1
|
Chao AS, Matak P, Pegram K, Powers J, Hutson C, Jo R, Dubois L, Thompson JW, Smith PB, Jain V, Liu C, Younge NE, Rikard B, Reyes EY, Shinohara ML, Gregory SG, Goldberg RN, Benner EJ. 20-αHydroxycholesterol, an oxysterol in human breast milk, reverses mouse neonatal white matter injury through Gli-dependent oligodendrogenesis. Cell Stem Cell 2023; 30:1054-1071.e8. [PMID: 37541211 PMCID: PMC10625465 DOI: 10.1016/j.stem.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.
Collapse
Affiliation(s)
- Agnes S Chao
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Pavle Matak
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Kelly Pegram
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - James Powers
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Collin Hutson
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Rebecca Jo
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - P Brian Smith
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Vaibhav Jain
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noelle E Younge
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Estefany Y Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simon G Gregory
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ronald N Goldberg
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Fang M, Tang T, Qiu M, Xu X. Hedgehog Signaling in CNS Remyelination. Cells 2022; 11:cells11142260. [PMID: 35883703 PMCID: PMC9320235 DOI: 10.3390/cells11142260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Remyelination is a fundamental repair process in the central nervous system (CNS) that is triggered by demyelinating events. In demyelinating diseases, oligodendrocytes (OLs) are targeted, leading to myelin loss, axonal damage, and severe functional impairment. While spontaneous remyelination often fails in the progression of demyelinating diseases, increased understanding of the mechanisms and identification of targets that regulate myelin regeneration becomes crucial. To date, several signaling pathways have been implicated in the remyelination process, including the Hedgehog (Hh) signaling pathway. This review summarizes the current data concerning the complicated roles of the Hh signaling pathway in the context of remyelination. We will highlight the open issues that have to be clarified prior to bringing molecules targeting the Hh signaling to demyelinating therapy.
Collapse
Affiliation(s)
- Minxi Fang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Tang
- Department of Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- School of Basic Medicial Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (M.Q.); (X.X.)
| | - Xiaofeng Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- Correspondence: (M.Q.); (X.X.)
| |
Collapse
|
3
|
Aberrant Oligodendrogenesis in Down Syndrome: Shift in Gliogenesis? Cells 2019; 8:cells8121591. [PMID: 31817891 PMCID: PMC6953000 DOI: 10.3390/cells8121591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is the most prevalent chromosomal anomaly accounting for cognitive impairment and intellectual disability (ID). Neuropathological changes of DS brains are characterized by a reduction in the number of neurons and oligodendrocytes, accompanied by hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS, but underestimated the role of glial cells as pathogenic players. Aberrant or impaired differentiation within the oligodendroglial lineage and altered white matter functionality are thought to contribute to central nervous system (CNS) malformations. Given that white matter, comprised of oligodendrocytes and their myelin sheaths, is vital for higher brain function, gathering knowledge about pathways and modulators challenging oligodendrogenesis and cell lineages within DS is essential. This review article discusses to what degree DS-related effects on oligodendroglial cells have been described and presents collected evidence regarding induced cell-fate switches, thereby resulting in an enhanced generation of astrocytes. Moreover, alterations in white matter formation observed in mouse and human post-mortem brains are described. Finally, the rationale for a better understanding of pathways and modulators responsible for the glial cell imbalance as a possible source for future therapeutic interventions is given based on current experience on pro-oligodendroglial treatment approaches developed for demyelinating diseases, such as multiple sclerosis.
Collapse
|
4
|
Xu X, Yu Q, Fang M, Yi M, Yang A, Xie B, Yang J, Zhang Z, Dai Z, Qiu M. Stage-specific regulation of oligodendrocyte development by Hedgehog signaling in the spinal cord. Glia 2019; 68:422-434. [PMID: 31605511 DOI: 10.1002/glia.23729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 01/31/2023]
Abstract
Elucidation of signaling pathways that control oligodendrocyte (OL) development is a prerequisite for developing novel strategies for myelin repair in neurological diseases. Despite the extensive work outlining the importance of Hedgehog (Hh) signaling in the commitment and generation of OL progenitor cells (OPCs), there are conflicting reports on the role of Hh signaling in regulating OL differentiation and maturation. In the present study, we systematically investigated OPC specification and differentiation in genetically modified mouse models of Smoothened (Smo), an essential component of the Hh signaling pathway in vertebrates. Through conditional gain-of-function strategy, we demonstrated that hyperactivation of Smo in neural progenitors induced transient ectopic OPC generation and precocious OL differentiation accompanied by the co-induction of Olig2 and Nkx2.2. After the commitment of OL lineage, Smo activity is not required for OL differentiation, and sustained expression of Smo in OPCs stimulated cell proliferation but inhibited terminal differentiation. These findings have uncovered the stage-specific regulation of OL development by Smo-mediated Hh signaling, providing novel insights into the molecular regulation of OL differentiation and myelin repair.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Yu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Minxi Fang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Min Yi
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Aifen Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binghua Xie
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zunyi Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhongmin Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
5
|
Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro. Stem Cell Res Ther 2019; 10:272. [PMID: 31455382 PMCID: PMC6712625 DOI: 10.1186/s13287-019-1374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022] Open
Abstract
Background Oligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals. Methods Our protocol utilized adherent cultures of human induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESCs) with a green fluorescent protein (GFP) reporter knocked into one allele of the OLIG2 gene locus, dual SMAD inhibition, and transient partial inhibition of glioma-associated oncogene 1 (GLI1) by the small molecule GANT61 during the formation of the SOX2/PAX6-positive neural stem cells (NSCs). The SHH pathway was later restimulated by a Smoothened agonist purmorphamine to induce the generation of OLIG2 glial precursors. One hundred ninety-two individual oligodendrocyte precursor cells (OPCs) from GANT61 and control group were analyzed by single-cell RNA sequencing (RNA-Seq). Results We demonstrate here that transient and partial inhibition of the SHH pathway transcription factor GLI1 in NSCs by a small molecule inhibitor GANT61 was found to generate OPCs that were more migratory and could differentiate earlier toward myelin-producing oligodendrocytes. Single-cell transcriptomic analysis (RNA-Seq) showed that GANT61-NSC-derived oligodendrocyte precursor cells (OPCs) had differential activation of some of the genes in the cytoskeleton rearrangement pathways that are involved in OPC motility and induction of maturation. At the protein level, this was also associated with higher levels of myelin-specific genes in the GANT61 group compared to controls. GANT61-NSC-derived OPCs were functional and could generate compact myelin in vitro and in vivo after transplantation in myelin-deficient shiverer mice. Conclusions This is a small molecule-based in vitro protocol that leads to the faster generation of functional oligodendrocytes. The development of protocols that lead to efficient and faster differentiation of oligodendrocytes from progenitors provides important advances toward the development of autologous neural stem cell-based therapies using human iPSCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1374-y) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Laouarem Y, Traiffort E. Developmental and Repairing Production of Myelin: The Role of Hedgehog Signaling. Front Cell Neurosci 2018; 12:305. [PMID: 30237763 PMCID: PMC6135882 DOI: 10.3389/fncel.2018.00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Since the discovery of its role as a morphogen directing ventral patterning of the spinal cord, the secreted protein Sonic Hedgehog (Shh) has been implicated in a wide array of events contributing to the development, maintenance and repair of the central nervous system (CNS). One of these events is the generation of oligodendrocytes, the glial cells of the CNS responsible for axon myelination. In embryo, the first oligodendroglial cells arise from the ventral ventricular zone in the developing brain and spinal cord where Shh induces the basic helix-loop-helix transcription factors Olig1 and Olig2 both necessary and sufficient for oligodendrocyte production. Later on, Shh signaling participates in the production of oligodendroglial cells in the dorsal ventricular-subventricular zone in the postnatal forebrain. Finally, the modulation of Hedgehog signaling activity promotes the repair of demyelinated lesions. This mini-review article focuses on the Shh-dependent molecular mechanisms involved in the spatial and temporal control of oligodendrocyte lineage appearance. The apparent intricacy of the roles of two essential components of Shh signaling, Smoothened and Gli1, in the postnatal production of myelin and its regeneration following a demyelinating event is also highlighted. A deeper understanding of the implication of each of the components that regulate oligodendrogenesis and myelination should beneficially influence the therapeutic strategies in the field of myelin diseases.
