1
|
Fukuyama K, Motomura E, Okada M. A Novel Gliotransmitter, L-β-Aminoisobutyric Acid, Contributes to Pathophysiology of Clinical Efficacies and Adverse Reactions of Clozapine. Biomolecules 2023; 13:1288. [PMID: 37759688 PMCID: PMC10526296 DOI: 10.3390/biom13091288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Clozapine is listed as one of the most effective antipsychotics and has been approved for treating treatment-resistant schizophrenia (TRS); however, several type A and B adverse reactions, including weight gain, metabolic complications, cardiotoxicity, convulsions, and discontinuation syndromes, exist. The critical mechanisms of clinical efficacy for schizophrenia, TRS, and adverse reactions of clozapine have not been elucidated. Recently, the GABA isomer L-β-aminoisobutyric acid (L-BAIBA), a protective myokine in the peripheral organs, was identified as a candidate novel transmission modulator in the central nervous system (CNS). L-BAIBA activates adenosine monophosphate-activated protein kinase (AMPK) signalling in both the peripheral organs and CNS. Activated AMPK signalling in peripheral organs is an established major target for treating insulin-resistant diabetes, whereas activated AMPK signalling in the hypothalamus contributes to the pathophysiology of weight gain and metabolic disturbances. Clozapine increases L-BAIBA synthesis in the hypothalamus. In addition, the various functions of L-BAIBA in the CNS have recently been elucidated, including as an activator of GABA-B and group-III metabotropic glutamate (III-mGlu) receptors. Considering the expressions of GABA-B and III-mGlu receptors (localised in the presynaptic regions), the activation of GABA-B and III-mGlu receptors can explain the distinct therapeutic advantages of clozapine in schizophrenia or TRS associated with N-methyl-D-aspartate (NMDA) receptor disturbance compared with other atypical antipsychotics via the inhibition of the persistent tonic hyperactivation of thalamocortical glutamatergic transmission in the prefrontal cortex. L-BAIBA has also been identified as a gliotransmitter, and a detailed exploration of the function of L-BAIBA in tripartite synaptic transmission can further elucidate the pathophysiology of effectiveness for treating TRS and/or specific adverse reactions of clozapine.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
2
|
Prideaux M, Smargiassi A, Peng G, Brotto M, Robling AG, Bonewald LF. L-BAIBA Synergizes with Sub-Optimal Mechanical Loading to Promote New Bone Formation. JBMR Plus 2023; 7:e10746. [PMID: 37283651 PMCID: PMC10241089 DOI: 10.1002/jbm4.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/08/2023] Open
Abstract
The L-enantiomer of β-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matt Prideaux
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Alberto Smargiassi
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Gang Peng
- Indiana Center for Musculoskeletal Health, Department of Medicine and Molecular Genetics, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Marco Brotto
- Bone‐Muscle Research Center, College of Nursing and Health InnovationUniversity of Texas‐ArlingtonArlingtonTXUSA
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology and Physiology, School of MedicineIndiana UniversityIndianapolisINUSA
| |
Collapse
|
3
|
Yi X, Yang Y, Li T, Li M, Yao T, Hu G, Wan G, Chang B. Signaling metabolite β-aminoisobutyric acid as a metabolic regulator, biomarker, and potential exercise pill. Front Endocrinol (Lausanne) 2023; 14:1192458. [PMID: 37313446 PMCID: PMC10258315 DOI: 10.3389/fendo.2023.1192458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Signaling metabolites can effectively regulate the biological functions of many tissues and organs. β-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism in skeletal muscle, has been reported to participate in the regulation of lipid, glucose, and bone metabolism, as well as in inflammation and oxidative stress. BAIBA is produced during exercise and is involved in the exercise response. No side effect has been observed in human and rat studies, suggesting that BAIBA can be developed as a pill that confers the benefits of exercise to subjects who, for some reason, are unable to do so. Further, BAIBA has been confirmed to participate in the diagnosis and prevention of diseases as an important biological marker of disease. The current review aimed to discuss the roles of BAIBA in multiple physiological processes and the possible pathways of its action, and assess the progress toward the development of BAIBA as an exercise mimic and biomarker with relevance to multiple disease states, in order to provide new ideas and strategies for basic research and disease prevention in related fields.
