1
|
Watamura N, Foiani MS, Bez S, Bourdenx M, Santambrogio A, Frodsham C, Camporesi E, Brinkmalm G, Zetterberg H, Patel S, Kamano N, Takahashi M, Rueda-Carrasco J, Katsouri L, Fowler S, Turkes E, Hashimoto S, Sasaguri H, Saito T, Islam AS, Benner S, Endo T, Kobayashi K, Ishida C, Vendruscolo M, Yamada M, Duff KE, Saido TC. In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds. Nat Neurosci 2024:10.1038/s41593-024-01829-7. [PMID: 39719507 DOI: 10.1038/s41593-024-01829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2024] [Indexed: 12/26/2024]
Abstract
Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy. MAPTInt10+3G>A and MAPTS305N;Int10+3G>A lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
- UK Dementia Research Institute at University College London, London, UK.
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK.
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Mathieu Bourdenx
- UK Dementia Research Institute at University College London, London, UK
| | - Alessia Santambrogio
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Claire Frodsham
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Saisha Patel
- UK Dementia Research Institute at University College London, London, UK
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | | | - Loukia Katsouri
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Stephanie Fowler
- UK Dementia Research Institute at University College London, London, UK
- Nuffield Department of Medicine, Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Oxford, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Afm Saiful Islam
- Queen Square Institute of Neurology, University College London, London, UK
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Katsuji Kobayashi
- Department of Psychiatry, Awazu Neuropsychiatric Hospital, Ishikawa, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Iwade-machi, Japan
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Masahito Yamada
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Kanazawa University, Kanazawa, Japan
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Queen Square Institute of Neurology, University College London, London, UK.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
2
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
3
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
4
|
Suiwal S, Wartenberg P, Boehm U, Schmitz F, Schwarz K. A Novel Cre Recombinase Mouse Strain for Cell-Specific Deletion of Floxed Genes in Ribbon Synapse-Forming Retinal Neurons. Int J Mol Sci 2024; 25:1916. [PMID: 38339191 PMCID: PMC10856425 DOI: 10.3390/ijms25031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.
Collapse
Affiliation(s)
- Shweta Suiwal
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Philipp Wartenberg
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Ulrich Boehm
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
5
|
Fereydouni-Forouzandeh P, Canet G, Diego-Diàz S, Rocaboy E, Petry S, Whittington RA, Planel E. Western Blot of Tau Protein from Mouse Brains Extracts: How to Avoid Signal Artifacts. Methods Mol Biol 2024; 2754:309-321. [PMID: 38512673 DOI: 10.1007/978-1-0716-3629-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau is a microtubule-associated protein enriched in the axonal compartment. Its most well-known function is to bind and stabilize microtubules. In Alzheimer's disease and other neurodegenerative diseases known as tauopathies, tau undergoes several abnormal post-translational modifications including hyperphosphorylation, conformational changes, oligomerization, and aggregation. Numerous mouse models of tauopathies have been developed, and Western blotting remains an invaluable tool in studying tau protein physiological and pathological changes in these models. However, many of the antibodies that have been developed to analyze tau post-translational modifications are mouse monoclonal, which are at risk of producing artifactual signals in Western blotting procedures. This risk does not arise due to their lack of specificity, but rather because the secondary antibodies used to detect them will also react with the heavy chain of endogenous mouse immunoglobulins (Igs), leading to a non-specific signal at the same molecular weight as tau protein (around 50 kDa). Here, we present the use of anti-light-chain secondary antibodies as a simple and efficient technique to prevent non-specific Ig signals around 50 kDa. We demonstrate the efficacy of this method by either eliminating or identifying artifactual signals when using monoclonal antibodies directed at non-phosphorylated epitopes (T49, Tau3R, Tau4R), phosphorylated epitopes (MC6, AT180, CP13), or an abnormal tau conformation (MC1), in wild-type (WT) mice with tau hyperphosphorylation (hypothermic), transgenic mice overexpressing human tau (hTau mice), and tau knockout (TKO) mice.
Collapse
Affiliation(s)
| | - Geoffrey Canet
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Sofia Diego-Diàz
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Emma Rocaboy
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Serena Petry
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Quebec, QC, Canada
| | - Robert A Whittington
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emmanuel Planel
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Quebec, QC, Canada.
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada.
| |
Collapse
|
6
|
Gao Y, Wang Y, Lei H, Xu Z, Li S, Yu H, Xie J, Zhang Z, Liu G, Zhang Y, Zheng J, Wang JZ. A novel transgenic mouse line with hippocampus-dominant and inducible expression of truncated human tau. Transl Neurodegener 2023; 12:51. [PMID: 37950283 PMCID: PMC10637005 DOI: 10.1186/s40035-023-00379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuying Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyang Lei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Yu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Endocrine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
7
|
Xue H, Gate S, Gentry E, Losert W, Cao K. Development of an accelerated cellular model for early changes in Alzheimer's disease. Sci Rep 2023; 13:18384. [PMID: 37884611 PMCID: PMC10603068 DOI: 10.1038/s41598-023-45826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Alzheimer's Disease (AD) is a leading cause of dementia characterized by amyloid plaques and neurofibrillary tangles, and its pathogenesis remains unclear. Current cellular models for AD often require several months to exhibit phenotypic features due to the lack of an aging environment in vitro. Lamin A is a key component of the nuclear lamina. Progerin, a truncated protein resulting from specific lamin A mutations, causes Hutchinson-Gilford Progeria Syndrome (HGPS), a disease that prematurely ages individuals. Studies have reported that lamin A expression is induced in the brains of AD patients, and overlapping cellular phenotypes have been observed between HGPS and AD cells. In this study, we investigated the effects of exogenous progerin expression on neural progenitor cells carrying familial AD mutations (FAD). Within three to four weeks of differentiation, these cells exhibited robust AD phenotypes, including increased tau phosphorylation, amyloid plaque accumulation, and an elevated Aβ42 to Aβ40 ratio. Additionally, progerin expression significantly increased AD cellular phenotypes such as cell death and cell cycle re-entry. Our results suggest that progerin expression could be used to create an accelerated model for AD development and drug screening.