Collapse
Affiliation(s)
| | - Elisabeth Traiffort
- Small Molecules of Neuroprotection, Neuroregeneration and Remyelination – U1195, INSERM, University Paris-Sud/Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
7
|
Farreny MA, Agius E, Bel-Vialar S, Escalas N, Khouri-Farah N, Soukkarieh C, Danesin C, Pituello F, Cochard P, Soula C. FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord. Neural Dev 2018. [PMID: 29519242 PMCID: PMC5842613 DOI: 10.1186/s13064-018-0100-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). Results Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. Conclusion Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.
Collapse
Affiliation(s)
- Marie-Amélie Farreny
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nathalie Escalas
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Nagham Khouri-Farah
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Chadi Soukkarieh
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Philippe Cochard
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, F-31062, Toulouse, France.
| |
Collapse
|
8
|
Hedgehog inhibitors selectively target cell migration and adhesion of mantle cell lymphoma in bone marrow microenvironment. Oncotarget 2018; 7:14350-65. [PMID: 26885608 PMCID: PMC4924720 DOI: 10.18632/oncotarget.7320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/29/2016] [Indexed: 01/08/2023] Open
Abstract
The clinical benefits of a Hedgehog (Hh) inhibitor, LDE225 (NPV-LDE-225, Erismodegib), have been unclear in hematological cancers. Here, we report that LDE225 selectively inhibited migration and adhesion of mantle cell lymphoma (MCL) to bone marrows via very late antigen-4 (VLA-4) mediated inactivation of focal adhesion kinase (FAK) signaling. LDE225 treatment not only affected MCL cells, but also modulated stromal cells within the bone marrow microenvironment by decreasing their production of SDF-1, IL-6 and VCAM-1, the ligand for VLA-4. Surprisingly, LDE225 treatment alone did not suppress cell proliferation due to increased CXCR4 expression mediated by reactive oxygen species (ROS). The increased ROS/CXCR4 further stimulated autophagy formation. The combination of LDE225 with the autophagy inhibitors further enhanced MCL cell death. Our data, for the first time, revealed LDE225 selectively targets MCL cells migration and adhesion to bone marrows. The ineffectiveness of LDE225 in MCL is due to autophagy formation, which in turn increases cell viability. Inhibiting autophagy will be an effective adjuvant therapy for LDE225 in MCL, especially for advanced MCL patients with bone marrow involvement.
Collapse
|
9
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Pricola Fehnel K, Duggins-Warf M, Zurakowski D, McKee-Proctor M, Majumder R, Raber M, Han X, Smith ER. Using urinary bFGF and TIMP3 levels to predict the presence of juvenile pilocytic astrocytoma and establish a distinct biomarker signature. J Neurosurg Pediatr 2016; 18:396-407. [PMID: 27314542 DOI: 10.3171/2015.12.peds15448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The authors report the use of urinary biomarkers as a novel, noninvasive technique to detect juvenile pilocytic astrocytomas (JPAs), capable of distinguishing JPAs from other CNS diseases, including other brain tumors. Preliminary screening of an array of tumors implicated proteases (including matrix metalloproteinases [MMPs]) and their inhibitors (tissue inhibitors of metalloproteinase [TIMPs]) as well as growth factors (including basic fibroblast growth factor [bFGF]) as candidate biomarkers. These data led the authors to hypothesize that tissue inhibitor of metalloproteinase 3 (TIMP3) and bFGF would represent high-probability candidates as JPA-specific biomarkers. METHODS Urine was collected from 107 patients, which included children with JPA (n = 21), medulloblastoma (n = 17), glioblastoma (n = 9), arteriovenous malformations (n = 25), moyamoya (n = 14), and age- and sex-matched controls (n = 21). Biomarker levels were quantified with enzyme-linked immunosorbent assay, tumor tissue expression was confirmed with immunohistochemical analysis, and longitudinal biomarker expression was correlated with imaging. Results were subjected to univariate and multivariate statistical analyses. RESULTS Using optimal urinary cutoff values of bFGF > 1.0 pg/μg and TIMP3 > 3.5 pg/μg, multiplexing bFGF and TIMP3 predicts JPA presence with 98% accuracy. Multiplexing bFGF and MMP13 distinguishes JPA from other brain tumor subtypes with up to 98% accuracy. Urinary biomarker expression correlated with both tumor immunohistochemistry and in vitro tumor levels. Urinary bFGF and TIMP3 decrease following successful tumor treatment and correlate with changes in tumor size. CONCLUSIONS This study identifies 2 urinary biomarkers-bFGF and TIMP3-that successfully detect one of the most common pediatric brain tumors with high accuracy. These data highlight potential benefits of urinary biomarkers and support their utility as diagnostic tools in the treatment of children with JPA.