Collapse
|
4
|
Fukuyama K, Motomura E, Okada M. Enhanced L-β-Aminoisobutyric Acid Is Involved in the Pathophysiology of Effectiveness for Treatment-Resistant Schizophrenia and Adverse Reactions of Clozapine. Biomolecules 2023; 13:biom13050862. [PMID: 37238731 DOI: 10.3390/biom13050862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Clozapine is an effective antipsychotic for the treatment of antipsychotic-resistant schizophrenia; however, specific types of A/B adverse effects and clozapine-discontinuation syndromes are also well known. To date, both the critical mechanisms of clinical actions (effective for antipsychotic-resistant schizophrenia) and the adverse effects of clozapine remain to be elucidated. Recently, we demonstrated that clozapine increased the synthesis of L-β-aminoisobutyric acid (L-BAIBA) in the hypothalamus. L-BAIBA is an activator of the adenosine monophosphate-activated protein kinase (AMPK), glycine receptor, GABAA receptor, and GABAB receptor (GABAB-R). These targets of L-BAIBA overlap as potential targets other than the monoamine receptors of clozapine. However, the direct binding of clozapine to these aminoacidic transmitter/modulator receptors remains to be clarified. Therefore, to explore the contribution of increased L-BAIBA on the clinical action of clozapine, this study determined the effects of clozapine and L-BAIBA on tripartite synaptic transmission, including GABAB-R and the group-III metabotropic glutamate receptor (III-mGluR) using cultured astrocytes, as well as on the thalamocortical hyper-glutamatergic transmission induced by impaired glutamate/NMDA receptors using microdialysis. Clozapine increased astroglial L-BAIBA synthesis in time/concentration-dependent manners. Increased L-BAIBA synthesis was observed until 3 days after clozapine discontinuation. Clozapine did not directly bind III-mGluR or GABAB-R, whereas L-BAIBA activated these receptors in the astrocytes. Local administration of MK801 into the reticular thalamic nucleus (RTN) increased L-glutamate release in the medial frontal cortex (mPFC) (MK801-evoked L-glutamate release). Local administration of L-BAIBA into the mPFC suppressed MK801-evoked L-glutamate release. These actions of L-BAIBA were inhibited by antagonists of III-mGluR and GABAB-R, similar to clozapine. These in vitro and in vivo analyses suggest that increased frontal L-BAIBA signaling likely plays an important role in the pharmacological actions of clozapine, such as improving the effectiveness of treating treatment-resistant schizophrenia and several clozapine discontinuation syndromes via the activation of III-mGluR and GABAB-R in the mPFC.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
5
|
Fukuyama K, Motomura E, Okada M. A Candidate Gliotransmitter, L-β-Aminoisobutyrate, Contributes to Weight Gain and Metabolic Complication Induced by Atypical Antipsychotics. Nutrients 2023; 15:nu15071621. [PMID: 37049464 PMCID: PMC10097171 DOI: 10.3390/nu15071621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lurasidone and quetiapine are effective atypical mood-stabilizing antipsychotics, but lurasidone and quetiapine are listed as lower-risk and high-risk for weight gain/metabolic complications, respectively. The pathophysiology of the discrepancy of metabolic adverse reactions between these antipsychotics remains to be clarified. The GABA isomer, β-aminoisobutyric acid (BAIBA) enantiomer, was recently re-discovered as myokine via an AMP-activated protein kinase activator (AMPK) enhancer and inhibitory gliotransmitter. Notably, activation of AMPK in peripheral organs improves, but in the hypothalamus, it aggravates metabolic disturbances. Therefore, we determined effects of chronic administration of lurasidone and quetiapine on intracellular and extracellular levels of the BAIBA enantiomer. L-BAIBA is a major BAIBA enantiomer in the hypothalamus and astrocytes, whereas L-BAIBA only accounted for about 5% of total plasma BAIBA enantiomers. Chronic lurasidone administration did not affect body weight but decreased the L-BAIBA level in hypothalamus and cultured astrocytes, whereas chronic quetiapine administration increased body weight and the L-BAIBA level in hypothalamus and astrocytes. Contrary, neither lurasidone nor quetiapine affected total plasma levels of the BAIBA enantiomer since D-BAIBA levels were not affected by these antipsychotics. These results suggest that activation of intracellular L-BAIBA signaling is, at least partially, involved in the pathophysiology of metabolic adverse reaction of quetiapine. Furthermore, this study also demonstrated that lurasidone and quetiapine suppressed and enhanced astroglial L-BAIBA release induced by ripple-burst stimulation (which physiologically contributes to cognitive memory integration during sleep), respectively. Therefore, L-BAIBA probably contributes to the pathophysiology of not only metabolic adverse reactions, but also a part of clinical action of lurasidone or quetiapine.