Collapse
Affiliation(s)
- Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Sylvester Gate
- Institute of Physical Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Emma Gentry
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Wolfgang Losert
- Institute of Physical Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
8
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Chapelet G, Béguin N, Castellano B, Grit I, de Coppet P, Oullier T, Neunlist M, Blottière H, Rolli-Derkinderen M, Le Dréan G, Derkinderen P. Tau expression and phosphorylation in enteroendocrine cells. Front Neurosci 2023; 17:1166848. [PMID: 37332860 PMCID: PMC10272410 DOI: 10.3389/fnins.2023.1166848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objective There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology. Besides alpha-synuclein, tau is another key protein involved in neurodegeneration and converging evidences indicate that there is an interplay between these two proteins at both molecular and pathological levels. There are no existing studies on tau in EEC and therefore we set out to examine the isoform profile and phosphorylation state of tau in these cells. Methods Surgical specimens of human colon from control subjects were analyzed by immunohistochemistry using a panel of anti-tau antibodies together with chromogranin A and Glucagon-like peptide-1 (two EEC markers) antibodies. To investigate tau expression further, two EEC lines, namely GLUTag and NCI-H716 were analyzed by Western blot with pan-tau and tau isoform specific antibodies and by RT-PCR. Lambda phosphatase treatment was used to study tau phosphorylation in both cell lines. Eventually, GLUTag were treated with propionate and butyrate, two short chain fatty acids known to sense EEC, and analyzed at different time points by Western blot with an antibody specific for tau phosphorylated at Thr205. Results We found that tau is expressed and phosphorylated in EEC in adult human colon and that both EEC lines mainly express two tau isoforms that are phosphorylated under basal condition. Both propionate and butyrate regulated tau phosphorylation state by decreasing its phosphorylation at Thr205. Conclusion and inference Our study is the first to characterize tau in human EEC and in EEC lines. As a whole, our findings provide a basis to unravel the functions of tau in EEC and to further investigate the possibility of pathological changes in tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Guillaume Chapelet
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Nora Béguin
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pierre de Coppet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Thibauld Oullier
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Hervé Blottière
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gwenola Le Dréan
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|
10
|
Khan KM, Balasubramanian N, Gaudencio G, Wang R, Selvakumar GP, Kolling L, Pierson S, Tadinada SM, Abel T, Hefti M, Marcinkiewcz CA. Human tau-overexpressing mice recapitulate brainstem involvement and neuropsychiatric features of early Alzheimer's disease. Acta Neuropathol Commun 2023; 11:57. [PMID: 37009893 PMCID: PMC10069039 DOI: 10.1186/s40478-023-01546-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023] Open
Abstract
Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
- Psychological Sciences Department, Daemen University, Amherst, NY, 14226, USA
| | - Nagalakshmi Balasubramanian
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Gabriel Gaudencio
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ruixiang Wang
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | | | - Louis Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Samantha Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Satya M Tadinada
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Catherine A Marcinkiewcz
- Department of Neuroscience and Pharmacology, University of Iowa, 2-430 Bowen Science Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Wen Y, Zhang L, Li N, Tong A, Zhao C. Nutritional assessment models for Alzheimer's disease: Advances and perspectives. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry Faculty of Sciences Ourense Spain
| | - Lizhu Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
12
|
Barendrecht S, Schreurs A, Geissler S, Sabanov V, Ilse V, Rieckmann V, Eichentopf R, Künemund A, Hietel B, Wussow S, Hoffmann K, Körber-Ferl K, Pandey R, Carter GW, Demuth HU, Holzer M, Roßner S, Schilling S, Preuss C, Balschun D, Cynis H. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice. Alzheimers Res Ther 2023; 15:16. [PMID: 36641439 PMCID: PMC9840277 DOI: 10.1186/s13195-022-01144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
Collapse
Affiliation(s)
- Susan Barendrecht
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - An Schreurs
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Stefanie Geissler
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Victor Sabanov
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Victoria Ilse
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Vera Rieckmann
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Rico Eichentopf
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Anja Künemund
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Benjamin Hietel
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Sebastian Wussow
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Katrin Hoffmann
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Kerstin Körber-Ferl
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Ravi Pandey
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Gregory W. Carter
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Hans-Ulrich Demuth
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Stephan Schilling
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany ,grid.427932.90000 0001 0692 3664Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Christoph Preuss
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Detlef Balschun
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Holger Cynis
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| |
Collapse
|
13
|
Sahara N, Yanai R. Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy. Front Neurosci 2023; 17:1149761. [PMID: 37152607 PMCID: PMC10157230 DOI: 10.3389/fnins.2023.1149761] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases, collectively termed tauopathy. There is no disease-modifying drug available for tauopathy except anti-amyloid antibody therapies for Alzheimer's disease. For tau-targeting therapy, experimental models recapitulating human tau pathologies are indispensable. However, there are limited numbers of animal models that display intracellular filamentous tau aggregations. At present, several lines of P301L/S mutant tau-expressing transgenic mice successfully developed neurofibrillary pathology in the central nervous system, while most non-mutant tau-expressing transgenic mice rarely developed tau pathology. Importantly, recent studies have revealed that transgenes disrupt the coding sequence of endogenous genes, resulting in deletions and/or structural variations at the insertion site. Although any impact on the pathogenesis of tauopathy is unknown, gene disruptions may affect age-related neurodegeneration including tangle formation and brain atrophy. Moreover, some mouse lines show strain-dependent pathological features. These limitations (FTDP-17 mutations, insertion/deletion mutations, and genetic background) are a major hindrance to the establishment of a precise disease model of tauopathy. In this review, we noticed both the utility and the pitfalls of current P301L/S mutant tau-expressing transgenic mice, and we propose future strategies of mouse modeling to replicate human tauopathies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Rin Yanai
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
14
|
Muñiz JA, Facal CL, Urrutia L, Clerici-Delville R, Damianich A, Ferrario JE, Falasco G, Avale ME. SMaRT modulation of tau isoforms rescues cognitive and motor impairments in a preclinical model of tauopathy. Front Bioeng Biotechnol 2022; 10:951384. [PMID: 36277399 PMCID: PMC9581281 DOI: 10.3389/fbioe.2022.951384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein predominantly expressed in neurons, which participates in microtubule polymerization and axonal transport. Abnormal tau metabolism leads to neurodegenerative diseases named tauopathies, such as Alzheimer’s disease and frontotemporal dementia. The alternative splicing of exon 10 (E10) in the primary transcript produces tau protein isoforms with three (3R) or four (4R) microtubule binding repeats, which are found in equal amounts in the normal adult human brain. Several tauopathies are associated with abnormal E10 alternative splicing, leading to an imbalance between 3R and 4R isoforms, which underlies disease. Correction of such imbalance represents a potential disease-modifying therapy for those tauopathies. We have previously optimized a trans-splicing RNA reprogramming strategy to modulate the 3R:4R tau content in a mouse model of tauopathy related to tau mis-splicing (htau mice), and showed that local modulation of E10 inclusion in the prefrontal cortex prevents cognitive decline, neuronal firing impairments and hyperphosphorylated tau accumulation. Furthermore, local shifting of 3R–4R tau into the striatum of htau mice prevented motor coordination deficits. However, a major bottleneck of our previous work is that local splicing regulation was performed in young mice, before the onset of pathological phenotypes. Here we tested whether regulation of tau E10 splicing could rescue tau pathology phenotypes in htau mice, after the onset of cognitive and motor impairments, comparable to early stages of human tauopathies. To determine phenotypic time course and affected brain nuclei, we assessed htau mice using behavioural tests and microPET FDG imaging over time, similarly to diagnosis methods used in patients. Based on these analyses, we performed local delivery of pre-trans splicing molecules to regulate E10 inclusion either into the medial prefrontal cortex (mPFC) or the striatum at 6-month-old once behavioral phenotypes and metabolic changes were detected. Tau isoforms modulation into the mPFC restored cognitive performance in mice that previously showed mild to severe memory impairment while motor coordination deficit was rescued after striatal injection of trans-splicing molecules. Our data suggest that tau regulation could recover pathological phenotypes early after phenotypic onset, raising promising perspectives for the use of RNA based therapies in tauopathies related to MAPT abnormal splicing.
Collapse
Affiliation(s)
- Javier Andrés Muñiz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Carolina Lucía Facal
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Leandro Urrutia
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Ramiro Clerici-Delville
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Buenos Aires, Argentina
| | - Ana Damianich
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Juan E. Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Buenos Aires, Argentina
| | - Germán Falasco
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - María Elena Avale
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
- *Correspondence: María Elena Avale,
| |
Collapse
|
15
|
Yoshiki A, Ballard G, Perez AV. Genetic quality: a complex issue for experimental study reproducibility. Transgenic Res 2022; 31:413-430. [PMID: 35751794 PMCID: PMC9489590 DOI: 10.1007/s11248-022-00314-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
Collapse
Affiliation(s)
- Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, 3050074, Japan.
| | - Gregory Ballard
- Comparative Medicine and Quality, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
16
|
de Fisenne MA, Yilmaz Z, De Decker R, Suain V, Buée L, Ando K, Brion JP, Leroy K. Alzheimer PHF-tau aggregates do not spread tau pathology to the brain via the Retino-tectal projection after intraocular injection in mouse models. Neurobiol Dis 2022; 174:105875. [PMID: 36154878 DOI: 10.1016/j.nbd.2022.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/27/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022] Open
Abstract
Neurofibrillary tangles (NFT), a neuronal lesion found in Alzheimer's disease (AD), are composed of fibrillary aggregates of modified forms of tau proteins. The propagation of NFT follows neuroanatomical pathways suggesting that synaptically connected neurons could transmit tau pathology by the recruitment of normal tau in a prion-like manner. Moreover, the intracerebral injection of pathological tau from AD brains induces the seeding of normal tau in mouse brain. Creutzfeldt-Jacob disease has been transmitted after ocular transplants of cornea or sclera and the scrapie agent can spread across the retino-tectal pathway after intraocular injection of scrapie mouse brain homogenates. In AD, a tau pathology has been detected in the retina. To investigate the potential risk of tau pathology transmission during eye surgery using AD tissue material, we have analysed the development of tau pathology in the visual pathway of mice models expressing murine tau, wild-type or mutant human tau after intraocular injection of pathological tau proteins from AD brains. Although these pathological tau proteins were internalized in retinal ganglion cells, they did not induce aggregation of endogenous tau nor propagation of a tau pathology in the retino-tectal pathway after a 6-month incubation period. These results suggest that retinal ganglion cells exhibit a resistance to develop a tau pathology, and that eye surgery is not a major iatrogenic risk of transmission of tau pathology, contrary to what has been observed for transmission of infectious prions in prion diseases.
