at the site of origin of human DVT associated with fatal pulmonary embolism. Oscillatory blood flow was detected at perivalvular sites in human veins following muscular activity, but not in the immobile state or after activation of an intermittent compression device designed to prevent DVT. These findings support a mechanism of DVT pathogenesis in which loss of muscular activity results in loss of oscillatory shear-dependent transcriptional and antithrombotic phenotypes in perivalvular venous endothelial cells, and suggest that prevention of DVT and pulmonary embolism may be improved by mechanical devices specifically designed to restore perivalvular oscillatory flow.
Collapse
Affiliation(s)
- John D Welsh
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark H Hoofnagle
- Department of Surgery, Division of Traumatology, Surgical Critical Care, and Emergency Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharika Bamezai
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua D Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan Schultz
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tsutomu Kume
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois, USA
| | - Juan M Jimenez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Patel H, Sun H, Hussain AN, Vakde T. Advances in the Diagnosis of Venous Thromboembolism: A Literature Review. Diagnostics (Basel) 2020; 10:E365. [PMID: 32498355 PMCID: PMC7345080 DOI: 10.3390/diagnostics10060365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of venous thromboembolism (VTE), including lower extremity deep vein thrombosis (DVT) and pulmonary embolism (PE) is increasing. The increase in suspicion for VTE has lowered the threshold for performing imaging studies to confirm diagnosis of VTE. However, only 20% of suspected cases have a confirmed diagnosis of VTE. Development of pulmonary embolism rule-out criteria (PERC) and update in pre-test probability have changed the paradigm of ruling-out patient with low index of suspicion. The D-dimer test in conjunction to the pre-test probability has been utilized in VTE diagnosis. The age appropriate D-dimer cutoff and inclusion of YEARS algorithm (signs of the DVT, hemoptysis and whether PE is the likely diagnosis) for the D-dimer cutoff have been recent updates in the evaluation of suspected PE. Multi-detector computed tomography pulmonary angiography (CTPA) and compression ultrasound (CUS) are the preferred imaging modality to diagnose PE and DVT respectively. The VTE diagnostic algorithm do differ in pregnant individuals. The prerequisite of avoiding excessive radiation has recruited planar ventilation-perfusion (V/Q) scan as preferred in pregnant patients to evaluate for PE. The modification of CUS protocol with addition of the Valsalva maneuver should be performed while evaluating DVT in pregnant individual.
Collapse
Affiliation(s)
- Harish Patel
- Department of Medicine, BronxCare Hospital Center a Clinical Affiliate of Mt Sinai Health Systems and Academic affiliate of Icahn School of Medicine, Bronx, NY 10457, USA; (H.S.); (A.N.H.); (T.V.)
| | - Haozhe Sun
- Department of Medicine, BronxCare Hospital Center a Clinical Affiliate of Mt Sinai Health Systems and Academic affiliate of Icahn School of Medicine, Bronx, NY 10457, USA; (H.S.); (A.N.H.); (T.V.)
| | - Ali N. Hussain
- Department of Medicine, BronxCare Hospital Center a Clinical Affiliate of Mt Sinai Health Systems and Academic affiliate of Icahn School of Medicine, Bronx, NY 10457, USA; (H.S.); (A.N.H.); (T.V.)
| | - Trupti Vakde
- Department of Medicine, BronxCare Hospital Center a Clinical Affiliate of Mt Sinai Health Systems and Academic affiliate of Icahn School of Medicine, Bronx, NY 10457, USA; (H.S.); (A.N.H.); (T.V.)
- Division of the Pulmonary and Critical Care, BronxCare Hospital Center a Clinical Affiliate of Mt Sinai Health Systems and Academic Affiliate of Icahn School of Medicine, Bronx, NY 10457, USA
| |
Collapse
|
22
|
A Preclinical Porcine Model of Portal Vein Thrombosis in Liver Cirrhosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3086906. [PMID: 32351989 PMCID: PMC7171646 DOI: 10.1155/2020/3086906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Background This study aimed at presenting a novel method of developing a porcine model of portal vein thrombosis (PVT) in cirrhosis by intravenous administration of thrombin and insertion of a fibered coil. We further investigated changes of biochemical parameters, coagulation, and proinflammatory cytokine expression in the cirrhosis-PVT group. Methods Twelve male pigs were randomized into the control group (n = 3) and cirrhosis group (n = 9). In cirrhotic pigs, three were randomly selected to establish PVT by ultrasound-guided percutaneous puncture of the main portal vein (MPV) followed by intravenous thrombin administration and fibered coil insertion. Thrombosis in the MPV was detected by abdominal enhanced computer tomography (CT). The changes of hepatic function, coagulation system, and inflammation cytokines were compared among normal, cirrhosis, and cirrhosis with PVT groups. Results As manifested by the presence of a filling defect in MPV on portal venous-phase CT angiography, fibrin thrombi were formed in the MPV in cirrhotic pigs within one week and persisted for four weeks. Five weeks after surgery, abnormal liver functions occurred in association with PVT formation in cirrhosis. Both coagulation and thromboelastography parameters showed that cirrhosis-PVT pigs exhibited a procoagulant state through hyperfunction of platelets and clotting factors. Interleukin 6 (IL-6) as a potential inflammatory marker stimulated PVT-mediated inflammation activation in cirrhosis. Conclusions Our study provides in vivo evidence that intravenous injection of a coil and thrombin into MPV under interventional guided devices enables a feasible method in thrombus creation. Further exploration and validation of large-sample cases are required to characterize utilities of this model.
Collapse
|
23
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
Anghel L, Sascău R, Radu R, Stătescu C. From Classical Laboratory Parameters to Novel Biomarkers for the Diagnosis of Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21061920. [PMID: 32168924 PMCID: PMC7139541 DOI: 10.3390/ijms21061920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Venous thrombosis is a common and potentially fatal disease, because of its high morbidity and mortality, especially in hospitalized patients. To establish the diagnosis of venous thrombosis, in the last years, a multi-modality approach that involves not only imaging modalities but also serology has been evolving. Multiple studies have demonstrated the use of some biomarkers, such as D-dimer, selectins, microparticles or inflammatory cytokines, for the diagnosis and treatment of venous thrombosis, but there is no single biomarker available to exclusively confirm the diagnosis of venous thrombosis. Considering the fact that there are some issues surrounding the management of patients with venous thrombosis and the duration of treatment, recent studies support the idea that these biomarkers may help guide the length of appropriate anticoagulation treatment, by identifying patients at high risk of recurrence. At the same time, biomarkers may help predict thrombus evolution, potentially identifying patients that would benefit from more aggressive therapies. This review focuses on classic and novel biomarkers currently under investigation, discussing their diagnostic performance and potential benefit in guiding the therapy for venous thrombosis.
