1
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Tang J, Cao Z, Lei M, Yu Q, Mai Y, Xu J, Liao W, Ruan Y, Shi L, Yang L, Liu J. Heterogeneity of cerebral atrophic rate in mild cognitive impairment and its interactive association with proteins related to microglia activity on longitudinal cognitive changes. Arch Gerontol Geriatr 2024; 127:105582. [PMID: 39079281 DOI: 10.1016/j.archger.2024.105582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Heterogeneity of cerebral atrophic rate commonly exists in mild cognitive impairment (MCI), which may be associated with microglia-involved neuropathology and have an influence on cognitive outcomes. OBJECTIVE We aim to explore the heterogeneity of cerebral atrophic rate among MCI and its association with plasma proteins related to microglia activity, with further investigation of their interaction effects on long-term cognition. SUBJECTS A total of 630 MCI subjects in the ADNI database were included, of which 260 subjects were available with baseline data on plasma proteins. METHODS Group-based multi-trajectory modeling (GBMT) was used to identify the latent classes with heterogeneous cerebral atrophic rates. Associations between latent classes and plasma proteins related to microglia activity were investigated with generalized linear models. Linear mixed effect models (LME) were implemented to explore the interaction effects between proteins related to microglia activity and identified latent classes on longitudinal cognitive changes. RESULTS Two latent classes were identified and labeled as the slow-atrophy class and the fast-atrophy class. Associations were found between such heterogeneity of atrophic rates and plasma proteins related to microglia activity, especially AXL receptor tyrosine kinase (AXL), CD40 antigen (CD40), and tumor necrosis factor receptor-like 2 (TNF-R2). Interaction effects on longitudinal cognitive changes showed that higher CD40 was associated with faster cognitive decline in the slow-atrophy class and higher AXL or TNF-R2 was associated with slower cognitive decline in the fast-atrophy class. CONCLUSIONS Heterogeneity of atrophic rates at the MCI stage is associated with several plasma proteins related to microglia activity, which show either protective or adverse effects on long-term cognition depending on the variability of atrophic rates.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Zhiyu Cao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Qun Yu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yingren Mai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Jiaxin Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China
| | - Wang Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Yuting Ruan
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen City, Guangdong Province, MN 518000, China; Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, MN 999077, China
| | - Lianhong Yang
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou City, Guangdong Province, MN 510120, China.
| | - Jun Liu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 East Changgang Road, Guangzhou City, Guangdong Province, MN 510260, China.
| |
Collapse
|
3
|
Rahimian R, Belliveau C, Simard S, Turecki G, Mechawar N. Perineuronal Net Alterations Following Early-Life Stress: Are Microglia Pulling Some Strings? Biomolecules 2024; 14:1087. [PMID: 39334854 PMCID: PMC11430691 DOI: 10.3390/biom14091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The extracellular matrix plays a key role in synapse formation and in the modulation of synaptic function in the central nervous system. Recent investigations have revealed that microglia, the resident immune cells of the brain, are involved in extracellular matrix remodeling under both physiological and pathological conditions. Moreover, the dysregulation of both innate immune responses and the extracellular matrix has been documented in stress-related psychopathologies as well as in relation to early-life stress. However, the dynamics of microglial regulation of the ECM and how it can be impacted by early-life adversity have been understudied. This brief review provides an overview of the recent literature on this topic, drawing from both animal model and human post mortem studies. Direct and indirect mechanisms through which microglia may regulate the extracellular matrix-including perineuronal nets-are presented and discussed in light of the interactions with other cell types.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
4
|