Collapse
Affiliation(s)
- M-A de Fisenne
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - Z Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - R De Decker
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - V Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - L Buée
- INSERM, U837. Université de Lille 2, Lille, France
| | - K Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - J-P Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| | - K Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium.
| |
Collapse
|
17
|
Li L, Miao J, Chu D, Jin N, Tung YC, Dai C, Hu W, Gong C, Iqbal K, Liu F. Tau antibody 77G7 targeting microtubule binding domain suppresses proteopathic tau to seed tau aggregation. CNS Neurosci Ther 2022; 28:2245-2259. [PMID: 36114722 PMCID: PMC9627375 DOI: 10.1111/cns.13970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Neurofibrillary tangle (NFT) of hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD) and related tauopathies. Tau lesion starts in the trans-entorhinal cortex, from where it spreads to limbic regions, followed by neocortical areas. The regional distribution of NFTs associates with the progression of AD. Accumulating evidence suggests that proteopathic tau can seed tau aggregation in a prion-like fashion in vitro and in vivo. Inhibition of tau seeding activity could provide a potential therapeutic opportunity to block the propagation of tau pathology in AD and related tauopathies. AIMS In the present study, we investigated the role of 77G7, a monoclonal tau antibody to the microtubule-binding repeats, in repressing the seeding activity of proteopathic tau. RESULTS We found that 77G7 had a higher affinity toward aggregated pathological tau fractions than un-aggregated tau derived from AD brain. 77G7 inhibited the internalization of tau aggregates by cells, blocked AD O-tau to capture normal tau, and to seed tau aggregation in vitro and in cultured cells. Tau pathology induced by hippocampal injection of AD O-tau in 3xTg-AD mice was suppressed by mixing 77G7 with AD O-tau. Intravenous administration of 77G7 ameliorated site-specific hyperphosphorylation of tau induced by AD O-tau in the hippocampi of Tg/hTau mice. CONCLUSION These findings indicate that 77G7 can effectively suppress the seeding activity of AD O-tau and thus could be developed as a potential immunotherapeutic drug to inhibit the propagation of tau pathology in AD and related tauopathies.
Collapse
Affiliation(s)
- Longfei Li
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Jin Miao
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Laboratory Animal CenterNantong UniversityNantongChina
| | - Dandan Chu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Nana Jin
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongChina
| | - Yunn Chyn Tung
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Chun‐Ling Dai
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Wen Hu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Cheng‐Xin Gong
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Khalid Iqbal
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Fei Liu
- Department of NeurochemistryInge Grundke‐Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| |
Collapse
|
18
|
Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:625-642. [PMID: 36090761 PMCID: PMC9424863 DOI: 10.1016/j.omtn.2022.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
Tau is a microtubule-associated protein (MAPT, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the MAPT locus resulted in the identification of hot spots for activity in the 3′ UTR. Further modifications to the LNA design resulted in the generation of ASO-001933, which selectively and potently reduces tau in primary cultures from hTau mice, monkey, and human neurons. ASO-001933 was well tolerated and produced a robust, long-lasting reduction in tau protein in both mouse and cynomolgus monkey brain. In monkey, tau protein reduction was maintained in brain for 20 weeks post injection and corresponded with tau protein reduction in the cerebrospinal fluid (CSF). Our results demonstrate that LNA-ASOs exhibit excellent drug-like properties and sustained efficacy likely translating to infrequent, intrathecal dosing in patients. These data further support the development of LNA-ASOs against tau for the treatment of tauopathies.
Collapse
|
19
|
Reassessment of Neuronal Tau Distribution in Adult Human Brain and Implications for Tau Pathobiology. Acta Neuropathol Commun 2022; 10:94. [PMID: 35765058 PMCID: PMC9237980 DOI: 10.1186/s40478-022-01394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Tau is a predominantly neuronal, soluble and natively unfolded protein that can bind and stabilize microtubules in the central nervous system. Tau has been extensively studied over several decades, especially in the context of neurodegenerative diseases where it can aberrantly aggregate to form a spectrum of pathological inclusions. The presence of tau inclusions in the form of neurofibrillary tangles, neuropil threads and dystrophic neurites within senile plaques are essential and defining features of Alzheimer’s disease. The current dogma favors the notion that tau is predominantly an axonal protein, and that in Alzheimer’s disease there is a redistribution of tau towards the neuronal soma that is associated with the formation of pathological inclusions such as neurofibrillary tangles and neuropil threads. Using novel as well as previously established highly specific tau antibodies, we demonstrate that contrary to this overwhelmingly accepted fact, as asserted in numerous articles and reviews, in adult human brain, tau is more abundant in cortical gray matter that is enriched in neuronal soma and dendrites compared to white matter that is predominantly rich in neuronal axons. Additionally, in Alzheimer’s disease tau pathology is significantly more abundant in the brain cortical gray matter of affected brain regions compared to the adjacent white matter regions. These findings have important implications for the biological function of tau as well as the mechanisms involved in the progressive spread of tau associated with the insidious nature of Alzheimer’s disease.
Collapse
|
20
|
Capano LS, Sato C, Ficulle E, Yu A, Horie K, Kwon JS, Burbach KF, Barthélemy NR, Fox SG, Karch CM, Bateman RJ, Houlden H, Morimoto RI, Holtzman DM, Duff KE, Yoo AS. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 2022; 29:918-932.e8. [PMID: 35659876 PMCID: PMC9176216 DOI: 10.1016/j.stem.2022.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Tau is a microtubule-binding protein expressed in neurons, and the equal ratios between 4-repeat (4R) and 3-repeat (3R) isoforms are maintained in normal adult brain function. Dysregulation of 3R:4R ratio causes tauopathy, and human neurons that recapitulate tau isoforms in health and disease will provide a platform for elucidating pathogenic processes involving tau pathology. We carried out extensive characterizations of tau isoforms expressed in human neurons derived by microRNA-induced neuronal reprogramming of adult fibroblasts. Transcript and protein analyses showed that miR neurons expressed all six isoforms with the 3R:4R isoform ratio equivalent to that detected in human adult brains. Also, miR neurons derived from familial tauopathy patients with a 3R:4R ratio altering mutation showed increased 4R tau and the formation of insoluble tau with seeding activity. Our results collectively demonstrate the utility of miRNA-induced neuronal reprogramming to recapitulate endogenous tau regulation comparable with the adult brain in health and disease.
Collapse
Affiliation(s)
- Lucia S Capano
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular and Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Anan Yu
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Kanta Horie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyle F Burbach
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan G Fox
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Celeste M Karch
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA
| | - Henry Houlden
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK.
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
22
|
Xia Y, Prokop S, Bell BM, Gorion KMM, Croft CL, Nasif L, Xu G, Riffe CJ, Manaois AN, Strang KH, Quintin SS, Paterno G, Tansey MG, Borchelt DR, Golde TE, Giasson BI. Pathogenic tau recruits wild-type tau into brain inclusions and induces gut degeneration in transgenic SPAM mice. Commun Biol 2022; 5:446. [PMID: 35550593 PMCID: PMC9098443 DOI: 10.1038/s42003-022-03373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Pathological tau inclusions are neuropathologic hallmarks of many neurodegenerative diseases. We generated and characterized a transgenic mouse model expressing pathogenic human tau with S320F and P301S aggregating mutations (SPAM) at transgene levels below endogenous mouse tau protein levels. This mouse model develops a predictable temporal progression of tau pathology in the brain with biochemical and ultrastructural properties akin to authentic tau inclusions. Surprisingly, pathogenic human tau extensively recruited endogenous mouse tau into insoluble aggregates. Despite the early onset and rapid progressive nature of tau pathology, major neuroinflammatory and transcriptional changes were only detectable at later time points. Moreover, tau SPAM mice are the first model to develop loss of enteric neurons due to tau accumulation resulting in a lethal phenotype. With moderate transgene expression, rapidly progressing tau pathology, and a highly predictable lethal phenotype, the tau SPAM model reveals new associations of tau neurotoxicity in the brain and intestinal tract.