Collapse
Affiliation(s)
- Katie Pricola Fehnel
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and.,Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Michael Raber
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| | - Xuezhe Han
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| | - Edward R Smith
- Vascular Biology Program, and.,Departments of 2 Neurosurgery and
| |
Collapse
|
11
|
Wang LC, Almazan G. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation. Neurochem Res 2016; 41:3289-3299. [PMID: 27639396 DOI: 10.1007/s11064-016-2061-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 11/28/2022]
Abstract
During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
12
|
Traiffort E, Zakaria M, Laouarem Y, Ferent J. Hedgehog: A Key Signaling in the Development of the Oligodendrocyte Lineage. J Dev Biol 2016; 4:jdb4030028. [PMID: 29615592 PMCID: PMC5831774 DOI: 10.3390/jdb4030028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023] Open
Abstract
The Hedgehog morphogen aroused an enormous interest since it was characterized as an essential signal for ventral patterning of the spinal cord two decades ago. The pathway is notably implicated in the initial appearance of the progenitors of oligodendrocytes (OPCs), the glial cells of the central nervous system which after maturation are responsible for axon myelination. In accordance with the requirement for Hedgehog signaling in ventral patterning, the earliest identifiable cells in the oligodendrocyte lineage are derived from the ventral ventricular zone of the developing spinal cord and brain. Here, we present the current knowledge about the involvement of Hedgehog signaling in the strict spatial and temporal regulation which characterizes the initiation and progression of the oligodendrocyte lineage. We notably describe the ability of the Hedgehog signaling to tightly orchestrate the appearance of specific combinations of genes in concert with other pathways. We document the molecular mechanisms controlling Hedgehog temporal activity during OPC specification. The contribution of the pathway to aspects of OPC development different from their specification is also highlighted especially in the optic nerve. Finally, we report the data demonstrating that Hedgehog signaling-dependency is not a universal situation for oligodendrocyte generation as evidenced in the dorsal spinal cord in contrast to the dorsal forebrain.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Mary Zakaria
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Yousra Laouarem
- Neuroprotective, Neuroregenerative and Remyelinating Small Molecules' U1195, INSERM-Université Paris-Sud, Université Paris-Saclay, 80 rue du Général Leclerc, Kremlin-Bicêtre F-94276, France.
| | - Julien Ferent
- IRCM, Molecular Biology of Neural Development, 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada.
| |
Collapse
|
13
|
Jiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis 2016; 92:3-17. [PMID: 26184894 PMCID: PMC4720585 DOI: 10.1016/j.nbd.2015.07.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Jeannette Nardelli
- Inserm, U1141, Paris 75019, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris 75019, France.
| |
Collapse
|
14
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
15
|
Pituch KC, Moyano AL, Lopez-Rosas A, Marottoli FM, Li G, Hu C, van Breemen R, Månsson JE, Givogri MI. Dysfunction of platelet-derived growth factor receptor α (PDGFRα) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J Biol Chem 2015; 290:7040-53. [PMID: 25605750 DOI: 10.1074/jbc.m115.636498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound receptor for platelet-derived growth factor A (PDGFRα) is crucial for controlling the production of oligodendrocytes (OLs) for myelination, but regulation of its activity during OL differentiation is largely unknown. We have examined the effect of increased sulfated content of galactosylceramides (sulfatides) on the regulation of PDGFRα in multipotential neural precursors (NPs) that are deficient in arylsulfatase A (ASA) activity. This enzyme is responsible for the lysosomal hydrolysis of sulfatides. We show that sulfatide accumulation significantly impacts the formation of OLs via deregulation of PDGFRα function. PDGFRα is less associated with detergent-resistant membranes in ASA-deficient cells and showed a significant decrease in AKT phosphorylation. Rescue experiments with ASA showed a normalization of the ratio of long versus short sulfatides, restored PDGFRα levels, corrected its localization to detergent-resistant membranes, increased AKT phosphorylation, and normalized the production of OLs in ASA-deficient NPs. Moreover, our studies identified a novel mechanism that regulates the secretion of PDGFRα in NPs, in glial cells, and in the brain cortex via exosomal shedding. Our study provides a first step in understanding the role of sulfatides in regulating PDGFRα levels in OLs and its impact in myelination.
Collapse
Affiliation(s)
- Katarzyna C Pituch
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | - Ana L Moyano
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | - Aurora Lopez-Rosas
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| | | | - Guannan Li
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Chenqi Hu
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Richard van Breemen
- the Department of Medical Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois 60612 and
| | - Jan E Månsson
- the Department of Clinical Chemistry, Sahlgren Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Maria I Givogri
- From the Department of Anatomy and Cell Biology, College of Medicine, and
| |
Collapse
|
16
|
|
17
|
Miyake A, Chitose T, Kamei E, Murakami A, Nakayama Y, Konishi M, Itoh N. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 2014; 9:e110836. [PMID: 25357195 PMCID: PMC4214708 DOI: 10.1371/journal.pone.0110836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
- * E-mail:
| | - Tatsuya Chitose
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Eriko Kamei
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Atsuko Murakami
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
18
|
Saito A, Kanemoto S, Zhang Y, Asada R, Hino K, Imaizumi K. Chondrocyte Proliferation Regulated by Secreted Luminal Domain of ER Stress Transducer BBF2H7/CREB3L2. Mol Cell 2014; 53:127-39. [DOI: 10.1016/j.molcel.2013.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 01/22/2023]
|
19
|
NVP-LDE-225 (Erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2013; 2:e42. [PMID: 23567619 PMCID: PMC3641359 DOI: 10.1038/oncsis.2013.5] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer stem cells (CSCs) are defined by their extensive self-renewal, differentiation and tumor initiation properties. It is now clear that CSCs are involved in tumor growth and recurrence, and resistance to conventional treatments. The sonic hedgehog (Shh) pathway has a crucial role in stemness and tumorigenesis. Thus, the strategy that suppresses stemness and consequently tumorigenic potential of CSCs could be considered for the management of prostate cancer. The objectives of this study were to examine the molecular mechanisms, by which NVP-LDE-225/Erismodegib (smoothened inhibitor) regulates stem cell characteristics and tumor growth in prostate cancer. The effects of NVP-LDE-225 on CSC's viability, sphere formation, apoptosis, epithelial-mesenchymal transition (EMT) and tumor growth in NOD/SCID IL2Rγ null mice were examined. NVP-LDE-225 inhibited cell viability and spheroid formation, and induced apoptosis by activation of caspase-3 and cleavage of poly-ADP ribose polymerase (PARP). NVP-LDE-225 induced expression of Bax and Bak, and inhibited the expression of Bcl-2, Bcl-XL, XIAP, cIAP1, cIAP2 and survivin. NVP-LDE-225 inhibited Gli transcriptional activity, Gli-DNA interaction and the expression of Gli1, Gli2, Patched1 and Patched-2 in prostate CSCs. Interestingly, NVP-LDE-225 induced PDCD4 and apoptosis and inhibited cell viability by suppressing miR-21. Furthermore, NVP-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct-4, c-Myc and Sox-2. The inhibition of Bmi-1 by NVP-LDE-225 was regulated by upregulation of miR-128. NVP-LDE-225 suppressed EMT by upregulating E-cadherin and inhibiting N-cadherin, Snail, Slug and Zeb1 by regulating the miR-200 family. Finally, NVP-LDE-225 inhibited CSC tumor growth, which was associated with the suppression of Gli1, Gli2, Patched-1, Patched-2, Cyclin D1, Bmi-1 and PCNA and cleavage of caspase-3 and PARP in tumor tissues derived from NOD/SCID IL2Rγ null mice. Overall, our findings suggest that inhibition of the Shh signaling pathway could therefore be a novel therapeutic option in treating prostate cancer.