Collapse
Affiliation(s)
- Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
- Correspondence: ; Tel.: +40-0232-211834
| | - Rodica Radu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| |
Collapse
|
25
|
Myers D, Lester P, Adili R, Hawley A, Durham L, Dunivant V, Reynolds G, Crego K, Zimmerman Z, Sood S, Sigler R, Fogler W, Magnani J, Holinstat M, Wakefield T. A new way to treat proximal deep venous thrombosis using E-selectin inhibition. J Vasc Surg Venous Lymphat Disord 2020; 8:268-278. [PMID: 32067728 PMCID: PMC9006622 DOI: 10.1016/j.jvsv.2019.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is an inter-relationship between thrombosis and inflammation. Previously, we have shown the importance of P-selectin in thrombogenesis and thrombus resolution in many preclinical animal models. The role of E-selectin has been explored in rodent models and in a small pilot study of clinical calf vein deep venous thrombosis. The purpose of this study was to determine the role of E-selectin in thrombosis in a primate model of proximal iliac vein thrombosis, a model close to the human condition. METHODS Iliac vein thrombosis was induced with a well-characterized primate model. Through a transplant incision, the hypogastric vein and iliac vein branches were ligated. Thrombus was induced by balloon occlusion of the proximal and distal iliac vein for 6 hours. The balloons were then deflated, and the primates recovered. Starting on postocclusion day 2, animals were treated with the E-selectin inhibitor GMI-1271, 25 mg/kg subcutaneously, once daily until day 21 (n = 4). Nontreated control animals received no treatment (n = 5). All animals were evaluated by magnetic resonance venography (MRV); evaluation of vessel area by ultrasound, protein analysis, hematology (complete blood count), and coagulation tests (bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen, and thromboelastography) were performed at baseline, day 2, day 7, day 14, and day 21 with euthanasia. In addition, platelet function and CD44 expression on leukocytes were determined. RESULTS E-selectin inhibition by GMI-1271 significantly increased vein recanalization by MRV vs control animals on day 14 (P < .05) and day 21 (P < .0001). GMI-1271 significantly decreased vein wall inflammation by MRV with gadolinium vein wall enhancement vs control also on day 14 (P < .0001) and day 21 (P < .0001). The thromboelastographic measure of clot strength (maximum amplitude) showed significant decreases in animals treated with GMI-1271 vs controls at day 2 (P < .05) and day 7 (P < .05). Animals treated with GMI-1271 had significant vessel area increase by day 21 vs controls (P < .05) by ultrasound. Vein wall intimal thickening (P < .001) and intimal fibrosis (P < .05) scores were significantly decreased in GMI-1271-treated animals vs controls. Importantly, no significant differences in hematology or coagulation test results were noted between all groups, suggesting that E-selectin inhibition carries no bleeding potential. GMI-1271 did not affect platelet function or aggregation or CD44 expression on leukocytes. In addition, no episodes of bleeding were noted in either group. CONCLUSIONS This study suggests that E-selectin modulates venous thrombus progression and that its inhibition will increase thrombus recanalization and decrease vein wall inflammation, without affecting coagulation. The use of an E-selectin inhibitor such as GMI-1271 could potentially change how we treat deep venous thrombosis.
Collapse
Affiliation(s)
- Daniel Myers
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich; Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich.
| | - Patrick Lester
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, Mich
| | - Angela Hawley
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Laura Durham
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Veronica Dunivant
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Garrett Reynolds
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Kiley Crego
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| | - Zoe Zimmerman
- Department of Pharmacology, University of Michigan, Ann Arbor, Mich
| | - Suman Sood
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, Mich
| | - Robert Sigler
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Mich
| | | | | | | | - Thomas Wakefield
- Conrad Jobst Vascular Research Laboratories, Section of Vascular Surgery, University of Michigan, Ann Arbor, Mich
| |
Collapse
|
26
|
Inflammatory biomarkers in deep venous thrombosis organization, resolution, and post-thrombotic syndrome. J Vasc Surg Venous Lymphat Disord 2020; 8:299-305. [DOI: 10.1016/j.jvsv.2019.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
|
27
|
Devata S, Angelini DE, Blackburn S, Hawley A, Myers DD, Schaefer JK, Hemmer M, Magnani JL, Thackray HM, Wakefield TW, Sood SL. Use of GMI-1271, an E-selectin antagonist, in healthy subjects and in 2 patients with calf vein thrombosis. Res Pract Thromb Haemost 2020; 4:193-204. [PMID: 32110749 PMCID: PMC7040550 DOI: 10.1002/rth2.12279] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is an unmet need for antithrombotic treatments for venous thromboembolic disease that do not increase bleeding risk. Selectins are cell adhesion molecules that augment thrombosis by activating immune cells to initiate the coagulation cascade. GMI-1271, a potent small-molecule E-selectin antagonist, has been shown in mouse models to decrease thrombus burden with a low risk of bleeding. METHODS A first-in-human study of GMI-1271 was conducted to assess its safety, tolerability, and pharmacokinetic (PK) profile. As a secondary end point, biomarkers of coagulation, cell adhesion, and leukocyte/platelet activation were evaluated. Aims 1 and 2 were performed in healthy volunteers and evaluated single and multiple doses of the study drug, respectively. Aim 3 included 2 patients with isolated calf-level deep vein thrombosis (DVT). RESULTS GMI-1271 showed consistent PK parameters for doses ranging from 2 to 40 mg/kg. Plasma levels increased in a linear manner with respect to dose, while clearance, volume of distribution, and half-life were not dose dependent. No accumulation was seen with multiple consecutive doses. No serious adverse events (grade 3 or 4) were reported. Biomarker analysis demonstrated a trend in reduction of soluble E-selectin (sEsel) levels with GMI-1271 exposure, while exposure did not impact laboratory testing of coagulation. Two patients with calf vein DVT were treated with GMI-1271 and demonstrated rapid improvement of symptoms after 48 hours, with repeat ultrasound showing signs of clot resolution. CONCLUSIONS We demonstrate that GMI-1271 is safe in healthy volunteers and provide proof of concept that an E-selectin antagonist is a potential therapeutic approach to treat venous thrombosis.
