1
|
Avesani A, Marino V, Zanzoni S, Koch KW, Dell'Orco D. Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R. J Biol Chem 2021; 296:100619. [PMID: 33812995 PMCID: PMC8113879 DOI: 10.1016/j.jbc.2021.100619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.
Collapse
Affiliation(s)
- Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
2
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
3
|
Liu X, Fujinami K, Kuniyoshi K, Kondo M, Ueno S, Hayashi T, Mochizuki K, Kameya S, Yang L, Fujinami-Yokokawa Y, Arno G, Pontikos N, Sakuramoto H, Kominami T, Terasaki H, Katagiri S, Mizobuchi K, Nakamura N, Yoshitake K, Miyake Y, Li S, Kurihara T, Tsubota K, Iwata T, Tsunoda K. Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with GUCY2D-Associated Retinal Disorder. Transl Vis Sci Technol 2020; 9:2. [PMID: 32821499 PMCID: PMC7408927 DOI: 10.1167/tvst.9.6.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To determine the clinical and genetic characteristics of patients with GUCY2D-associated retinal disorder (GUCY2D-RD). Methods Fifteen patients from 12 families with inherited retinal disorder (IRD) and harboring GUCY2D variants were ascertained from 730 Japanese families with IRD. Comprehensive ophthalmological examinations, including visual acuity (VA) measurement, retinal imaging, and electrophysiological assessment were performed to classify patients into three phenotype subgroups; macular dystrophy (MD), cone-rod dystrophy (CORD), and Leber congenital amaurosis (LCA). In silico analysis was performed for the detected variants, and the molecularly confirmed inheritance pattern was determined (autosomal dominant/recessive [AD/AR]). Results The median age of onset/examination was 22.0/38.0 years (ranges, 0-55 and 1-73) with a median VA of 0.80/0.70 LogMAR units (ranges, 0.00-1.52 and 0.10-1.52) in the right/left eye, respectively. Macular atrophy was identified in seven patients (46.7%), and two had diffuse fundus disturbance (13.3%), and six had an essentially normal fundus (40.0%). There were 11 patients with generalized cone-rod dysfunction (78.6%), two with entire functional loss (14.3%), and one with confined macular dysfunction (7.1%). There were nine families with ADCORD, one with ARCORD, one with ADMD, and one with ARLCA. Ten GUCY2D variants were identified, including four novel variants (p.Val56GlyfsTer262, p.Met246Ile, p.Arg761Trp, p.Glu874Lys). Conclusions This large cohort study delineates the disease spectrum of GUCY2D-RD. Diverse clinical presentations with various severities of ADCORD and the early-onset severe phenotype of ARLCA are illustrated. A relatively lower prevalence of GUCY2D-RD for ADCORD and ARLCA in the Japanese population was revealed. Translational Relevance The obtained data help to monitor and counsel patients, especially in East Asia, as well as to design future therapeutic approaches.
Collapse
Affiliation(s)
- Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu-shi, Gifu, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Fujinami-Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Graduate School of Health Management, Keio University, Shinjuku-ku, Tokyo, Japan.,Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan
| | - Gavin Arno
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,North East Thames Regional Genetics Service, UCL Great Ormond Street Institute of Child Health, Great Ormond Street NHS Foundation Trust, London, UK
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Hiroyuki Sakuramoto
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Natsuko Nakamura
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Department of Ophthalmology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan.,Aichi Medical University, Nagakute, Aichi, Japan
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization National Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
4
|
Klaus C, Caruso G, Gurevich VV, DiBenedetto E. Multi-scale, numerical modeling of spatio-temporal signaling in cone phototransduction. PLoS One 2019; 14:e0219848. [PMID: 31344066 PMCID: PMC6657853 DOI: 10.1371/journal.pone.0219848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
Mammals have two types of photoreceptors, rods and cones. While rods are exceptionally sensitive and mediate vision at very low illumination levels, cones operate in daylight and are responsible for the bulk of visual perception in most diurnal animals, including humans. Yet the mechanisms of phototransduction in cones is understudied, largely due to unavailability of pure cone outer segment (COS) preparations. Here we present a novel mathematical model of cone phototransduction that explicitly takes into account complex cone geometry and its multiple physical scales, faithfully reproduces features of the cone response, and is orders of magnitude more efficient than the standard 3D diffusion model. This is accomplished through the mathematical techniques of homogenization and concentrated capacity. The homogenized model is then computationally implemented by finite element method. This homogenized model permits one to analyze the effects of COS geometry on visual transduction and lends itself to performing large numbers of numerical trials, as required for parameter analysis and the stochasticity of rod and cone signal transduction. Agreement between the nonhomogenized, (i.e., standard 3D), and homogenized diffusion models is reported along with their simulation times and memory costs. Virtual expression of rod biochemistry on cone morphology is also presented for understanding some of the characteristic differences between rods and cones. These simulations evidence that 3D cone morphology and ion channel localization contribute to biphasic flash response, i.e undershoot. The 3D nonhomogenized and homogenized models are contrasted with more traditional and coarser well-stirred and 1D longitudinal diffusion models. The latter are single-scale and do not explicitly account for the multi-scale geometry of the COS, unlike the 3D homogenized model. We show that simpler models exaggerate the magnitude of the current suppression, yield accelerated time to peak, and do not predict the local concentration of cGMP at the ionic channels.
Collapse
Affiliation(s)
- Colin Klaus
- The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States of America
| | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Emmanuele DiBenedetto
- Department of Mathematics, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
5
|
Gross OP, Pugh EN, Burns ME. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses. Front Mol Neurosci 2015; 8:6. [PMID: 25788876 PMCID: PMC4349151 DOI: 10.3389/fnmol.2015.00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023] Open
Abstract
Vertebrate vision begins when retinal photoreceptors transduce photons into electrical signals that are then relayed to other neurons in the eye, and ultimately to the brain. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response (SPR) have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the SPR affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the SPR. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the SPR.
Collapse
Affiliation(s)
- Owen P Gross
- Center for Neuroscience, University of California Davis Davis, CA, USA
| | - Edward N Pugh
- Departments of Ophthalmology and Vision Science, University of California Davis Davis, CA, USA ; Physiology and Membrane Biology, University of California Davis Davis, CA, USA ; Cell Biology and Human Anatomy, University of California Davis Davis, CA, USA
| | - Marie E Burns
- Center for Neuroscience, University of California Davis Davis, CA, USA ; Departments of Ophthalmology and Vision Science, University of California Davis Davis, CA, USA ; Cell Biology and Human Anatomy, University of California Davis Davis, CA, USA
| |
Collapse
|
6
|
Götze M, Pettelkau J, Fritzsche R, Ihling CH, Schäfer M, Sinz A. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:83-97. [PMID: 25261217 DOI: 10.1007/s13361-014-1001-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 05/03/2023]
Abstract
CID-MS/MS cleavable cross-linkers hold an enormous potential for an automated analysis of cross-linked products, which is essential for conducting structural proteomics studies. The created characteristic fragment ion patterns can easily be used for an automated assignment and discrimination of cross-linked products. To date, there are only a few software solutions available that make use of these properties, but none allows for an automated analysis of cleavable cross-linked products. The MeroX software fills this gap and presents a powerful tool for protein 3D-structure analysis in combination with MS/MS cleavable cross-linkers. We show that MeroX allows an automatic screening of characteristic fragment ions, considering static and variable peptide modifications, and effectively scores different types of cross-links. No manual input is required for a correct assignment of cross-links and false discovery rates are calculated. The self-explanatory graphical user interface of MeroX provides easy access for an automated cross-link search platform that is compatible with commonly used data file formats, enabling analysis of data originating from different instruments. The combination of an MS/MS cleavable cross-linker with a dedicated software tool for data analysis provides an automated workflow for 3D-structure analysis of proteins. MeroX is available at www.StavroX.com .