Collapse
|
6
|
Opposing effects of clozapine and brexpiprazole on β-aminoisobutyric acid: Pathophysiology of antipsychotics-induced weight gain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:8. [PMID: 36750570 PMCID: PMC9905547 DOI: 10.1038/s41537-023-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Clozapine is one of the most effective antipsychotics and has the highest risk of weight gain and metabolic complications; however, the detailed pathophysiology of its clinical action and adverse reactions remains to be clarified. Therefore, the present study determined the chronic effects of clozapine (high risk of weight gain) and brexpiprazole (relatively low risk of weight gain) on intracellular and extracellular levels of β-aminoisobutyric acid (BAIBA) enantiomers, which are endogenous activators of AMP-activated protein kinase (AMPK). L-BAIBA is the dominant BAIBA enantiomer in the rat hypothalamus and cultured astrocytes, whereas L-BAIBA accounts for only approximately 5% of the total plasma BAIBA enantiomers. L-BAIBA displayed GABAB receptor agonistic action in the extracellular space and was released through activated astroglial hemichannels, whereas in the intracellular space, L-BAIBA activated AMPK signalling. Chronic administration of the effective doses of clozapine increased intracellular and extracellular levels of L-BAIBA in the hypothalamus and cultured astrocytes, whereas that of brexpiprazole decreased them. These results suggest that enhancing hypothalamic AMPK signalling by increasing intracellular L-BAIBA levels is, at least partially, involved in the pathophysiology of clozapine-induced weight gain and metabolic complications.
Collapse
|
7
|
Tang C, Deng L, Luo Q, He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet 2023; 13:998954. [PMID: 36685865 PMCID: PMC9845256 DOI: 10.3389/fgene.2022.998954] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of death in individuals with cardiovascular and cerebrovascular diseases. A growing body of evidence suggests that oxidative stress plays an essential role in Atherosclerosis pathology. The aim of this study was to determine genetic mechanisms associated with Atherosclerosis and oxidative stress, as well as to construct a diagnostic model and to investigate its immune microenvironment. Seventeen oxidative stress-related genes were identified. A four-gene diagnostic model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm based on these 17 genes. The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO analysis, cell-substrate adherens junction and focal adhesion were the most enriched terms. KEGG analysis revealed that these overlapping genes were enriched in pathways associated with Alzheimer's disease and Parkinson's disease, as well as with prion disease pathways and ribosomes. Immune cell infiltration correlation analysis showed that the immune cells with significant differences were CD4 memory activated T cells and follicular helper T cells in the GSE43292 dataset and CD4 naïve T cells and CD4 memory resting T cells in the GSE57691 dataset. We identified 17 hub genes that were closely associated with oxidative stress in AS and constructed a four-gene (aldehyde dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX) and l-lactate dehydrogenase B (LDHB)) diagnostic model with good accuracy. The four-gene diagnostic model was also found to have good discriminatory efficacy for the immune cell infiltration microenvironment of AS. Overall, these findings provide valuable information and directions for future research into Atherosclerosis diagnosis and aid in the discovery of biological mechanisms underlying AS with oxidative stress.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Chao Tang,
| | - Lingchen Deng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Guijun He
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomed Pharmacother 2022; 153:113390. [DOI: 10.1016/j.biopha.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|
9
|
Stautemas J, Van Kuilenburg ABP, Stroomer L, Vaz F, Blancquaert L, Lefevere FBD, Everaert I, Derave W. Acute Aerobic Exercise Leads to Increased Plasma Levels of R- and S-β-Aminoisobutyric Acid in Humans. Front Physiol 2019; 10:1240. [PMID: 31611815 PMCID: PMC6773837 DOI: 10.3389/fphys.2019.01240] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Recently, it was suggested that β-aminoisobutyric acid (BAIBA) is a myokine involved in browning of fat. However, there is no evidence for an acute effect of exercise supporting this statement and the metabolic distinct enantiomers of BAIBA were not taken into account. Concerning these enantiomers, there is at this point no consensus about resting concentrations of plasma R- and S-BAIBA. Additionally, a polymorphism of the alanine - glyoxylate aminotransferase 2 (AGXT2) gene (rs37369) is known to have a high impact on baseline levels of total BAIBA, but the effect on the enantiomers is unknown. Fifteen healthy recreationally active subjects, with different genotypes of rs37369, participated in a randomized crossover trial where they exercised for 1 h at 40% of Ppeak or remained at rest. Plasma samples were analyzed for R- and S-BAIBA using dual column HPLC-fluorescence. The plasma concentration of baseline R-BAIBA was 67 times higher compared to S-BAIBA (1734 ± 821 vs. 29.3 ± 7.8 nM). Exercise induced a 13 and 20% increase in R-BAIBA and S-BAIBA, respectively. The AGXT2 rs37369 genotype strongly affected baseline levels of R-BAIBA, but did not have an impact on baseline S-BAIBA. We demonstrate that BAIBA should not be treated as one molecule, given (1) the markedly uneven distribution of its enantiomers in human plasma favoring R-BAIBA, and (2) their different metabolic source, as evidenced by the AGXT2 polymorphism only affecting R-BAIBA. The proposed function in organ cross talk is supported by the current data and may apply to both enantiomers, but the tissue of origin remains unclear.