Wang D, Saleem S, Sullivan RD, Zhao T, Reed GL. Differences in Acute Expression of Matrix Metalloproteinases-9, 3, and 2 Related to the Duration of Brain Ischemia and Tissue Plasminogen Activator Treatment in Experimental Stroke. Int J Mol Sci 2024; 25:9442. [PMID: 39273389 PMCID: PMC11394866 DOI: 10.3390/ijms25179442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Matrix metalloproteinases (MMPs) such as MMP-9, 3, and 2 degrade the cellular matrix and are believed to play a crucial role in ischemic stroke. We examined how the duration of ischemia (up to 4 h) and treatment with recombinant tissue plasminogen activator altered the comparative expression of these MMPs in experimental ischemic stroke with reperfusion. Both prolonged ischemia and r-tPA treatment markedly increased MMP-9 expression in the ischemic hemisphere (all p < 0.0001). The duration of ischemia and r-tPA treatment also significantly increased MMP-2 expression (p < 0.01-0.001) in the ischemic hemisphere (p < 0.01) but to a lesser degree than MMP-9. In contrast, MMP-3 expression significantly decreased in the ischemic hemisphere (p < 0.001) with increasing duration of ischemia and r-tPA treatment (p < 0.05-0001). MMP-9 expression was prominent in the vascular compartment and leukocytes. MMP-2 expression was evident in the vascular compartment and MMP-3 in NeuN+ neurons. Prolonging the duration of ischemia (up to 4 h) before reperfusion increased brain hemorrhage, infarction, swelling, and neurologic disability in both saline-treated (control) and r-tPA-treated mice. MMP-9 and MMP-2 expression were significantly positively correlated with, and MMP-3 was significantly negatively correlated with, infarct volume, swelling, and brain hemorrhage. We conclude that in experimental ischemic stroke with reperfusion, the duration of ischemia and r-tPA treatment significantly altered MMP-9, 3, and 2 expression, ischemic brain injury, and neurological disability. Each MMP showed unique patterns of expression that are strongly correlated with the severity of brain infarction, swelling, and hemorrhage. In summary, in experimental ischemic stroke in male mice with reperfusion, the duration of ischemia, and r-tPA treatment significantly altered the immunofluorescent expression of MMP-9, 3, and 2, ischemic brain injury, and neurological disability. In this model, each MMP showed unique patterns of expression that were strongly correlated with the severity of brain infarction, swelling, and hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | - Guy L. Reed
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA; (D.W.); (S.S.); (R.D.S.); (T.Z.)
| |
Collapse
|
5
|
Kucherova KS, Koroleva ES, Alifirova VM. The role of matrix metalloproteinases in the pathogenetic mechanisms of ischemic stroke. RUSSIAN NEUROLOGICAL JOURNAL 2024; 29:5-15. [DOI: 10.30629/2658-7947-2024-29-3-5-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Modern understanding of the mechanisms of the pathogenesis of ischemic stroke has expanded due to the study of neuroinfl ammation processes, in which matrix metalloproteinases (MMPs) play an important role. This literature review describes the main types of MMPs and provides current data on the pathophysiological role of this group of proteases in acute cerebral ischemia, which have multidirectional eff ects depending on the stage of the disease. Clinical studies assessing the role of MMPs in ischemic stroke are in most cases based on experimental models, and their results are ambiguous, which is determined by the versatility of their actions. MMPs are an important regulator of infl ammatory processes, the permeability of the blood-brain barrier and, as a consequence, cerebral edema. However, the positive eff ect of MMPs in the processes of angiogenesis, neurogenesis and neuroplasticity has been proven. Thus, further study of MMPs is relevant from the point of view of their role in functional recovery after ischemic stroke.
Collapse
|
6
|
Owjfard M, Rahimian Z, Ghaderpanah R, Rafiei E, Sadrian S, Sabaghan M, Karimi F. Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia. Heliyon 2024; 10:e32592. [PMID: 38952360 PMCID: PMC11215267 DOI: 10.1016/j.heliyon.2024.e32592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Ghaderpanah
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedhassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
7
|
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S. LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes After Acute Ischemic Stroke. Circ Res 2024; 134:954-969. [PMID: 38501247 DOI: 10.1161/circresaha.123.323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.