Collapse
Affiliation(s)
- Michael Götze
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany,
| | | | | | | | | | | |
Collapse
|
7
|
Guanylate Cyclase-Activating Protein-2 Undergoes Structural Changes upon Binding to Detergent Micelles and Bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2767-77. [DOI: 10.1016/j.bbamem.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022]
|
8
|
Pettelkau J, Ihling CH, Frohberg P, van Werven L, Jahn O, Sinz A. Reliable identification of cross-linked products in protein interaction studies by 13C-labeled p-benzoylphenylalanine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1628-1641. [PMID: 25031183 DOI: 10.1007/s13361-014-0944-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
We describe the use of the (13)C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a (13)C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.
Collapse
Affiliation(s)
- Jens Pettelkau
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
9
|
Collery RF, Cederlund ML, Kennedy BN. Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology. Exp Eye Res 2013; 108:120-8. [PMID: 23328348 DOI: 10.1016/j.exer.2013.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 11/25/2022]
Abstract
Cone-rod dystrophy 6 (CORD6) is an inherited blindness that presents with defective cone photoreceptor function in childhood, followed by loss of rod function. CORD6 results from mutations in GUCY2D, the human gene encoding retinal guanylate cyclase 1 (RETGC-1). RETGC-1 functions in phototransduction, synthesising cGMP to open ion channels in photoreceptor outer segments. As there is limited histopathological data on the CORD6 retina, our goal was to generate a CORD6 model by expressing mutant human RETGC-1 in zebrafish cone photoreceptors and to investigate effects on retinal morphology and function. cDNAs encoding wildtype and mutant (E837D R838S) RETGC-1 were cloned under the control of the cone-specific gnat2 promoter and microinjected into zebrafish embryos to generate transgenic lines. RETGC-1 mRNA expression in zebrafish eyes was confirmed by RT-PCR. Fluorescent microscopy analysed retinal morphology and visual behaviour was quantified by the optokinetic response (OKR). Stable transgenic lines expressing mutant or wildtype human RETGC-1 in zebrafish eyes were generated. OKR assays of 5-day-old larvae did not uncover any deficits in visual behaviour. However, transgenic (E837D R838S) RETGC-1 expression results in aberrant cone morphology and a reduced cone density. A reduction in the number of photoreceptor nuclei, the thickness of the outer nuclear layer and the labelling of rod outer segments, particularly in the central retina, was evident. Expression of mutant human RETGC-1 leads to a retinal phenotype that includes aberrant photoreceptor morphology and a reduced number of photoreceptors. This phenotype likely explains the compromised visual function, characteristic of CORD6.
Collapse
Affiliation(s)
- Ross F Collery
- UCD Conway Institute and UCD School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
| | | | | |
Collapse
|
10
|
Pettelkau J, Schröder T, Ihling CH, Olausson BES, Kölbel K, Lange C, Sinz A. Structural Insights into Retinal Guanylylcyclase–GCAP-2 Interaction Determined by Cross-Linking and Mass Spectrometry. Biochemistry 2012; 51:4932-49. [DOI: 10.1021/bi300064v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Pettelkau
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Thomas Schröder
- Department of Technical Biochemistry, Institute of Biochemistry and
Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Christian H. Ihling
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Björn E. S. Olausson
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Knut Kölbel
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| | - Christian Lange
- Department of Technical Biochemistry, Institute of Biochemistry and
Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department
of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße
4, D-06120 Halle (Saale), Germany
| |
Collapse
|
11
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
12
|
Schröder T, Lilie H, Lange C. The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca²⁺. Protein Sci 2011; 20:1155-65. [PMID: 21520322 DOI: 10.1002/pro.643] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/07/2022]
Abstract
Guanylate cyclase activating protein-2 (GCAP-2) is a Ca²⁺-binding protein of the neuronal calcium sensor (NCS) family. Ca²⁺-free GCAP-2 activates the retinal rod outer segment guanylate cyclases ROS-GC1 and 2. Native GCAP-2 is N-terminally myristoylated. Detailed structural information on the Ca²⁺-dependent conformational switch of GCAP-2 is missing so far, as no atomic resolution structures of the Ca²⁺-free state have been determined. The role of the myristoyl moiety remains poorly understood. Available functional data is incompatible with a Ca²⁺-myristoyl switch as observed in the prototype NCS protein, recoverin. For the homologous GCAP-1, a Ca²⁺-independent sequestration of the myristoyl moiety inside the proteins structure has been proposed. In this article, we compare the thermodynamic stabilities of myristoylated and non-myristoylated GCAP-2 in their Ca²⁺-bound and Ca²⁺-free forms, respectively, to gain information on the nature of the Ca²⁺-dependent conformational switch of the protein and shed some light on the role of its myristoyl group. In the absence of Ca²⁺, the stability of the myristoylated and non-myristoylated forms was indistinguishable. Ca²⁺ exerted a stabilizing effect on both forms of the protein, which was significantly stronger for myr GCAP-2. The stability data were corroborated by dye binding experiments performed to probe the solvent-accessible hydrophobic surface of the protein. Our results strongly suggest that the myristoyl moiety is permanently solvent-exposed in Ca²⁺-free GCAP-2, whereas it interacts with a hydrophobic part of the protein's structure in the Ca²⁺-bound state.
Collapse
Affiliation(s)
- Thomas Schröder
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle 06120, Germany
| | | | | |
Collapse
|
13
|
Duda T, Yadav P, Sharma RK. Allosteric modification, the primary ATP activation mechanism of atrial natriuretic factor receptor guanylate cyclase. Biochemistry 2011; 50:1213-25. [PMID: 21222471 DOI: 10.1021/bi1018978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ANF-RGC is the prototype receptor membrane guanylate cyclase being both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single transmembrane-spanning protein. After binding these hormones at the extracellular domain it at its intracellular domain signals activation of the C-terminal catalytic module and accelerates the production of its second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. ATP is obligatory for the posttransmembrane dynamic events leading to ANF-RGC activation. It functions through the ATP-regulated module, ARM (KHD) domain, of ANF-RGC. In the current over a decade held model "phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A" [Potter, L. R., and Hunter, T. (1998) Mol. Cell. Biol. 18, 2164-2172]. The presented study challenges this concept. It demonstrates that, instead, ATP allosteric modification of ARM is the primary signaling step of ANF-GC activation. In this two-step new dynamic model, ATP in the first step binds ARM. This triggers in it a chain of transduction events, which cause its allosteric modification. The modification partially activates (about 50%) ANF-RGC and, concomitantly, also prepares the ARM for the second successive step. In this second step, ARM is phosphorylated and ANF-RGC achieves additional (∼50%) full catalytic activation. The study defines a new paradigm of the ANF-RGC signaling mechanism.
Collapse
Affiliation(s)
- Teresa Duda
- Research Division of Biochemistry, The Unit of Regulatory and Molecular Biology, Salus University, 8360 Old York Road, Elkins Park, Pennsylvania 19027, United States.
| | | | | |
Collapse
|
14
|
Houillon A, Bessière P, Droulez J. The probabilistic cell: implementation of a probabilistic inference by the biochemical mechanisms of phototransduction. Acta Biotheor 2010; 58:103-20. [PMID: 20665071 DOI: 10.1007/s10441-010-9104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
Abstract
When we perceive the external world, our brain has to deal with the incompleteness and uncertainty associated with sensory inputs, memory and prior knowledge. In theoretical neuroscience probabilistic approaches have received a growing interest recently, as they account for the ability to reason with incomplete knowledge and to efficiently describe perceptive and behavioral tasks. How can the probability distributions that need to be estimated in these models be represented and processed in the brain, in particular at the single cell level? We consider the basic function carried out by photoreceptor cells which consists in detecting the presence or absence of light. We give a system-level understanding of the process of phototransduction based on a bayesian formalism: we show that the process of phototransduction is equivalent to a temporal probabilistic inference in a Hidden Markov Model (HMM), for estimating the presence or absence of light. Thus, the biochemical mechanisms of phototransduction underlie the estimation of the current state probability distribution of the presence of light. A classical descriptive model describes the interactions between the different molecular messengers, ions, enzymes and channel proteins occurring within the photoreceptor by a set of nonlinear coupled differential equations. In contrast, the probabilistic HMM model is described by a discrete recurrence equation. It appears that the binary HMM has a general solution in the case of constant input. This allows a detailed analysis of the dynamics of the system. The biochemical system and the HMM behave similarly under steady-state conditions. Consequently a formal equivalence can be found between the biochemical system and the HMM. Numerical simulations further extend the results to the dynamic case and to noisy input. All in all, we have derived a probabilistic model equivalent to a classical descriptive model of phototransduction, which has the additional advantage of assigning a function to phototransduction. The example of phototransduction shows how simple biochemical interactions underlie simple probabilistic inferences.