Collapse
Affiliation(s)
- Sumana Devata
- Department of Internal MedicineDivision of Hematology/OncologyUniversity of MichiganAnn ArborMIUSA
| | - Dana E. Angelini
- Department of Hematology and Medical OncologyTaussig Cancer InstituteCleveland Clinic FoundationClevelandOHUSA
| | - Susan Blackburn
- Conrad Jobst Vascular Research LaboratoriesSection of Vascular SurgeryUniversity of Michigan Medical CenterAnn ArborMIUSA
| | - Angela Hawley
- Conrad Jobst Vascular Research LaboratoriesSection of Vascular SurgeryUniversity of Michigan Medical CenterAnn ArborMIUSA
| | - Daniel D. Myers
- Conrad Jobst Vascular Research LaboratoriesSection of Vascular SurgeryUniversity of Michigan Medical CenterAnn ArborMIUSA
| | - Jordan K. Schaefer
- Department of Internal MedicineDivision of Hematology/OncologyUniversity of MichiganAnn ArborMIUSA
| | | | | | | | - Thomas W. Wakefield
- Conrad Jobst Vascular Research LaboratoriesSection of Vascular SurgeryUniversity of Michigan Medical CenterAnn ArborMIUSA
| | - Suman L. Sood
- Department of Internal MedicineDivision of Hematology/OncologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
28
|
Nath KA, Grande JP, Belcher JD, Garovic VD, Croatt AJ, Hillestad ML, Barry MA, Nath MC, Regan RF, Vercellotti GM. Antithrombotic effects of heme-degrading and heme-binding proteins. Am J Physiol Heart Circ Physiol 2020; 318:H671-H681. [PMID: 32004074 DOI: 10.1152/ajpheart.00280.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the murine venous thrombosis model induced by ligation of the inferior vena cava (IVCL), genetic deficiency of heme oxygenase-1 (HO-1) increases clot size. This study examined whether induction of HO-1 or administration of its products reduces thrombosis. Venous HO-1 upregulation by gene delivery reduced clot size, as did products of HO activity, biliverdin, and carbon monoxide. Induction of HO-1 by hemin reduced clot formation, clot size, and upregulation of plasminogen activator inhibitor-1 (PAI-1) that occurs in the IVCL model, while leaving urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) expression unaltered. The reductive effect of hemin on clot size required HO activity. The IVCL model exhibited relatively high concentrations of heme that peaked just before maximum clot size, then declined as clot size decreased. Administration of hemin decreased heme concentration in the IVCL model. HO-2 mRNA was induced twofold in the IVCL model (vs. 40-fold HO-1 induction), but clot size was not increased in HO-2-/- mice compared with HO-2+/+ mice. Hemopexin, the major heme-binding protein, was induced in the IVCL model, and clot size was increased in hemopexin-/- mice compared with hemopexin+/+ mice. We conclude that in the IVCL model, the heme-degrading protein HO-1 and HO products inhibit thrombus formation, as does the heme-binding protein, hemopexin. The reductive effects of hemin administration require HO activity and are mediated, in part, by reducing PAI-1 upregulation in the IVCL model. We speculate that HO-1, HO, and hemopexin reduce clot size by restraining the increase in clot concentration of heme (now recognized as a procoagulant) that otherwise occurs.NEW & NOTEWORTHY This study provides conclusive evidence that two proteins, one heme-degrading and the other heme-binding, inhibit clot formation. This may serve as a new therapeutic strategy in preventing and treating venous thromboembolic disease.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John D Belcher
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Michael A Barry
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Meryl C Nath
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
29
|
Anyanwu AC, Kanthi Y, Fukase K, Liao H, Mimura T, Desch KC, Gruca M, Kaskar S, Sheikh-Aden H, Chi L, Zhao R, Yadav V, Wakefield TW, Hyman MC, Pinsky DJ. Tuning the Thromboinflammatory Response to Venous Flow Interruption by the Ectonucleotidase CD39. Arterioscler Thromb Vasc Biol 2020; 39:e118-e129. [PMID: 30816804 DOI: 10.1161/atvbaha.119.312407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective- Leukocyte flux contributes to thrombus formation in deep veins under pathological conditions, but mechanisms that inhibit venous thrombosis are incompletely understood. Ectonucleotide di(tri)phosphohydrolase 1 ( ENTPD1 or Cd39), an ectoenzyme that catabolizes extracellular adenine nucleotides, is embedded on the surface of endothelial cells and leukocytes. We hypothesized that under venous stasis conditions, CD39 regulates inflammation at the vein:blood interface in a murine model of deep vein thrombosis. Approach and Results- CD39-null mice developed significantly larger venous thrombi under venous stasis, with more leukocyte recruitment compared with wild-type mice. Gene expression profiling of wild-type and Cd39-null mice revealed 76 differentially expressed inflammatory genes that were significantly upregulated in Cd39-deleted mice after venous thrombosis, and validation experiments confirmed high expression of several key inflammatory mediators. P-selectin, known to have proximal involvement in venous inflammatory and thrombotic events, was upregulated in Cd39-null mice. Inferior vena caval ligation resulted in thrombosis and a corresponding increase in both P-selectin and VWF (von Willebrand Factor) levels which were strikingly higher in mice lacking the Cd39 gene. These mice also manifest an increase in circulating platelet-leukocyte heteroaggregates suggesting heterotypic crosstalk between coagulation and inflammatory systems, which is amplified in the absence of CD39. Conclusions- These data suggest that CD39 mitigates the venous thromboinflammatory response to flow interruption.
Collapse
Affiliation(s)
- Anuli C Anyanwu
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Section of Cardiology, Ann Arbor Veterans Health System, Michigan (Y.K.)
| | - Keigo Fukase
- Department of Cardiovascular Surgery, Awaji Medical Center, Hyogo, Japan (K.F.)
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Tekashi Mimura
- Department of Surgical Oncology, Hiroshima University, Japan (T.M.)
| | - Karl C Desch
- Department of Pediatrics (K.C.D.), University of Michigan Medical Center, Ann Arbor
| | - Martin Gruca
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Saabir Kaskar
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Hussein Sheikh-Aden
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, Conrad Jobst Vascular Research Laboratories Ann Arbor, MI (T.W.W.)
| | - Matthew C Hyman
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia (M.C.H.)
| | - David J Pinsky
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
30
|
Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, Wakefield TW, Henke PK, Smith A, Lal BK. Choosing a Mouse Model of Venous Thrombosis. Arterioscler Thromb Vasc Biol 2020; 39:311-318. [PMID: 30786739 DOI: 10.1161/atvbaha.118.311818] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Murine models are widely used valuable tools to study deep vein thrombosis. Leading experts in venous thrombosis research came together through the American Venous Forum to develop a consensus on maximizing the utility and application of available mouse models of venous thrombosis. In this work, we provide an algorithm for model selection, with discussion of the advantages, disadvantages, and applications of the main mouse models of venous thrombosis. Additionally, we provide a detailed surgical description of the models with guidelines to validate surgical technique.