Collapse
Affiliation(s)
- Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Henrik Andersson
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Anaële Arnou
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | | | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| |
Collapse
|
8
|
Wu S, Tabassum S, Payne CT, Hu H, Gusdon AM, Choi HA, Ren XS. Updates of the role of B-cells in ischemic stroke. Front Cell Neurosci 2024; 18:1340756. [PMID: 38550918 PMCID: PMC10972894 DOI: 10.3389/fncel.2024.1340756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/27/2024] [Indexed: 10/11/2024] Open
Abstract
Ischemic stroke is a major disease causing death and disability in the elderly and is one of the major diseases that seriously threaten human health and cause a great economic burden. In the early stage of ischemic stroke, neuronal structure is destroyed, resulting in death or damage, and the release of a variety of damage-associated pattern molecules induces an increase in neuroglial activation, peripheral immune response, and secretion of inflammatory mediators, which further exacerbates the damage to the blood-brain barrier, exacerbates cerebral edema, and microcirculatory impairment, triggering secondary brain injuries. After the acute phase of stroke, various immune cells initiate a protective effect, which is released step by step and contributes to the repair of neuronal cells through phenotypic changes. In addition, ischemic stroke induces Central Nervous System (CNS) immunosuppression, and the interaction between the two influences the outcome of stroke. Therefore, modulating the immune response of the CNS to reduce the inflammatory response and immune damage during stroke is important for the protection of brain function and long-term recovery after stroke, and modulating the immune function of the CNS is expected to be a novel therapeutic strategy. However, there are fewer studies on B-cells in brain function protection, which may play a dual role in the stroke process, and the understanding of this cell is still incomplete. We review the existing studies on the mechanisms of the role of B-cells, inflammatory response, and immune response in the development of ischemic stroke and provide a reference for the development of adjuvant therapeutic drugs for ischemic stroke targeting inflammatory injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuefang S. Ren
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
9
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
10
|
Miao M, Lyu M, Zhong C, Liu Y. Correlation Between MMP9 Promoter Methylation and Transient Ischemic Attack/Mild Ischemic Stroke with Early Cognitive Impairment. Clin Interv Aging 2023; 18:1221-1232. [PMID: 37547382 PMCID: PMC10404041 DOI: 10.2147/cia.s421830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background/Objective Dyskinesia caused by transient ischemic attack (TIA) and mild ischemic stroke (MIS) is mild and short-lived; however, cognitive impairment (CI) can occur in the acute phase and be easily overlooked. DNA methylation is an epigenetic phenomenon that can affect gene expression through gene silencing. Blood levels of matrix metalloproteinase (MMP) 9 are elevated in ischemic stroke patients and is associated with the destruction of the blood-brain barrier and the occurrence of CI. No studies have investigated the relationship between MMP9 gene methylation and TIA/MIS with early cognitive impairment (ECI). As such, the purpose of the present study was to investigate the correlation between MMP9 gene methylation and TIA/MIS with ECI. Methods Data from 112 subjects were collected, including 84 with TIA/MIS (National Institutes of Health Stroke Scale <5 points) and 28 non-stroke control subjects. Patients were evaluated within 7 days of TIA/MIS onset according to four single-domain cognitive scales. Whole blood DNA methylation was detected using MethylTarget sequencing technology. Comparison of MMP9 gene methylation levels among subgroups was performed using statistical methods. Results The site S33-79 in the TIA/MIS group was hypomethylated compared with the control group, and sites S33-25 and S33-30 in TIA/MIS with ECI was hypomethylated compared with TIA/MIS without ECI. Compared with the small artery occlusion group, MMP9 gene, S33-25, 30, 39, 53, 58, 73, 79, 113 and 131 sites in the large artery atherosclerosis group were hypomethylated. Conclusion MMP9 gene hypomethylation sites were associated with TIA/MIS and TIA/MIS with ECI, and there was a strong correlation between MMP9 gene hypomethylation and atherosclerotic TIA/MIS. MMP9 gene methylation can reflect the severity of TIA/MIS. MMP9 gene hypomethylation sites may be used as potential biomarkers and therapeutic targets for TIA/MIS and TIA/MIS with ECI.