Collapse
Affiliation(s)
- Audrey Houillon
- Laboratoire de Physiologie de la Perception et de l'Action, CNRS/Collège de France, Paris, France.
| | | | | |
Collapse
|
15
|
Duda T, Yadav P, Sharma RK. ATP allosteric activation of atrial natriuretic factor receptor guanylate cyclase. FEBS J 2010; 277:2550-3. [PMID: 20553491 DOI: 10.1111/j.1742-4658.2010.07670.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC) is the receptor and the signal transducer of two natriuretic peptide hormones: atrial natriuretic factor and brain natriuretic peptide. It is a single transmembrane-spanning protein. It binds these hormones at its extracellular domain and activates its intracellular catalytic domain. This results in the accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature and fluid secretion. ATP is obligatory for the transduction of this hormonal signal. Two models of ATP action have been proposed. In Model 1, it is a direct allosteric transducer. It binds to the defined regulatory domain (ATP-regulated module) juxtaposed to the C-terminal side of the transmembrane domain of ANF-RGC, induces a cascade of temporal and spatial changes and activates the catalytic module residing at the C-terminus of the cyclase. In Model 2, before ATP can exhibit its allosteric effect, ANF-RGC must first be phosphorylated by an as yet unidentified protein kinase. This initial step is obligatory in atrial natriuretic factor signaling of ANF-RGC. Until now, none of these models has been directly validated because it has not been possible to segregate the allosteric and the phosphorylation effects of ATP in ANF-RGC activation. The present study accomplishes this aim through a novel probe, staurosporine. This unequivocally validates Model 1 and settles the over two-decade long debate on the role of ATP in ANF-RGC signaling. In addition, the present study demonstrates that the mechanisms of allosteric modification of ANF-RGC by staurosporine and adenylyl-imidodiphosphate, a nonhydrolyzable analog of ATP, are almost (or totally) identical.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
16
|
Karan S, Frederick JM, Baehr W. Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 2009; 334:141-55. [PMID: 20012162 DOI: 10.1007/s11010-009-0322-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 11/04/2009] [Indexed: 02/04/2023]
Abstract
Targeted deletion of membrane guanylate cyclases (GCs) has yielded new information concerning their function. Here, we summarize briefly recent results of laboratory generated non-photoreceptor GC knockouts characterized by complex phenotypes affecting the vasculature, heart, brain, kidney, and other tissues. The main emphasis of the review, however, addresses the two GCs expressed in retinal photoreceptors, termed GC-E and GC-F. Naturally occurring GC-E (GUCY2D) null alleles in human and chicken are associated with an early onset blinding disorder, termed "Leber congenital amaurosis type 1" (LCA-1), characterized by extinguished scotopic and photopic ERGs, and retina degeneration. In mouse, a GC-E null genotype produces a recessive cone dystrophy, while rods remain functional. Rod function is supported by the presence of GC-F (Gucy2f), a close relative of GC-E. Deletion of Gucy2f has very little effect on rod and cone physiology and survival. However, a GC-E/GC-F double knockout (GCdko) phenotypically resembles human LCA-1 with extinguished ERGs and rod/cone degeneration. In GCdko rods, PDE6 and GCAPs are absent in outer segments. In contrast, GC-E(-/-) cones lack proteins of the entire phototransduction cascade. These results suggest that GC-E may participate in transport of peripheral membrane proteins from the endoplasmic reticulum (ER) to the outer segments.
Collapse
Affiliation(s)
- Sukanya Karan
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
17
|
Hunt DM, Buch P, Michaelides M. Guanylate cyclases and associated activator proteins in retinal disease. Mol Cell Biochem 2009; 334:157-68. [PMID: 19941038 DOI: 10.1007/s11010-009-0331-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
Abstract
Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone-rod dystrophy. Cyclase activity is regulated by Ca(2+) which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca(2+)-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca(2+) levels rise following a light flash.
Collapse
Affiliation(s)
- David M Hunt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | |
Collapse
|
18
|
Bondarenko VA, Hayashi F, Usukura J, Yamazaki A. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases. Mol Cell Biochem 2009; 334:125-39. [PMID: 19941040 DOI: 10.1007/s11010-009-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
Abstract
Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.
Collapse
|
19
|
Bereta G, Wang B, Kiser PD, Baehr W, Jang GF, Palczewski K. A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1. J Biol Chem 2009; 285:1899-908. [PMID: 19901021 DOI: 10.1074/jbc.m109.061713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phototransduction is carried out by a signaling pathway that links photoactivation of visual pigments in retinal photoreceptor cells to a change in their membrane potential. Upon photoactivation, the second messenger of phototransduction, cyclic GMP, is rapidly degraded and must be replenished during the recovery phase of phototransduction by photoreceptor guanylate cyclases (GCs) GC1 (or GC-E) and GC2 (or GC-F) to maintain vision. Here, we present data that address the role of the GC kinase homology (KH) domain in cyclic GMP production by GC1, the major cyclase in photoreceptors. First, experiments were done to test which GC1 residues undergo phosphorylation and whether such phosphorylation affects cyclase activity. Using mass spectrometry, we showed that GC1 residues Ser-530, Ser-532, Ser-533, and Ser-538, located within the KH domain, undergo light- and signal transduction-independent phosphorylation in vivo. Mutations in the putative Mg(2+) binding site of the KH domain abolished phosphorylation, indicating that GC1 undergoes autophosphorylation. The dramatically reduced GC activity of these mutants suggests that a functional KH domain is essential for cyclic GMP production. However, evidence is presented that autophosphorylation does not regulate GC1 activity, in contrast to phosphorylation of other members of this cyclase family.
Collapse
Affiliation(s)
- Grzegorz Bereta
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
20
|
Duda T, Sharma RK. Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 2009; 583:1327-30. [PMID: 19306880 DOI: 10.1016/j.febslet.2009.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/14/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
In a subset of olfactory epithelium the odorant receptor guanylate cyclase, ONE-GC, is a central transduction component of the cyclic GMP signaling pathway. The odorant binds to the extracellular domain and activates its intracellular catalytic domain to generate the odorant second messenger, cyclic GMP. The present study demonstrates that it is a two-step, Ca(2+)-independent and Ca(2+)-dependent, sequential process. In step one, the odorant, uroguanylin, binds ONE-GC and primes it for stimulation. In step two, Ca(2+)-bound neurocalcin delta binds to the defined intracellular domain and saturates ONE-GC activity. A prototype model is proposed that depicts this signal transduction process.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | |
Collapse
|
21
|
Kuhn M. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 2009:47-69. [PMID: 19089325 DOI: 10.1007/978-3-540-68964-5_4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institut für Physiologie, Universität Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
22
|
Interaction of retinal guanylate cyclase with the alpha subunit of transducin: potential role in transducin localization. Biochem J 2009; 417:803-12. [PMID: 18840097 DOI: 10.1042/bj20081513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.