Collapse
Affiliation(s)
- Yuxing Xia
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stefan Prokop
- grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Brach M. Bell
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kimberly-Marie M. Gorion
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara L. Croft
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Lith Nasif
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Guilian Xu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Cara J. Riffe
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Alyssa N. Manaois
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Kevin H. Strang
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Stephan S. Quintin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Malú Gámez Tansey
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - David R. Borchelt
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610 USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
23
|
Sartoretti T, Ganley RP, Ni R, Freund P, Zeilhofer HU, Klohs J. Structural MRI Reveals Cervical Spinal Cord Atrophy in the P301L Mouse Model of Tauopathy: Gender and Transgene-Dosing Effects. Front Aging Neurosci 2022; 14:825996. [PMID: 35585865 PMCID: PMC9108240 DOI: 10.3389/fnagi.2022.825996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5–9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Robert P. Ganley
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Patrick Freund
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- *Correspondence: Jan Klohs
| |
Collapse
|
24
|
Trease AJ, George JW, Roland NJ, Lichter EZ, Emanuel K, Totusek S, Fox HS, Stauch KL. Hyperphosphorylated Human Tau Accumulates at the Synapse, Localizing on Synaptic Mitochondrial Outer Membranes and Disrupting Respiration in a Mouse Model of Tauopathy. Front Mol Neurosci 2022; 15:852368. [PMID: 35359570 PMCID: PMC8960727 DOI: 10.3389/fnmol.2022.852368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Neurogenerative disorders, such as Alzheimer’s disease (AD), represent a growing public health challenge in aging societies. Tauopathies, a subset of neurodegenerative disorders that includes AD, are characterized by accumulation of fibrillar and hyperphosphorylated forms of microtubule-associated protein tau with coincident mitochondrial abnormalities and neuronal dysfunction. Although, in vitro, tau impairs axonal transport altering mitochondrial distribution, clear in vivo mechanisms associating tau and mitochondrial dysfunction remain obscure. Herein, we investigated the effects of human tau on brain mitochondria in vivo using transgenic htau mice at ages preceding and coinciding with onset of tauopathy. Subcellular proteomics combined with bioenergetic assessment revealed pathologic forms of tau preferentially associate with synaptic over non-synaptic mitochondria coinciding with changes in bioenergetics, reminiscent of an aged synaptic mitochondrial phenotype in wild-type mice. While mitochondrial content was unaltered, mitochondrial maximal respiration was impaired in synaptosomes from htau mice. Further, mitochondria-associated tau was determined to be outer membrane-associated using the trypsin protection assay and carbonate extraction. These findings reveal non-mutant human tau accumulation at the synapse has deleterious effects on mitochondria, which likely contributes to synaptic dysfunction observed in the context of tauopathy.
Collapse
|
25
|
Sauna-like conditions or menthol treatment reduce tau phosphorylation through mild hyperthermia. Neurobiol Aging 2022; 113:118-130. [DOI: 10.1016/j.neurobiolaging.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
|
26
|
Walker A, Chapin B, Abisambra J, DeKosky ST. Association between single moderate to severe traumatic brain injury and long-term tauopathy in humans and preclinical animal models: a systematic narrative review of the literature. Acta Neuropathol Commun 2022; 10:13. [PMID: 35101132 PMCID: PMC8805270 DOI: 10.1186/s40478-022-01311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models. METHODS Studies considered for inclusion in this review assessed a single moderate to severe TBI, assessed tau pathology at long-term timepoints post-injury, comprised experimental or observational studies, and were peer-reviewed and published in English. Databases searched included: PUBMED, NCBI-PMC, EMBASE, Web of Science, Academic Search Premiere, and APA Psychnet. Search results were uploaded to Covidence®, duplicates were removed, and articles underwent an abstract and full-text screening process. Data were then extracted and articles assessed for risk of bias. FINDINGS Of 4,150 studies screened, 26 were eligible for inclusion, of which 17 were human studies, 8 were preclinical animal studies, and 1 included both human and preclinical animal studies. Most studies had low to moderate risk of bias. Most human and animal studies (n = 12 and 9, respectively) suggested that a single moderate to severe TBI resulted in greater development of long-term tauopathy compared to no history of head injury. This conclusion should be interpreted with caution, however, due to several limitations: small sample sizes; inconsistencies in controlling for confounding factors that may have affected tau pathology (e.g., family history of dementia or neurological illnesses, apolipoprotein E genotype, etc.), inclusion of mostly males, and variation in reporting injury parameters. INTERPRETATION Results indicate that a single moderate to severe TBI leads to greater chronic development of tauopathy compared to no history of head injury. This implies that tau pathology induced may not be transient, but can progressively develop over time in both humans and animal models. Targeting these tau changes for therapeutic intervention should be further explored to elucidate if disease progression can be reversed or mitigated.
Collapse
Affiliation(s)
- Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ben Chapin
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Steven T DeKosky
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
27
|
Chan AWS, Cho IK, Li CX, Zhang X, Patel S, Rusnak R, Raper J, Bachevalier J, Moran SP, Chi T, Cannon KH, Hunter CE, Martin RC, Xiao H, Yang SH, Gumber S, Herndon JG, Rosen RF, Hu WT, Lah JJ, Levey AI, Smith Y, Walker LC. Cerebral Aβ deposition in an Aβ-precursor protein-transgenic rhesus monkey. AGING BRAIN 2022; 2:100044. [PMID: 36589695 PMCID: PMC9802652 DOI: 10.1016/j.nbas.2022.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With the ultimate goal of developing a more representative animal model of Alzheimer's disease (AD), two female amyloid-β-(Aβ) precursor protein-transgenic (APPtg) rhesus monkeys were generated by lentiviral transduction of the APP gene into rhesus oocytes, followed by in vitro fertilization and embryo transfer. The APP-transgene included the AD-associated Swedish K670N/M671L and Indiana V717F mutations (APPSWE/IND) regulated by the human polyubiquitin-C promoter. Overexpression of APP was confirmed in lymphocytes and brain tissue. Upon sacrifice at 10 years of age, one of the monkeys had developed Aβ plaques and cerebral Aβ-amyloid angiopathy in the occipital, parietal, and caudal temporal neocortices. The induction of Aβ deposition more than a decade prior to its usual emergence in the rhesus monkey supports the feasibility of creating a transgenic nonhuman primate model for mechanistic analyses and preclinical testing of treatments for Alzheimer's disease and cerebrovascular amyloidosis.
