1
|
The functional microscopic neuroanatomy of the human subthalamic nucleus. Brain Struct Funct 2019; 224:3213-3227. [PMID: 31562531 PMCID: PMC6875153 DOI: 10.1007/s00429-019-01960-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023]
Abstract
The subthalamic nucleus (STN) is successfully used as a surgical target for deep brain stimulation in the treatment of movement disorders. Interestingly, the internal structure of the STN is still incompletely understood. The objective of the present study was to investigate three-dimensional (3D) immunoreactivity patterns for 12 individual protein markers for GABA-ergic, serotonergic, dopaminergic as well as glutamatergic signaling. We analyzed the immunoreactivity using optical densities and created a 3D reconstruction of seven postmortem human STNs. Quantitative modeling of the reconstructed 3D immunoreactivity patterns revealed that the applied protein markers show a gradient distribution in the STN. These gradients were predominantly organized along the ventromedial to dorsolateral axis of the STN. The results are of particular interest in view of the theoretical underpinning for surgical targeting, which is based on a tripartite distribution of cognitive, limbic and motor function in the STN.
Collapse
|
2
|
Caprelli MT, Mothe AJ, Tator CH. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker. Neuroscientist 2017; 25:8-21. [PMID: 29283022 DOI: 10.1177/1073858417742125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.
Collapse
Affiliation(s)
- Mitchell T Caprelli
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Andrea J Mothe
- 2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Charles H Tator
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada.,3 Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Inhibition of p25/Cdk5 Attenuates Tauopathy in Mouse and iPSC Models of Frontotemporal Dementia. J Neurosci 2017; 37:9917-9924. [PMID: 28912154 DOI: 10.1523/jneurosci.0621-17.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/15/2017] [Accepted: 09/04/2017] [Indexed: 01/10/2023] Open
Abstract
Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimer's disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimer's disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation.SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aβ accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.
Collapse
|
4
|
Dujardin S, Colin M, Buée L. Invited review: Animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol 2015; 41:59-80. [DOI: 10.1111/nan.12200] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Simon Dujardin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Morvane Colin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Luc Buée
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| |
Collapse
|
5
|
Duan Y, Dong S, Gu F, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Transl Neurodegener 2012; 1:24. [PMID: 23241453 PMCID: PMC3598890 DOI: 10.1186/2047-9158-1-24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
In addition to senile plaques and cerebral amyloid angiopathy, the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles (NFTs) represents another neuropathological hallmark in AD brain. Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability. When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former, tau is hyperphosphorylated and the level of the free tau fractions elevated. The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain. We have discussed the role of Aβ in AD in our previous review, this review focused on the recent advances in tau-mediated AD pathology, mainly including tau hyperphosphorylation, propagation of tau pathology and the relationship between tau and Aβ.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education,Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road (N), Shanghai 200062, China.
| | | | | | | | | |
Collapse
|
6
|
Kanungo J. Special Issue on "Cdk5 and Brain Disorders": Prologue. ACTA ACUST UNITED AC 2012; Suppl 1. [PMID: 28066692 DOI: 10.4172/2168-975x.s1-e001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) was identified almost two decades ago as a Tau kinase specific to the nervous system. Shortly after its discovery, it was revealed that this atypical member of the CDK family does not partner with cyclins but with two other proteins, p35 and p39. P35 is predominantly expressed in post-mitotic neurons, whereas p39 is expressed in many different tissues including the brain, pancreas, muscle cells, neutrophils, and many other cell types. A proline-directed serine/threonine (S/T) kinase, predominantly active in the nervous system, Cdk5 regulates a multitude of functions including nervous system development, neuronal migration, cytoskeletal dynamics, axonal guidance, synaptic plasticity, neurotransmission, neuronal survival and death, to mention a few. In association with its ubiquitous expression in other tissues, Cdk5 is implicated in a wide range of functions, such as gene transcription, vesicular transport, apoptosis, cell adhesion, migration, exocytosis, etc. A focal point of investigation surrounding Cdk5 is its deregulation in pathogenic processes of neurodegenerative disorders, which has emphasized on its hyperactivation by p25, a calpain-cleaved product of p35 leading to Tau and neurofilament hyperphosphorylation followed by neuronal death. What has intrigued researchers about Cdk5 is its tight regulation in carrying out many normal physiological functions while its deregulation under pathological conditions, is linked to neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Neiman Pick's Type C disease and others. Between these two so-called 'good Cdk5 (Cdk5/p35)' and 'bad Cdk5 (Cdk5/p25)', the latter has become the target for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, USA
| |
Collapse
|
7
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a multifaceted serine/threonine kinase protein with important roles in the nervous system. Two related proteins, p35 and p39, activate Cdk5 upon direct binding. Over the past decade, Cdk5 activity has been demonstrated to regulate many events during brain development, including neuronal migration as well as axon and dendrite development. Recent evidence also suggests a pivotal role for Cdk5 in synaptic plasticity, behavior, and cognition. Dysfunction of Cdk5 has been implicated in a number of neurological disorders and neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick type C disease, and ischemia. Hyperactivation of Cdk5 due to the conversion of p35 to p25 by the calcium-dependent protease calpain during neurotoxicity also contributes to the pathological state. This review surveys recent literature surrounding Cdk5 in synaptic plasticity and homeostasis, with particular emphasis on Cdk5 kinase activity under neurodegenerative conditions.
Collapse
Affiliation(s)
- Susan C Su
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
8
|
López-Tobón A, Castro-Álvarez JF, Piedrahita D, Boudreau RL, Gallego-Gómez JC, Cardona-Gómez GP. Silencing of CDK5 as potential therapy for Alzheimer's disease. Rev Neurosci 2011; 22:143-52. [PMID: 21476938 DOI: 10.1515/rns.2011.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurodegeneration is one of the greatest public health challenges for the 21st century. Among neurodegenerative diseases, Alzheimer's disease (AD) is the most prevalent and best characterized. Nevertheless, despite the large investment in AD research, currently there is no effective therapeutic option. In the present review, we highlight a novel alternative, which takes advantage of the biotechnological outbreak deployed by the discovery of the RNA interference-based gene silencing mechanism, and its application as a tool for neurodegeneration treatment. Here, we highlight cyclin-dependent kinase 5 (CDK5) as a key candidate target for therapeutic gene silencing. Unlike other members of the cyclin-dependent kinase family, CDK5 does not seem to play a crucial role in cell cycle regulation. By contrast, CDK5 participates in multiple functions during nervous system development and has been established as a key mediator of Tau hyperphosphorylation and neurofibrillary pathology, thus serving as an optimal candidate for targeted therapy in the adult nervous system. We propose that the use of RNA interference for CDK5 silencing presents an attractive and specific therapeutic alternative for AD and perhaps against other tauopathies.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellin, Colombia
| | | | | | | | | | | |
Collapse
|
9
|
Engmann O, Hortobágyi T, Thompson AJ, Guadagno J, Troakes C, Soriano S, Al-Sarraj S, Kim Y, Giese KP. Cyclin-dependent kinase 5 activator p25 is generated during memory formation and is reduced at an early stage in Alzheimer's disease. Biol Psychiatry 2011; 70:159-68. [PMID: 21616478 DOI: 10.1016/j.biopsych.2011.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/23/2011] [Accepted: 04/06/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The cyclin-dependent kinase 5 activator p35 can be cleaved into p25. Formation of p25 has been suggested to contribute to neurodegeneration in Alzheimer's disease (AD). However, overexpression of low levels of p25 in mice enhances memory formation. Therefore, it has been suggested that p25 formation might be an event early in AD to compensate for impairments in synaptic plasticity. Ongoing p25 formation has been hypothesized to contribute to neurodegeneration at the later stages of AD. METHODS Here, we tested the early compensation hypothesis by analyzing the levels of p25 and its precursor p35 in AD postmortem samples from different brain regions at different stages of tau pathology, using quantitative Western blots. Furthermore, we studied p35 and p25 during spatial memory formation. By employing quantitative mass spectrometry, we identified proteins downstream of p25, which were then studied in AD samples. RESULTS We found that p25 is generated during spatial memory formation. Furthermore, we demonstrate that overexpression of p25 in the physiological range increases the expression of two proteins implicated in spine formation, septin 7 and optic atrophy 1. We show that the expression of p35 and p25 is reduced as an early event in AD. Moreover, expression of the p25-regulated protein optic atrophy 1 was reduced in a time course similar to p25 expression. CONCLUSIONS Our findings suggest that p25 generation is a mechanism underlying hippocampal memory formation that is impaired in the early stages of AD. Our findings argue against the previously raised early compensation hypothesis and they propose that p25-mediated neurotoxicity does not occur in AD.