Collapse
|
23
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Binding of guanylyl cyclase activating protein 1 (GCAP1) to retinal guanylyl cyclase (RetGC1). The role of individual EF-hands. J Biol Chem 2008; 283:21747-57. [PMID: 18541533 DOI: 10.1074/jbc.m801899200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylyl cyclase activating protein 1 (GCAP1), after substitution of Ca(2+) by Mg(2+) in its EF-hands, stimulates photoreceptor guanylyl cyclase, RetGC1, in response to light. We inactivated metal binding in individual EF-hands of GCAP1 tagged with green fluorescent protein to assess their role in GCAP1 binding to RetGC1 in co-transfected HEK293 cells. When expressed alone, GCAP1 was uniformly distributed throughout the cytoplasm and the nuclei of the cells, but when co-expressed with either fluorescently tagged or non-tagged RetGC1, it co-localized with the cyclase in the membranes. The co-localization did not occur when the C-terminal portion of RetGC1, containing its regulatory and catalytic domains, was removed. Mutations that preserved Mg(2+) binding in all three metal-binding EF-hands did not affect GCAP1 association with the cyclase in live cells. Locking EF-hand 4 in its apo-conformation, incapable of binding either Ca(2+) or Mg(2+), had no effect on GCAP1 association with the cyclase. In contrast to EF-hand 4, inactivation of EF-hand 3 reduced the efficiency of the co-localization, and inactivation of EF-hand 2 drastically suppressed GCAP1 binding to the cyclase. These results directly demonstrate that metal binding in EF-hand 2 is crucial for GCAP1 attachment to RetGC1, and that in EF-hand 3 it is less critical, although it enhances the efficiency of the GCAP1 docking on the target enzyme. Metal binding in EF-hand 4 has no role in the primary attachment of GCAP1 to the cyclase, and it only triggers the activator-to-inhibitor functional switch in GCAP1.
Collapse
Affiliation(s)
- Igor V Peshenko
- Hafter Research Laboratories, Pennsylvania College of Optometry, 8360 Old York Road, Elkins Park, PA 19027, USA
| | | | | |
Collapse
|
24
|
Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 2008; 15:1392-402. [PMID: 17997965 DOI: 10.1016/j.str.2007.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/27/2007] [Accepted: 09/07/2007] [Indexed: 11/26/2022]
Abstract
Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like "calcium-myristoyl switch" whereby the myristoyl group, buried inside the protein in the Ca(2+)-free state, becomes fully exposed upon Ca(2+) binding. Here we present a 2.0 A resolution crystal structure of myristoylated GCAP1 with Ca(2+) bound. The acyl group is buried inside Ca(2+)-bound GCAP1. This is in sharp contrast to Ca(2+)-bound recoverin, where the myristoyl group is solvent exposed. Furthermore, we provide direct evidence that the acyl group in GCAP1 remains buried in the Ca(2+)-free state and does not undergo switching. A pronounced kink in the C-terminal helix and the presence of the myristoyl group allow clustering of sequence elements crucial for GCAP1 activity.
Collapse
Affiliation(s)
- Ricardo Stephen
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
25
|
Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K. The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 2007; 282:8837-47. [PMID: 17255100 PMCID: PMC2043484 DOI: 10.1074/jbc.m610369200] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinal guanylate cyclases 1 and 2 (GC1 and GC2) are responsible for synthesis of cyclic GMP in rods and cones, but their individual contributions to phototransduction are unknown. We report here that the deletion of both GC1 and GC2 rendered rod and cone photoreceptors nonfunctional and unstable. In the rod outer segments of GC double knock-out mice, guanylate cyclase-activating proteins 1 and 2, and cyclic GMP phosphodiesterase were undetectable, although rhodopsin and transducin alpha-subunit were mostly unaffected. Outer segment membranes of GC1-/- and GC double knock-out cones were destabilized and devoid of cone transducin (alpha- and gamma-subunits), cone phosphodiesterase, and G protein-coupled receptor kinase 1, whereas cone pigments were present at reduced levels. Real time reverse transcription-PCR analyses demonstrated normal RNA transcript levels for the down-regulated proteins, indicating that down-regulation is posttranslational. We interpret these results to demonstrate an intrinsic requirement of GCs for stability and/or transport of a set of membrane-associated phototransduction proteins.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Grishchenko VM, Orlova TG, Freidin AA, Orlov NY. Calcium-dependent interaction of transducin with calmodulin Sepharose. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Knopp A, Rüppel H. Calcium-sensitive downregulation of the transduction chain in rod photoreceptors of the rat retina. Biophys J 2006; 91:1078-89. [PMID: 16698783 PMCID: PMC1563759 DOI: 10.1529/biophysj.106.082271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In vertebrate rod outer segments phototransduction is suggested to be modulated by intracellular Ca. We aimed at verifying this hypothesis by recording saturated photosignals in the rat retina after single and double flashes of light and determining the time t(c) to the beginning of the signal recovery. The time course of Ca(i) after a flash was calculated from a change of the spatial Ca(2+) concentration profile recorded in the space between the rods. After single flashes t(c) increased linearly with the logarithm of flash intensity, confirming the assumption that t(c) is determined by deactivation of a single species X* in the phototransduction cascade. The photoresponse was shortened up to 45% if the test flash was preceded by a conditioning preflash. The shortening depended on the reduction of Ca(i) induced by the preflash. The data suggest that the phototransduction gain determining the amount of activated X* is regulated by a Ca(i)-dependent mechanism in a short time period (<800 ms) after the test flash. Lowering of Ca(i) by a preflash reduced the gain up to 20% compared to its value in a dark-adapted rod. The relation between phototransduction gain and Ca(i) revealed a K(1/2) value close to the dark level of Ca(i).
Collapse
Affiliation(s)
- Andreas Knopp
- Max-Volmer-Institut of Biophysical Chemistry, Technical University Berlin, Berlin, Germany.
| | | |
Collapse
|
28
|
Yamazaki M, Usukura J, Yamazaki RK, Yamazaki A. ATP binding is required for physiological activation of retinal guanylate cyclase. Biochem Biophys Res Commun 2005; 338:1291-8. [PMID: 16259948 DOI: 10.1016/j.bbrc.2005.10.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 10/08/2005] [Indexed: 11/26/2022]
Abstract
ATP bound to retinal guanylate cyclase (retGC)/membranes prior to the assay (pre-binding effect) and during the assay (direct effect) further enhances retGC activity stimulated by GC-activating proteins (GCAPs). Here we investigate differences between these two effects. We found that the pre-binding effect, but not the direct effect, was absent in membranes pre-washed with Mg(2+)-free hypotonic buffers, that the pre-binding effect, but not the direct effect, was strictly limited to GCAP-stimulated retGC activity, and that these two effects were independent and additive rather than being synergistic. Pre-incubation with amiloride enhanced GCAP2-activated retGC activity in a manner similar to that by ATP pre-binding; however, amiloride did not directly stimulate the retGC activity. These results indicate that these two effects are mechanistically different. Levels of retGC activation by these effects and conditions required for these effects indicate that only the mechanism involving ATP pre-binding is physiologically relevant to retGC activation.
Collapse
Affiliation(s)
- Matsuyo Yamazaki
- Kresge Eye Institute, Department of Ophthalmology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
29
|
Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO. Transducin activation state controls its light-dependent translocation in rod photoreceptors. J Biol Chem 2005; 280:41069-76. [PMID: 16207703 DOI: 10.1074/jbc.m508849200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-dependent redistribution of transducin between the rod outer segments (OS) and other photoreceptor compartments including the inner segments (IS) and synaptic terminals (ST) is recognized as a critical contributing factor to light and dark adaptation. The mechanisms of light-induced transducin translocation to the IS/ST and its return to the OS during dark adaptation are not well understood. We have probed these mechanisms by examining light-dependent localizations of the transducin-alpha subunit (Gtalpha)in mice lacking the photoreceptor GAP-protein RGS9, or expressing the GTPase-deficient mutant GtalphaQ200L. An illumination threshold for the Gtalpha movement out of the OS is lower in the RGS9 knockout mice, indicating that the fast inactivation of transducin in the wild-type mice limits its translocation to the IS/ST. Transgenic GtalphaQ200L mice have significantly diminished levels of proteins involved in cGMP metabolism in rods, most notably the PDE6 catalytic subunits, and severely reduced sensitivity to light. Similarly to the native Gtalpha, the GtalphaQ200L mutant is localized to the IS/ST compartment in light-adapted transgenic mice. However, the return of GtalphaQ200L to the OS during dark adaptation is markedly slower than normal. Thus, the light-dependent translocations of transducin are controlled by the GTP-hydrolysis on Gtalpha, and apparently, do not require Gtalpha interaction with RGS9 and PDE6.