Collapse
Affiliation(s)
- Meng Miao
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Mingyang Lyu
- Haihe Laboratory of Cell Ecosystem, Tianjin, People’s Republic of China
| | - Chi Zhong
- Department of Neurology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Ying Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Babenko VA, Fedulova KS, Silachev DN, Rahimi-Moghaddam P, Kalyuzhnaya YN, Demyanenko SV, Plotnikov EY. The Role of Matrix Metalloproteinases in Hemorrhagic Transformation in the Treatment of Stroke with Tissue Plasminogen Activator. J Pers Med 2023; 13:1175. [PMID: 37511788 PMCID: PMC10381732 DOI: 10.3390/jpm13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia S Fedulova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Yulia N Kalyuzhnaya
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RL, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 PMCID: PMC11934118 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
- Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Neurology, Yangjiang People’s Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjien Han
- Department of Neurosurgery, Pingdingshan Second People’s Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Cudna A, Bronisz E, Mirowska-Guzel D, Kurkowska-Jastrzębska I. Serum levels of matrix metalloproteinase 2 and its inhibitor after tonic-clonic seizures. Epilepsy Res 2023; 192:107115. [PMID: 36958106 DOI: 10.1016/j.eplepsyres.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Damage to the blood-brain barrier (BBB) may result from on-going neuroinflammation, which can lead to leakage of blood components, such as leukocytes and serum proteins, into the brain, resulting in disturbed brain homeostasis. The aim of the project was to examine the involvement of modulatory proteins in the processes of BBB integration after epileptic seizures. We investigated serum changes in the levels of MMP-2 and MMP-7 and its inhibitors after seizures in epilepsy patients. Concentrations of these proteins were measured by ELISA in 50 patients at 1-3, 24, and 72 h after generalized tonic-clonic seizures and once in participants of the control group. The level of MMP-2 in serum was slightly higher after seizures (at 1-3 h time point), but the difference was not statistically significant. The levels of trombospondine (TSP) - 1 and - 2 were decreased at 1-3 h after seizures. The expression of TIMP-2 was increased 1 and 24 h after seizures. There were no significant changes in the level of α2-macroglobulin and MMP-7. Changes in the expression of both specific and non-specific inhibitors indicate the initiation of repair processes of the blood-brain barrier and improvement of its integrity. Since we performed serum analysis, further studies are necessary to investigate the correlation with the expression of the investigated markers in the brain. Perhaps this will allow for the identification of new biomarkers associated with epileptic seizures.
Collapse
Affiliation(s)
- A Cudna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - E Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland
| | | |
Collapse
|
15
|
Silva-Reis SC, Sampaio-Dias IE, Costa VM, Correia XC, Costa-Almeida HF, García-Mera X, Rodríguez-Borges JE. Concise Overview of Glypromate Neuropeptide Research: From Chemistry to Pharmacological Applications in Neurosciences. ACS Chem Neurosci 2023; 14:554-572. [PMID: 36735764 PMCID: PMC9936549 DOI: 10.1021/acschemneuro.2c00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) pose a serious health concern worldwide, with a particular incidence in developed countries as a result of life expectancy increase and the absence of restorative treatments. Presently, treatments for these neurological conditions are focused on managing the symptoms and/or slowing down their progression. As so, the research on novel neuroprotective drugs is of high interest. Glypromate (glycyl-l-prolyl-l-glutamic acid, also known as GPE), an endogenous small peptide widespread in the brain, holds great promise to tackle neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's, s well as other CNS-related disorders like Rett and Down's syndromes. However, the limited pharmacokinetic properties of Glypromate hinder its clinical application. As such, intense research has been devoted to leveraging the pharmacokinetic profile of this neuropeptide. This review aims to offer an updated perspective on Glypromate research by exploring the vast array of chemical derivatizations of more than 100 analogs described in the literature over the past two decades. The collection and discussion of the most relevant structure-activity relationships will hopefully guide the discovery of new Glypromate-based neuroprotective drugs.
Collapse
Affiliation(s)
- Sara C. Silva-Reis
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ivo E. Sampaio-Dias
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal,
| | - Vera M. Costa
- UCIBIO/REQUIMTE,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal,Associate
Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xavier Cruz Correia
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Hugo F. Costa-Almeida
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| | - Xerardo García-Mera
- Department
of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University
of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells 2023; 12:cells12030368. [PMID: 36766708 PMCID: PMC9913812 DOI: 10.3390/cells12030368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction emerges as one of the mechanisms underlying the induction of seizures and epileptogenesis. There is growing evidence that seizures also affect BBB, yet only scarce data is available regarding serum levels of BBB-associated proteins in chronic epilepsy. In this study, we aimed to assess serum levels of molecules associated with BBB in patients with epilepsy in the interictal period. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 100 patients who were seizure-free for a minimum of seven days and analyzed by ELISA. The results were compared with an age- and sex-matched control group. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B were higher in patients with epilepsy in comparison to control group (p < 0.0001; <0.0001; 0.001; <0.0001; <0.0001, respectively). Levels of CCL-2, ICAM-1, P-selectin and TSP-2 did not differ between the two groups. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B are elevated in patients with epilepsy in the interictal period, which suggests chronic processes of BBB disruption and restoration. The pathological process initiating epilepsy, in addition to seizures, is probably the factor contributing to the elevation of serum levels of the examined molecules.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
17
|
The immunopathology of B lymphocytes during stroke-induced injury and repair. Semin Immunopathol 2022:10.1007/s00281-022-00971-3. [PMID: 36446955 PMCID: PMC9708141 DOI: 10.1007/s00281-022-00971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/30/2022]
Abstract
B cells, also known as B lymphocytes or lymphoid lineage cells, are a historically understudied cell population with regard to brain-related injuries and diseases. However, an increasing number of publications have begun to elucidate the different phenotypes and roles B cells can undertake during central nervous system (CNS) pathology, including following ischemic and hemorrhagic stroke. B cell phenotype is intrinsically linked to function following stroke, as they may be beneficial or detrimental depending on the subset, timing, and microenvironment. Factors such as age, sex, and presence of co-morbidity also influence the behavior of post-stroke B cells. The following review will briefly describe B cells from origination to senescence, explore B cell function by integrating decades of stroke research, differentiate between the known B cell subtypes and their respective activity, discuss some of the physiological influences on B cells as well as the influence of B cells on certain physiological functions, and highlight the differences between B cells in healthy and disease states with particular emphasis in the context of ischemic stroke.