Collapse
Affiliation(s)
- Olivia Engmann
- Department of Neuroscience, Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mungenast AE, Tsai LH. Addressing the complex etiology of Alzheimer’s disease: the role of p25/Cdk5. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by the progressive loss of forebrain neurons and the deterioration of learning and memory. Therapies for AD have primarily focused upon either the inhibition of amyloid synthesis or its deposition in the brain, but clinical testing to date has not yet found an effective amelioration of cognitive symptoms. Synaptic loss closely correlates with the degree of dementia in AD patients. However, mouse AD models that target the amyloid-β pathway generally do not exhibit a profound loss of synapses, despite extensive synaptic dysfunction. The increased generation of p25, an activator of the cyclin-dependent kinase 5 (Cdk5) has been found in both human patients and mouse models of neurodegeneration. The current work reviews our knowledge, to date, on the role of p25/Cdk5 in Alzheimer’s disease, with a focus upon the interaction of amyloid-β and p25/Cdk5 in synaptic dysfunction and neuronal loss.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Crews L, Patrick C, Adame A, Rockenstein E, Masliah E. Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer's disease. Cell Death Dis 2011; 2:e120. [PMID: 21368891 PMCID: PMC3101702 DOI: 10.1038/cddis.2011.2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies show that in Alzheimer's disease (AD), alterations in neurogenesis contribute to the neurodegenerative process. Neurodegeneration in AD has been associated with aberrant signaling through the cyclin-dependent kinase-5 (CDK5) pathway via its activators p35/p25; however, the role of CDK5 in the mechanisms of defective adult neurogenesis in AD is unknown. First, to study AD-like abnormal activation of CDK5 signaling in an in vitro model of neurogenesis, neuronal progenitor cells (NPCs) were infected with a viral vector expressing p35, and exposed to amyloid-β protein (Aβ(1-42)). These conditions resulted in impaired maturation and neurite outgrowth in vitro, and these effects were reversed by pharmacological or genetic inhibition of CDK5. Similarly, neurogenesis was impaired in a transgenic mouse model of AD that expresses high levels of amyloid precursor protein (APP), and this effect was reversed in transgenic mice crossed with a CDK5 heterozygous-deficient mouse line. A similar rescue effect was observed in APP transgenic mice treated with Roscovitine, a pharmacological inhibitor of CDK5. Taken together, these data suggest that the CDK5 signaling pathway has a critical role in maintaining the integrity of NPCs and neuronal maturation in the adult hippocampus. Moreover, potential therapeutic approaches could focus on modulating the aberrant activity of CDK5 to target the neurogenic and neurodegenerative alterations in AD.
Collapse
Affiliation(s)
- L Crews
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
12
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Piedrahita D, Hernández I, López-Tobón A, Fedorov D, Obara B, Manjunath BS, Boudreau RL, Davidson B, LaFerla F, Gallego-Gómez JC, Kosik KS, Cardona-Gómez GP. Silencing of CDK5 reduces neurofibrillary tangles in transgenic alzheimer's mice. J Neurosci 2010; 30:13966-76. [PMID: 20962218 PMCID: PMC3003593 DOI: 10.1523/jneurosci.3637-10.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is a major cause of dementia for which treatments remain unsatisfactory. Cyclin-dependent kinase 5 (CDK5) is a relevant kinase that has been hypothesized to contribute to the tau pathology. Several classes of chemical inhibitors for CDK5 have been developed, but they generally lack the specificity to distinguish among various ATP-dependent kinases. Therefore, the efficacy of these compounds when tested in animal models cannot definitively be attributed to an effect on CDK5. However, RNA interference (RNAi) targeting of CDK5 is specific and can be used to validate CDK5 as a possible treatment target. We delivered a CDK5 RNAi by lentiviral or adenoassociated viral vectors and analyzed the results in vitro and in vivo. Silencing of CDK5 reduces the phosphorylation of tau in primary neuronal cultures and in the brain of wild-type C57BL/6 mice. Furthermore, the knockdown of CDK5 strongly decreased the number of neurofibrillary tangles in the hippocampi of triple-transgenic mice (3×Tg-AD mice). Our data suggest that this downregulation may be attributable to the reduction of the CDK5 availability in the tissue, without affecting the CDK5 kinase activity. In summary, our findings validate CDK5 as a reasonable therapeutic target for ameliorating tau pathology.
Collapse
Affiliation(s)
- Diego Piedrahita
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, AA 1226 Medellin, Colombia
| | - Israel Hernández
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, AA 1226 Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Alejandro López-Tobón
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, AA 1226 Medellin, Colombia
| | | | - Boguslaw Obara
- Oxford e-Research Centre and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QG, United Kingdom
| | | | - Ryan L. Boudreau
- Viral Vector Core and Davidson Laboratory, University of Iowa, Iowa City, Iowa 52242, and
| | - Beverly Davidson
- Viral Vector Core and Davidson Laboratory, University of Iowa, Iowa City, Iowa 52242, and
| | - Frank LaFerla
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, California 92697
| | - Juan Carlos Gallego-Gómez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, AA 1226 Medellin, Colombia
| | - Kenneth S. Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Viral Vector Core and Gene Therapy, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria, University of Antioquia, AA 1226 Medellin, Colombia
| |
Collapse
|
14
|
Jaworski T, Kügler S, Van Leuven F. Modeling of tau-mediated synaptic and neuronal degeneration in Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20862366 PMCID: PMC2938448 DOI: 10.4061/2010/573138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/09/2010] [Indexed: 12/22/2022] Open
Abstract
Patients suffering from Alzheimer's disease (AD) are typified and diagnosed postmortem by the combined accumulations of extracellular amyloid plaques and of intracellular tauopathy, consisting of neuropil treads and neurofibrillary tangles in the somata. Both hallmarks are inseparable and remain diagnostic as described by Alois Alzheimer more than a century ago. Nevertheless, these pathological features are largely abandoned as being the actual pathogenic or neurotoxic factors. The previous, almost exclusive experimental attention on amyloid has shifted over the last 10 years in two directions. Firstly, from the “concrete” deposits of amyloid plaques to less well-defined soluble or pseudosoluble oligomers of the amyloid peptides, ranging from dimers to dodecamers and even larger aggregates. A second shift in research focus is from amyloid to tauopathy, and to their mutual relation. The role of Tau in the pathogenesis and disease progression is appreciated as leading to synaptic and neuronal loss, causing cognitive deficits and dementia. Both trends are incorporated in a modified amyloid cascade hypothesis, briefly discussed in this paper that is mainly concerned with the second aspect, that is, protein Tau and its associated fundamental questions.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Experimental Genetics Group, Department of Human Genetics, KULeuven-Campus Gasthuisberg ON1-06.602, Herestraat 49, 3000 Leuven, Belgium
| | | | | |
Collapse
|
15
|
Morel M, Authelet M, Dedecker R, Brion J. Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 2010; 167:1044-56. [DOI: 10.1016/j.neuroscience.2010.02.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 01/01/2023]
|
16
|
Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kügler S, Van Leuven F. Alzheimer's disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta Mol Basis Dis 2010; 1802:808-18. [PMID: 20332023 DOI: 10.1016/j.bbadis.2010.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 12/29/2022]
Abstract