Collapse
Affiliation(s)
- Vasily Kerov
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
30
|
Yamagami S, Suzuki N. Diverse Forms of Guanylyl Cyclases in Medaka Fish – Their Genomic Structure and Phylogenetic Relationships to those in Vertebrates and Invertebrates. Zoolog Sci 2005; 22:819-35. [PMID: 16141695 DOI: 10.2108/zsj.22.819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fish species such as medaka fish, fugu, and zebrafish contain more guanylyl cyclases (GCs) than do mammals. These GCs can be divided into two types: soluble GCs and membrane GCs. The latter are further divided into four subfamilies: (i) natriuretic peptide receptors, (ii) STa/guanylin receptors, (iii) sensory-organ-specific membrane GCs, and (iv) orphan receptors. Phylogenetic analyses of medaka fish GCs, along with those of fugu and zebrafish, suggest that medaka fish is a much closer relative to fugu than to zebrafish. Analyses of nucleotide data available on a web site (http://www.ncbi. nlm.nih.gov/) of GCs from a range of organisms from bacteria to vertebrates suggest that gene duplication, and possibly chromosomal duplication, play important roles in the divergence of GCs. In particular, the membrane GC genes were generated by chromosomal duplication before the divergence of tetrapods and teleosts.
Collapse
Affiliation(s)
- Sayaka Yamagami
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | |
Collapse
|
31
|
Duda T, Venkataraman V, Ravichandran S, Sharma RK. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 2005; 26:969-84. [PMID: 15911066 DOI: 10.1016/j.peptides.2004.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
ATP is an obligatory agent for the atrial natriuretic factor (ANF) and the type C natriuretic peptide (CNP) signaling of their respective receptor guanylate cyclases, ANF-RGC and CNP-RGC. Through a common mechanism, it binds to a defined ARM domain of the cyclase, activates the cyclase and transduces the signal into generation of the second messenger cyclic GMP. In this presentation, the authors review the ATP-regulated transduction mechanism and refine the previously simulated three-dimensional ARM model (Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 2000;214:7-14; reviewed in: Sharma RK, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001;79: 682-91; Sharma RK. Evolution of the membrane guanylate cyclase transduction system. Mol Cell Biochem 2002;230:3-30). The model depicts the ATP-binding dependent configurational changes in the ARM and supports the concept that in the first step, ATP partially activates the cyclase and primes it for the subsequent transduction steps, resulting in full activation of the cyclase.
Collapse
Affiliation(s)
- Teresa Duda
- The Unit of Regulatory and Molecular Biology, Department of Cell Biology, SOM and NJMS, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Guanylyl cyclases (GC) are widely distributed enzymes that signal via the production of the second messenger cGMP. The particulate guanylyl cyclases share a similar topology: an extracellular ligand binding domain and intracellular regulatory kinase-homology and cyclase catalytic domains. The natriuretic peptide receptors GC-A and -B mediate the effects of a family of peptides, atrial, B- and C-type natriuretic peptide (ANP, BNP and CNP, respectively), with natriuretic, diuretic and vasorelaxant properties. ANP and BNP, through the activation of GC-A, act as endocrine hormones to regulate blood pressure and volume, and inhibit cardiac hypertrophy. CNP, on the other hand, acts in an autocrine/paracrine fashion to induce vasorelaxation and vascular remodeling, and to regulate bone growth through its cognate receptor GC-B. GC-B, like GC-A, is phosphorylated in the basal state, and undergoes both homologous and heterologous desensitization, reflected by dephosphorylation of specific sites in the kinase-homology domain. This review will examine the structure and function of GC-B, and summarize the physiological processes in which this receptor is thought to participate.
Collapse
Affiliation(s)
- Stephanie Schulz
- Division of Clinical Pharmacology, Department of Medicine and Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
33
|
Silva E, Dharmaraj S, Li YY, Pina AL, Carter RC, Loyer M, Traboulsi E, Theodossiadis G, Koenekoop R, Sundin O, Maumenee I. A missense mutation in GUCY2D acts as a genetic modifier in RPE65-related Leber Congenital Amaurosis. Ophthalmic Genet 2005; 25:205-17. [PMID: 15512997 DOI: 10.1080/13816810490513451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Leber congenital amaurosis (LCA) is a clinically and genetically heterogeneous severe retinal dystrophy presenting in infancy. To explain the phenotypical variability observed in two affected siblings of a consanguineous pedigree diagnosed with LCA and establish a genotype-phenotype correlation, we screened GUCY2D, RPE65, CRX, AIPL1, and RPGRIP1 for mutations. The more severely affected sibling carried a heterozygous missense mutation in the GUCY2D gene (Ile539Val), which did not segregate with the disease phenotype. Subsequently, a homozygous nonsense mutation (Glu102STOP) in the RPE65 gene was identified in both affected siblings, thus identifying the causative gene. This data provides evidence for the presence of genetic modulation in LCA. It appears that the heterozygous GUCY2D mutation further disrupts the already compromised photoreceptor function resulting in more severe retinal dysfunction in the older sibling. We suggest that the unusual phenotypic variability in these two siblings with LCA is caused by the modifying effect of a heterozygous GUCY2D mutation observed against the disease background of a homozygous RPE65 mutation.
Collapse
Affiliation(s)
- Eduardo Silva
- Molecular and Developmental Biology Laboratory, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kobayashi M, Masaki T, Hori K, Masuo Y, Miyamoto M, Tsubokawa H, Noguchi H, Nomura M, Takamatsu K. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory. Neuroscience 2005; 133:471-84. [PMID: 15878804 DOI: 10.1016/j.neuroscience.2005.02.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/06/2005] [Accepted: 02/04/2005] [Indexed: 11/21/2022]
Abstract
Hippocalcin is a member of the neuronal calcium sensor (NCS) protein family that is highly expressed in hippocampal pyramidal cells and moderately expressed in the neurons of cerebral cortex, cerebellum and striatum. Here we examined the physiological roles of hippocalcin using targeted gene disruption. Hippocalcin-deficient (-/-) mice displayed no obvious structural abnormalities in the brain including hippocampal formation at the light microscopic level. Deletion of hippocalcin did not result in up-regulation of the hippocalcin-related proteins; neural visinin-like Ca(2+)-binding proteins (NVP) 1, 2, and 3. The synaptic excitability of hippocampal CA1 neurons appeared to be normal, as estimated by the shape of field excitatory postsynaptic potentials elicited by single- and paired-pulse stimuli, and by tetanic stimulation. However, N-methyl-d-aspartate stimulation- and depolarization-induced phosphorylation of cAMP-response element-binding protein (CREB) was significantly attenuated in -/- hippocampal neurons, suggesting an impairment in an activity-dependent gene expression cascade. In the Morris water maze test, the performance of -/- mice was comparable to that of wild-type littermates except in the probe test, where -/- mice crossed the previous location of the platform significantly less often than +/+ mice. Hippocalcin-deficient mice were also impaired on a discrimination learning task in which they needed to respond to a lamp illuminated on the left or right side to obtain food reinforcement. No abnormalities were observed in motor activity, anxiety behavior, or fear learning. These results suggest that hippocalcin plays a crucial role in the Ca(2+)-signaling pathway that underlies long-lasting neural plasticity and that leads to spatial and associative memory.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Physiology, Toho University School of Medicine, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 2004; 243:235-42. [PMID: 15452722 DOI: 10.1007/s00417-004-1015-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2004] [Revised: 07/05/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND We investigated mutations in the gene coding for guanylate-cyclase activating protein 2 (GCAP2), also known as GUCA1B gene, in Japanese patients with retinitis pigmentosa (RP) and tried to identify phenotypic characteristics associated with mutations in the gene. SUBJECTS AND METHODS Genomic DNA samples from 63 unrelated patients with autosomal dominant retinitis pigmentosa (ADRP) and 33 patients with autosomal recessive retinitis pigmentosa (ARRP) were screened by single-strand conformational polymorphism analysis followed by direct sequencing. Clinical features associated with a mutation were demonstrated by visual acuity, visual field testing, fundus photography, and electroretinography. RESULTS A novel transitional mutation converting GGA to AGA at codon 157 (G157R) was identified. This mutation has been found in three index patients from three independent families. Phenotypic examination of seven members of the three families revealed that this mutation was associated with RP with or without macular involvement in five members, macular degeneration in one member, and asymptomatic normal phenotype in one member. In addition, previously unknown polymorphic changes including V29V, Y57Y, T87I, and L180L were identified. CONCLUSIONS A racial difference exists in the spectrum of mutations and/or polymorphisms in the GCAP 2 gene between British and Japanese populations. Our findings suggest that the mutation in the GCAP 2 gene can cause one form of autosomal dominant retinal dystrophy, with variable phenotypic expression and incomplete penetrance.