Collapse
|
18
|
Hong DK, Eom JW, Kho AR, Lee SH, Kang BS, Lee SH, Koh JY, Kim YH, Choi BY, Suh SW. The Inhibition of Zinc Excitotoxicity and AMPK Phosphorylation by a Novel Zinc Chelator, 2G11, Ameliorates Neuronal Death Induced by Global Cerebral Ischemia. Antioxidants (Basel) 2022; 11:2192. [PMID: 36358564 PMCID: PMC9686920 DOI: 10.3390/antiox11112192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is necessary for maintaining a positive energy balance and essential cellular processes such as glycolysis, gene transcription, glucose uptake, and several other biological functions. However, brain injury-induced energy and metabolic stressors, such as cerebral ischemia, increase AMPK phosphorylation. Phosphorylated AMPK contributes to excitotoxicity, oxidative, and metabolic problems. Furthermore, brain disease-induced release of zinc from synaptic vesicles contributes to neuronal damage via mechanisms including ROS production, apoptotic cell death, and DNA damage. For this reason, we hypothesized that regulating zinc accumulation and AMPK phosphorylation is critical for protection against global cerebral ischemia (GCI). Through virtual screening based on the structure of AMPK subunit alpha 2, we identified a novel compound, 2G11. In this study, we verified that 2G11 administration has neuroprotective effects via the blocking of zinc translocation and AMPK phosphorylation after GCI. As a result, we demonstrated that 2G11 protected hippocampal neurons against GCI and OGD/R-derived cellular damage. In conclusion, we propose that AMPK inhibition and zinc chelation by 2G11 may be a promising tool for preventing GCI-induced hippocampal neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae-Won Eom
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jae-Young Koh
- Neural Injury Research Laboratory, Department of Neurology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
19
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
20
|
Neuro-Axonal Damage and Alteration of Blood–Brain Barrier Integrity in COVID-19 Patients. Cells 2022; 11:cells11162480. [PMID: 36010557 PMCID: PMC9406414 DOI: 10.3390/cells11162480] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 01/08/2023] Open
Abstract
Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood–brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.