Alzheimer's dementia is developing ever more as a complex syndrome with various unknown genetic and epigenetic contributions. These are compounded on and exacerbating the underlying amyloid and tau pathology that remain the basis of the pathological definition of Alzheimer's disease. Here, we present a selection of aspects of recent bigenic and virus-based mouse strains, developed as pre-clinical models for Alzheimer's disease. We discuss newer features in the context of the characteristics defined in previously validated transgenic models. We focus on specific aspects of single and multiple transgenic mouse models for Alzheimer's disease and for tauopathies, rather than providing an exhaustive list of all available models. We concentrate on the content of information related to neurodegeneration and disease mechanisms. We pay attention to aspects and defects that are predicted by the models and can be tested in humans. We discuss implications that help translate the fundamental knowledge into clinical, diagnostic and therapeutic applications. We elaborate on the increasing knowledge extracted from transgenic models and from newer adeno-associated viral models. We advocate this combination as a valuable strategy to study molecular, cellular and system-related pathogenic mechanisms in AD and tauopathies. We believe that innovative animal models remain needed to critically test current views, to identify and validate therapeutic targets, to allow testing of compounds, to help understand and eventually treat tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Experimental Genetics Group, LEGTEGG, Dept. Human Genetics, KULeuven-Campus Gasthuisberg ON1-06.602, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Kanungo J, Zheng YL, Amin ND, Pant HC. Targeting Cdk5 activity in neuronal degeneration and regeneration. Cell Mol Neurobiol 2010; 29:1073-80. [PMID: 19455415 DOI: 10.1007/s10571-009-9410-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The major priming event in neurodegeneration is loss of neurons. Loss of neurons by apoptotic mechanisms is a theme for studies focused on determining therapeutic strategies. Neurons following an insult, activate a number of signal transduction pathways, of which, kinases are the leading members. Cyclin-dependent kinase 5 (Cdk5) is one of the kinases that have been linked to neurodegeneration. Cdk5 along with its principal activator p35 is involved in multiple cellular functions ranging from neuronal differentiation and migration to synaptic transmission. However, during neurotoxic stress, intracellular rise in Ca(2+) activates calpain, which cleaves p35 to generate p25. The long half-life of Cdk5/p25 results in a hyperactive, aberrant Cdk5 that hyperphosphorylates Tau, neurofilament and other cytoskeletal proteins. These hyperphosphorylated cytoskeletal proteins set the groundwork to forming neurofibrillary tangles and aggregates of phosphorylated proteins, hallmarks of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Amyotropic Lateral Sclerosis. Attempts to selectively target Cdk5/p25 activity without affecting Cdk5/p35 have been largely unsuccessful. A polypeptide inhibitor, CIP (Cdk5 inhibitory peptide), developed in our laboratory, successfully inhibits Cdk5/p25 activity in vitro, in cultured primary neurons, and is currently undergoing validation tests in mouse models of neurodegeneration. Here, we discuss the therapeutic potential of CIP in regenerating neurons that are exposed to neurodegenerative stimuli.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
18
|
Ogunshola OO, Antoniou X. Contribution of hypoxia to Alzheimer's disease: is HIF-1alpha a mediator of neurodegeneration? Cell Mol Life Sci 2009; 66:3555-63. [PMID: 19763399 PMCID: PMC11115623 DOI: 10.1007/s00018-009-0141-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/13/2022]
Abstract
The mammalian brain is extremely sensitive to alterations in cellular homeostasis as a result of environmental or physiological insults. In particular, hypoxic/ischemic challenges (i.e. reduced oxygen and/or glucose delivery) cause severe and detrimental alterations in brain function and can trigger neuronal cell death within minutes. Unfortunately, as we age, oxygen delivery to cells and tissues is impaired, thereby increasing the susceptibility of neurons to damage. Thus, hypoxic (neuronal) adaptation is significantly compromised during aging. Many neurological diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease and diabetes, are characterized by hypoxia, a state that is believed to only exacerbate disease progression. However, the contribution of hypoxia and hypoxia-mediated pathways to neurodegeneration remains unclear. This review discusses current evidence on the contribution of oxygen deprivation to AD, with an emphasis on hypoxia inducible transcription factor-1 (HIF-1)-mediated pathways and the association of AD with the cytoskeleton regulator cyclin-dependent kinase 5.
Collapse
Affiliation(s)
- O O Ogunshola
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
19
|
Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 2008; 28:351-69. [PMID: 18183483 DOI: 10.1007/s10571-007-9242-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/14/2007] [Indexed: 12/23/2022]
Abstract
The proline-directed serine threonine kinase, Cdk5, is an unusual molecule that belongs to the well-known large family of proteins, cyclin-dependent kinases (Cdks). While it has significant homology with the mammalian Cdk2 and yeast cdc2, unlike the other Cdks, it has little role to play in cell cycle regulation and is activated by non-cyclin proteins, p35 and p39. It phosphorylates a spectrum of proteins, most of them associated with cell morphology and motility. A majority of known substrates of Cdk5 are cytoskeletal elements, signalling molecules or regulatory proteins. It also appears to be an important player in cell-cell communication. Highly conserved, Cdk5 is most abundant in the nervous system and is of special interest to neuroscientists as it appears to be indispensable for normal neural development and function. In normal cells, transcription and activity of Cdk5 is tightly regulated. Present essentially in post-mitotic neurons, its normal activity is obligatory for migration and differentiation of neurons in developing brain. Deregulation of Cdk5 has been implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. Regulators of Cdk5 activity are considered as potential therapeutic molecules for degenerative diseases. This review focuses on the role of Cdk5 in neural cells as regulator of cytoskeletal elements, axonal guidance, membrane transport, synaptogenesis and cell survival in normal and pathological conditions.
Collapse
Affiliation(s)
- Fatema A Dhariwala
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai 400026, India
| | | |
Collapse
|
20
|
Muyllaert D, Terwel D, Kremer A, Sennvik K, Borghgraef P, Devijver H, Dewachter I, Van Leuven F. Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippocampal sclerosis and neocortical degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:470-85. [PMID: 18202185 DOI: 10.2353/ajpath.2008.070693] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cyclin-dependent kinase cdk5 is atypically active in postmitotic neurons and enigmatic among the kinases proposed as molecular actors in neurodegeneration. We generated transgenic mice to express p25, the N-terminally truncated p35 activator of cdk5, in forebrain under tetracycline control (TET-off). Neuronal expression of p25 (p25(ON)) caused high mortality postnatally and early in life. Mortality was completely prevented by administration of doxycycline in the drinking water of pregnant dams and litters until P42, allowing us to study the action of p25 in adult mouse forebrain. Neuronal p25 triggered neurodegeneration and also microgliosis, rapidly and intensely in hippocampus and cortex. Progressive neurodegeneration was severe with marked neuron loss, causing brain atrophy (40% loss at age 5 months) with nearly complete elimination of the hippocampus. Neurodegeneration did not involve phosphorylation of protein tau or generation of amyloid peptide. Degenerating neurons did not stain for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling or activated caspase-3 but were marked by FluoroJadeB in early stages. Diseased neurons were always closely associated with activated microglia already very early in the disease process. Primary neurons derived from p25 embryos were more prone to apoptosis than wild-type neurons, and they activated microglial cells in co-culture. The inducible p25 mice present as a model for neurodegeneration in hippocampal sclerosis and neocortical degeneration, with important contributions of activated microglia.
Collapse
Affiliation(s)
- David Muyllaert
- Department of Human Genetics, KULeuven-Campus Gasthuisberg ON1-06.602, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 2007; 6:464-79. [PMID: 17541419 DOI: 10.1038/nrd2111] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aggregation of hyperphosphorylated tau is one of the characteristic neuropathological lesions of Alzheimer's disease and other neurodegenerative disorders. Pharmacological modulation of tau hyperphosphorylation might represent a valid and feasible therapeutic strategy for such disorders. Here, we consider recent evidence supporting the validity of the three most relevant kinases affecting tau hyperphosphorylation - GSK3beta, CDK5 and ERK2 - as drug targets and describe progress in the design of inhibitors for these kinases.