Collapse
|
20
|
Zuo H, Nishiyama A. Polydendrocytes in development and myelin repair. Neurosci Bull 2013; 29:165-76. [PMID: 23516142 DOI: 10.1007/s12264-013-1320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/30/2022] Open
Abstract
Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS). In the adult CNS, they retain mitotic activity and represent the largest proliferating cell population. Genetic and epigenetic mechanisms regulate the fate of polydendrocytes, which give rise to both oligodendrocytes and astrocytes. In addition, polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination. This review summarizes the current knowledge regarding polydendrocyte development, which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | |
Collapse
|
21
|
Fu J, Rodova M, Nanta R, Meeker D, Van Veldhuizen PJ, Srivastava RK, Shankar S. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol 2013; 15:691-706. [PMID: 23482671 DOI: 10.1093/neuonc/not011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme is the most common form of primary brain tumor, often characterized by poor survival. Glioblastoma initiating cells (GICs) regulate self-renewal, differentiation, and tumor initiation properties and are involved in tumor growth, recurrence, and resistance to conventional treatments. The sonic hedgehog (SHH) signaling pathway is essential for normal development and embryonic morphogenesis. The objectives of this study were to examine the molecular mechanisms by which GIC characteristics are regulated by NPV-LDE-225 (Smoothened inhibitor; (2,2'-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyrimidinediyl]bis(methylene)]bis[N,N-dimethylbenzenamine). METHODS Cell viability and apoptosis were measured by XTT and annexin V-propidium iodide assay, respectively. Gli translocation and transcriptional activities were measured by immunofluorescence and luciferase assay, respectively. Gene and protein expressions were measured by quantitative real-time PCR and Western blot analyses, respectively. RESULTS AND CONCLUSION NPV-LDE-225 inhibited cell viability, neurosphere formation, and Gli transcriptional activity and induced apoptosis by activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase. NPV-LDE-225 increased the expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-R1/DR4, TRAIL-R2/DR5, and Fas and decreased the expression of platelet derived growth factor receptor-α and Bcl2, and these effects were abrogated by Gli1 plus Gli2 short hairpin RNAs. NPV-LDE-225 enhanced the therapeutic potential of FasL and TRAIL by upregulating Fas and DR4/5, respectively. Interestingly, NPV-LDE-225 induced expression of programmed cell death 4 and apoptosis and inhibited cell viability by suppressing micro RNA (miR)-21. Furthermore, NPV-LDE-225 inhibited pluripotency-maintaining factors Nanog, Oct4, Sox2, and cMyc. The inhibition of Bmi1 by NPV-LDE-225 was regulated by induction of miR-128. Finally, NPV-LDE-225 suppressed epithelial-mesenchymal transition by upregulating E-cadherin and inhibiting N-cadherin, Snail, Slug, and Zeb1 through modulating the miR-200 family. Our data highlight the importance of the SHH pathway for self-renewal and early metastasis of GICs.
Collapse
Affiliation(s)
- Junsheng Fu
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bouslama-Oueghlani L, Wehrlé R, Doulazmi M, Chen XR, Jaudon F, Lemaigre-Dubreuil Y, Rivals I, Sotelo C, Dusart I. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin. PLoS One 2012; 7:e49015. [PMID: 23155445 PMCID: PMC3498367 DOI: 10.1371/journal.pone.0049015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 10/08/2012] [Indexed: 11/24/2022] Open
Abstract
Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin.
Collapse
Affiliation(s)
- Lamia Bouslama-Oueghlani
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
| | - Rosine Wehrlé
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
| | - Mohamed Doulazmi
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
| | - Xiao Ru Chen
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
| | - Fanny Jaudon
- Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 1 et 2, CNRS UMR 5237, Montpellier, France
| | - Yolande Lemaigre-Dubreuil
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
| | - Isabelle Rivals
- Équipe de statistique Appliquée, ESPCI ParisTech (Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris), Paris, France
| | - Constantino Sotelo
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, San Juan de Alicante, Spain
| | - Isabelle Dusart
- Neurobiologie des Processus Adaptatif, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France
- Neurobiologie des Processus Adaptatif, CNRS (Centre National de Recherche Scientifique), Paris, France
- * E-mail:
| |
Collapse
|
23
|
A critical cell-intrinsic role for serum response factor in glial specification in the CNS. J Neurosci 2012; 32:8012-23. [PMID: 22674276 DOI: 10.1523/jneurosci.5633-11.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Astrocytes and oligodendrocytes play crucial roles in nearly every facet of nervous system development and function, including neuronal migration, synaptogenesis, synaptic plasticity, and myelination. Previous studies have widely characterized the signaling pathways important for astrocyte differentiation and unveiled a number of transcription factors that guide oligodendrocyte differentiation in the CNS. However, the identities of the transcription factors critical for astrocyte specification in the brain remain unknown. Here we show that deletion of the stimulus-dependent transcription factor, serum response factor (SRF), in neural precursor cells (NPCs) (Srf-Nestin-cKO) results in nearly 60% loss in astrocytes and 50% loss in oligodendrocyte precursors at birth. Cultured SRF-deficient NPCs exhibited normal growth rate and capacity to self-renew. However, SRF-deficient NPCs generated fewer astrocytes and oligodendrocytes in response to several lineage-specific differentiation factors. These deficits in glial differentiation were rescued by ectopic expression of wild-type SRF in SRF-deficient NPCs. Interestingly, ectopic expression of a constitutively active SRF (SRF-VP16) in NPCs augmented astrocyte differentiation in the presence of pro-astrocytic factors. However, SRF-VP16 expression in NPCs had an inhibitory effect on oligodendrocyte differentiation. In contrast, mice carrying conditional deletion of SRF in developing forebrain neurons (Srf-NEX-cKO) did not exhibit any deficits in astrocytes in the brain. Together, our observations suggest that SRF plays a critical cell-autonomous role in NPCs to regulate astrocyte and oligodendrocyte specification in vivo and in vitro.