Collapse
Affiliation(s)
- Motoya Sato
- Department of Ophthalmology, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Peshenko IV, Dizhoor AM. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors. J Biol Chem 2004; 279:16903-6. [PMID: 14993224 DOI: 10.1074/jbc.c400065200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylyl cyclase-activating proteins (GCAP) are EF-hand Ca(2+)-binding proteins that activate photoreceptor guanylyl cyclase (RetGC) in the absence of Ca(2+) and inhibit RetGC in a Ca(2+)-sensitive manner. The reported data for the RetGC inhibition by Ca(2+)/GCAPs in vitro are in disagreement with the free Ca(2+) levels found in mammalian photoreceptors (Woodruff, M. L., Sampath, A. P., Matthews, H. R., Krasnoperova, N. V., Lem, J., and Fain, G. L. (2002) J. Physiol. (Lond.) 542, 843-854). We have found that binding of Mg(2+) dramatically affects both Ca(2+)-dependent conformational changes in GCAP-1 and Ca(2+) sensitivity of RetGC regulation by GCAP-1 and GCAP-2. Lowering free Mg(2+) concentrations ([Mg](f)) from 5.0 mm to 0.5 mm decreases the free Ca(2+) concentration required for half-maximal inhibition of RetGC ([Ca]((1/2))) by recombinant GCAP-1 and GCAP-2 from 1.3 and 0.2 microm to 0.16 and 0.03 microm, respectively. A similar effect of Mg(2+) on Ca(2+) sensitivity of RetGC by endogenous GCAPs was observed in mouse retina. Analysis of the [Ca]((1/2)) changes as a function of [Mg](f) in mouse retina shows that the [Ca]((1/2)) becomes consistent with the range of 23-250 nm free Ca(2+) found in mouse photoreceptors only if the [Mg](f) in the photoreceptors is near 1 mm. Our data demonstrate that GCAPs are Ca(2+)/Mg(2+) sensor proteins. While Ca(2+) binding is essential for cyclase activation and inhibition, Mg(2+) binding to GCAPs is critical for setting the actual dynamic range of RetGC regulation by GCAPs at physiological levels of free Ca(2+).
Collapse
Affiliation(s)
- Igor V Peshenko
- Hafter Research Laboratory, Pennsylvania College of Optometry, Elkins Park, Pennsylvania 19027
| | | |
Collapse
|
37
|
Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: genes, mutations, and diseases. Prog Retin Eye Res 2003; 22:683-703. [PMID: 12892646 DOI: 10.1016/s1350-9462(03)00051-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the genes necessary for the metabolism of vitamin A (all-trans retinol) and cycling of retinoids between the photoreceptors and retinal pigment epithelium (RPE) (the visual cycle) have recently emerged as an important class of genetic defects responsible for retinal dystrophies and dysfunctions. Research into the causes and treatment of diseases resulting from defects in retinal vitamin A metabolism is currently the subject of intense interest, since disorders affecting the RPE are, in principle, more accessible to therapeutic intervention than those affecting the proteins of photoreceptor cells. This chapter presents an overview of the visual cycle, as well as the function of the RPE genes involved in the conversion of vitamin A to 11-cis retinal, the chromophore of the visual pigments. The identification of disease-causing mutations in this group of genes is described as well as the associated phenotypes that range from stationary night blindness to childhood-onset severe visual handicap. Consideration is also given to alternative genetic paradigms potentially relevant to defects in vitamin A metabolism, including a discussion of the relationship of this pathway to age-related macular degeneration, a non-Mendelian disease of late onset. Finally, progress and prospects for targeted therapeutic intervention in vitamin A metabolism are presented, including retinoid and gene replacement therapy. On the basis of early successes in animal models, and plans underway for Phase I/II clinical trials, it is hoped that the near future will bring effective therapies for many retinal dystrophy patients with defects in vitamin A metabolism.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
38
|
Yamazaki A, Yu H, Yamazaki M, Honkawa H, Matsuura I, Usukura J, Yamazaki RK. A critical role for ATP in the stimulation of retinal guanylyl cyclase by guanylyl cyclase-activating proteins. J Biol Chem 2003; 278:33150-60. [PMID: 12799385 DOI: 10.1074/jbc.m303678200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.
Collapse
Affiliation(s)
- Akio Yamazaki
- Kresge Eye Institute and the Department of Ophthalmology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Newbold RJ, Deery EC, Payne AM, Wilkie SE, Hunt DM, Warren MJ. Guanylate cyclase activating proteins, guanylate cyclase and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:411-38. [PMID: 12596936 DOI: 10.1007/978-1-4615-0121-3_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A range of cone and cone-rod dystrophies (CORD) have been observed in man, caused by mutations in retinal guanylate cyclase 1 (RetGC1) and guanylate cyclase activating protein 1 (GCAP 1). The CORD causing mutations in RetGC1 are located at a mutation "hot spot" within the dimerisation domain, where R838 is the key residue. Three disease causing mutations have been found in human GCAP1, resulting in cone or cone-rod degeneration. All three mutations are dominant in their effect although the mechanism by which the P50L mutation exerts its influence remains unclear although it might act due to a haplo-insufficiency, arising from increased susceptibility to protease activity and increased thermal instability. In contrast, loss of Ca2+ sensitivity appears to be the main cause of the diseased state for the Y99C and E155G mutations. The cone and cone-rod dystrophies that are caused by mutations in RetGC1 or GCAP1 arise from a perturbation of the delicate balance of Ca2+ and cGMP within the photoreceptor cells and it is this disruption that is believed to cause cell death. The diseases caused by mutations in RetGC1 and GCAP1 prominently affect cones, consistent with the higher concentrations of these proteins in cone cells.
Collapse
Affiliation(s)
- Richard J Newbold
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | | | | | | | | | | |
Collapse
|
40
|
Dizhoor A. Site-directed and natural mutations in studying functional domains in guanylyl cyclase activating proteins (GCAPs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:291-301. [PMID: 12596928 DOI: 10.1007/978-1-4615-0121-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Guanylyl cyclase activating proteins (GCAPs) are Ca2+-binding proteins of the EF-hand superfamily, through which the intracellular calcium regulates cGMP synthesis in vertebrate photoreceptors. GCAPs play an essential role in the calcium feedback mechanism that controls recovery and light adaptation of rods and cones. Moreover, mutations in at least one of the GCAPs have already been linked to two forms of congenital human retinal diseases. The GCAPs represent a separate small subfamily among the EF-hand proteins that are structurally similar to recoverin, but demonstrate a number of unique regulatory properties. When in the Ca2+-free conformation (as in light-adapted photoreceptors), GCAPs stimulate photoreceptor membrane guanylyl cyclase (retGC), but when the intracellular free Ca2+ concentrations ([Ca2+]free) rise (as in dark-adapted photoreceptors), GCAPs turn into retGC inhibitors. In GCAPs, site-directed mutagenesis has been successfully used to identify a number of structural elements that contribute to their specific function as guanylyl cyclase regulators. These elements include EF-hand Ca2+-binding loops and various other regions in the GCAP primary structure involved in multiple protein-protein interactions within the retGC/GCAP complex.