Collapse
Affiliation(s)
- Michael P Mazanetz
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
22
|
Götz J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, Schonrock N, Ittner LM. A decade of tau transgenic animal models and beyond. Brain Pathol 2007; 17:91-103. [PMID: 17493043 PMCID: PMC8095624 DOI: 10.1111/j.1750-3639.2007.00051.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The first tau transgenic mouse model was established more than a decade ago. Since then, much has been learned about the role of tau in Alzheimer's disease and related disorders. Animal models, both in vertebrates and invertebrates, were significantly improved and refined as a result of the identification of pathogenic mutations in Tau in human cases of frontotemporal dementia. They have been instrumental for dissecting the cross-talk between tau and the second hallmark lesion of Alzheimer's disease, the Abeta peptide-containing amyloid plaque. We discuss how the tau models have been used to unravel the pathophysiology of Alzheimer's disease, to search for disease modifiers and to develop novel treatment strategies. While tau has received less attention than Abeta, it is rapidly acquiring a more prominent position and the emerging view is one of a synergistic action of Abeta and tau in Alzheimer's disease. Moreover, the existence of a number of neurodegenerative diseases with tau pathology in the absence of extracellular deposits underscores the relevance of research on tau.
Collapse
Affiliation(s)
- Jürgen Götz
- Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Camperdown, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Muyllaert D, Terwel D, Borghgraef P, Devijver H, Dewachter I, Van Leuven F. Transgenic mouse models for Alzheimer's disease: the role of GSK-3β in combined amyloid and tau-pathology. Rev Neurol (Paris) 2006; 162:903-7. [PMID: 17028556 DOI: 10.1016/s0035-3787(06)75098-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Describing and understanding the pathological processes which devastate the brain of Alzheimer's disease (AD) patients remains a major target for experimental biology. We approached this problem by generating different types of single and double transgenic mice that develop pathological hallmarks of AD. In APP-V717 mice, the progression from intracellular amyloid to diffuse and senile plaques with vascular deposits, is preceded by early defects in cognition and LTP. In Tau-P301L mice, the morbid tauopathy with intracellular filaments, cause mortality before age 1 year. Ageing APP-V717IxTau-P301L double tg mice (14-17 months) have combined AD-like pathology in hippocampus and cortex consisting of amyloid plaques and neurofibrillary tangles. Remarkably, while Tau-P301L mice die before age 1 year, the APP-V717IxTau-P301L double tg mice survive much longer, which correlates with alleviation of tauopathy in hindbrain, despite aggravation in forebrain. This hypothesis is corroborated in Tau-P301LxGSK-3B double transgenic mice, which have also an extended lifespan relative to Tau-P301L mice, that correlates with reduction of brainstem tauopathy. At the same time, Tau-P301LxGSK-3B mice have dramatic forebrain tauopathy, with "tangles in almost all neurons", although without hyper-phosphorylation of Tau. The data corroborate the hypothesis that GSK-3B is the missing link between the amyloid and tau-pathology, and position GSK-3B as prominent player in the pathogenesis in AD.
Collapse
Affiliation(s)
- D Muyllaert
- Experimental Genetics Group, LEGT-EGG, KULeuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Vandebroek T, Terwel D, Vanhelmont T, Gysemans M, Van Haesendonck C, Engelborghs Y, Winderickx J, Van Leuven F. Microtubule Binding and Clustering of Human Tau-4R and Tau-P301L Proteins Isolated from Yeast Deficient in Orthologues of Glycogen Synthase Kinase-3β or cdk5. J Biol Chem 2006; 281:25388-97. [PMID: 16818492 DOI: 10.1074/jbc.m602792200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Tau protein and binding to microtubules is complex in neurons and was therefore studied in the less complicated model of humanized yeast. Human Tau was readily phosphorylated at pathological epitopes, but in opposite directions regulated by kinases Mds1 and Pho85, orthologues of glycogen synthase kinase-3beta and cdk5, respectively (1). We isolated recombinant Tau-4R and mutant Tau-P301L from wild type, Delta mds1 and Delta pho85 yeast strains and measured binding to Taxol-stabilized mammalian microtubules in relation to their phosphorylation patterns. Tau-4R isolated from yeast lacking mds1 was less phosphorylated and bound more to microtubules than Tau-4R isolated from wild type yeast. Paradoxically, phosphorylation of Tau-4R isolated from kinase Pho85-deficient yeast was dramatically increased resulting in very poor binding to microtubules. Dephosphorylation promoted binding to microtubules to uniform high levels, excluding other modifications. Isolated hyperphosphorylated, conformationally altered Tau-4R completely failed to bind microtubules. In parallel to Tau-4R, we expressed, isolated, and analyzed mutant Tau-P301L. Total dephosphorylated Tau-4R and Tau-P301L bound to microtubules very similarly. Surprisingly, Tau-P301L isolated from all yeast strains bound to microtubules more extensively than Tau-4R. Atomic force microscopy demonstrated, however, that the high apparent binding of Tau-P301L was due to aggregation on the microtubules, causing their deformation and bundling. Our data explain the pathological presence of granular Tau aggregates in neuronal processes in tauopathies.
Collapse
Affiliation(s)
- Tom Vandebroek
- Experimental Genetics Group, KULeuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Neve RL, McPhie DL. The cell cycle as a therapeutic target for Alzheimer's disease. Pharmacol Ther 2006; 111:99-113. [PMID: 16274748 DOI: 10.1016/j.pharmthera.2005.09.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide. It is a progressive, incurable disease whose predominant clinical manifestation is memory loss, and which always ends in death. The classic neuropathological diagnostic markers for AD are amyloid plaques and neurofibrillary tangles, but our understanding of the role that these features of AD play in the etiology and progression of the disease remains incomplete. Research over the last decade has revealed that cell cycle abnormalities also represent a major neuropathological feature of AD. These abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles. Growing evidence suggests that neuronal cell cycle regulatory failure, leading to apoptosis, may be a significant component of the pathogenesis of AD. A number of signaling pathways with the potential to activate aberrant cell cycle re-entry in AD have been described. The relationships among these signaling cascades, which involve the amyloid precursor protein (APP), cyclin-dependent kinases (cdks), and the cell cycle protein Pin1, have not yet been fully elucidated, but details of the individual pathways are beginning to emerge. This review summarizes the current state of knowledge with respect to specific neuronal signaling events that are thought to underlie cell cycle regulatory failure in AD brain. The elements of these pathways that represent potential new therapeutic targets for AD are described. Drugs and peptides that can inhibit molecular steps leading to AD neurodegeneration by intervening in the activation of cell cycle re-entry in neurons represent an entirely new approach to the development of treatments for AD.
Collapse
Affiliation(s)
- Rachael L Neve
- Department of Psychiatry, MRC 223, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA.
| | | |
Collapse
|
26
|
Li T, Paudel HK. Glycogen Synthase Kinase 3β Phosphorylates Alzheimer's Disease-Specific Ser396 of Microtubule-Associated Protein Tau by a Sequential Mechanism. Biochemistry 2006; 45:3125-33. [PMID: 16519507 DOI: 10.1021/bi051634r] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylation of tau on S(396) was suggested to be a key step in the development of neurofibrillary pathology in Alzheimer's disease brain [Bramblett, G. T., Goedert, M., Jacks, R., Merrick, S. E., Trojanowski, J. Q., and Lee, V. M.-Y. (1993) Neuron 10, 1089-1099]. GSK3beta phosphorylates Ser(396) of tau in the brain by a mechanism which is not clear. In this study, when HEK-293 cells were cotransfected with tau and GSK3beta, GSK3beta co-immunoprecipitated with tau and phosphorylated tau on S(202), T(231), S(396), and S(400) but not on S(262), S(235), and S(404). Blocking phosphorylation on T(231), S(235), S(396), S(400), or S(404) did not prevent the subsequent phosphorylation on S(202) by GSK3beta. These data suggest that GSK3beta directly phosphorylates tau on S(202) (without requiring prephosphorylation). However, preventing phosphorylation on S(235), S(400), and S(404) prevented GSK3beta-dependent phosphorylation of T(231), S(396), and S(400), respectively. This indicates that phosphorylation of T(231), S(396), and S(400) by GSK3beta depends on a previous phosphorylation of S(235), S(400), and S(404), respectively. To examine S(396) phosphorylation, we analyzed phosphorylation of S(396), S(400), and S(404). Blocking phosphorylation of S(404) prevented the subsequent GSK3beta-dependent phosphorylation of both S(400) and S(396). When phosphorylation of S(404) was allowed but S(400) blocked, GSK3beta failed to phosphorylate S(396). Thus, GSK3beta phosphorylates S(396) by a two-step mechanism. In the first step, GSK3beta phosphorylates S(400) of previously S(404)-phosphorylated tau. This event primes tau for second-step phosphorylation of S(396) by GSK3beta. We conclude that GSK3beta phosphorylates tau directly at S(202) but requires the previous phosphorylation on S(235) to phosphorylate T(231). Phosphorylation of S(396), on the other hand, occurs sequentially. Once a priming kinase phosphorylates S(404), GSK3beta sequentially phosphorylates S(400) and then S(396).