Collapse
Affiliation(s)
- Jose A Diaz
- From the Department of Surgery, Vascular Surgery, University of Michigan, Ann Arbor (J.A.D., O.R.P., T.W.W., P.K.H.)
| | - Prakash Saha
- Academic Department of Vascular Surgery, King's College London, UK (P.S., A.S.)
| | - Brian Cooley
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill (B.C., S.P.G., N.M.)
| | - Olivia R Palmer
- From the Department of Surgery, Vascular Surgery, University of Michigan, Ann Arbor (J.A.D., O.R.P., T.W.W., P.K.H.)
| | - Steven P Grover
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill (B.C., S.P.G., N.M.)
| | - Nigel Mackman
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill (B.C., S.P.G., N.M.)
| | - Thomas W Wakefield
- From the Department of Surgery, Vascular Surgery, University of Michigan, Ann Arbor (J.A.D., O.R.P., T.W.W., P.K.H.)
| | - Peter K Henke
- From the Department of Surgery, Vascular Surgery, University of Michigan, Ann Arbor (J.A.D., O.R.P., T.W.W., P.K.H.)
| | - Alberto Smith
- Academic Department of Vascular Surgery, King's College London, UK (P.S., A.S.)
| | - Brajesh K Lal
- Department of Surgery, University of Maryland, College Park (B.K.L.)
| |
Collapse
|
31
|
Borgel D, Bianchini E, Lasne D, Pascreau T, Saller F. Inflammation in deep vein thrombosis: a therapeutic target? Hematology 2019; 24:742-750. [DOI: 10.1080/16078454.2019.1687144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Delphine Borgel
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Elsa Bianchini
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Dominique Lasne
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Tiffany Pascreau
- Laboratoire d’Hématologie, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - François Saller
- INSERM UMR-S1176, Université Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Abstract
Deep vein thrombosis (DVT) is a disease with high prevalence and morbidity. It can lead to pulmonary embolism with severe respiratory insufficiency and risk of death. Mechanisms behind all stages of DVT, such as thrombosis commencement, propagation, and resolution, remain incompletely understood. Animal models represent an invaluable tool to explore these problems and identify new targets for DVT prevention and treatment. In this review, we discuss existing models of venous thrombosis, their advantages and disadvantages, and applicability to studying different aspects of DVT pathophysiology. We also speculate about requirements for an "ideal model" that would best recapitulate features of human DVT and discuss readouts of various models.
Collapse
Affiliation(s)
- Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University) , Moscow, Russia.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham , The Midlands, UK
| |
Collapse
|
33
|
Collateral vein dynamics in mouse models of venous thrombosis: Pathways consistent with humans. Thromb Res 2019; 182:116-123. [DOI: 10.1016/j.thromres.2019.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/29/2019] [Accepted: 08/17/2019] [Indexed: 01/31/2023]
|
34
|
Yao XL, Liu H, Li P, Chen WP, Guan SX, Chen Y, Wu YN, Lin BQ. Aqueous Extract of Whitmania Pigra Whitman Alleviates Thrombus Burden Via Sirtuin 1/NF-κB Pathway. J Surg Res 2019; 245:441-452. [PMID: 31445496 DOI: 10.1016/j.jss.2019.07.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Whitmania pigra Whitman (W pigra), a traditional Chinese medicine, has functions of breaking stagnant and eliminating blood stasis. The aim of this study was to investigate the underlying mechanism of W pigra against deep vein thrombosis (DVT). METHODS A rat model of DVT induced by inferior vena cava stenosis was successfully established. Rats were administered vehicle (saline solution, p.o.), three doses of W pigra aqueous extract (34.7, 104.2, or 312.5 mg crude W pigra/kg, p.o.), heparin (200 U/kg, i.v.), or clopidogrel (25 mg/kg, p.o.) once daily for 2 d. Thrombus weight and histopathological changes were examined. Blood samples were collected to determine blood cell counts, blood viscosity, blood coagulation, blood fibrinolysis, serum levels of interleukin-1β, and tumor necrosis factor-α. Protein expressions of Sirtuin1 (SIRT1), acetylated p65 (Ace-p65), and phosphorylated p65 (p-p65) were determined by Western blot. Furthermore, SIRT1-specific inhibitor EX527 was applied to confirm the role of SIRT1 in the antithrombotic effect of W pigra. RESULTS W pigra significantly decreased thrombus weight. W pigra had no effects on blood cell counts, whole blood viscosity, blood coagulation, blood fibrinolysis. However, it reduced tissue factor protein expression in the vein wall and thrombus. Moreover, it sharply increased SIRT1 protein expression and decreased leukocytes recruitment in the thrombus and vein wall, serum levels of interleukin-1β and tumor necrosis factor-α, and protein expressions of Ace-p65 and p-p65. Furthermore, the antithrombotic effect of W pigra was significantly abolished by EX527. CONCLUSIONS Aqueous extract of W pigra effectively reduced DVT burden by inhibiting inflammation via SIRT1/nuclear factor-kappa B signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lan Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Pei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Xia Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Na Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao-Qin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
35
|
Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V. Cardiovascular optoacoustics: From mice to men - A review. PHOTOACOUSTICS 2019; 14:19-30. [PMID: 31024796 PMCID: PMC6476795 DOI: 10.1016/j.pacs.2019.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Imaging has become an indispensable tool in the research and clinical management of cardiovascular disease (CVD). An array of imaging technologies is considered for CVD diagnostics and therapeutic assessment, ranging from ultrasonography, X-ray computed tomography and magnetic resonance imaging to nuclear and optical imaging methods. Each method has different operational characteristics and assesses different aspects of CVD pathophysiology; nevertheless, more information is desirable for achieving a comprehensive view of the disease. Optoacoustic (photoacoustic) imaging is an emerging modality promising to offer novel information on CVD parameters by allowing high-resolution imaging of optical contrast several centimeters deep inside tissue. Implemented with illumination at several wavelengths, multi-spectral optoacoustic tomography (MSOT) in particular, is sensitive to oxygenated and deoxygenated hemoglobin, water and lipids allowing imaging of the vasculature, tissue oxygen saturation and metabolic or inflammatory parameters. Progress with fast-tuning lasers, parallel detection and advanced image reconstruction and data-processing algorithms have recently transformed optoacoustics from a laboratory tool to a promising modality for small animal and clinical imaging. We review progress with optoacoustic CVD imaging, highlight the research and diagnostic potential and current applications and discuss the advantages, limitations and possibilities for integration into clinical routine.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dmitry Bozhko