Collapse
Affiliation(s)
- Jan Stautemas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - André B P Van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lida Stroomer
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Fred Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Filip B D Lefevere
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Inge Everaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Tanianskii DA, Jarzebska N, Birkenfeld AL, O'Sullivan JF, Rodionov RN. Beta-Aminoisobutyric Acid as a Novel Regulator of Carbohydrate and Lipid Metabolism. Nutrients 2019; 11:E524. [PMID: 30823446 PMCID: PMC6470580 DOI: 10.3390/nu11030524] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023] Open
Abstract
The prevalence and incidence of metabolic syndrome is reaching pandemic proportions worldwide, thus warranting an intensive search for novel preventive and treatment strategies. Recent studies have identified a number of soluble factors secreted by adipocytes and myocytes (adipo-/myokines), which link sedentary life style, abdominal obesity, and impairments in carbohydrate and lipid metabolism. In this review, we discuss the metabolic roles of the recently discovered myokine β-aminoisobutyric acid (BAIBA), which is produced by skeletal muscle during physical activity. In addition to physical activity, the circulating levels of BAIBA are controlled by the mitochondrial enzyme alanine: glyoxylate aminotransferase 2 (AGXT2), which is primarily expressed in the liver and kidneys. Recent studies have shown that BAIBA can protect from diet-induced obesity in animal models. It induces transition of white adipose tissue to a "beige" phenotype, which induces fatty acids oxidation and increases insulin sensitivity. While the exact mechanisms of BAIBA-induced metabolic effects are still not well understood, we discuss some of the proposed pathways. The reviewed data provide new insights into the connection between physical activity and energy metabolism and suggest that BAIBA might be a potential novel drug for treatment of the metabolic syndrome and its cardiovascular complications.
Collapse
Affiliation(s)
- Dmitrii A Tanianskii
- Department of Biochemistry, Institute of Experimental Medicine, Acad. Pavlov St., 12, 197376 St. Petersburg, Russia.
- Department of Fundamental Medicine and Medical Technology, St.Petersburg State University, 8 liter A, 21st Line V.O., 199034 St. Petersburg, Russia.
| | - Natalia Jarzebska
- University Center for Vascular Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Andreas L Birkenfeld
- Medical Clinic III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - John F O'Sullivan
- Medical Clinic III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Charles Perkins Centre and Heart Research Institute, The University of Sydney, 7 Eliza St, Newtown NSW, Sydney 2042, Australia.
| | - Roman N Rodionov
- University Center for Vascular Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| |
Collapse
|
11
|
Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017; 49:1005-1028. [DOI: 10.1007/s00726-017-2412-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
|
12
|
Vemula H, Kitase Y, Ayon NJ, Bonewald L, Gutheil WG. Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Anal Biochem 2016; 516:75-85. [PMID: 27771391 DOI: 10.1016/j.ab.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of β-aminoisobutyric acid (β-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-β-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 μM), an intermediate level of l-BAIBA (0.8 μM), and low but detectable levels (<0.2 μM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules.