Collapse
Affiliation(s)
- Tong Li
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
27
|
Abstract
The cyclin-dependent kinase-5 (Cdk5) is critical to normal mammalian development and has been implicated in synaptic plasticity, learning, and memory in the adult brain. But Cdk-5 activity has also been linked to neurodegenerative diseases. Could a single protein have opposing effects? A new study shows that production of a neuronal protein capable of regulating Cdk-5 activity can turn Cdk-5 from "good" to "bad." The findings may have implications for the development and treatment of conditions like Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Guo
- Department of Physiology, University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK 73104, USA.
| |
Collapse
|
28
|
Vandebroek T, Vanhelmont T, Terwel D, Borghgraef P, Lemaire K, Snauwaert J, Wera S, Van Leuven F, Winderickx J. Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry 2005; 44:11466-75. [PMID: 16114883 DOI: 10.1021/bi0506775] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperphosphorylation and aggregation of protein tau are typical for neurodegenerative tauopathies, including Alzheimer's disease (AD). We demonstrate here that human tau expressed in yeast acquired pathological phosphoepitopes, assumed a pathological conformation, and formed aggregates. These processes were modulated by yeast kinases Mds1 and Pho85, orthologues of GSK-3beta and cdk5, respectively. Surprisingly, inactivation of Pho85 increased phosphorylation of tau-4R, concomitant with increased conformational change defined by antibody MC1 and a 40-fold increase in aggregation. Soluble protein tau, purified from yeast lacking PHO85, spontaneously and rapidly formed tau filaments in vitro. Further fractionation of tau by anion-exchange chromatography yielded a hyperphosphorylated monomeric subfraction, termed hP-tau/MC1, with slow electrophoretic mobility and enriched with all major epitopes, including MC1. Isolated hP-tau/MC1 vastly accelerated in vitro aggregation of wild-type tau-4R, demonstrating its functional capacity to initiate aggregation, as well as its structural stability. Combined, this novel yeast model recapitulates hyperphosphorylation, conformation, and aggregation of protein tau, provides insight in molecular changes crucial in tauopathies, offers a source for isolation of modified protein tau, and has potential for identification of modulating compounds and genes.
Collapse
|
29
|
Affiliation(s)
- Jonathan C Cruz
- Department of Pathology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
30
|
Johnson GVW, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2005; 117:5721-9. [PMID: 15537830 DOI: 10.1242/jcs.01558] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau is a group of neuronal microtubule-associated proteins that are formed by alternative mRNA splicing and accumulate in neurofibrillary tangles in Alzheimer's disease (AD) brain. Tau plays a key role in regulating microtubule dynamics, axonal transport and neurite outgrowth, and all these functions of tau are modulated by site-specific phosphorylation. There is significant evidence that a disruption of normal phosphorylation events results in tau dysfunction in neurodegenerative diseases, such as AD, and is a contributing factor to the pathogenic processes. Indeed, the abnormal tau phosphorylation that occurs in neurodegenerative conditions not only results in a toxic loss of function (e.g. decreased microtubule binding) but probably also a toxic gain of function (e.g. increased tau-tau interactions). Although tau is phosphorylated in vitro by numerous protein kinases, how many of these actually phosphorylate tau in vivo is unclear. Identification of the protein kinases that phosphorylate tau in vivo in both physiological and pathological processes could provide potential therapeutic targets for the treatment of AD and other neurodegenerative diseases in which there is tau pathology.
Collapse
Affiliation(s)
- Gail V W Johnson
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | |
Collapse
|
31
|
Moran CM, Donnelly M, Ortiz D, Pant HC, Mandelkow EM, Shea TB. Cdk5 inhibits anterograde axonal transport of neurofilaments but not that of tau by inhibition of mitogen-activated protein kinase activity. ACTA ACUST UNITED AC 2005; 134:338-44. [PMID: 15836929 DOI: 10.1016/j.molbrainres.2004.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) inhibits neurofilament (NF) anterograde axonal transport while p42/44 mitogen-activated protein kinase (MAPk) promotes it. Since cdk5 is known to inhibit MAP kinase activity, we examined whether or not cdk5 inhibits anterograde NF transport via inhibition of MAPk activity. To accomplish this, we manipulated the activity of these kinases in differentiated NB2a/d1 cells, and monitored anterograde axonal transport of green fluorescent protein-conjugated-NF-M (GFP-M) and cyan fluorescent protein-conjugated (CFP)-tau. The cdk5 inhibitor roscovitine increased anterograde axonal transport of GFP-M and CFP-tau; transfection with cdk5/p25 inhibited transport of both. Inhibition of MAPk activity by PD98059 or expression of dominant-negative MAPk inhibited anterograde GFP-M transport, while expression of constitutively active MAPk enhanced it; these treatments did not affect CFP-tau transport. PD98059 prevented roscovitine-mediated enhancement of GFP-M transport, but did not prevent enhancement of CFP-tau transport. Co-transfection with constitutively activated MAPk prevented the inhibition of GFP-M transport that normally accompanied transfection with cdk5/p25, but did not prevent inhibition of tau transport by cdk5/p25. Finally, the extent of inhibition of GFP-M axonal transport by PD98059 was not additive to that derived from transfection with cdk5/p35, and the increase in NF transport that accompanies roscovitine treatment was not additive to that derived from transfection with constitutively activated MAPk, suggesting that the influence of these kinases on NF transport was within the same, rather than distinct, pathways. These findings suggest that axonal transport of tau and NFs is under the control of distinct kinase cascades, and that cdk5 inhibits NF transport at least in part by inhibiting MAPk.
Collapse
Affiliation(s)
- Catherine M Moran
- Center for Cell Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | |
Collapse
|
32
|
Stoothoff WH, Johnson GVW. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta Mol Basis Dis 2005; 1739:280-97. [PMID: 15615646 DOI: 10.1016/j.bbadis.2004.06.017] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/24/2022]
Abstract
The microtubule-associated protein tau, abundant in neurons, has gained notoriety due to the fact that it is deposited in cells as fibrillar lesions in numerous neurodegenerative diseases, and most notably Alzheimer's disease. Regulation of microtubule dynamics is the most well-recognized function of tau, but it is becoming increasingly evident that tau plays additional roles in the cell. The functions of tau are regulated by site-specific phosphorylation events, which if dysregulated, as they are in the disease state, result in tau dysfunction and mislocalization, which is potentially followed by tau polymerization, neuronal dysfunction and death. Given the increasing evidence that a disruption in the normal phosphorylation state of tau plays a key role in the pathogenic events that occur in Alzheimer's disease and other neurodegenerative conditions, it is of crucial importance that the protein kinases and phosphatases that regulate tau phosphorylation in vivo as well as the signaling cascades that regulate them be identified. This review focuses on recent literature pertaining to the regulation of tau phosphorylation and function in cell culture and animal model systems, and the role that a dysregulation of tau phosphorylation may play in the neuronal dysfunction and death that occur in neurodegenerative diseases that have tau pathology.