Collapse
|
21
|
Martín-de-Saavedra MD, Santos MD, Penzes P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci 2022; 45:483-498. [DOI: 10.1016/j.tins.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
|
22
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|
23
|
Begenisic T, Pavese C, Aiachini B, Nardone A, Rossi D. Dynamics of biomarkers across the stages of traumatic spinal cord injury - implications for neural plasticity and repair. Restor Neurol Neurosci 2021; 39:339-366. [PMID: 34657853 DOI: 10.3233/rnn-211169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a complex medical condition causing significant physical disability and psychological distress. While the adult spinal cord is characterized by poor regenerative potential, some recovery of neurological function is still possible through activation of neural plasticity mechanisms. We still have limited knowledge about the activation of these mechanisms in the different stages after human SCI. OBJECTIVE In this review, we discuss the potential role of biomarkers of SCI as indicators of the plasticity mechanisms at work during the different phases of SCI. METHODS An extensive review of literature related to SCI pathophysiology, neural plasticity and humoral biomarkers was conducted by consulting the PubMed database. Research and review articles from SCI animal models and SCI clinical trials published in English until January 2021 were reviewed. The selection of candidates for humoral biomarkers of plasticity after SCI was based on the following criteria: 1) strong evidence supporting involvement in neural plasticity (mandatory); 2) evidence supporting altered expression after SCI (optional). RESULTS Based on selected findings, we identified two main groups of potential humoral biomarkers of neural plasticity after SCI: 1) neurotrophic factors including: Brain derived neurotrophic factor (BDNF), Nerve growth factor (NGF), Neurotrofin-3 (NT-3), and Insulin-like growth factor 1 (IGF-1); 2) other factors including: Tumor necrosis factor-alpha (TNF-α), Matrix Metalloproteinases (MMPs), and MicroRNAs (miRNAs). Plasticity changes associated with these biomarkers often can be both adaptive (promoting functional improvement) and maladaptive. This dual role seems to be influenced by their concentrations and time-window during SCI. CONCLUSIONS Further studies of dynamics of biomarkers across the stages of SCI are necessary to elucidate the way in which they reflect the remodeling of neural pathways. A better knowledge about the mechanisms underlying plasticity could guide the selection of more appropriate therapeutic strategies to enhance positive spinal network reorganization.
Collapse
Affiliation(s)
- Tatjana Begenisic
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Beatrice Aiachini
- Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurorehabilitation and Spinal Units, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Pavia, Italy
| |
Collapse
|
24
|
Bryant JD, Kodali M, Shuai B, Menissy SS, Graves PJ, Phan TT, Dantzer R, Shetty AK, Ciaccia West L, West AP. Neuroimmune mechanisms of cognitive impairment in a mouse model of Gulf War illness. Brain Behav Immun 2021; 97:204-218. [PMID: 34333111 PMCID: PMC8453129 DOI: 10.1016/j.bbi.2021.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom disorder affecting approximately 30 percent of the nearly 700,000 Veterans of the 1991 Persian Gulf War. GWI-related chemical (GWIC) exposure promotes immune activation that correlates with cognitive impairment and other symptoms of GWI. However, the molecular mechanisms and signaling pathways linking GWIC to inflammation and neurological symptoms remain unclear. Here we show that acute exposure of murine macrophages to GWIC potentiates innate immune signaling and inflammatory cytokine production. Using an established mouse model of GWI, we report that neurobehavioral changes and neuroinflammation are attenuated in mice lacking the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-, LRR- or pyrin domain-containing protein 3 (NLRP3) innate immune pathways. In addition, we report sex differences in response to GWIC, with female mice showing more pronounced cognitive impairment and hippocampal astrocyte hypertrophy. In contrast, male mice display a GWIC-dependent upregulation of proinflammatory cytokines in the plasma that is not present in female mice. Our results indicate that STING and NLRP3 are key mediators of the cognitive impairment and inflammation observed in GWI and provide important new information on sex differences in this model.
Collapse
Affiliation(s)
- Joshua D. Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Saeed S. Menissy
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paige J. Graves
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Thien Trong Phan
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA,Corresponding authors. (L. Ciaccia West), (A.P. West)
| |
Collapse
|
25
|
Nichols P, Urriola J, Miller S, Bjorkman T, Mahady K, Vegh V, Nasrallah F, Winter C. Blood-brain barrier dysfunction significantly correlates with serum matrix metalloproteinase-7 (MMP-7) following traumatic brain injury. NEUROIMAGE-CLINICAL 2021; 31:102741. [PMID: 34225019 PMCID: PMC8264212 DOI: 10.1016/j.nicl.2021.102741] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinase (MMP) 7 is elevated in traumatic brain injury. Blood brain barrier dysfunction as measured by DCE MRI can be expressed as KTrans. MMP-7 shows a strong correlation with BBB dysfunction shown on MRI. MMP-7 shows potential to function as a serum biomarker.