Collapse
|
24
|
Wada Y, Yamauchi K, Murakami F, Tanabe Y. Temporally- and spatially regulated generation of distinct descendants by sonic hedgehog-expressing progenitors in the forebrain. Dev Neurobiol 2012; 72:1099-113. [DOI: 10.1002/dneu.20861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 01/15/2023]
|
25
|
Watatani K, Hirabayashi Y, Itoh Y, Gotoh Y. PDK1 regulates the generation of oligodendrocyte precursor cells at an early stage of mouse telencephalic development. Genes Cells 2012; 17:326-35. [PMID: 22390626 DOI: 10.1111/j.1365-2443.2012.01591.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the development of the mouse telencephalon, multipotent neural precursor cells (NPCs) generate oligodendrocyte precursor cells (OPCs), progenitors restricted to the oligodendrocyte lineage, at various sites in a developmental stage-dependent manner. Although substantial progress has been made in identifying the transcription factors that control the production of OPCs, the signaling pathways that regulate these transcription factors and the spatiotemporal pattern of OPC production have been only partially clarified. Here, we show that the serine-threonine kinase 3-phosphoinositide-dependent kinase 1 (PDK1) contributes to an early wave of OPC production in the developing mouse telencephalon. Ablation of PDK1 in NPCs resulted in a reduction in the number of OPCs positive for Sox10 and platelet-derived growth factor receptor α (PDGFRα) within the neocortex and striatum at embryonic day (E) 15.5, but not at E18.5. Furthermore, pharmacological inhibition of phosphoinositide 3-kinase (PI3K) or deletion of the PDK1 gene suppressed the generation of OPCs from NPCs induced by fibroblast growth factor (FGF) 2 in culture. These results implicate the PI3K-PDK1 pathway in the physiological regulation of OPC production in a developmental context-dependent manner.
Collapse
Affiliation(s)
- Kenji Watatani
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
26
|
Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 2011; 31:5055-66. [PMID: 21451043 DOI: 10.1523/jneurosci.4800-10.2011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fibroblast growth factors (FGFs) comprise a family of developmental regulators implicated in a wide variety of neurological functions. FGF receptors 1, 2, and 3 (Fgfrs) are expressed in the embryonic forebrain, including regions overlapping with ventral sites of oligodendrocyte progenitor (OLP) generation. Although FGF signaling is known to influence the proliferation of OLPs in vitro, functions of different Fgfrs in vivo are lacking. Here, we examined single and double mutants with conditional disruption of Fgfrs, specifically in the embryonic forebrain, to investigate the effect of FGFs on the generation and proliferation of OLPs in vivo. FGF signaling, through cooperation between Fgfr1 and Fgfr2 but not Fgfr3, is required for the initial generation of OLPs in the mouse ventral forebrain, with Fgfr1 being a stronger inducer than Fgfr2. In cultures derived from embryonic mutant forebrains or from normal forebrains grown in the presence of Fgfr inhibitor, a strong attenuation of OLP generation was observed, supporting the role of FGF signaling in vivo. Contrary to in vitro findings, Fgfr1 and Fgfr2 signaling is not required for the proliferation of OLPs in vivo. Finally, failure of OLP generation in the Fgfr mutants occurred without loss of sonic hedgehog (Shh) signaling; and pharmacological inhibition of either Fgfr or hedgehog signaling in parallel cultures strongly inhibited OLP generation, suggesting that Fgfrs cooperate with Shh to generate OLPs. Overall, our results reveal for the first time an essential role of FGF signaling in vivo, where the three Fgfrs differentially control the normal generation of OLPs from the embryonic ventral forebrain.
Collapse
|
27
|
Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination. ASN Neuro 2010; 2:e00048. [PMID: 21113232 PMCID: PMC2988405 DOI: 10.1042/an20100020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/30/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH+ cells, with a decrease in cleaved-caspase-3+ cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP+ cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo.
Collapse
Key Words
- Apoptosis
- BrdU, bromodeoxyuridine
- CC, corpus callosum
- CL, contralateral
- DMEM, Dulbecco's modified Eagle's medium
- EGF, epidermal growth factor
- FCS, fetal calf serum
- GFAP, glial fibrillary acidic protein
- H/E, haematoxilin/eosin
- H/I, hypoxia/ischaemia
- HNE, hydroxynonenal
- ICI, intracranial injection/intracranially injected
- IL, ipsilateral
- IOD, integrated optical density; MBP, myelin basic protein
- OL, oligodendrocyte
- OPC, oligodendroglial progenitor cell
- PBS-T, PBS-0.1% Tween 20
- PCNA, proliferating-cell nuclear antigen
- PLP, proteolipid protein; PVL, periventricular leukomalacia
- RIP, receptor-interacting protein
- SVZ, subventricular zone
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling
- TfR, transferrin receptor
- aTf, apotransferrin
- apotransferrin (aTf)
- bHLH, basic helix–loop–helix
- hypoxia–ischaemia
- myelination
- oligodendrogenesis
- oligodendroglial differentiation
Collapse
|
28
|
Gibney SM, McDermott KW. Sonic hedgehog promotes the generation of myelin proteins by transplanted oligosphere-derived cells. J Neurosci Res 2009; 87:3067-75. [DOI: 10.1002/jnr.22138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Peru RL, Mandrycky N, Nait-Oumesmar B, Lu QR. Paving the axonal highway: from stem cells to myelin repair. ACTA ACUST UNITED AC 2009; 4:304-18. [PMID: 18759012 DOI: 10.1007/s12015-008-9043-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.