Collapse
Affiliation(s)
- William H Stoothoff
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1061 Sparks Center, 1720 7th Avenue South, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
33
|
Schneider A, Araújo GW, Trajkovic K, Herrmann MM, Merkler D, Mandelkow EM, Weissert R, Simons M. Hyperphosphorylation and Aggregation of Tau in Experimental Autoimmune Encephalomyelitis. J Biol Chem 2004; 279:55833-9. [PMID: 15494405 DOI: 10.1074/jbc.m409954200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axonal damage is a major morphological correlate and cause of permanent neurological deficits in patients with multiple sclerosis (MS), a multifocal, inflammatory and demyelinating disease of the central nervous system. Hyperphosphorylation and pathological aggregation of microtubule-associated protein tau is a common feature of many neurodegenerative diseases with axonal degeneration including Alzheimer's disease. We have therefore analyzed tau phosphorylation, solubility and distribution in the brainstem of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Tau was hyperphosphorylated at several sites also phosphorylated in Alzheimer's disease and became partially detergent-insoluble in EAE brains. Morphological examination demonstrated accumulation of amorphous deposits of abnormally phosphorylated tau in the cell body and axons of neurons within demyelinating plaques. Hyperphosphorylation of tau was accompanied by up-regulation of p25, an activator of cyclin-dependent kinase 5. Phosphorylation of tau, activation of cdk5, and axonal pathology were significantly reduced when diseased rats were treated with prednisolone, a standard therapy of acute relapses in MS. Hyperphosphorylation of tau was not observed in a genetic or nutritional model of axonal degeneration or demyelination, suggesting that inflammation as detected in the brains of rats with EAE is the specific trigger of tau pathology. In summary, our data provide evidence that axonal damage in EAE and possibly MS is linked to tau pathology.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 2004; 280:3963-73. [PMID: 15509565 DOI: 10.1074/jbc.m409876200] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tau-3R/4R isoform ratio and phosphorylation regulates binding to microtubules and, when disturbed by aging or mutations, results in diverse tauopathies and in neurodegeneration. The underlying mechanisms were studied here in three transgenic mouse strains with identical genetic background, all expressing the tau-4R/2N isoform driven specifically in neurons by the thy1 gene promoter. Two strains, expressing human tau-4R/2N or mutant tau-4R/2N-P301L at similar, moderate levels, developed very different phenotypes. Tau-4R/2N mice became motor-impaired already around age 6-8 weeks, accompanied by axonopathy (dilatations, spheroids), but no tau aggregates, and surviving normally. In contrast, tau-P301L mice developed neurofibrillary tangles from age 6 months, without axonal dilatations and, despite only minor motor problems, all succumbing before the age of 13 months. The third strain, obtained by tau knock-out/knock-in (tau-KOKI), expressed normal levels of wild-type human tau-4R/2N replacing all mouse tau isoforms. Tau-KOKI mice survived normally with minor motor problems late in life and without any obvious pathology. Biochemically, a fraction of neuronal tau in aging tau-P301L mice was hyperphosphorylated concomitant with conformational changes and aggregation, but overall, tau-4R/2N was actually more phosphorylated than tau-P301L. Significantly, tau with changed conformation and with hyperphosphorylation colocalized in the same neurons in aging tau-P301L mice. Taken together, we conclude that excessive binding of tau-4R/2N as opposed to reduced binding of tau-P301L to microtubules is responsible for the development of axonopathy and tauopathy, respectively, in tau-4R/2N and tau-P301L mice and that the conformational change of tau-P301L is a major determinant in triggering the tauopathy.
Collapse
Affiliation(s)
- Dick Terwel
- Experimental Genetics Group, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004; 9:664-83. [PMID: 15052274 DOI: 10.1038/sj.mp.4001508] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects more than 15 million people worldwide. Within the next generation, these numbers will more than double. To assist in the elucidation of pathogenic mechanisms of AD and related disorders, such as frontotemporal dementia (FTDP-17), genetically modified mice, flies, fish and worms were developed, which reproduce aspects of the human histopathology, such as beta-amyloid-containing plaques and tau-containing neurofibrillary tangles (NFT). In mice, the tau pathology caused selective behavioral impairment, depending on the distribution of the tau aggregates in the brain. Beta-amyloid induced an increase in the numbers of NFT, whereas the opposite was not observed in mice. In beta-amyloid-producing transgenic mice, memory impairment was associated with increased levels of beta-amyloid. Active and passive beta-amyloid-directed immunization caused the removal of beta-amyloid plaques and restored memory functions. These findings have since been translated to human therapy. This review aims to discuss the suitability and limitations of the various animal models and their contribution to an understanding of the pathophysiology of AD and related disorders.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, August Forel Str. 1, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 2004; 23:2235-45. [PMID: 15152189 PMCID: PMC419914 DOI: 10.1038/sj.emboj.7600237] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/20/2004] [Indexed: 11/09/2022] Open
Abstract
Neuronal transmission of information requires polarized distribution of membrane proteins within axonal compartments. Membrane proteins are synthesized and packaged in membrane-bounded organelles (MBOs) in neuronal cell bodies and later transported to axons by microtubule-dependent motor proteins. Molecular mechanisms underlying targeted delivery of MBOs to discrete axonal subdomains (i.e. nodes of Ranvier or presynaptic terminals) are poorly understood, but regulatory pathways for microtubule motors may be an essential step. In this work, pharmacological, biochemical and in vivo experiments define a novel regulatory pathway for kinesin-driven motility in axons. This pathway involves enzymatic activities of cyclin-dependent kinase 5 (CDK5), protein phosphatase 1 (PP1) and glycogen synthase kinase-3 (GSK3). Inhibition of CDK5 activity in axons leads to activation of GSK3 by PP1, phosphorylation of kinesin light chains by GSK3 and detachment of kinesin from transported cargoes. We propose that regulating the activity and localization of components in this pathway allows nerve cells to target organelle delivery to specific subcellular compartments. Implications of these findings for pathogenesis of neurodegenerative diseases such as Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Györgyi Szebenyi
- Department of Cell Biology and Center for Basic Neuroscience, UT Southwestern, Dallas, TX, USA
| | - Hannah Brown
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Harish C Pant
- Marine Biological Laboratory, Woods Hole, MA, USA
- Laboratory of Neurochemistry, NINDS, Bethesda, MD, USA
| | - Gustavo Pigino
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott DeBoer
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Uwe Beffert
- Department of Molecular Genetics, UT Southwestern, Dallas, TX, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
- Anatomy and Cell Biology M/C 512, 808 S Wood St, University of Illinois at Chicago, Chicago, IL 60612, USA. Tel.: +1 312 996 6791; Fax: +1 312 413 0354; E-mail:
| |
Collapse
|
37
|
Tsai LH, Lee MS, Cruz J. Cdk5, a therapeutic target for Alzheimer's disease? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:137-42. [PMID: 15023356 DOI: 10.1016/j.bbapap.2003.11.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 11/12/2003] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) represents the leading cause for senile dementia affecting more than 4 million people worldwide. AD patients display a triad of pathological features including brain atrophy caused by neuronal loss, beta-amyloid plaque and neurofibrillary tangles. We previously show that Cyclin-dependent kinase 5 (Cdk5) is deregulated in AD brains and may contribute to the pathogenesis of AD. In AD brains, a calpain cleavage product of its physiological regulator p35, p25 is elevated. p25 causes prolonged activation of Cdk5 and alteration of its substrate specificity. The implications of p25/Cdk5 in neurotoxicity, beta-amyloid plaque and neurofibrillary tangle pathology will be discussed.