Objectives To determine if radiological evidence of blood brain barrier (BBB) dysfunction, measured using Dynamic Contrast Enhanced MRI (DCE-MRI), correlates with serum matrix metalloproteinase (MMP) levels in traumatic brain injury (TBI) patients, and thereby, identify a potential biomarker for BBB dysfunction. Patients and Methods 20 patients with a mild, moderate, or severe TBI underwent a DCE-MRI scan and BBB dysfunction was interpreted from KTrans. KTrans is a measure of capillary permeability that reflects the efflux of gadolinium contrast into the extra-cellar space. The serum samples were concurrently collected and later analysed for MMP-1, −2, −7, −9, and −10 levels using an ELISA assay. Statistical correlations between MMP levels and the KTrans value were calculated. Multiple testing was corrected using the Benjamin–Hochberg method to control the false‐discovery rate (FDR). Results Serum MMP-1 values ranged from 1.5 to 49.6 ng/ml (12 ± 12.7), MMP-2 values from 58.3 to 174.1 ng/ml (109.5 ± 26.7), MMP-7 from 1.5 to 31.5 ng/mL (10 ± 7.4), MMP-9 from 128.6 to 1917.5 ng/ml (647.7 ± 749.6) and MMP-10 from 0.1 to 0.6 ng/mL (0.3 ± 0.2). Non-parametric Spearman correlation analysis on the data showed significant positive relationship between KTrans and MMP-7 (r = 0.55, p < 0.01). Correlations were also found between KTrans and MMP-1 (r = 0.74, p < 0.0002) and MMP-2 (r = 0.5, p < 0.025) but the actual MMP values were not above reference ranges, limiting the interpretation of results. Statistically significant correlations between KTrans and either MMP-9 or −10 were not found. Conclusion This is the first study to show a correlation between DCE measures and MMP values in patients with a TBI. Our results support the suggestion that serum MMP-7 may be considered as a peripheral biomarker quantifying BBB dysfunction in TBI patients.
Collapse
Affiliation(s)
- Paul Nichols
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia.
| | - Javier Urriola
- Queensland Brain Institute, The University of Queensland, Australia; Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Stephanie Miller
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Tracey Bjorkman
- University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Australia
| | - Kate Mahady
- Department of Radiology, Royal Brisbane and Women's Hospital, Australia
| | - Viktor Vegh
- The Centre for Advanced Imaging, The University of Queensland, Australia; The ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Australia
| | - Craig Winter
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Australia; Faculty of Medicine, The University of Queensland, Australia; School of Clinical Sciences, Queensland University of Technology, Australia
| |
Collapse
|
26
|
Inui T, Hoffer M, Balaban CD. Mild blast wave exposure produces intensity-dependent changes in MMP2 expression patches in rat brains - Findings from different blast severities. Brain Res 2021; 1767:147541. [PMID: 34077763 DOI: 10.1016/j.brainres.2021.147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is a gelatinase with multiple functions at the neurovascular interface, including local modification of the glia limitans to facilitate access of immune cells into the brain and amyloid-beta degradation during responses to injury or disease. This study examines regional changes in immunoreactive MMP2 in the rat brain after a single mild (2.7-7.9 psi peak) or moderate (13-17.5 psi peak) blast overpressure (BOP) exposure. Immunopositive MMP2 expression was examined quantitatively in histological sections of decalcified rat heads as a marker at 2, 24, and 72 h after BOP. The MMP2 immunoreactivity was isolated to patchy deposits in brain parenchyma surrounding blood vessels. Separate analyses were conducted for the cerebellum, brain stem caudal to the thalamo-mesencephalic junction, and the cerebrum (including diencephalon). The deposits varied in number, size, staining homogeneity (standard deviation of immunopositive region), and a cumulative measure, the product of size, average intensity and number, as a function of blast intensity and time. The sequences of changes in MMP2 spots from sham control animals suggested that the mild BOP exposure differences normalized within 72 h. However, the responses to moderate exposure revealed a delayed response at 72 h in the subtentorial brain stem and the cerebrum, but not the cerebellum. Hence, local MMP2 responses may be a contextual biomarker for locally regulated responses to widely distributed brain injury foci.
Collapse
Affiliation(s)
- Takaki Inui
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Osaka Mdical College, Osaka, Japan.
| | - Michael Hoffer
- Naval Medical Center San Diego, Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, CA, USA; University of Miami, Miller School of Medicine, Department of Otolaryngology, University of Miami, FL, USA.