Collapse
Affiliation(s)
- Raniero L Peru
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | | |
Collapse
|
31
|
Franco PG, Silvestroff L, Soto EF, Pasquini JM. Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination. Exp Neurol 2008; 212:458-67. [PMID: 18572165 DOI: 10.1016/j.expneurol.2008.04.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/16/2008] [Accepted: 04/24/2008] [Indexed: 11/26/2022]
Abstract
In the present work we analyzed the capacity of thyroid hormones (THs) to improve remyelination using a rat model of cuprizone-induced demyelination previously described in our laboratories. Twenty one days old Wistar rats were fed a diet containing 0.6% cuprizone for two weeks to induce demyelination. After cuprizone withdrawal, rats were injected with triiodothyronine (T3). Histological studies carried out in these animals revealed that remyelination in the corpus callosum (CC) of T3-treated rats improved markedly when compared to saline treated animals. The cellular events occurring in the CC and in the subventricular zone (SVZ) during the first week of remyelination were analyzed using specific oligodendroglial cell (OLGc) markers. In the CC of saline treated demyelinated animals, mature OLGcs decreased and oligodendroglial precursor cells (OPCs) increased after one week of spontaneous remyelination. Furthermore, the SVZ of these animals showed an increase in early progenitor cell numbers, dispersion of OPCs and inhibition of Olig and Shh expression compared to non-demyelinated animals. The changes triggered by demyelination were reverted after T3 administration, suggesting that THs could be regulating the emergence of remyelinating oligodendrocytes from the pool of proliferating cells residing in the SVZ. Our results also suggest that THs receptor beta mediates T3 effects on remyelination. These results support a potential role for THs in the remyelination process that could be used to develop new therapeutic approaches for demyelinating diseases.
Collapse
Affiliation(s)
- P G Franco
- Departamento de Química Biológica, IQUIFIB and IIMHNO, Facultad de Farmacia y Bioquímica, UBA-CONICET, Junín 956, Buenos Aires C1113AAD, Argentina
| | | | | | | |
Collapse
|
32
|
Becher OJ, Hambardzumyan D, Fomchenko EI, Momota H, Mainwaring L, Bleau AM, Katz AM, Edgar M, Kenney AM, Cordon-Cardo C, Blasberg RG, Holland EC. Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Res 2008; 68:2241-9. [PMID: 18381430 DOI: 10.1158/0008-5472.can-07-6350] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gli signaling is critical for central nervous system development and is implicated in tumorigenesis. To monitor Gli signaling in gliomas in vivo, we created platelet-derived growth factor-induced gliomas in a Gli-luciferase reporter mouse. We find that Gli activation is found in gliomas and correlates with grade. In addition, we find that sonic hedgehog (SHH) is expressed in these tumors and also correlates with grade. We identify microvascular proliferation and pseudopalisades, elements that define high-grade gliomas as SHH-producing microenvironments. We describe two populations of SHH-producing stromal cells that reside in perivascular niche (PVN), namely low-cycling astrocytes and endothelial cells. Using the Ptc-LacZ knock-in mouse as a second Gli responsive reporter, we show beta-galactosidase activity in the PVN and in some tumors diffusely throughout the tumor. Lastly, we observe that SHH is similarly expressed in human gliomas and note that an intact tumor microenvironment or neurosphere conditions in vitro are required for Gli activity.
Collapse
Affiliation(s)
- Oren J Becher
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Oligodendrocytes (OGs) assemble the myelin sheath around axons in the central nervous system. Specification of cells into the OG lineage is largely the result of interplay between bone morphogenetic protein, sonic hedgehog and Notch signaling pathways, which regulate expression of transcription factors (TFs) dictating spatial and temporal aspects of oligodendrogenesis. Many of these TFs and others then direct OG development through to a mature myelinating OG. Here we describe signaling pathways and TFs that are inductive, inhibitory, and/or permissive to OG specification and maturation. We develop a basic transcriptional network and identify similarities and differences between regulation of oligodendrogenesis in the spinal cord and brain.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, and Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
34
|
Combined activity of the two Gli2 genes of zebrafish play a major role in Hedgehog signaling during zebrafish neurodevelopment. Mol Cell Neurosci 2007; 37:388-401. [PMID: 18060804 DOI: 10.1016/j.mcn.2007.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 01/26/2023] Open
Abstract
It has been proposed that the downstream mediator of the evolutionarily conserved Hedgehog pathway Gli2 plays a relatively minor role in neural development of zebrafish. The second gli2 of zebrafish, gli2b, is expressed in the neural plate and the central nervous system. Our comparative analysis of the developmental role of gli2/gli2b demonstrate a major role of the two Gli2s in mediating Hh signaling. The Gli2s play an early Hh-independent repressor role in the maintenance of neural progenitors and an Hh-dependent activating role during cell differentiation in the floor plate, branchial motor neurons, and sensory neurons. Our analysis of Gli2b loss-of-function using antisense morpholino oligonucleotides indicates that the functions of the two Gli2s diverged in evolution. Gli2b acts in cell proliferation and plays an early role in the hindbrain within a regulatory cascade involving Notch and Ngn1, as well as a role as specific activator in rhombomere 4.
Collapse
|
35
|
Petryniak MA, Potter GB, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 2007; 55:417-33. [PMID: 17678855 PMCID: PMC2039927 DOI: 10.1016/j.neuron.2007.06.036] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/21/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Progenitors within the ventral telencephalon can generate GABAergic neurons and oligodendrocytes, but regulation of the neuron-glial switch is poorly understood. We investigated the combinatorial expression and function of Dlx1&2, Olig2, and Mash1 transcription factors in the ventral telencephalon. We show that Dlx homeobox transcription factors, required for GABAergic interneuron production, repress oligodendrocyte precursor cell (OPC) formation by acting on a common progenitor to determine neuronal versus oligodendroglial cell fate acquisition. We demonstrate that Dlx1&2 negatively regulate Olig2-dependant OPC formation and that Mash1 promotes OPC formation by restricting the number of Dlx+ progenitors. Progenitors transplanted from Dlx1&2 mutant ventral telencephalon into newborn wild-type mice do not produce neurons but differentiate into myelinating oligodendrocytes that survive into adulthood. Our results identify another role for Dlx genes as modulators of neuron versus oligodendrocyte development in the ventral embryonic forebrain.
Collapse
Affiliation(s)
- Magdalena A. Petryniak
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
| | - Gregory B. Potter
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| | - David H. Rowitch
- Division of Neonatology, Department of Pediatrics, University of California at San Francisco, 533 Parnassus, San Francisco, CA, 94143-0748
- Institute for Regeneration Medicine, Department of Neurological Surgery, UCSF
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158-2611, USA
- Corresponding authors: , Ph: 415-476-7872, Fax: 415-476-7884; , Ph: 415-476-7862, Fax: 415-502-7618
| |
Collapse
|
36
|
Gibney SM, McDermott KW. Differentiation of oligodendrocytes in neurospheres derived from embryonic rat brain using growth and differentiation factors. J Neurosci Res 2007; 85:1912-20. [PMID: 17526011 DOI: 10.1002/jnr.21331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies on the isolation and propagation of multipotent neural precursors as neurospheres suggest their potential use in the reconstitution of neurons and oligodendrocytes in neurodegenerative diseases. To ensure that an adequate number of functionally relevant cells are present after transplantation, in vitro manipulation of cell fate before transplantation may be necessary to control the terminal phenotype of these cells. Using growth factors known to have a role in oligodendrocyte development such as sonic hedgehog, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (FGF-2), we have tried to increase the number of oligodendroglia derived from E18 cortical neurospheres. We have shown that although all of the growth factor combinations induce the formation of oligodendroglia, they do so in varying proportions, with PDGF favouring the formation of oligodendrocyte progenitor cells and sonic hedgehog favouring the formation of mature oligodendrocytes. To further enhance the generation of oligodendroglia we exposed neurospheres to B104-cell conditioned medium (B104 CM). Long-term growth of the neurospheres in this B104 CM increased markedly the number of cells committed to the oligodendrocyte lineage, specifically oligodendrocyte progenitor cells. These were then referred to as oligospheres. Our results suggest that the oligosphere culture system may provide a valuable source of cells for the reconstitution of oligodendrocytes in neurologic disorders.