Collapse
Affiliation(s)
- Anthony W S Chan
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - In Ki Cho
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sudeep Patel
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Rusnak
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Raper
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jocelyne Bachevalier
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Psychology, Emory College, Atlanta, GA 30322, USA
| | - Sean P Moran
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Tim Chi
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Katherine H Cannon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Carissa E Hunter
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ryan C Martin
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Hailian Xiao
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shang-Hsun Yang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Gumber
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - James G Herndon
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca F Rosen
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lary C Walker
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Jiang S, Maphis NM, Binder J, Chisholm D, Weston L, Duran W, Peterson C, Zimmerman A, Mandell MA, Jett SD, Bigio E, Geula C, Mellios N, Weick JP, Rosenberg GA, Latz E, Heneka MT, Bhaskar K. Proteopathic tau primes and activates interleukin-1β via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 2021; 36:109720. [PMID: 34551296 PMCID: PMC8491766 DOI: 10.1016/j.celrep.2021.109720] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pathological hyperphosphorylation and aggregation of tau (pTau) and neuroinflammation, driven by interleukin-1β (IL-1β), are the major hallmarks of tauopathies. Here, we show that pTau primes and activates IL-1β. First, RNA-sequence analysis suggests paired-helical filaments (PHFs) from human tauopathy brain primes nuclear factor κB (NF-κB), chemokine, and IL-1β signaling clusters in human primary microglia. Treating microglia with pTau-containing neuronal media, exosomes, or PHFs causes IL-1β activation, which is NLRP3, ASC, and caspase-1 dependent. Suppression of pTau or ASC reduces tau pathology and inflammasome activation in rTg4510 and hTau mice, respectively. Although the deletion of MyD88 prevents both IL-1β expression and activation in the hTau mouse model of tauopathy, ASC deficiency in myeloid cells reduces pTau-induced IL-1β activation and improves cognitive function in hTau mice. Finally, pTau burden co-exists with elevated IL-1β and ASC in autopsy brains of human tauopathies. Together, our results suggest pTau activates IL-1β via MyD88- and NLRP3-ASC-dependent pathways in myeloid cells, including microglia.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nicole M Maphis
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jessica Binder
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Devon Chisholm
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lea Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Walter Duran
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Crina Peterson
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Amber Zimmerman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Stephen D Jett
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Eileen Bigio
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Changiz Geula
- Cognitive Neurology and Alzheimer's Disease Center (CNADC), Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA
| | - Michael T Heneka
- Institute of Innate Immunity, University of Bonn, Bonn 53127, Germany; Department of Medicine, University of Massachusetts, Worcester, MA 01605, USA; Department of Neurodegenerative Disease and Gerontopsychiatry, University of Bonn, Bonn 53127, Germany
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
29
|
Ghosh A, Singh S. Regulation Of Microtubule: Current Concepts And Relevance To Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:656-679. [PMID: 34323203 DOI: 10.2174/1871527320666210728144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are abnormalities linked to neuronal structure and irregularities associated with the proliferation of cells, transportation, and differentiation. NDD also involves synaptic circuitry and neural network alterations known as synaptopathies. Microtubules (MTs) and MTs-associated proteins help to maintain neuronal health as well as their development. The microtubular dynamic structure plays a crucial role in the division of cells and forms mitotic spindles, thus take part in initiating stages of differentiation and polarization for various types of cells. The MTs also take part in the cellular death but MT-based cellular degenerations are not yet well excavated. In the last few years, studies have provided the protagonist activity of MTs in neuronal degeneration. In this review, we largely engrossed our discussion on the change of MT cytoskeleton structure, describing their organization, dynamics, transportation, and their failure causing NDDs. At end of this review, we are targeting the therapeutic neuroprotective strategies on clinical priority and also try to discuss the clues for the development of new MT-based therapy as a new pharmacological intervention. This will be a new potential site to block not only neurodegeneration but also promotes the regeneration of neurons.
Collapse
Affiliation(s)
- Anirban Ghosh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
30
|
Damianich A, Facal CL, Muñiz JA, Mininni C, Soiza-Reilly M, Ponce De León M, Urrutia L, Falasco G, Ferrario JE, Avale ME. Tau mis-splicing correlates with motor impairments and striatal dysfunction in a model of tauopathy. Brain 2021; 144:2302-2309. [PMID: 34059893 DOI: 10.1093/brain/awab130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein Tau, which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in tau pre-mRNA produces equal amounts of protein isoforms with either three (3 R) or four (4 R) microtubule binding domains. Imbalance in the 3 R : 4 R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as Progressive Supranuclear Palsy and Corticobasal Degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which bear abnormal 3 R : 4 R tau isoforms contents, and contrariwise to TauKO mice, are unresponsive to L-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses pointed the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results constitute readout that abnormal striatal tau-isoforms contents might lead to parkinsonian-like phenotypes and provide proof of concept that modulation of tau mis-splicing could be a plausible disease-modifying therapy for some primary tauopathies.
Collapse
Affiliation(s)
- Ana Damianich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carolina Lucia Facal
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Javier Andrés Muñiz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Camilo Mininni
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Buenos Aires, Argentina
| | - Magdalena Ponce De León
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Leandro Urrutia
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - German Falasco
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Juan Esteban Ferrario
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Elena Avale
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
31
|
Bell M, Zempel H. SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sorting and neuronal subtype-specific TAU vulnerability. Rev Neurosci 2021; 33:1-15. [PMID: 33866701 DOI: 10.1515/revneuro-2020-0152] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/06/2021] [Indexed: 11/15/2022]
Abstract
The microtubule-associated protein (MAP) TAU is mainly sorted into the axon of healthy brain neurons. Somatodendritic missorting of TAU is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Cause, consequence and (patho)physiological mechanisms of TAU sorting and missorting are understudied, in part also because of the lack of readily available human neuronal model systems. The human neuroblastoma cell line SH-SY5Y is widely used for studying TAU physiology and TAU-related pathology in AD and related tauopathies. SH-SY5Y cells can be differentiated into neuron-like cells (SH-SY5Y-derived neurons) using various substances. This review evaluates whether SH-SY5Y-derived neurons are a suitable model for (i) investigating intracellular TAU sorting in general, and (ii) with respect to neuron subtype-specific TAU vulnerability. (I) SH-SY5Y-derived neurons show pronounced axodendritic polarity, high levels of axonally localized TAU protein, expression of all six human brain isoforms and TAU phosphorylation similar to the human brain. As SH-SY5Y cells are highly proliferative and readily accessible for genetic engineering, stable transgene integration and leading-edge genome editing are feasible. (II) SH-SY5Y-derived neurons display features of subcortical neurons early affected in many tauopathies. This allows analyzing brain region-specific differences in TAU physiology, also in the context of differential vulnerability to TAU pathology. However, several limitations should be considered when using SH-SY5Y-derived neurons, e.g., the lack of clearly defined neuronal subtypes, or the difficulty of mimicking age-related tauopathy risk factors in vitro. In brief, this review discusses the suitability of SH-SY5Y-derived neurons for investigating TAU (mis)sorting mechanisms and neuron-specific TAU vulnerability in disease paradigms.
Collapse
Affiliation(s)
- Michael Bell
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931Cologne, Germany
| |
Collapse
|
32
|
Bretland KA, Lin L, Bretland KM, Smith MA, Fleming SM, Dengler-Crish CM. Irisin treatment lowers levels of phosphorylated tau in the hippocampus of pre-symptomatic female but not male htau mice. Neuropathol Appl Neurobiol 2021; 47:967-978. [PMID: 33768561 PMCID: PMC9292848 DOI: 10.1111/nan.12711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
AIMS Irisin is a hormone cleaved from fibronectin type-III domain-containing protein 5 in response to exercise and may be therapeutic in Alzheimer's disease (AD). Irisin is shown to repair damage caused by midlife cardiometabolic risk factors for AD (i.e., diabetes mellitus; hypertension), prevent neural amyloid beta aggregation and reduce neuroinflammation. However, there are no investigations of irisin's effect on AD-associated tauopathy in the brain. This study begins to address this gap in knowledge. METHODS Transgenic htau mice that selectively develop age-related tauopathy were treated with recombinant irisin (100 µg/kg weekly i.p.) beginning at a pre-symptomatic age (4 months) to determine if irisin could prevent emergence of early neuropathology. One month later, mice were sacrificed to collect brain tissue and serum. Protein levels of ptau (serine 202), inflammatory cytokine tumour necrosis factor alpha (TNFα) and FNDC5 were quantified using capillary-based western blotting (Wes). RESULTS Our data show that irisin treatment significantly reduced ptau and TNFα in the hippocampus and serum of female htau mice compared to vehicle-treated controls. Irisin treatment did not alter ptau levels in male htau hippocampus and appeared to enhance both neural and systemic TNFα levels. CONCLUSIONS This study provides the first evidence that enhancing the endogenous hormone irisin may be therapeutic against emerging neuropathology in a tauopathy-selective AD model. This is important because there are currently no disease-modifying therapeutics available for AD, and few agents in development address the multiple disease targets irisin appears to-making irisin an intriguing therapeutic candidate for further investigation.