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Institute for Diagnostic and Interventional Radiology, University Hospital rechts der Isar, Munich, Germany
- Institute for Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
36
|
Maffei FHDA. Future prospects for prophylactic and therapeutic management of venous thrombosis: antithrombotic substances with lower risk of hemorrhage? J Vasc Bras 2019; 18:e20190036. [PMID: 31320885 PMCID: PMC6634938 DOI: 10.1590/1677-5449.190036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Pang X, Wang Y, Liu M. M1-macrophage polarization is upregulated in deep vein thrombosis and contributes to the upregulation of adhesion molecules. Hum Immunol 2019; 80:883-889. [PMID: 31078335 DOI: 10.1016/j.humimm.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Deep vein thrombosis (DVT) is characterized by high acute fatality rate due to pulmonary embolism and by serious long-term complications. The risk of DVT development is increased in many medical conditions, such as trauma, cancer, and surgery. However, DVT can also occur as an idiopathic disease without clearly identifiable causes. To investigate the pathogenesis of idiopathic DVT, the involvement of circulating monocytes and macrophages was examined. Data showed that circulating monocytes and monocyte-derived macrophages from DVT patients presented significantly elevated M1-polarization, characterized by higher IL-6 and higher TNF-α than corresponding cells from controls. Macrophages from DVT patients were more potent at stimulating endothelial cell-mediated expression of adhesion molecules, including SELE, ICAM1, and VCAM1, than macrophages from controls. M1-polarization, but not M2-polarization, could profoundly upregulate the expression of adhesion molecules. This upregulation was dependent on direct cell-to-cell contact, as well as on contact-independent TNF-α expression. IL-10 expression, on the other hand, significantly reduced the upregulation of adhesion molecules. Together, this study demonstrated that circulating monocytes and macrophages could contribute to the pathogenesis of idiopathic DVT.
Collapse
Affiliation(s)
- Xue Pang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China; Department of Colorectal Surgery, Shandong Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yutao Wang
- Department of Peripheral Blood Vessel, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Ming Liu
- Department of Peripheral Blood Vessel, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
38
|
Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, Wakefield TW, Henke PK, Smith A, Lal BK. Choosing a mouse model of venous thrombosis: a consensus assessment of utility and application. J Thromb Haemost 2019; 17:699-707. [PMID: 30927321 DOI: 10.1111/jth.14413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Murine models are widely used valuable tools to study deep vein thrombosis (VT). Leading experts in VT research came together through the American Venous Forum to develop a consensus on maximizing the utility and application of available mouse models of VT. In this work, we provide an algorithm for model selection, with discussion of the advantages, disadvantages, and applications of the main mouse models of VT. Additionally, we provide a detailed surgical description of the models with guidelines to validate surgical technique.
Collapse
|
39
|
Metz AK, Diaz JA, Obi AT, Wakefield TW, Myers DD, Henke PK. Venous Thrombosis and Post-Thrombotic Syndrome: From Novel Biomarkers to Biology. Methodist Debakey Cardiovasc J 2019; 14:173-181. [PMID: 30410646 DOI: 10.14797/mdcj-14-3-173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common disease that carries serious ramifications for patients, including pulmonary embolism and post-thrombotic syndrome (PTS). Although standard treatment for DVT is anticoagulation, this carries an added risk of bleeding and increased medication monitoring. Identifying those at risk for DVT and PTS can be difficult, and current research with murine models is helping to illuminate the biologic changes associated with these two disorders. Potential novel biomarkers for improving the diagnosis of DVT and PTS include ICAM-1, P-selectin, and cell-free DNA. Inhibition of factor XI, P- and E-selectin, and neutrophil extracellular traps holds promise for novel clinical treatment of DVT. Experimental research on PTS suggests potential cellular and mediator therapy targets of TLR9, MMP-2 and-9, PAI-1, and IL-6. Although many important concepts and mechanisms have been elucidated through research on DVT and PTS, more work must be done to translate experimental findings to the clinical arena. This review examines the currently used murine models of DVT, biomarkers involved in the pathophysiology and diagnosis of DVT and PTS, and potential pharmacologic targets for PTS treatment.
Collapse
|
40
|
Sung Y, Spagou K, Kafeza M, Kyriakides M, Dharmarajah B, Shalhoub J, Diaz JA, Wakefield TW, Holmes E, Davies AH. Deep Vein Thrombosis Exhibits Characteristic Serum and Vein Wall Metabolic Phenotypes in the Inferior Vena Cava Ligation Mouse Model. Eur J Vasc Endovasc Surg 2018. [DOI: 10.1016/j.ejvs.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Hisada Y, Mackman N. Mouse models of cancer-associated thrombosis. Thromb Res 2017; 164 Suppl 1:S48-S53. [PMID: 29306575 DOI: 10.1016/j.thromres.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Cancer patients have an increased risk of venous thromboembolism (VTE) compared with the general population. Mouse models are used to better understand the mechanisms of cancer-associated thrombosis. Several mouse models of cancer-associated thrombosis have been developed that use different mouse strains, tumors, tumor sites and thrombosis models. In this review, we summarize these different models. These models have been used to determine the role of different pathways in cancer-associated thrombosis. For instance, they have revealed roles for tumor-derived tissue factor-positive microvesicles and neutrophil extracellular traps in thrombosis in tumor-bearing mice. A better understanding of the mechanisms of cancer-associated thrombosis may allow the development of new therapies to reduce thrombosis in cancer patients.