Collapse
Affiliation(s)
- Harika Vemula
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Yukiko Kitase
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - William G Gutheil
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
13
|
Marcadier JL, Smith AM, Pohl D, Schwartzentruber J, Al-Dirbashi OY, Majewski J, Ferdinandusse S, Wanders RJA, Bulman DE, Boycott KM, Chakraborty P, Geraghty MT. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis 2013; 8:98. [PMID: 23835272 PMCID: PMC3710243 DOI: 10.1186/1750-1172-8-98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylmalonate semialdehyde dehydrogenase (MMSDH) deficiency is a rare autosomal recessive disorder with varied metabolite abnormalities, including accumulation of 3-hydroxyisobutyric, 3-hydroxypropionic, 3-aminoisobutyric and methylmalonic acids, as well as β-alanine. Existing reports describe a highly variable clinical and biochemical phenotype, which can make diagnosis a challenge. To date, only three reported cases have been confirmed at the molecular level, through identification of homozygous mutations in ALDH6A1, the gene encoding MMSDH. Confirmation by enzyme assay has until now not been possible, due to the extreme instability of the enzyme substrate. METHODS AND RESULTS We report a child with severe developmental delays, abnormal myelination on brain MRI, and transient/variable elevations in lactate, methylmalonic acid, 3-hydroxyisobutyric and 3-aminoisobutyric acids. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within exon 6 (c.514 T > C; p. Tyr172His) and exon 12 (c.1603C > T; p. Arg535Cys) of ALDH6A1. The resulting amino acid changes, both occurring in residues conserved among mammals, are predicted to be damaging at the protein level. Subsequent MMSDH enzyme assay demonstrated reduced activity in patient fibroblasts, measuring 2.5 standard deviations below the mean. CONCLUSIONS We present the fourth reported case of MMSDH deficiency with confirmation at the molecular level, and expand on what is already an extremely variable clinical and biochemical phenotype. Furthermore, this is the first report to demonstrate a corresponding reduction in MMSDH enzyme activity. This report illustrates the emerging utilization of whole exome sequencing and variant data filtering using clinical data as an early tool in the diagnosis of rare and variable conditions.
Collapse
|
14
|
Wanders RJA, Duran M, Loupatty FJ. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway. J Inherit Metab Dis 2012; 35:5-12. [PMID: 21104317 PMCID: PMC3249182 DOI: 10.1007/s10545-010-9236-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/03/2022]
Abstract
Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Head Lab Genetic Metabolic Diseases, Room F0-226 Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
15
|
Talfournier F, Stines-Chaumeil C, Branlant G. Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme A binding. J Biol Chem 2011; 286:21971-81. [PMID: 21515690 DOI: 10.1074/jbc.m110.213280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylmalonate-semialdehyde dehydrogenase (MSDH) belongs to the CoA-dependent aldehyde dehydrogenase subfamily. It catalyzes the NAD-dependent oxidation of methylmalonate semialdehyde (MMSA) to propionyl-CoA via the acylation and deacylation steps. MSDH is the only member of the aldehyde dehydrogenase superfamily that catalyzes a β-decarboxylation process in the deacylation step. Recently, we demonstrated that the β-decarboxylation is rate-limiting and occurs before CoA attack on the thiopropionyl enzyme intermediate. Thus, this prevented determination of the transthioesterification kinetic parameters. Here, we have addressed two key aspects of the mechanism as follows: 1) the molecular basis for recognition of the carboxylate of MMSA; and 2) how CoA binding modulates its reactivity. We substituted two invariant arginines, Arg-124 and Arg-301, by Leu. The second-order rate constant for the acylation step for both mutants was decreased by at least 50-fold, indicating that both arginines are essential for efficient MMSA binding through interactions with the carboxylate group. To gain insight into the transthioesterification, we substituted MMSA with propionaldehyde, as both substrates lead to the same thiopropionyl enzyme intermediate. This allowed us to show the following: 1) the pK(app) of CoA decreases by ∼3 units upon binding to MSDH in the deacylation step; and 2) the catalytic efficiency of the transthioesterification is increased by at least 10(4)-fold relative to a chemical model. Moreover, we observed binding of CoA to the acylation complex, supporting a CoA-binding site distinct from that of NAD(H).