Collapse
Affiliation(s)
- Alexander Dizhoor
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
41
|
Mendez A, Chen J. Mouse models to study GCAP functions in intact photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:361-88. [PMID: 12596933 DOI: 10.1007/978-1-4615-0121-3_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In photoreceptor cells cGMP is the second messenger that transduces light into an electrical response. Regulation of cGMP synthesis by Ca2+ is one of the key mechanisms by which Ca2+ exerts negative feedback to the phototransduction cascade in the process of light adaptation. This Ca2+ feedback to retinal guanylyl cyclases (Ret-GCs) is conferred by the guanylate cyclase-activating proteins (GCAPs). Mutations in GCAP1 that disrupt the Ca2+ regulation of Ret-GCs in vitro have been associated with severe human vision disorders. This chapter focuses on recent data obtained from biochemical and electrophysiological studies of GCAP1/GCAP2 knockout mice and other GCAP transgenic mice, addressing: 1. the quantitative aspects of the Ca2+-feedback to Ret-GCs in regulating the light sensitivity and adaptation in intact rods; 2. functional differences between GCAP1 and GCAP2 in intact rod photoreceptors; and 3. whether GCAP mutants with impaired Ca2+ binding lead to retinal disease in vivo by constitutive activation of Ret-GCs and elevation of intracellular cGMP, as predicted from in vitro studies.
Collapse
Affiliation(s)
- Ana Mendez
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9112, USA
| | | |
Collapse
|
42
|
Koch KW. Target recognition of guanylate cyclase by guanylate cyclase-activating proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:349-60. [PMID: 12596932 DOI: 10.1007/978-1-4615-0121-3_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Guanylate cyclase-activating proteins (GCAPs) control the activity of membrane bound guanylate cyclases in vertebrate photoreceptor cells. They form a permanent complex with guanylate cyclase 1 (ROS-GC1) at low and high Ca2+-concentrations. Five different target regions of GCAP-1 have been identified in ROS-GC1 at rather distant sites. These findings could indicate a multipoint attachment site for GCAP-1 or, alternatively, the presence of transient binding sites with short contact to GCAP-1. In addition some data are consistent with the operation of one or more transducer units, that represent regulatory regions without being direct binding sites. A permanent ROS-GC1/GCAP-1 complex is physiologically significant, since it allows a very short response time of cyclase activity when the intracellular Ca2+-concentration changes. Thereby, activation of cyclase participates in speeding up the recovery of the photoresponse after illumination and restores the circulating dark current.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
43
|
Hwang JY, Koch KW. The myristoylation of the neuronal Ca2+ -sensors guanylate cyclase-activating protein 1 and 2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:111-7. [PMID: 12445466 DOI: 10.1016/s1570-9639(02)00451-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins with a fatty acid (mainly myristic acid) that is covalently attached at the N terminus. Myristoylated forms of GCAP were produced in E. coli by coexpression of yeast N-myristoyl-transferase. Proteins with nearly 100% degree of myristoylation were obtained after chromatography on a reversed phase column. Although proteins were denatured by this step, they could be successfully refolded. Nonmyristoylated GCAPs activated bovine photoreceptor guanylate cyclase 1 less efficiently than the myristoylated forms. Maximal activity of guanylate cyclase at low Ca(2+)-concentration decreased about twofold, when GCAPs lacked myristoylation. In addition, the x-fold activation of cyclase was lower with nonmyristoylated GCAPs. Myristoylation of GCAP-2 had no influence on the apparent affinity for photoreceptor guanylate cyclase 1, but GCAP-1 has an about sevenfold higher affinity for cyclase, when it is myristoylated. We conclude that myristoylation of GCAP-1 and GCAP-2 is important for fine tuning of guanylate cyclase activity.
Collapse
Affiliation(s)
- Ji Young Hwang
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, Jülich D-52425, Germany
| | | |
Collapse
|
44
|
Ritchie SM, Swanson SJ, Gilroy S. From common signalling components to cell specific responses: insights from the cereal aleurone. PHYSIOLOGIA PLANTARUM 2002; 115:342-351. [PMID: 12081526 DOI: 10.1034/j.1399-3054.2002.1150303.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies into the molecules underlying plant signal transduction events continue to reveal the involvement of highly conserved factors such as Ca2+, calmodulin, cyclic GMP and phospholipases in a remarkably diverse array of physiological processes. The hormonal response systems in the aleurone cells of the cereal grain and in the stomatal guard cell are beginning to reveal how diversity of response can be hard wired into these cells despite the use of these common signalling intermediates. In both the aleurone and the guard cell ABA signalling operates through the action of phospholipase D and alterations in a Ca2+-dependent signalling system. The role of phospholipase D is highly analogous in these two divergent cell types, perhaps reflecting the closeness of this enzyme to a conserved ABA receptor. However, specificity in response becomes evident in elements downstream from PLD, such as in the Ca2+ signalling system. For example, ABA has opposite effects on cytoplasmic Ca2+ in the aleurone and guard cell. Combining the Ca2+-dependent signalling activities in networks with parallel regulatory activities such as cyclic GMP appears to underlie the flexible regulatory systems that are the hallmark of plant cell function.
Collapse
Affiliation(s)
- Sian M Ritchie
- Biology Department, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
45
|
Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK. Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. EMBO J 2002; 21:2547-56. [PMID: 12032068 PMCID: PMC125384 DOI: 10.1093/emboj/21.11.2547] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study documents the identity of a calcium- regulated membrane guanylate cyclase transduction system in the photoreceptor-bipolar synaptic region. The guanylate cyclase is the previously characterized ROS-GC1 from the rod outer segments and its modulator is S100beta. S100beta senses increments in free Ca(2+) and stimulates the cyclase. Specificity of photoreceptor guanylate cyclase activation by S100beta is validated by the identification of two S100beta-regulatory sites. A combination of peptide competition, surface plasmon resonance binding and deletion mutation studies has been used to show that these sites are specific for S100beta and not for another regulator of ROS-GC1, guanylate cyclase-activating protein 1. One site comprises amino acids (aa) Gly962-Asn981, the other, aa Ile1030-Gln1041. The former represents the binding site. The latter binds S100beta only marginally, yet it is critical for control of maximal cyclase activity. The findings provide evidence for a new cyclic GMP transduction system in synaptic layers and thereby extend existing concepts of how a membrane-bound guanylate cyclase is regulated by small Ca(2+)-sensor proteins.