Collapse
Affiliation(s)
- Sinead M Gibney
- Department Anatomy, BioSciences Institute, University College Cork, Cork, Ireland.
| | | |
Collapse
|
37
|
Brena RM, Morrison C, Liyanarachchi S, Jarjoura D, Davuluri RV, Otterson GA, Reisman D, Glaros S, Rush LJ, Plass C. Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med 2007; 4:e108. [PMID: 17388669 PMCID: PMC1831740 DOI: 10.1371/journal.pmed.0040108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/31/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset. METHODS AND FINDINGS In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels. CONCLUSIONS Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77-0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Carl Morrison
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandya Liyanarachchi
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Division of Biostatistics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramana V Davuluri
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Gregory A Otterson
- Department of Internal Medicine, Division of Hematology and Oncology, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - David Reisman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Selina Glaros
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura J Rush
- Department of Veterinary Biosciences and the Comprehensive Cancer Center, The Ohio State University Columbus, Ohio, United States of America
| | - Christoph Plass
- Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Abstract
Olig1 and Olig2 encode basic helix-loop-helix (bHLH) transcription factors that are expressed in both the developing and mature vertebrate central nervous system. While numerous studies have established critical functions for Olig genes during the formation of motor neurons and oligodendrocytes of the ventral neural tube, their roles at later stages of development and in adulthood have remained relatively obscure. Recent studies, however, reveal that in the fetal dorsal spinal cord and neural progenitor cells of the adult brain, Olig expression continues to mark, and may regulate, the formation of oligodendroglia. Studies of Olig expression in human brain tumors and repair of demyelinating lesions suggest the possibility of additional functions in a variety of neurological diseases.
Collapse
Affiliation(s)
- Keith L Ligon
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
39
|
Kitada M, Rowitch DH. Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 2006; 54:35-46. [PMID: 16673374 DOI: 10.1002/glia.20354] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes and their precursors serve critical roles in the maintenance of neurological function. Although activity of the transcription factors (TFs) Olig1, Olig2, Sox10, and Nkx2.2 is required during early oligodendrocyte development, their later expression in adult central nervous system is rather poorly characterized. Here we have analyzed co-expression patterns of these transcriptional proteins in the mouse cervical spinal cord. Our findings indicate that TF co-expression patterns describe heterogeneity in adult oligodendroglial populations (1) in distinct sub-regions of grey and white matter and (2) with respect to level of maturation from proliferating precursors to myelinating oligodendrocytes. Our findings suggest that TF co-expression patterns identify and might regulate distinct functional classes of grey and white matter oligodendroglia.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Fu J, Tay SSW, Ling EA, Dheen ST. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 2006; 49:1027-38. [PMID: 16508779 DOI: 10.1007/s00125-006-0153-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 10/31/2005] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. MATERIALS AND METHODS Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. RESULTS High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. CONCLUSIONS/INTERPRETATION The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the basis for the defective neural tube patterning observed in embryos of diabetic pregnancies.
Collapse
Affiliation(s)
- J Fu
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 2006; 25:8311-21. [PMID: 16148239 PMCID: PMC6725536 DOI: 10.1523/jneurosci.1850-05.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that specific neural basic helix-loop-helix (HLH; i.e., Olig1 and Olig2, Mash1), associated inhibitory HLH (i.e., Id2 and Id4), high-mobility group domain (i.e., Sox10), and homeodomain (i.e., Nkx2.2) transcription factors are involved in oligodendrocyte (OL) lineage specification and progressive stages of maturation including myelination. However, the developmental interplay among these lineage-selective determinants, in a cell- and maturational stage-specific context, has not yet been defined. We show here in vivo and in vitro developmental expression profiles for these distinct classes of transcriptional regulators of OLs. We show that progressive stages of OL lineage maturation are characterized by dynamic changes in the subcellular distribution of these transcription factors and by different permutations of combinatorial transcriptional codes. Transient transfections of these precise combinatorial codes with a luciferase reporter gene driven by the myelin basic protein promoter define how changes in the molecular composition of these transcriptional complexes modulate myelin gene expression. Our overall findings suggest that the dynamic interplay between developmental stage-specific classes of transcriptional activators and associated inhibitory factors orchestrate myelin gene expression during terminal maturation of the mammalian CNS.
Collapse
Affiliation(s)
- Solen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
42
|
Oh S, Huang X, Chiang C. Specific requirements of sonic hedgehog signaling during oligodendrocyte development. Dev Dyn 2006; 234:489-96. [PMID: 15880651 DOI: 10.1002/dvdy.20422] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligodendrocyte precursors (OLPs) in the developing spinal cord are generated from the same part of the ventral neuroepithelium as motor neurons, by inductive processes that include a temporal switch from neuronal to glial cell fate. Recent studies have implicated Shh as a key signal in the generation of both OLPs and ventral neurons. In this study, we used Shh(-/-), Gli3(-/-), and Shh(-/-);Gli3(-/-) mutants to address the role of Shh signaling during oligodendrocyte development. We find that, in the absence of Gli3, Shh signaling is dispensable for the generation and maintenance of OLPs. However, Shh is required for OLPs to emerge at the appropriate developmental stages and for subsequent differentiation of OLPs into mature oligodendrocytes. The initial delay and reduction in OLP generation in Shh(-/-);Gli3(-/-) mutants are accompanied by extended neurogenesis and persistent expression of Neurogenin 2 in the Olig2 progenitor domain, suggesting that Shh signaling influences the timing of neuron-glia fate switching. Thus, our studies suggest that Shh signaling plays multiple roles during development of oligodendrocytes.