Collapse
Affiliation(s)
- Katie A Bretland
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kimberly M Bretland
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Kent State University, Kent, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Akron Children's Hospital, Rebecca D. Considine Research Institute, Akron, OH, USA
| | - Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
33
|
Noël A, Foveau B, LeBlanc AC. Caspase-6-cleaved Tau fails to induce Tau hyperphosphorylation and aggregation, neurodegeneration, glial inflammation, and cognitive deficits. Cell Death Dis 2021; 12:227. [PMID: 33649324 PMCID: PMC7921451 DOI: 10.1038/s41419-021-03506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Goodwin MS, Sinyavskaya O, Burg F, O'Neal V, Ceballos-Diaz C, Cruz PE, Lewis J, Giasson BI, Davies P, Golde TE, Levites Y. Anti-tau scFvs Targeted to the Cytoplasm or Secretory Pathway Variably Modify Pathology and Neurodegenerative Phenotypes. Mol Ther 2021; 29:859-872. [PMID: 33128896 PMCID: PMC7854277 DOI: 10.1016/j.ymthe.2020.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/03/2022] Open
Abstract
Immunotherapies designed to treat neurodegenerative tauopathies that primarily engage extracellular tau may have limited efficacy as tau is primarily intracellular. We generated tau-targeting single-chain variable fragments (scFvs) and intrabodies (iBs) from the phosphorylated tau-specific antibodies CP13 and PHF1 and the pan-tau antibody Tau5. Recombinant adeno-associated virus (rAAV) was utilized to express these antibody fragments in homozygous JNPL3 P301L tau mice. Two iBs (CP13i, PHF1i) and one scFv (PHF1s) abrogated tau pathology and delayed time to severe hindlimb paralysis. In a second tauopathy model (rTg4510), CP13i and PHF1i reduced tau pathology, but cognate scFvs did not. These data demonstrate that (1) disease-modifying efficacy does not require antibody effector functions, (2) the intracellular targeting of tau with phosphorylated tau-specific iBs is more effective than extracellular targeting with the scFvs, and (3) robust effects on tau pathology before neurodegeneration only resulted in modest disease modification as assessed by delay of severe motor phenotype.
Collapse
Affiliation(s)
- Marshall S Goodwin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Olga Sinyavskaya
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Franklin Burg
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Veronica O'Neal
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pedro E Cruz
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jada Lewis
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institute for Medical Research, North Shore/LIJ Health System, Manhasset, NY, USA
| | - Todd E Golde
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Yona Levites
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Laversenne V, Nazeeruddin S, Källstig EC, Colin P, Voize C, Schneider BL. Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology. Acta Neuropathol Commun 2020; 8:198. [PMID: 33225991 PMCID: PMC7681991 DOI: 10.1186/s40478-020-01069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
The brain pathology of Alzheimer's disease (AD) is characterized by the misfolding and aggregation of both the amyloid beta (Aβ) peptide and hyperphosphorylated forms of the tau protein. Initial Aβ deposition is considered to trigger a sequence of deleterious events contributing to tau pathology, neuroinflammation and ultimately causing the loss of synapses and neurons. To assess the effect of anti-Aβ immunization in this context, we generated a mouse model by overexpressing the human tau protein in the hippocampus of 5xFAD mice. Aβ plaque deposition combined with human tau overexpression leads to an array of pathological manifestations including the formation of tau-positive dystrophic neurites and accumulation of hyperphosphorylated tau at the level of neuritic plaques. Remarkably, the presence of human tau reduces microglial clustering in proximity to the Aβ plaques, which may affect the barrier role of microglia. In this mouse model, continuous administration of anti-Aβ antibodies enhances the clustering of microglial cells even in the presence of tau. Anti-Aβ immunization increases plaque compaction, reduces the spread of tau in the hippocampal formation and prevents the formation of tau-positive dystrophic neurites. However, the treatment does not significantly reduce tau-induced neurodegeneration in the dentate gyrus. These results highlight that anti-Aβ immunization is able to enhance microglial activity around neuritic plaques, mitigating part of the tau-induced pathological manifestations.
Collapse
|
36
|
Tau modulates visual plasticity in adult and old mice. Neurobiol Aging 2020; 95:214-224. [DOI: 10.1016/j.neurobiolaging.2020.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
|
37
|
Neddens J, Daurer M, Loeffler T, Alzola Aldamizetxebarria S, Flunkert S, Hutter-Paier B. Constant Levels of Tau Phosphorylation in the Brain of htau Mice. Front Mol Neurosci 2020; 13:136. [PMID: 32982685 PMCID: PMC7485327 DOI: 10.3389/fnmol.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Excessive tau phosphorylation is the hallmark of tauopathies. Today’s research thus focusses on the development of drugs targeting this pathological feature. To test new drugs in preclinical studies, animal models are needed that properly mimic this pathological hallmark. The htau mouse is a well-known model expressing human but lacking murine tau, allowing to evaluate the efficacy of tau modifying compounds without interference from murine tau. Htau mice are well-characterized for tau pathology at older age, although it is often not specified on which genetic background analyzed animals were bred. Since it was shown that the genetic background can influence the pathology, we evaluated the phosphorylation status of young and adult htau mice on a C57BL/6J background by analyzing ptau Ser202 and ptau Ser396 levels in the cortex and hippocampus of 3 and 12 month old animals by immunofluorescent labelling. Additionally, we evaluated total tau, ptau Thr231 and ptau Thr181 in the soluble and insoluble brain fraction of 3–15 month old htau mice by immunosorbent assay. Our results show that ptau levels of all analyzed residues and age groups are similar without strong increases over age. These data show that tau is already phosphorylated at the age of 3 months suggesting that phosphorylation starts even earlier. The early start of tau phosphorylation in htau mice enables the use of these mice for efficacy studies already at very young age.
Collapse
|
38
|
Race B, Williams K, Striebel JF, Chesebro B. Prion-associated cerebral amyloid angiopathy is not exacerbated by human phosphorylated tau aggregates in scrapie-infected mice expressing anchorless prion protein. Neurobiol Dis 2020; 144:105057. [PMID: 32829029 DOI: 10.1016/j.nbd.2020.105057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Tau aggregates consisting of hyperphosphorylated tau fibrils are associated with many neurodegenerative diseases, including Alzheimer's disease, Pick's disease, frontotemporal dementia, and progressive supranuclear palsy. Tau may contribute to the pathogenesis of these diseases, collectively referred to as tauopathies. In human genetic prion diseases, tau aggregates are detected in association with amyloid plaques consisting of prion protein (PrP). However, the role of abnormal tau aggregates in PrP amyloid disease remains unclear. Previously we inoculated scrapie prions into transgenic mice expressing human tau, mouse tau, glycophosphatidylinositol (GPI) anchored PrP, and anchorless PrP. These mice developed both spongiform vacuolar pathology and PrP amyloid pathology, and human tau was detected near PrP amyloid plaques. However, the presence of human tau did not alter the disease tempo or prion-induced neuropathology. In the present study, we tested mice which more closely modeled familial human prion disease. These mice expressed human tau but lacked both mouse tau and GPI-anchored PrP. However, they did produce anchorless PrP, resulting in perivascular PrP amyloid plaques, i.e. cerebral amyloid angiopathy (CAA), without spongiform degeneration. Typical of PrP amyloid disease, the clinical course was very slow in this model. Nevertheless, the accumulation of aggregated, phosphorylated human tau and its association with PrP amyloid plaques failed to alter the timing or course of the clinical disease observed. These data suggest that human tau does not contribute to the pathogenesis of mouse PrP amyloid brain disease and raise the possibility that tau may also not be pathogenic in human PrP amyloid disease.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA.
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840, USA
| |
Collapse
|
39
|
Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis. Neuron 2020; 107:821-835.e12. [PMID: 32603655 DOI: 10.1016/j.neuron.2020.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aβ, aging, and neurodegeneration within the most vulnerable neurons in AD.