Collapse
Affiliation(s)
- Yohei Hisada
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Albadawi H, Witting AA, Pershad Y, Wallace A, Fleck AR, Hoang P, Khademhosseini A, Oklu R. Animal models of venous thrombosis. Cardiovasc Diagn Ther 2017; 7:S197-S206. [PMID: 29399523 DOI: 10.21037/cdt.2017.08.10] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Venous thrombosis (VT) is a prevalent clinical condition with significant adverse sequela or mortality. Anticoagulation and pharmacologic or pharmacomechanical thrombolytic therapies are the mainstays of VT treatment. An understanding of thrombosis biology will allow for more effective VT-tailored diagnosis and therapy. In vivo models of thrombosis provide indispensable tools to study the pathogenesis of thrombus formation and to evaluate novel therapeutic or preventive adjuncts for VT management or prevention. In this article, we review the most prominent in vivo models of VT created in rodents and swine species and outline how each model can serve as a useful tool to promote our understanding of VT pathogenesis and to examine novel therapies.
Collapse
Affiliation(s)
- Hassan Albadawi
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Avery A Witting
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Yash Pershad
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Alex Wallace
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Peter Hoang
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rahmi Oklu
- Department of Radiology, Division of Vascular & Interventional Radiology, Mayo Clinic, Phoenix, AZ, USA.,Biomaterials Innovation Research Center, Brigham and Women's Hospital & Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
43
|
Lin TY, Chen YG, Huang WY, Lin CL, Peng CL, Sung FC, Kao CH. Association between chronic osteomyelitis and deep-vein thrombosis. Thromb Haemost 2017; 112:573-9. [DOI: 10.1160/th14-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/23/2014] [Indexed: 11/05/2022]
Abstract
SummaryStudies on the association between chronic osteomyelitis and deep vein thrombosis (DVT) and pulmonary thromboembolism (PE) are scarce. The aim of this study was to analyse a nationwide population-based database for association between DVT or PE after a diagnosis of chronic osteomyelitis. This nationwide population-based cohort study was based on data obtained from the Taiwan National Health Insurance Database from 1998 to 2008, with a follow-up period extending to the end of 2010. We identified patients with chronic osteomyelitis using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. The patients with chronic osteomyelitis and comparison controls were selected by 1:1 matching on a propensity score. The propensity score was calculated by a logistic regression to estimate the probability of the treatment assignment given the baseline variables including age, sex, and Charlson comorbidity index score. We analysed the risks of DVT and PE by using Cox proportional hazards regression models, including sex, age, and comorbidities. In total, 24,335 chronic osteomyelitis patients and 24,335 controls were enrolled in the study. The risk of developing DVT was 2.49-fold in patients with chronic osteomyelitis compared with the comparison cohort, after adjusting for age, sex, and comorbidities. The multiplicative increased risks of DVT were also significant in patients with chronic osteomyelitis with any comorbidity. In conclusion, physicians should consider chronic osteomyelitis in their evaluation of risk factors for DVT.
Collapse
|
44
|
Hisada Y, Ay C, Auriemma AC, Cooley BC, Mackman N. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J Thromb Haemost 2017; 15:2208-2217. [PMID: 28834179 DOI: 10.1111/jth.13809] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Essentials Tumor-bearing mice have larger venous clots than controls. Human tissue factor is present in clots in tumor-bearing mice. Inhibition of human tissue factor reduces clot size in tumor-bearing mice. This new mouse model may be useful to study mechanisms of cancer-associated thrombosis. SUMMARY Background Pancreatic cancer patients have a high rate of venous thromboembolism. Human pancreatic tumors and cell lines express high levels of tissue factor (TF), and release TF-positive microvesicles (TF+ MVs). In pancreatic cancer patients, tumor-derived TF+ MVs are present in the blood, and increased levels are associated with venous thromboembolism and decreased survival. Previous studies have shown that mice with orthotopic human or murine pancreatic tumors have circulating tumor-derived TF+ MVs, an activated clotting system, and increased incidence and mean clot weight in an inferior vena cava stenosis model. These results suggest that TF+ MVs contribute to thrombosis. However, the specific role of tumor-derived TF+ MVs in venous thrombosis in mice has not been determined. Objectives To test the hypothesis that tumor-derived TF+ MVs enhance thrombosis in mice. Methods We determined the contribution of TF+ MVs derived from human pancreatic tumors grown orthotopically in nude mice to venous clot formation by using an anti-human TF mAb. We used an inferior vena cava stasis model of venous thrombosis. Results Tumor-bearing mice had significantly larger clots than control mice. Clots from tumor-bearing mice contained human TF, suggesting the incorporation of tumor-derived MVs. Importantly, administration of an anti-human TF mAb reduced clot size in tumor-bearing mice but did not affect clot size in control mice. Conclusions Our results indicate that TF+ MVs released from orthotopic pancreatic tumors increase venous thrombosis in mice. This new model may be useful for evaluating the roles of different factors in cancer-associated thrombosis.
Collapse
Affiliation(s)
- Y Hisada
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - C Ay
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A C Auriemma
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B C Cooley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Mackman
- Department of Medicine, Division of Hematology and Oncology, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
45
|
Dzikowska-Diduch O, Domienik-Karłowicz J, Górska E, Demkow U, Pruszczyk P, Kostrubiec M. E-selectin and sICAM-1, biomarkers of endothelial function, predict recurrence of venous thromboembolism. Thromb Res 2017; 157:173-180. [PMID: 28780342 DOI: 10.1016/j.thromres.2017.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/28/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Risk factors for atherosclerosis and venous thromboembolism (VTE) overlap and are mostly associated with endothelial dysfunction (ED). We hypothesized that ED is present in patients after the first episode of acute pulmonary embolism (APE) and predicts the risk of VTE recurrence. DESIGN AND METHODS Patients, at least 6months after the first episode of symptomatic, confirmed APE were included in this case-control study. The exclusion criteria were risk factors for cardiovascular diseases and other conditions associated with endothelial dysfunction. Eighty two patients (aged 38±11years; 44 M; 38 F) were enrolled in the study, 39 after provoked APE, 43 after unprovoked APE, and 30 controls (C) (aged 38±12years; 15 M, 15 F). In order to evaluate the endothelial function in patients with a history of APE flow-mediated dilation (FMD) of the brachial artery and biomarkers of endothelial dysfunction (sVCAM-1, sICAM-1, ADMA, E-selectin) were measured. Subsequently all patients were followed up in an outpatient clinic for VTE recurrence. RESULTS FMD was more often impaired in APE patients than in controls (5.3% (0.8-20.3) vs. 13.8% (4.1-24.3); p<0.0001). Biomarker levels differed between APE and C groups: sVCAM-1 (631ng/ml (105-2382) vs. 495ng/ml (348-934); p=0.04) and sICAM-1 (679ng/ml (279-1006) vs. 600ng/ml (394-766); p=0.002). There were 19 recurrences of VTE during the at least 12-month follow-up (15 with history of unprovoked-APE and 4 after provoked-APE). E-selectin ≥39ng/ml and sICAM-1≤655ng/ml indicated the group without recurrence of VTE. In a group of 43 unprovoked APE patients both E-selectin<39ng/ml and sICAM-1>655ng/ml were found in 17 subjects. Eleven of them (65%) were diagnosed with recurrent VTE. CONCLUSIONS Endothelial function is significantly impaired in patients after an episode of APE as indicated by FMD assessment and biomarker levels. Low concentrations of E-selectin and high levels of sICAM-1 are associated with a high risk of recurrent thromboembolism.