Collapse
Affiliation(s)
- François Talfournier
- Unité Mixte de Recherche CNRS, Université Henri Poincaré 7214 AREMS, ARN-RNP Structure-Fonction-Maturation, Enzymologie Moléculaire et Structurale, Nancy Université, Faculté des Sciences et Technologies, Bd. des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France.
| | | | | |
Collapse
|
16
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
17
|
Abstract
The aldehyde dehydrogenase (ALDH) gene superfamily encodes enzymes that are critical for certain life processes and detoxification via the NAD(P)+-dependent oxidation of numerous endogenous and exogenous aldehyde substrates, including pharmaceuticals and environmental pollutants. Analysis of the ALDH gene superfamily in the latest databases showed that the human genome contains 19 putatively functional genes and three pseudogenes. A number of ALDH genes are upregulated as a part of the oxidative stress response and inexplicably overexpressed in various tumours, leading to problems during cancer chemotherapy. Mutations in ALDH genes cause inborn errors of metabolism -- such as the Sjögren - Larsson syndrome, type II hyperprolinaemia and γ-hydroxybutyric aciduria -- and are likely to contribute to several complex diseases, including cancer and Alzheimer's disease. The ALDH gene products appear to be multifunctional proteins, possessing both catalytic and non-catalytic properties.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO, USA.
| | | |
Collapse
|
18
|
Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev 2004; 36:279-99. [PMID: 15237855 DOI: 10.1081/dmr-120034001] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human genome contains at least 17 genes that are members of the aldehyde dehydrogenase (ALDH) superfamily. These genes encode NAD(P)(+)-dependent enzymes that oxidize a wide range of aldehydes to their corresponding carboxylic acids. Aldehydes are highly reactive molecules that are intermediates or products involved in a broad spectrum of physiologic, biologic, and pharmacologic processes. Aldehydes are generated during retinoic acid biosynthesis and the metabolism of amino acids, lipids, carbohydrates, and drugs. Mutations in several ALDH genes are the molecular basis of inborn errors of metabolism and contribute to environmentally induced diseases.
Collapse
Affiliation(s)
- Vasilis Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, School of Pharmacy, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
19
|
Van Kuilenburg ABP, Stroomer AEM, Van Lenthe H, Abeling NGGM, Van Gennip AH. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid? Biochem J 2004; 379:119-24. [PMID: 14705962 PMCID: PMC1224056 DOI: 10.1042/bj20031463] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 11/17/2022]
Abstract
DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.
Collapse
MESH Headings
- Aminoisobutyric Acids/blood
- Aminoisobutyric Acids/cerebrospinal fluid
- Aminoisobutyric Acids/chemistry
- Aminoisobutyric Acids/metabolism
- Aminoisobutyric Acids/urine
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Dihydropyrimidine Dehydrogenase Deficiency
- Dihydrouracil Dehydrogenase (NADP)/genetics
- Fluorouracil/pharmacokinetics
- Homeostasis
- Humans
- Inactivation, Metabolic/genetics
- Neurotransmitter Agents/metabolism
- Purine-Pyrimidine Metabolism, Inborn Errors/enzymology
- Purine-Pyrimidine Metabolism, Inborn Errors/genetics
- Purine-Pyrimidine Metabolism, Inborn Errors/metabolism
- Stereoisomerism
- Thymine/metabolism
- Uracil/metabolism
- Valine/metabolism
- beta-Alanine/blood
- beta-Alanine/cerebrospinal fluid
- beta-Alanine/metabolism
- beta-Alanine/urine
Collapse
Affiliation(s)
- André B P Van Kuilenburg
- Emma Children's Hospital and Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Gibson KM, Ugarte M, Fukao T, Mitchell GA. Molecular and enzymatic methods for detection of genetic defects in distal pathways of branched-chain amino acid metabolism. Methods Enzymol 2001; 324:432-53. [PMID: 10989451 DOI: 10.1016/s0076-6879(00)24252-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- K M Gibson
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | |
Collapse
|
21
|
Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 2000; 129:1-19. [PMID: 11154732 DOI: 10.1016/s0009-2797(00)00211-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes are highly reactive molecules that are intermediates or products involved in a broad spectrum of physiologic, biologic and pharmacologic processes. Aldehydes are generated from chemically diverse endogenous and exogenous precursors and aldehyde-mediated effects vary from homeostatic and therapeutic to cytotoxic, and genotoxic. One of the most important pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). Oxidation of the carbonyl functional group is considered a general detoxification process in that polymorphisms of several human ALDHs are associated a disease phenotypes or pathophysiologies. However, a number of ALDH-mediated oxidation form products that are known to possess significant biologic, therapeutic and/or toxic activities. These include the retinoic acid, an important element for vertebrate development, gamma-aminobutyric acid (GABA), an important neurotransmitter, and trichloroacetic acid, a potential toxicant. This review summarizes the ALDHs with an emphasis on catalytic properties and xenobiotic substrates of these enzymes.