Collapse
|
40
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
41
|
Ojo JO, Crynen G, Algamal M, Vallabhaneni P, Leary P, Mouzon B, Reed JM, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Pathobiological Profiles in the Brains of Preclinical Models of Repetitive Mild Traumatic Brain Injury, Tauopathy, and Amyloidosis. ASN Neuro 2020; 12:1759091420914768. [PMID: 32241177 PMCID: PMC7132820 DOI: 10.1177/1759091420914768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
No concerted investigation has been conducted to explore overlapping and distinct
pathobiological mechanisms between repetitive mild traumatic brain injury
(r-mTBI) and tau/amyloid proteinopathies considering the long history of
association between TBI and Alzheimer’s disease. We address this problem by
using unbiased proteomic approaches to generate detailed time-dependent brain
molecular profiles of response to repetitive mTBI in C57BL/6 mice and in mouse
models of amyloidosis (with amyloid precursor protein KM670/671NL (Swedish) and
Presenilin 1 M146L mutations [PSAPP]) and tauopathy (hTau). Brain tissues from
animals were collected at different timepoints after injuries (24 hr–12 months
post-injury) and at different ages for tau or amyloid transgenic models (3, 9,
and 15 months old), encompassing the pre-, peri-, and post-“onset” of cognitive
and pathological phenotypes. We identified 30 hippocampal and 47 cortical
proteins that were significantly modulated over time in the r-mTBI compared with
sham mice. These proteins identified TBI-dependent modulation of
phosphatidylinositol-3-kinase/AKT signaling, protein kinase A signaling, and
PPARα/RXRα activation in the hippocampus and protein kinase A signaling,
gonadotropin-releasing hormone signaling, and B cell receptor signaling in the
cortex. Previously published neuropathological studies of our mTBI model showed
a lack of amyloid and tau pathology. In PSAPP mice, we identified 19 proteins
significantly changing in the cortex and only 7 proteins in hTau mice versus
wild-type littermates. When we explored the overlap between our r-mTBI model and
the PSAPP/hTau models, a fairly small coincidental change was observed involving
only eight significantly regulated proteins. This work suggests a very distinct
TBI neurodegeneration and also that other factors are needed to drive
pathologies such as amyloidosis and tauopathy postinjury.
Collapse
Affiliation(s)
- Joseph O Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Prashanti Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, Florida, United States.,James A. Haley Veterans' Hospital, Tampa, Florida, United States.,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
42
|
Müller-Thomsen L, Borgmann D, Morcinek K, Schröder S, Dengler B, Moser N, Neumaier F, Schneider T, Schröder H, Huggenberger S. Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiol Aging 2020; 93:109-123. [PMID: 32278495 DOI: 10.1016/j.neurobiolaging.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The intracellular accumulation of hyperphosphorylated tau characterizes many neurodegenerative diseases such as Alzheimer's disease and frontotemporal dementia. A critical role for tau is supported by studies in transgenic mouse models expressing the P301L mutation with accumulation of hyperphosphorylated human tau in hippocampal pyramidal neurons of aged mice. Especially, the somatodendritic mislocalization of hyperphosphorylated tau seems to affect the neuronal network of the hippocampus. To show the consequences of aggregation of hyperphosphorylated tau within hippocampal neurons of aged mice, the CA1 pyramidal cells were analyzed morphologically and electrophysiologically. Here we demonstrate in the P301L pR5 mouse model that hyperphosphorylated tau leads to an increase in stubby spines and filopodia, as well as a decrease in total dendritic length of hippocampal pyramidal neurons due to a decrease in apical dendritic length and nodes. This atrophy is in line with the significant reduction in CA1 long-term potentiation. Furthermore, mutant tau induced a depolarized threshold for action potential initiation and an increased current of inward rectifying potassium channels, which should lead, together with the long-term potentiation decrease, to a decreased excitability of CA1 neurons.
Collapse
Affiliation(s)
| | - Diba Borgmann
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Kerstin Morcinek
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Sophia Schröder
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Brigitte Dengler
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Natasha Moser
- Department II of Anatomy, University of Cologne, Cologne, Germany
| | - Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Stefan Huggenberger
- Department II of Anatomy, University of Cologne, Cologne, Germany; Institute of Anatomy and Clinical Morphology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
43
|
Davidowitz EJ, Krishnamurthy PK, Lopez P, Jimenez H, Adrien L, Davies P, Moe JG. In Vivo Validation of a Small Molecule Inhibitor of Tau Self-Association in htau Mice. J Alzheimers Dis 2020; 73:147-161. [PMID: 31771053 PMCID: PMC6957711 DOI: 10.3233/jad-190465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/27/2023]
Abstract
Tau oligomers have been shown to transmit tau pathology from diseased neurons to healthy neurons through seeding, tau misfolding, and aggregation that is thought to play an influential role in the progression of Alzheimer's disease (AD) and related tauopathies. To develop a small molecule therapeutic for AD and related tauopathies, we have developed in vitro and cellular assays to select molecules inhibiting the first step in tau aggregation, the self-association of tau into oligomers. In vivo validation studies of an optimized lead compound were independently performed in the htau mouse model of tauopathy that expresses the human isoforms of tau without inherited tauopathy mutations that are irrelevant to AD. Treated mice did not show any adverse events related to the compound. The lead compound significantly reduced the level of self-associated tau and total and phosphorylated insoluble tau aggregates. The dose response was linear with respect to levels of compound in the brain. A confirmatory study was performed with male htau mice that gave consistent results. The results validated our screening approach by showing that targeting tau self-association can inhibit the entire tau aggregation pathway by using the selected and optimized lead compound whose activity translated from in vitro and cellular assays to an in vivo model of tau aggregation.
Collapse
Affiliation(s)
| | | | | | - Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
44
|
Brendel M, Deussing M, Blume T, Kaiser L, Probst F, Overhoff F, Peters F, von Ungern-Sternberg B, Ryazanov S, Leonov A, Griesinger C, Zwergal A, Levin J, Bartenstein P, Yakushev I, Cumming P, Boening G, Ziegler S, Herms J, Giese A, Rominger A. Late-stage Anle138b treatment ameliorates tau pathology and metabolic decline in a mouse model of human Alzheimer's disease tau. Alzheimers Res Ther 2019; 11:67. [PMID: 31370885 PMCID: PMC6670231 DOI: 10.1186/s13195-019-0522-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Sergey Ryazanov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrei Leonov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Yakushev
- Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Feodor Lynen-Str. 23, 81377 Munich, Germany
| | - Armin Giese
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| |
Collapse
|
45
|
Subacute to chronic Alzheimer-like alterations after controlled cortical impact in human tau transgenic mice. Sci Rep 2019; 9:3789. [PMID: 30846870 PMCID: PMC6405988 DOI: 10.1038/s41598-019-40678-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive traumatic brain injury (TBI) has been linked to late life development of chronic traumatic encephalopathy (CTE), a neurodegenerative disorder histopathologically characterized by perivascular tangles of hyperphosphorylated tau at the depth of sulci to later widespread neurofibrillary pathology. Although tau hyperphosphorylation and neurofibrillary-like pathology have been observed in the brain of transgenic mice overexpressing human tau with aggregation-prone mutation after TBI, they have not been consistently recapitulated in rodents expressing wild-type tau only. Here, we characterized Alzheimer-like alterations behaviorally, biochemically and immunohistochemically 6 weeks and 7 months after unilateral mild-to-moderate controlled cortical impact (CCI) in 5–7-month-old Tg/htau mice, which express all six isoforms of non-mutated human tau in a mouse tau null background. We detected hyperphosphorylation of tau at multiple sites in ipsilateral hippocampus 6 weeks but not 7 months after CCI. However, neuronal accumulation of AT8 positive phospho-tau was sustained in the chronic phase, in parallel to prolonged astrogliosis, and decreased neural and synaptic markers. The mice with CCI also exhibited cognitive and locomotor impairment. These results indicate subacute to chronic Alzheimer-like alterations after CCI in Tg/htau mice. This is the first known study providing insight into the role of CCI in Alzheimer-like brain alterations in young adult mice expressing only non-mutated human tau.