Collapse
Affiliation(s)
- Saeock Oh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
43
|
Miyake A, Nakayama Y, Konishi M, Itoh N. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development. Dev Biol 2005; 288:259-75. [PMID: 16256099 DOI: 10.1016/j.ydbio.2005.09.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 09/16/2005] [Accepted: 09/27/2005] [Indexed: 01/21/2023]
Abstract
Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
44
|
Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa RI, Wehr MC, Wieland F, Ishibashi S, Nave KA. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005; 8:468-75. [PMID: 15793579 DOI: 10.1038/nn1426] [Citation(s) in RCA: 498] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/25/2005] [Indexed: 01/07/2023]
Abstract
Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Age Factors
- Animals
- Animals, Newborn
- Apolipoproteins E/metabolism
- Behavior, Animal
- Blotting, Northern/methods
- Blotting, Southern/methods
- Blotting, Western/methods
- Cell Membrane/metabolism
- Central Nervous System/metabolism
- Cholesterol/deficiency
- Cholesterol/physiology
- Chromatography, Thin Layer/methods
- Cloning, Molecular
- Creatine/metabolism
- Farnesyl-Diphosphate Farnesyltransferase/deficiency
- Farnesyl-Diphosphate Farnesyltransferase/genetics
- Farnesyl-Diphosphate Farnesyltransferase/metabolism
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization/methods
- Lipid Metabolism
- Mass Spectrometry/methods
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains/physiology
- Microscopy, Electron, Transmission/methods
- Microsomes/metabolism
- Myelin Proteolipid Protein/metabolism
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Phenotype
- Psychomotor Performance/physiology
- RNA/analysis
- Receptors, LDL/metabolism
- Silver Staining/methods
- Spinal Cord/metabolism
- Spinal Cord/ultrastructure
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 2005; 45:41-53. [PMID: 15629701 DOI: 10.1016/j.neuron.2004.12.028] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/07/2004] [Accepted: 11/16/2004] [Indexed: 02/07/2023]
Abstract
In the developing spinal cord, early progenitor cells of the oligodendrocyte lineage are induced in the motor neuron progenitor (pMN) domain of the ventral neuroepithelium by the ventral midline signal Sonic hedgehog (Shh). The ventral generation of oligodendrocytes requires Nkx6-regulated expression of the bHLH gene Olig2 in this domain. In the absence of Nkx6 genes or Shh signaling, the initial expression of Olig2 in the pMN domain is completely abolished. In this study, we provide the in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities and reveal a brief second wave of oligodendrogenesis in the dorsal spinal cord. In addition, we provide genetic evidence that oligodendrogenesis can occur in the absence of hedgehog receptor Smoothened, which is essential for all hedgehog signaling.
Collapse
Affiliation(s)
- Jun Cai
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Vallstedt A, Klos JM, Ericson J. Multiple Dorsoventral Origins of Oligodendrocyte Generation in the Spinal Cord and Hindbrain. Neuron 2005; 45:55-67. [PMID: 15629702 DOI: 10.1016/j.neuron.2004.12.026] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 11/21/2022]
Abstract
Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.
Collapse
Affiliation(s)
- Anna Vallstedt
- Department of Cell and Molecular Biology, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Abstract
Our knowledge of the causes of brain tumors has steadily increased and is leading to a refined understanding of the signaling pathways that may be essential for tumor formation. At the same time, we are gaining insights into the developmental processes that regulate the formation of the diverse range of cell types in the normal brain. Interestingly, many of these pathways seem to overlap and suggest common mechanisms regulating tumor formation and cellular development. This overlap may also inform us about the nature of the cell of origin for different types of brain tumors. By appreciating the inter-relationship between tumor formation and development, we maybe able to design new therapeutics targeting tumors for new modes of treatment.
Collapse
Affiliation(s)
- Alan H Shih
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- David H Rowitch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
49
|
Mastronardi FG, Min W, Wang H, Winer S, Dosch M, Boggs JM, Moscarello MA. Attenuation of Experimental Autoimmune Encephalomyelitis and Nonimmune Demyelination by IFN-β plus Vitamin B12: Treatment to Modify Notch-1/Sonic Hedgehog Balance. THE JOURNAL OF IMMUNOLOGY 2004; 172:6418-26. [PMID: 15128833 DOI: 10.4049/jimmunol.172.10.6418] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interferon-beta is a mainstay therapy of demyelinating diseases, but its effects are incomplete in human multiple sclerosis and several of its animal models. In this study, we demonstrate dramatic improvements of clinical, histological, and laboratory parameters in in vivo mouse models of demyelinating disease through combination therapy with IFN-beta plus vitamin B(12) cyanocobalamin (B(12)CN) in nonautoimmune primary demyelinating ND4 (DM20) transgenics, and in acute and chronic experimental autoimmune encephalomyelitis in SJL mice. Clinical improvement (p values <0.0001) was paralleled by near normal motor function, reduced astrocytosis, and reduced demyelination. IFN-beta plus B(12)CN enhanced in vivo and in vitro oligodendrocyte maturation. In vivo and in vitro altered expression patterns of reduced Notch-1 and enhanced expression of sonic hedgehog and its receptor were consistent with oligodendrocyte maturation and remyelination. IFN-beta-B(12)CN combination therapy may be promising for the treatment of multiple sclerosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Brain/drug effects
- Brain/metabolism
- Cell Line
- Chronic Disease
- Demyelinating Diseases/genetics
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/prevention & control
- Drug Synergism
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Hedgehog Proteins
- Humans
- Interferon-beta/therapeutic use
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Peptide Fragments/biosynthesis
- Receptor, Notch1
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Stem Cells/drug effects
- Stem Cells/metabolism
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Vitamin B 12/therapeutic use
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND. FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 2004; 130:6599-609. [PMID: 14660548 DOI: 10.1242/dev.00871] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, spinal cord oligodendrocyte precursors (OPCs) originate from the ventral, but not dorsal, neuroepithelium. Sonic hedgehog (SHH) has crucial effects on oligodendrocyte production in the ventral region of the spinal cord; however, less is known regarding SHH signalling and oligodendrocyte generation from neural stem cells (NSCs). We show that NSCs isolated from the dorsal spinal cord can generate oligodendrocytes following FGF2 treatment, a MAP kinase dependent phenomenon that is associated with induction of the obligate oligogenic gene Olig2. Cyclopamine, a potent inhibitor of hedgehog signalling, did not block the formation of oligodendrocytes from FGF2-treated neurosphere cultures. Furthermore, neurospheres generated from SHH null mice also produced oligodendrocytes, even in the presence of cyclopamine. These findings are compatible with the idea of a hedgehog independent pathway for oligodendrocyte generation from neural stem cells.
Collapse
Affiliation(s)
- Siddharthan Chandran
- Cambridge Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|