Collapse
Affiliation(s)
- V Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
22
|
Chambliss KL, Gray RG, Rylance G, Pollitt RJ, Gibson KM. Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2000; 23:497-504. [PMID: 10947204 DOI: 10.1023/a:1005616315087] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three patients have been reported with (putative) methylmalonic semialdehyde dehydrogenase (MMSDH) deficiency. The urine metabolic pattern was strikingly different in all, including beta-alanine, 3-hydroxypropionic acid, both isomers of 3-amino- and 3-hydroxyisobutyric acids in one and 3-hydroxyisobutyric and lactic acids in a second, and mild methylmalonic aciduria in a third patient. In an effort to clarify these disparate metabolite patterns, we completed the cDNA structure, and characterized the genomic structure of human MMSDH gene in order to undertake molecular analysis. Only the first patient had alterations in the MMSDH coding region, revealing homozygosity for a 1336G > A transversion, which leads to substitution of arginine for highly conserved glycine at amino acid 446. No abnormalities of the MMSDH cDNA were detected in the other patients. These data provide the first molecular characterization of an inborn error of metabolism specific to the L-valine catabolic pathway.
Collapse
Affiliation(s)
- K L Chambliss
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | |
Collapse
|
23
|
Podebrad F, Heil M, Beck T, Mosandl A, Sewell AC, Böhles H. Stereodifferentiation of 3-hydroxyisobutyric- and 3-aminoisobutyric acid in human urine by enantioselective multidimensional capillary gas chromatography-mass spectrometry. Clin Chim Acta 2000; 292:93-105. [PMID: 10686279 DOI: 10.1016/s0009-8981(99)00210-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chiral metabolites 3-hydroxyisobutyric acid (HIBA) and 3-aminoisobutyric acid (AIBA) are intermediates in the pathways of L-valine and thymine and play an important role in the diagnosis of the very rare inherited metabolic diseases 3-hydroxyisobutyric aciduria (McKusick 236975) and methylmalonic semialdehyde dehydrogenase deficiency (McKusick 603178-MSDD). Until now only a few approaches have been made in enantioselective analysis of HIBA and AIBA and for that reason very little information is available on enantiomeric ratios of these metabolites in man. This paper reports on the simultaneous stereodifferentiation of HIBA and AIBA in human urine as corresponding N(O)-methoxycarbonyl methyl esters by derivatization with methyl chloroformate (MCF) using enantioselective multidimensional gas chromatography-mass spectrometry (enantio-MDGC/MS) with heptakis-(2, 3-di-O-methyl-6-O-tert.-butyl-dimethylsilyl)-beta-cyclodextrin as the chiral stationary phase. During this investigation urine samples from different patients and healthy controls were analyzed in order to reveal characteristic enantiomeric patterns of these metabolites. A trend of dominating R-HIBA excretion in the control urine samples investigated was observed. An excretion of more than 80% S-HIBA was found in the urines of two patients with ketonemic vomiting. There are some clues indicating a possible renal reabsorbtion of S-HIBA similar to those of S-AIBA. Furthermore, there was a significant finding with regard to the enantiomeric distribution of AIBA in a patient with MSDD - a markedly increased excretion of the S-enantiomer in contrast to the other samples. Using the enantiomeric ratios of AIBA, a previously investigated case of benign methylmalonic aciduria (bMMA) could be excluded from the diagnosis of MSDD.
Collapse
Affiliation(s)
- F Podebrad
- Department of Food Chemistry, J.W. Goethe-University Frankfurt/Main, Marie-Curie-Strasse 9, 60439, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Kedishvili NY, Goodwin GW, Popov KM, Harris RA. Mammalian methylmalonate-semialdehyde dehydrogenase. Methods Enzymol 2000; 324:207-18. [PMID: 10989432 PMCID: PMC2131742 DOI: 10.1016/s0076-6879(00)24233-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- N Y Kedishvili
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | | | |
Collapse
|