Collapse
Affiliation(s)
- Li-Huei Tsai
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
38
|
Shelton SB, Krishnamurthy P, Johnson GVW. Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. J Neurosci Res 2004; 76:110-20. [PMID: 15048935 DOI: 10.1002/jnr.20051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase-5 (CDK5), a unique CDK family member, is active primarily in the central nervous system (CNS). Previous studies suggest that CDK5 is proapoptotic and contributes to tau hyperphosphorylation and neurodegeneration in Alzheimer's disease. The objective of this study was to examine CDK5 effects on apoptotic progression and tau phosphorylation. Immortalized embryonic mouse brain cortical cells were used to establish a stable cell line that overexpressed wild-type human tau. In these studies, thapsigargin, which induces endoplasmic reticulum stress and can cause accumulation of misfolded proteins, was used to induce apoptosis. Caspase-3 activity and poly-(ADP-ribose)-polymerase (PARP) cleavage, as measures of apoptosis, were significantly increased 24 and 48 hr after thapsigargin treatment, and these events were unaffected by tau expression. Although transient coexpression of CDK5 and its activator, p25, increased CDK5 activity greater than tenfold, increases in caspase-3 activity in response to thapsigargin treatment were unaffected by the presence of CDK5/p25. Tau phosphorylation at the PHF-1 epitope, but not the Tau-1 epitope, was increased significantly in CDK5/p25-transfected cells compared to cells transfected with dominant negative CDK5 (DNCDK5). The PHF-1 epitope remained phosphorylated until 48 hr after thapsigargin treatment in the CDK5/p25-transfected cells. Over the course of apoptosis in this model, phosphorylation of the Tau-1 epitope was unaffected in cells transfected with DNCDK5, vector, or CDK5/p25. In summary, these results demonstrate that CDK5 does not have a significant impact on tau phosphorylation and thapsigargin-induced apoptosis in this neuronal cell model.
Collapse
Affiliation(s)
- Shirley B Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0001, USA
| | | | | |
Collapse
|
39
|
Abstract
Cyclin-dependent kinase-5 (CDK5) is predominantly active in the nervous system and it is well established that CDK5 is essential in neuronal development. In addition to its recognized role in development, there is increasing evidence that CDK5 may be involved in the pathogenesis of several neurodegenerative disorders. Although studies have shown that CDK5 can modulate cell death and survival, controversy still exists as to the exact role CDK5 may play in neurodegenerative processes. This review will highlight recent data on the possible roles of CDK5 in neurodegeneration.
Collapse
Affiliation(s)
- Shirley B Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
40
|
Shea TB, Yabe JT, Ortiz D, Pimenta A, Loomis P, Goldman RD, Amin N, Pant HC. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 2004; 117:933-41. [PMID: 14762105 DOI: 10.1242/jcs.00785] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation has long been considered to regulate neurofilament (NF) interaction and axonal transport, and, in turn, to influence axonal stability and their maturation to large-caliber axons. Cdk5, a serine/threonine kinase homologous to the mitotic cyclin-dependent kinases, phosphorylates NF subunits in intact cells. In this study, we used two different haptenized NF subunits and manipulated cdk5 activity by microinjection, transfection and pharmacological inhibition to monitor the effect of Cdk5-p35 on NF dynamics and transport. We demonstrate that overexpression of cdk5 increases NF phosphorylation and inhibits NF axonal transport, whereas inhibition both reduces NF phosphorylation and enhances NF axonal transport in cultured chicken dorsal-root-ganglion neurons. Large phosphorylated-NF `bundles' were prominent in perikarya following cdk5 overexpression. These findings suggest that Cdk5-p35 activity regulates normal NF distribution and that overexpression of Cdk5-p35 induces perikaryal accumulation of phosphorylated-NFs similar to those observed under pathological conditions.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 2004; 40:471-83. [PMID: 14642273 DOI: 10.1016/s0896-6273(03)00627-5] [Citation(s) in RCA: 448] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) and its regulatory subunit p35 are integral players in the proper development of the mammalian central nervous system. Proteolytic cleavage of p35 generates p25, leading to aberrant Cdk5 activation. The accumulation of p25 is implicated in several neurodegenerative diseases. In primary neurons, p25 causes apoptosis and tau hyperphosphorylation. Current mouse models expressing p25, however, fail to rigorously recapitulate these phenotypes in vivo. Here, we generated inducible transgenic mouse lines overexpressing p25 in the postnatal forebrain. Induction of p25 preferentially directed Cdk5 to pathological substrates. These animals exhibited neuronal loss in the cortex and hippocampus, accompanied by forebrain atrophy, astrogliosis, and caspase-3 activation. Endogenous tau was hyperphosphorylated at many epitopes, aggregated tau accumulated, and neurofibrillary pathology developed progressively in these animals. Our cumulative findings provide compelling evidence that in vivo deregulation of Cdk5 by p25 plays a causative role in neurodegeneration and the development of neurofibrillary pathology.
Collapse
Affiliation(s)
- Jonathan C Cruz
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
42
|
Abstract
In dividing cells, cyclin-dependent kinases (Cdks) are cell cycle-associated protein kinases that regulate proliferation, differentiation, senescence, and apoptosis. In neurons that no longer divide, deregulation of Cdks, especially Cdk5, occurs in many neurological disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Cdk5 is a unique member of the Cdk family because it does not play a critical role in cell cycle progression, and it is not activated by a cyclin. Instead, Cdk5 normally is activated by the regulatory protein p35. This Cdk5/p35 activity has emerged as an important regulator of proper development of the mammalian central nervous system. In vitro studies suggest that aberrant activation of Cdk5 by an endogenous truncated version (p25) of p35 might be a key event in the process of neurodegeneration. One enzyme responsible for cleavage of p35 to form p25 is calpain, a calcium-activated protease that has been shown to be involved in neuronal cell death. Recent studies provided important in vivo evidence that hyperactivation and redistribution of Cdk5 by p25 plays an essential role in the phosphorylation of "pathological" substrates (such as tau) and the cell death of neurons in experimental models of AD and PD. Because amyloid beta peptide, the primary neurotoxic component of amyloid plaques in AD, has been shown to increase the conversion of p35 to p25, aberrant activation of Cdk5 by p25 might be a pathway connecting amyloid beta toxicity to tau hyperphosphorylation in AD.
Collapse
Affiliation(s)
- Qing Guo
- Department of Physiology, University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK 73104, USA.
| |
Collapse
|
43
|
Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 2003. [PMID: 14627648 DOI: 10.1523/jneurosci.23-33-10633.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cdk5/p35 has been implicated in cytoskeletal protein phosphorylation in normal brain and in many human neurodegenerative disorders. Yet, mouse models of cdk5/p35 hyperactivity have not yielded corresponding changes in cytoskeletal protein phosphorylation. To elucidate the relationship between p35, cdk5, and the neuronal cytoskeleton, we deleted the p35 gene in mice having a pure C57BL/6 background. We found that p35 deficiency leads to a 38% reduction of cdk5 activity in adult brain. In addition, loss of p35 causes an anterograde redistribution of cdk5 toward peripheral neuronal processes. The unusual presence of nonphosphorylated neurofilament (NF) in aberrant axon fascicles and the relocation of tau and MAP2B from cell bodies and proximal neuronal processes to more distal sites of the neuropil in p35-/- mouse brain implicate p35 in neuronal trafficking, particularly in dynein-driven retrograde transport. In many axons of normal brain, cdk5 fails to colocalize with phosphorylated cytoskeletal protein epitopes. This observation, together with an unexpected increase of NF, tau, and MAP2B phosphoepitopes accompanying the decreased cdk5 activity in p35-/- mice, supports the idea that cdk5 does not phosphorylate cytoskeletal proteins directly. Rather, in structures where cdk5 does colocalize with phosphorylated cytoskeletal protein epitopes, it may function as a negative regulator of other proline-directed kinases that directly phosphorylate the proteins. Evidence for increased glycogen synthase kinase 3beta (GSK3beta) activity in p35-/- mice suggests that GSK3beta may be one such kinase regulated by cdk5. Our studies illustrate that p35 regulates the subcellular distribution of cdk5 and cytoskeletal proteins in neurons and that cdk5 has a hierarchical role in regulating the phosphorylation and function of cytoskeletal proteins.