Collapse
Affiliation(s)
- Olga Dzikowska-Diduch
- The Medical University of Warsaw, Department of Internal Medicine & Cardiology, Poland.
| | | | - Elżbieta Górska
- The Medical University of Warsaw, Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Poland
| | - Urszula Demkow
- The Medical University of Warsaw, Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Poland
| | - Piotr Pruszczyk
- The Medical University of Warsaw, Department of Internal Medicine & Cardiology, Poland
| | - Maciej Kostrubiec
- The Medical University of Warsaw, Department of Internal Medicine & Cardiology, Poland
| |
Collapse
|
46
|
Heuberger JAAC, Rotmans JI, Gal P, Stuurman FE, van 't Westende J, Post TE, Daniels JMA, Moerland M, van Veldhoven PLJ, de Kam ML, Ram H, de Hon O, Posthuma JJ, Burggraaf J, Cohen AF. Effects of erythropoietin on cycling performance of well trained cyclists: a double-blind, randomised, placebo-controlled trial. LANCET HAEMATOLOGY 2017; 4:e374-e386. [PMID: 28669689 DOI: 10.1016/s2352-3026(17)30105-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Substances that potentially enhance performance (eg, recombinant human erythropoietin [rHuEPO]) are considered doping and are therefore forbidden in sports; however, the scientific evidence behind doping is frequently weak. We aimed to determine the effects of rHuEPO treatment in well trained cyclists on maximal, submaximal, and race performance and on safety, and to present a model clinical study for doping research on other substances. METHODS We did this double-blind, randomised, placebo-controlled trial at the Centre for Human Drug Research in Leiden (Netherlands). We enrolled healthy, well trained but non-professional male cyclists aged 18-50 years and randomly allocated (1:1) them to receive abdominal subcutaneous injections of rHuEPO (epoetin β; mean dose 6000 IU per week) or placebo (0·9% NaCl) for 8 weeks. Randomisation was stratified by age groups (18-34 years and 35-50 years), with a code generated by a statistician who was not masked to the study. The primary outcome was exercise performance, measured as maximal power output (Pmax), maximal oxygen consumption VO2 max, and gross efficiency in maximal exercise tests with 25 W increments per 5 min, as lactate threshold and ventilatory threshold 1 (VT1) and 2 (VT2) at submaximal levels during the maximal exercise test, and as mean power, VO2, and heart rate in the submaximal exercise tests at the highest mean power output for 45 min in a laboratory setting and in a race to the Mont Ventoux (France) summit, using intention-to-treat analyses. The trial is registered with the Dutch Trial Registry (Nederlands Trial Register), number NTR5643. FINDINGS Between March 7, 2016, and April 13, 2016, we randomly assigned 48 participants to the rHuEPO group (n=24) or the placebo group (n=24). Mean haemoglobin concentration (9·6 mmol/L vs 9·0 mmol/L [estimated difference 0·6, 95% CI 0·4 to 0·8]) and maximal power output (351·55 W vs 341·23 W [10·32, 3·47 to 17·17]), and VO2 max (60·121 mL/min per kg vs 57·415 mL/min per kg [2·707, 0·911 to 4·503]) in a maximal exercise test were higher in the rHuEPO group compared with the placebo group. Submaximal exercise test parameters mean power output (283·18 W vs 277·28 W [5·90, -0·87 to 12·67]) and VO2 (50·288 mL/min per kg vs 49·642 mL/min per kg [0·646, -1·307 to 2·600]) at day 46, and Mont Ventoux race times (1 h 40 min 32 s vs 1 h 40 min 15 s [0·3%, -8·3 to 9·6]) did not differ between groups. All adverse events were grade 1-2 and were similar between both groups. No events of grade 3 or worse were observed. INTERPRETATION Although rHuEPO treatment improved a laboratory test of maximal exercise, the more clinically relevant submaximal exercise test performance and road race performance were not affected. This study shows that clinical studies with doping substances can be done adequately and safely and are relevant in determining effects of alleged performance-enhancing drugs. FUNDING Centre for Human Drug Research, Leiden.
Collapse
Affiliation(s)
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| | - Pim Gal
- Centre for Human Drug Research, Leiden, Netherlands
| | | | - Juliëtte van 't Westende
- Centre for Human Drug Research, Leiden, Netherlands; Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Titiaan E Post
- Centre for Human Drug Research, Leiden, Netherlands; Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Johannes M A Daniels
- Department of Pulmonary Diseases, VU University Medical Centre, Amsterdam, Netherlands
| | | | | | | | - Herman Ram
- Anti-Doping Authority of the Netherlands, Capelle aan de IJssel, Netherlands
| | - Olivier de Hon
- Anti-Doping Authority of the Netherlands, Capelle aan de IJssel, Netherlands
| | - Jelle J Posthuma
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, Netherlands; Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Adam F Cohen
- Centre for Human Drug Research, Leiden, Netherlands; Department of Internal Medicine, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
47
|
Jagadeeswaran P, Cooley BC, Gross PL, Mackman N. Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs. Circ Res 2017; 118:1363-79. [PMID: 27126647 DOI: 10.1161/circresaha.115.306823] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.