Collapse
Affiliation(s)
| | - Karl-Wilhelm Koch
- The Unit of Regulatory and Molecular Biology, Departments of Cell Biology and Ophthalmology, NJMS & SOM, UMDNJ, Stratford, NJ 08084, USA,
Institut für Biologische Informationsverarbeitung-1, Forschungszentrum Jülich, D-52425 Jülich and Forschungsinstitut für Molekulare Pharmakologie, D-10315 Berlin, Germany Corresponding author e-mail: T.Duda and K.-W.Koch contributed equally to this work
| | | | - Christian Lange
- The Unit of Regulatory and Molecular Biology, Departments of Cell Biology and Ophthalmology, NJMS & SOM, UMDNJ, Stratford, NJ 08084, USA,
Institut für Biologische Informationsverarbeitung-1, Forschungszentrum Jülich, D-52425 Jülich and Forschungsinstitut für Molekulare Pharmakologie, D-10315 Berlin, Germany Corresponding author e-mail: T.Duda and K.-W.Koch contributed equally to this work
| | - Michael Beyermann
- The Unit of Regulatory and Molecular Biology, Departments of Cell Biology and Ophthalmology, NJMS & SOM, UMDNJ, Stratford, NJ 08084, USA,
Institut für Biologische Informationsverarbeitung-1, Forschungszentrum Jülich, D-52425 Jülich and Forschungsinstitut für Molekulare Pharmakologie, D-10315 Berlin, Germany Corresponding author e-mail: T.Duda and K.-W.Koch contributed equally to this work
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Departments of Cell Biology and Ophthalmology, NJMS & SOM, UMDNJ, Stratford, NJ 08084, USA,
Institut für Biologische Informationsverarbeitung-1, Forschungszentrum Jülich, D-52425 Jülich and Forschungsinstitut für Molekulare Pharmakologie, D-10315 Berlin, Germany Corresponding author e-mail: T.Duda and K.-W.Koch contributed equally to this work
| |
Collapse
|
46
|
Ermilov AN, Olshevskaya EV, Dizhoor AM. Instead of binding calcium, one of the EF-hand structures in guanylyl cyclase activating protein-2 is required for targeting photoreceptor guanylyl cyclase. J Biol Chem 2001; 276:48143-8. [PMID: 11584009 DOI: 10.1074/jbc.m107539200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanylyl cyclase activator proteins (GCAPs) are calcium-binding proteins closely related to recoverin, neurocalcin, and many other neuronal Ca(2+)-sensor proteins of the EF-hand superfamily. GCAP-1 and GCAP-2 interact with the intracellular portion of photoreceptor membrane guanylyl cyclase and stimulate its activity by promoting tight dimerization of the cyclase subunits. At low free Ca(2+) concentrations, the activator form of GCAP-2 associates into a dimer, which dissociates when GCAP-2 binds Ca(2+) and becomes inhibitor of the cyclase. GCAP-2 is known to have three active EF-hands and one additional EF-hand-like structure, EF-1, that deviates form the EF-hand consensus sequence. We have found that various point mutations within the EF-1 domain can specifically affect the ability of GCAP-2 to interact with the target cyclase but do not hamper the ability of GCAP-2 to undergo reversible Ca(2+)-sensitive dimerization. Point mutations within the EF-1 region can interfere with both the activation of the cyclase by the Ca(2+)-free form of GCAP-2 and the inhibition of retGC basal activity by the Ca(2+)-loaded GCAP-2. Our results strongly indicate that evolutionary conserved and GCAP-specific amino acid residues within the EF-1 can create a contact surface for binding GCAP-2 to the cyclase. Apparently, in the course of evolution GCAP-2 exchanged the ability of its first EF-hand motif to bind Ca(2+) for the ability to interact with the target enzyme.
Collapse
Affiliation(s)
- A N Ermilov
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
47
|
Abstract
Visual transduction captures widespread interest because its G-protein signaling motif recurs throughout nature yet is uniquely accessible for study in the photoreceptor cells. The light-activated currents generated at the photoreceptor outer segment provide an easily observed real-time measure of the output of the signaling cascade, and the ease of obtaining pure samples of outer segments in reasonable quantity facilitates biochemical experiments. A quiet revolution in the study of the mechanism has occurred during the past decade with the advent of gene-targeting techniques. These have made it possible to observe how transduction is perturbed by the deletion, overexpression, or mutation of specific components of the transduction apparatus.
Collapse
Affiliation(s)
- M E Burns
- Department of Neurobiology, Stanford University Medical Center, Stanford, California 94305, USA.
| | | |
Collapse
|
48
|
Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K. Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 2001; 69:471-80. [PMID: 11484154 PMCID: PMC1235478 DOI: 10.1086/323265] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Accepted: 07/10/2001] [Indexed: 11/04/2022] Open
Abstract
Mutations in the gene for guanylate cyclase-activating protein-1 (GCAP1) (GUCA1A) have been associated with autosomal dominant cone dystrophy (COD3). In the present study, a severe disease phenotype in a large white family was initially shown to map to chromosome 6p21.1, the location of GUCA1A. Subsequent single-stranded conformation polymorphism analysis and direct sequencing revealed an A464G transition, causing an E155G substitution within the EF4 domain of GCAP1. Modeling of the protein structure shows that the mutation eliminates a bidentate amino acid side chain essential for Ca2+ binding. This represents the first disease-associated mutation in GCAP1, or any neuron-specific calcium-binding protein within an EF-hand domain, that directly coordinates Ca2+. The functional consequences of this substitution were investigated in an in vitro assay of retinal guanylate cyclase activation. The mutant protein activates the cyclase at low Ca2+ concentrations but fails to inactivate at high Ca2+ concentrations. The overall effect of this would be the constitutive activation of guanylate cyclase in photoreceptors, even at the high Ca2+ concentrations of the dark-adapted state, which may explain the dominant disease phenotype.
Collapse
Affiliation(s)
- Susan E. Wilkie
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Yang Li
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Evelyne C. Deery
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Richard J. Newbold
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Daniel Garibaldi
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - J. Bronwyn Bateman
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Heidi Zhang
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Wei Lin
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Donald J. Zack
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Shomi S. Bhattacharya
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Martin J. Warren
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - David M. Hunt
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| | - Kang Zhang
- Division of Molecular Genetics, Institute of Ophthalmology, University College London, and School of Biological Sciences, Queen Mary, University of London, London; The Cleveland Clinic Foundation Cole Eye Institute, Cleveland; Rocky Mountain Lions Eye Institute and Department of Ophthalmology, University of Colorado Health Science Center, Aurora, CO; and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
49
|
van den Akker F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J Mol Biol 2001; 311:923-37. [PMID: 11556325 DOI: 10.1006/jmbi.2001.4922] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane bound guanylyl cyclases are single chain transmembrane receptors that produce the second messenger cGMP by either intra- or extracellular stimuli. This class of type I receptors contain an intracellular catalytic guanylyl cyclase domain, an adjacent kinase-like domain and an extracellular ligand binding domain though some receptors have their ligands yet to be identified. The most studied member is the atrial natriuretic peptide (ANP) receptor, which is involved in blood pressure regulation. Extracellular ANP binding induces a conformational change thereby activating the pre-oligomerized receptor leading to the production of cGMP. The recent crystal structure of the dimerized hormone binding domain of the ANP receptor provides a first three-dimensional view of this domain and can serve as a basis to structurally analyze mutagenesis, cross-linking, and genetic studies of this class of receptors as well as a non-catalytic homolog, the clearance receptor. The fold of the ligand binding domain is that of a bilobal periplasmic binding protein (PBP) very similar to that of the Leu/Ile/Val binding protein, AmiC, multi-domain transmembrane metabotropic glutamate receptors, and several DNA binding proteins such as the lactose repressor. Unlike these structural homologs, the guanylyl cyclase receptors bind much larger molecules at a site seemingly remote from the usual small molecule binding site in periplasmic binding protein folds. Detailed comparisons with these structural homologs offer insights into mechanisms of signal transduction and allosteric regulation, and into the remarkable usage of the periplasmic binding protein fold in multi-domain receptors/proteins.
Collapse
Affiliation(s)
- F van den Akker
- Department of Molecular Biology/NB20, Cleveland Clinic Foundation, Ohio 44195, USA.
| |
Collapse
|
50
|
Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci U S A 2001; 98:9948-53. [PMID: 11493703 PMCID: PMC55558 DOI: 10.1073/pnas.171308998] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca(2+) regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs-/- retinas showed no Ca(2+) dependence, indicating that Ca(2+) regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs-/- rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs-/- rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs-/- rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rod's operating range.
Collapse
Affiliation(s)
- A Mendez
- The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles 90089-9112, USA
| | | | | | | | | | | | | | | |
Collapse
|