Collapse
|
44
|
Cyr M, Beaulieu JM, Laakso A, Sotnikova TD, Yao WD, Bohn LM, Gainetdinov RR, Caron MG. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc Natl Acad Sci U S A 2003; 100:11035-40. [PMID: 12958210 PMCID: PMC196922 DOI: 10.1073/pnas.1831768100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Indexed: 11/18/2022] Open
Abstract
Dopamine is believed to contribute to the degeneration of dopamine-containing neurons in the brain. However, whether dopamine affects the survival of other neuronal populations has remained unclear. Here we document that mice with persistently elevated extracellular dopamine, resulting from inactivation of the dopamine transporter gene, sporadically develop severe symptoms of dyskinesia concomitant with apoptotic death of striatal dopamine-responsive gamma-aminobutyric acidergic neurons. Chronic inhibition of dopamine synthesis prevents the appearance of motor dysfunction. The neuronal death is associated with overactivation of dopaminergic signaling as evidenced by the robust up-regulation of striatal DeltaFosB, cyclin-dependent kinase 5, and p35. Moreover, hyperphosphorylation of the tau protein, a phenomenon associated with the activation of cyclin-dependent kinase 5 in several neurodegenerative disorders, is observed in symptomatic mice. These findings provide in vivo evidence that, in addition to its proposed role in the degeneration of dopamine neurons, dopamine can also contribute to the selective death of its target neurons via a previously unappreciated mechanism.
Collapse
Affiliation(s)
- Michel Cyr
- Howard Hughes Medical Institute Laboratory, Department of Cell Biology, and Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hamdane M, Sambo AV, Delobel P, Bégard S, Violleau A, Delacourte A, Bertrand P, Benavides J, Buée L. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. J Biol Chem 2003; 278:34026-34. [PMID: 12826674 DOI: 10.1074/jbc.m302872200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Malika Hamdane
- INSERM U422, IMPRT, Place de Verdun, 59045 Lille, France and CNS Research, Aventis Pharma, 94400 Vitry Sur Seine, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tandon A, Yu H, Wang L, Rogaeva E, Sato C, Chishti MA, Kawarai T, Hasegawa H, Chen F, Davies P, Fraser PE, Westaway D, St George-Hyslop PH. Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. J Neurochem 2003; 86:572-81. [PMID: 12859671 DOI: 10.1046/j.1471-4159.2003.01865.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elevated levels of p25 and constitutive activation of CDK5 have been observed in AD brains. This has led to the hypothesis that increased p25 levels could promote neurofibrillary tangles (NFT) through CDK5-mediated hyperphosphorylation of tau, the principal component of NFTs. We examined p25 immunoreactivity in brains from sporadic and familial AD cases, as well as other neurologic diseases that exhibit NFT, such as Down's syndrome (DS), Pick's disease (Pick), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD). Neither the p25 immunoreactivity nor the p25/p35 ratio was elevated in the AD brains or in the other tauopathies (n = 34) compared with controls (n = 11). Although Abeta peptides have been suggested to activate calpain-mediated cleavage of p35 to p25 in cultured neurons, p25 levels in brains of TgCRND8 mice, which express high levels of brain Abeta peptides, were similar to those of non-Tg littermates. Our data suggest that high Abeta levels in brain do not activate p35 proteolysis, and p25 is unlikely to be a causative agent for NFT formation in AD or other tauopathies.
Collapse
Affiliation(s)
- Anurag Tandon
- Departments of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Partial rescue of the p35-/- brain phenotype by low expression of a neuronal-specific enolase p25 transgene. J Neurosci 2003. [PMID: 12684463 DOI: 10.1523/jneurosci.23-07-02769.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is activated on binding of activator proteins p35 and p39. A N-terminally truncated p35, termed p25, is generated through cleavage by the Ca(2+)-dependent protease calpain after induction of ischemia in rat brain. p25 has been shown to accumulate in brains of patients with Alzheimer's disease and may contribute to A-beta peptide-mediated toxicity. Studies from transfected neurons as well as p35 and p25 transgenic mice have indicated that Cdk5, when activated by p25, gains some toxic function compared with p35/Cdk5. It remains unclear, however, whether p25/Cdk5 signaling additionally channels into pathways usually used by p35/Cdk5 and whether p25 is associated with a loss of p35 function. To clarify these issues, we have generated p25-transgenic mice in a p35-null background. We find that low levels of p25 during development induce a partial rescue of the p35-/- phenotype in several brain regions analyzed, including a rescue of cell positioning of a subset of neurons in the neocortex. In accordance with the partial rescue of brain anatomy, phosphorylation of the Cdk5 substrate mouse disabled 1 is partially restored during development. Besides this, p25/Cdk5 fails to phosphorylate other substrates that are normally phosphorylated by p35/Cdk5. Our results show that p25 can substitute for p35/Cdk5 under certain circumstances during development. In addition, they suggest that p25 may have lost some functions of p35.
Collapse
|
48
|
Weishaupt JH, Neusch C, Bähr M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res 2003; 312:1-8. [PMID: 12684868 DOI: 10.1007/s00441-003-0703-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 01/10/2003] [Indexed: 12/21/2022]
Abstract
Many neurological disorders like Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis (ALS) or stroke have in common a definite loss of CNS neurons due to apoptotic or necrotic neuronal cell death. Previous studies suggested that proapoptotic stimuli may trigger an abortive and, therefore, eventually fatal cell cycle reentry in postmitotic neurons. Neuroprotective effects of small molecule inhibitors of cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression, support the cell cycle theory of neuronal apoptosis. However, growing evidence suggests that deregulated CDK5, which is not involved in cell cycle control, rather than cell cycle relevant members of the CDK family, promotes neuronal cell death. Here we summarize the current knowledge about the involvement of CDK5 in neuronal cell death and discuss possible up- or downstream partners of CDK5. Moreover, we discuss potential therapeutic options that might arise from the identification of CDK5 as an important upstream element of neuronal cell death cascades.
Collapse
Affiliation(s)
- J H Weishaupt
- Department of Neurology, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | |
Collapse
|
49
|
Nguyen MD, Mushynski WE, Julien JP. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 2002; 9:1294-306. [PMID: 12478466 DOI: 10.1038/sj.cdd.4401108] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 07/23/2002] [Accepted: 07/23/2002] [Indexed: 11/09/2022] Open
Abstract
The discovery of cell cycle regulators has directed cell research into uncharted territory. In dividing cells, cell cycle-associated protein kinases, which are referred to as cyclin-dependent-kinases (Cdks), regulate proliferation, differentiation, senescence and apoptosis. In contrast, all Cdks in post-mitotic neurons, with the notable exception of Cdk5, are silenced. Surprisingly, misregulation of Cdks occurs in neurons in a wide diversity of neurological disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Ectopic expression of these proteins in neurons potently induces cell death with hallmarks of apoptosis. Deregulation of the unique, cell cycle-unrelated Cdk5 by its truncated co-activator, p25 and p29, contributes to neurodegeneration by altering the phosphorylation state of non-membrane-associated proteins and possibly through the induction of cell cycle proteins. On the other hand, cycling Cdks such as Cdk2, Cdk4 and Cdk6, initiate death pathways by derepressing E2F-1/Rb-dependent transcription at the neuronal G1/S checkpoint. Thus, Cdk5 and cycling Cdks may have little in common in the healthy CNS, but they likely conspire in leading neurons to their demise.
Collapse
Affiliation(s)
- M D Nguyen
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, Québec, H3G 1A4, Canada
| | | | | |
Collapse
|
50
|
Lau LF, Seymour PA, Sanner MA, Schachter JB. Cdk5 as a drug target for the treatment of Alzheimer's disease. J Mol Neurosci 2002; 19:267-73. [PMID: 12540052 DOI: 10.1385/jmn:19:3:267] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Accepted: 10/28/2002] [Indexed: 11/11/2022]
Abstract
Cyclin-dependent kinase-5 (cdk5) is suggested to play a role in tau phosphorylation and contribute to the pathogenesis of Alzheimer's disease (AD). One of its activators, p25, is dramatically increased in AD brains where p25 and cdk5 are colocalized with neurofibrillary tangles. Several animal models have shown a correlation of p25/cdk5 activities with tau phosphorylation. Overexpression of p25/cdk5 in nueronal cultures not only leads to tau phosphorylation but also cytoskeletal abnormalities and neurodegeneration. Therefore, cdk5 kinase inhibitors are potential therapeutic agents for the treatment of AD. Availability of potent, selective, brain permeable cdk5 inhibitors and relevant animal models in which their efficacy can be treated will be critical in the development of these inhibitors.
Collapse
Affiliation(s)
- Lit-Fui Lau
- CNS Discovery, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|