Collapse
Affiliation(s)
- Pudur Jagadeeswaran
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.).
| | - Brian C Cooley
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Peter L Gross
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| | - Nigel Mackman
- From the Department of Biological Sciences, University of North Texas, Denton (P.J.); Department of Pathology and Laboratory Medicine (B.C.C.), and Department of Medicine (N.M.), University of North Carolina, Chapel Hill; and Department of Medicine, McMaster University, Hamilton, Ontario, Canada (P.L.G.)
| |
Collapse
|
48
|
Feng Y, Lei B, Zhang F, Niu L, Zhang H, Zhang M. Anti-inflammatory effects of simvastatin during the resolution phase of experimentally formed venous thrombi. J Investig Med 2017; 65:999-1007. [PMID: 28442532 DOI: 10.1136/jim-2017-000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2017] [Indexed: 11/03/2022]
Abstract
Deep venous thrombosis (DVT) is a common vascular disease and is closely linked to inflammation. Over the past decade, the potential antithrombotic effect of statins has been elucidated by clinical studies, primarily through focusing on DVT prevention. The effects of statins on DVT resolution and its underlying mechanisms have been rarely addressed. We established a rabbit model of the inferior vena cava (IVC) venous thrombosis. After 48 hours, the rabbits were treated with saline, heparin, simvastatin, or simvastatin combined with heparin, respectively, for 14 days. The migration of inflammatory cells (neutrophils, monocytes, lymphocytes) in the thrombi and injured venous wall, the plasma levels of interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1) and P-selectin, and local expression of MCP-1 and P-selectin in the venous wall were evaluated by histology, immunohistochemistry, and ELISA examinations. Our data showed that compared with saline and heparin controls, monotherapy of simvastatin and the adjunctive therapy with simvastatin and heparin significantly improved the thrombus resolution and reduced inflammatory cells migration into the venous wall, the release of the inflammatory cell adhesion molecule (P-selectin), inflammatory chemokine (MCP-1) and pleiotropic proinflammatory cytokines (IL-6) into the blood, and the local expression of P-selectin and MCP-1 in the venous wall. Simvastatin targets anti-inflammatory pathways during the resolution phase of a thrombus, providing a therapeutic potential in DVT resolution and post-thrombotic syndrome prevention.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Bo Lei
- Anesthesia Department, Beijing Haidian Maternal & Child Health Hospital, Beijing, China
| | - Fuxian Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Luyuan Niu
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huan Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingyi Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Culmer DL, Dunbar ML, Hawley AE, Sood S, Sigler RE, Henke PK, Wakefield TW, Magnani JL, Myers DD. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb Haemost 2017; 117:1171-1181. [PMID: 28300869 DOI: 10.1160/th16-04-0323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Selectins, such as E-selectin (CD62E), function in venous thrombosis by binding and activating immune cells to initiate the coagulation cascade. GMI-1271 is a small molecule antagonist that inhibits E-selectin activity. Here we determine whether inhibition of E-selectin is sufficient to decrease acute venous thrombosis and associated inflammatory events in both prophylactic and treatment protocols without significantly affecting haemostasis. Male C57BL/6 mice underwent surgery for experimental thrombosis induction and were harvested at peak thrombus formation in our animal model, two days post induction. Groups included non-thrombosed true controls, shams, controls, and prophylactic or treatment groups of GMI-1271 (10 mg/kg intraperitoneal BID (twice a day) and low-molecular-weight heparin (LMWH, Lovenox 6 mg/kg subcutaneously (SC), once a day (SID). Compared with control animals, prophylaxis or treatment with LMWH and GMI-1271 in a dose-dependent manner significantly decreased thrombosis. GMI-1271 significantly lowered tail bleeding times when compared to LMWH. GMI-1271 and LMWH prophylactically administered significantly decreased vein wall neutrophil cell extravasation. However, all treatment and prophylactic therapies significantly decreased vein wall monocyte extravasation versus controls. GMI-1271 prophylactic therapy significantly decreased intra-thrombus cell counts versus control animals and other treatment groups. Immunohistochemistry confirmed that both treatments with GMI-1271 and LMWH significantly decreased activated leukocyte migration. GMI-1271 therapy significantly decreased thrombus weight and resulted in significantly lower bleeding times than LMWH. GMI-1271 treated mice showed decreased local and systemic inflammatory effects while modulating neutrophil activation, suggesting that GMI-1271 is a viable therapeutic candidate for venous thrombosis prophylaxis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel D Myers
- Daniel D. Myers, Jr., DVM, MPH, DACLAM, University of Michigan, North Campus Research Complex, Building 26, Room 263N, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA, Tel.: +1 734 763 0940, E-mail:
| |
Collapse
|
50
|
Obi AT, Andraska E, Kanthi Y, Kessinger CW, Elfline M, Luke C, Siahaan TJ, Jaffer FA, Wakefield TW, Henke PK. Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia. Thromb Haemost 2016; 117:339-348. [PMID: 27975098 DOI: 10.1160/th16-03-0218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
Abstract
Venous thromboembolism is a major cause of death during and immediately post-sepsis. Venous thrombosis (VT) is mediated by cell adhesion molecules and leukocytes, including neutrophil extracellular traps (NETs). Sepsis, or experimentally, endotoxaemia, shares similar characteristics and is modulated via toll like receptor 4 (TLR4). This study was undertaken to determine if endotoxaemia potentiates early stasis thrombogenesis, and secondarily to determine the role of VT TLR4, ICAM-1 and neutrophils (PMNs). Wild-type (WT), ICAM-1-/- and TLR4-/- mice underwent treatment with saline or LPS (10 mg/kg i. p.) alone, or followed by inferior vena cava (IVC) ligation to generate stasis VT. In vivo microscopy of leukocyte trafficking was performed in non-thrombosed mice, and tissue and plasma were harvested during early VT formation. Pre-thrombosis, circulating ICAM-1 was elevated and increased leukocyte adhesion and rolling occurred on the IVC of LPS-treated mice. Post-thrombosis, endotoxaemic mice formed larger, platelet-poor thrombi. Endotoxaemic TLR4-/- mice did not have an augmented thrombotic response and exhibited significantly decreased circulating ICAM-1 compared to endotoxaemic WT controls. Endotoxaemic ICAM-1-/- mice had significantly smaller thrombi compared to controls. Hypothesising that PMNs localised to the inflamed endothelium were promoting thrombosis, PMN depletion using anti-Ly6G antibody was performed. Paradoxically, VT formed without PMNs was amplified, potentially related to endotoxaemia induced elevation of PAI-1 and circulating FXIII, and decreased uPA. Endotoxaemia enhanced early VT occurs in a TLR-4 and ICAM-1 dependent fashion, and is potentiated by neutropenia. ICAM-1 and/or TLR-4 inhibition may be a unique strategy to prevent sepsis-associated VT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter K Henke
- Peter K. Henke, MD, University of Michigan Health System, 1500 E. Medical Center Drive, Cardiovascular Center - 5463, Ann Arbor, MI 48109-5867, USA, Tel.: +1 734 763 0250, Fax: +1 734 647 9867, E-mail:
| |
Collapse
|