Collapse
|
46
|
Miao J, Shi R, Li L, Chen F, Zhou Y, Tung YC, Hu W, Gong CX, Iqbal K, Liu F. Pathological Tau From Alzheimer's Brain Induces Site-Specific Hyperphosphorylation and SDS- and Reducing Agent-Resistant Aggregation of Tau in vivo. Front Aging Neurosci 2019; 11:34. [PMID: 30890929 PMCID: PMC6411797 DOI: 10.3389/fnagi.2019.00034] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
Neurofibrillary tangles (NFTs) made up of hyperphosphorylated tau are a histopathological hallmark of Alzheimer’s disease (AD) and related tauopathies. Hyperphosphorylation of tau is responsible for its loss of normal physiological function, gain of toxicity and its aggregation to form NFTs. Injection of misfolded tau seeds into mouse brain induces tau aggregation, but the nature of tau phosphorylation in pathologic tau seeded pathology is unclear. In the present study, we injected hyperphosphorylated and oligomeric tau isolated from AD brain (AD P-tau) into hippocampus of human tau transgenic mice and found that in addition to tau aggregation/pathology, tau was hyperphosphorylated at Ser202/Thr205, Thr212, Ser214, Thr217, Ser262, and Ser422 in AD P-tau injected hippocampus and at Ser422 in the contralateral hippocampus and in the ipsilateral cortex. AD P-tau-induced AD-like high molecular weight aggregation of tau that was SDS- and reducing agent-resistant and site-specifically hyperphosphorylated in the ipsilateral hippocampus. There were no detectable alterations in levels of tau phosphatases or tau kinases in AD P-tau-injected brains. Furthermore, we found that hyperphosphorylated tau was easier to be captured by AD P-tau and that aggregated tau was more difficult to be dephosphorylated than the non-aggregated tau by protein phosphatase 2A (PP2A). Based on these findings, we speculate that AD P-tau seeds hyperphosphorylated tau to form aggregates, which resist to the dephosphorylation by PP2A, resulting in hyperphosphorylation and pathology of tau.
Collapse
Affiliation(s)
- Jin Miao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruirui Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Longfei Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Feng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Yan Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| |
Collapse
|
47
|
Joel Z, Izquierdo P, Salih DA, Richardson JC, Cummings DM, Edwards FA. Improving Mouse Models for Dementia. Are All the Effects in Tau Mouse Models Due to Overexpression? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:151-161. [PMID: 30745408 DOI: 10.1101/sqb.2018.83.037531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of Alzheimer's disease have commonly used transgenic overexpression of genes involved in production of amyloid β (APP and/or PSEN1/2) or Tau (MAPT) with mutations that result in familial forms of dementia. We discuss possible improvements that may create full models while avoiding the problems of overexpression and report synaptic results in APPKI models. We stress use of inappropriate controls without overexpression of the normal human protein and the mismatch between the learning deficits reported in mice with plaques but no tangles and the human condition. We focus on Tau overexpression, including new data that support previous reports of the grossly nonlinear relationship between Tau overexpression and neurofibrillary tangle load, with a twofold increase in Tau protein, resulting in a 100-fold increase in tangle density. These data also support the hypothesis that a high concentration of soluble Tau, in overexpression models, plays an important direct role in neurodegeneration, rather than only via aggregation. Finally, we hypothesize that there is an optimal concentration range over which Tau can bind to microtubules and a threshold beyond which much of the overexpressed protein is unable to bind. The excess thus causes toxicity in ways not necessarily related to the process in human dementias.
Collapse
Affiliation(s)
- Zelah Joel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, SG1 2NY, United Kingdom
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
48
|
Gratuze M, Josset N, Petry FR, Pflieger M, Eyoum Jong L, Truchetti G, Poitras I, Julien J, Bezeau F, Morin F, Samadi P, Cicchetti F, Bretzner F, Planel E. The toxin MPTP generates similar cognitive and locomotor deficits in hTau and tau knock-out mice. Brain Res 2019; 1711:106-114. [PMID: 30641037 DOI: 10.1016/j.brainres.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is characterized by motor deficits, although cognitive disturbances are frequent and have been noted early in the disease. The main pathological characteristics of PD are the loss of dopaminergic neurons and the presence of aggregated α-synuclein in Lewy bodies of surviving cells. Studies have also documented the presence of other proteins within Lewy bodies, particularly tau, a microtubule-associated protein implicated in a wide range of neurodegenerative diseases, including Alzheimer's disease (AD). In AD, tau pathology correlates with cognitive dysfunction, and tau mutations have been reported to lead to dementia associated with parkinsonism. However, the role of tau in PD pathogenesis remains unclear. To address this question, we induced parkinsonism by injecting the toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in hTau mice, a mouse model of tauopathy expressing human tau, and a mouse model knock-out for tau (TKO). We found that although MPTP impaired locomotion (gait analysis) and cognition (Barnes maze), there were no discernable differences between hTau and TKO mice. MPTP also induced a slight but significant increase in tau phosphorylation (Thr205) in the hippocampus of hTau mice, as well as a significant decrease in the soluble and insoluble tau fractions that correlated with the loss of dopaminergic neurons in the brainstem. Overall, our findings suggest that, although MPTP can induce an increase in tau phosphorylation at specific epitopes, tau does not seem to causally contribute to cognitive and locomotor deficits induced by this toxin.
Collapse
Affiliation(s)
- Maud Gratuze
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada.
| | - Nicolas Josset
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Franck R Petry
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Mathieu Pflieger
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Laura Eyoum Jong
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Geoffrey Truchetti
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Isabelle Poitras
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Jacinthe Julien
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - François Bezeau
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Françoise Morin
- Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Pershia Samadi
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Francesca Cicchetti
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Frédéric Bretzner
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada
| | - Emmanuel Planel
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre de recherche du Centre Hospitalier de l'Université Laval de Québec, Axe Neurosciences, Québec, QC, Canada.
| |
Collapse
|
49
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Ojo JO, Crynen G, Reed JM, Ajoy R, Vallabhaneni P, Algamal M, Leary P, Rafi NG, Mouzon B, Mullan M, Crawford F. Unbiased Proteomic Approach Identifies Unique and Coincidental Plasma Biomarkers in Repetitive mTBI and AD Pathogenesis. Front Aging Neurosci 2018; 10:405. [PMID: 30618712 PMCID: PMC6305374 DOI: 10.3389/fnagi.2018.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between repetitive mild traumatic brain injury (r-mTBI) and Alzheimer's disease (AD) is well-recognized. However, the precise nature of how r-mTBI leads to or precipitates AD pathogenesis is currently not understood. Plasma biomarkers potentially provide non-invasive tools for detecting neurological changes in the brain, and can reveal overlaps between long-term consequences of r-mTBI and AD. In this study we address this by generating time-dependent molecular profiles of response to r-mTBI and AD pathogenesis in mouse models using unbiased proteomic analyses. To model AD, we used the well-validated hTau and PSAPP(APP/PS1) mouse models that develop age-related tau and amyloid pathological features, respectively, and our well-established model of r-mTBI in C57BL/6 mice. Plasma were collected at different ages (3, 9, and 15 months-old for hTau and PSAPP mice), encompassing pre-, peri- and post-"onset" of the cognitive and neuropathological phenotypes, or at different timepoints after r-mTBI (24 h, 3, 6, 9, and 12 months post-injury). Liquid chromatography/mass spectrometry (LC-MS) approaches coupled with Tandem Mass Tag labeling technology were applied to develop molecular profiles of protein species that were significantly differentially expressed as a consequence of mTBI or AD. Mixed model ANOVA after Benjamini-Hochberg correction, and a stringent cut-off identified 31 proteins significantly changing in r-mTBI groups over time and, when compared with changes over time in sham mice, 13 of these were unique to the injured mice. The canonical pathways predicted to be modulated by these changes were LXR/RXR activation, production of nitric oxide and reactive oxygen species and complement systems. We identified 18 proteins significantly changing in PSAPP mice and 19 proteins in hTau mice compared to their wild-type littermates with aging. Six proteins were found to be significantly regulated in all three models, i.e., r-mTBI, hTau, and PSAPP mice compared to their controls. The top canonical pathways coincidently changing in all three models were LXR/RXR activation, and production of nitric oxide and reactive oxygen species. This work suggests potential biomarkers for TBI and AD pathogenesis and for the overlap between these two, and warrant targeted investigation in human populations. Data are available via ProteomeXchange with identifier PXD010664.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Gogce Crynen
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Jon M. Reed
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rosa Ajoy
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Prashanthi Vallabhaneni
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Moustafa Algamal
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Naomi G. Rafi
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Benoit Mouzon
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Michael Mullan
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Proteomic Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|