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Rajagopal S, Yang C, DeMars KM, Poddar R, Candelario-Jalil E, Paul S. Regulation of post-ischemic inflammatory response: A novel function of the neuronal tyrosine phosphatase STEP. Brain Behav Immun 2021; 93:141-155. [PMID: 33422638 PMCID: PMC7979508 DOI: 10.1016/j.bbi.2020.12.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
The neuron-specific tyrosine phosphatase STEP is emerging as a key neuroprotectant against acute ischemic stroke. However, it remains unclear how STEP impacts the outcome of stroke. We find that the exacerbation of ischemic brain injury in STEP deficient mice involves an early onset and sustained activation of neuronal p38 mitogen activated protein kinase, a substrate of STEP. This leads to rapid increase in the expression of neuronal cyclooxygenase-2 and synthesis of prostaglandin E2, causing change in microglial morphology to an amoeboid activated state, activation of matrix metalloproteinase-9, cleavage of tight junction proteins and extravasation of IgG into the ischemic brain. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the post-ischemic inflammatory response and attenuates brain injury. The findings identify a unique role of STEP in regulating post-ischemic neuroinflammation and further emphasizes the therapeutic potential of the STEP-mimetic in neurological disorders where inflammation contributes to brain damage.
Collapse
Affiliation(s)
| | - Changjun Yang
- University of Florida, Department of Neuroscience, USA
| | | | - Ranjana Poddar
- University of New Mexico Health Sciences Center, Department of Neurology, USA
| | | | - Surojit Paul
- University of New Mexico Health Sciences Center, Department of Neurology, USA; University of New Mexico Health Sciences Center, Department of Neuroscience, USA.
| |
Collapse
|
28
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Underly RG, Shih AY. Rapid, Nitric Oxide Synthesis-Dependent Activation of MMP-9 at Pericyte Somata During Capillary Ischemia in vivo. Front Physiol 2021; 11:619230. [PMID: 33505320 PMCID: PMC7830159 DOI: 10.3389/fphys.2020.619230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide serves essential roles in normal vascular physiology, but paradoxically contributes to vascular pathology in disease. During brain ischemia, aberrant nitric oxide levels can cause cellular injury through induction of nitrosative/oxidative stress and post-translational activation of matrix-metalloproteinase-9 (MMP-9). We recently demonstrated that brain pericyte somata were associated with very early and localized MMP-9 activation along capillaries during cerebral ischemia, leading to focal blood-brain barrier disruption. Here, we tested whether this effect was dependent upon nitric oxide production. In vivo two-photon imaging was used to directly visualize MMP9 activity using a FITC-gelatin probe and leakage of intravenous dye during photothrombotically induced capillary ischemia. Results showed that the NOS inhibitor, L-NIL, at concentrations affecting both iNOS and constitutive NOS isoforms, attenuated capillary leakage at pericyte soma-specific locations and substantially reduced FITC-gelatin cleavage. We also found that combined administration of L-NIL and anisomycin, an inhibitor of protein synthesis, led to near complete elimination of FITC-gelatin cleavage and vascular leakage. These results indicate that both nitric oxide synthase and new protein synthesis are involved in the rapid activation of MMP-9 at somata of capillary pericytes during ischemia.
Collapse
Affiliation(s)
- Robert G Underly
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 2021; 166:172-184. [PMID: 33202257 DOI: 10.1016/j.brainresbull.2020.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in pathophysiological mechanisms in neuropsychiatric diseases, including depression, anxiety, and schizophrenia (SZ), as well as neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease (AD). An imbalance or insufficient pro-brain-derived neurotrophic factor (proBDNF) transformation into mature BDNF (mBDNF) is potentially critical to the disease pathogenesis by impairing neuronal plasticity as suggested by results from many studies. Thus, promoting proBDNF transformation into mBDNF is therefore hypothesized as beneficial for the treatment of neuropsychiatric and neurodegenerative diseases. ProBDNF is proteolytically cleaved into the mBDNF by intracellular furin/proprotein convertases and extracellular proteases (plasmin/matrix metallopeptidases). This article reviews the mechanisms of the conversion of proBDNF to mBDNF and the research status of intracellular/extracellular proteolytic proteases for neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuhuan Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
31
|
Xiong LL, Chen J, Du RL, Liu J, Chen YJ, Hawwas MA, Zhou XF, Wang TH, Yang SJ, Bai X. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:1453-1459. [PMID: 33433458 PMCID: PMC8323702 DOI: 10.4103/1673-5374.303033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The mRNA expression levels of BDNF and its processing enzymes and receptors (Furin, matrix metallopeptidase 9, tissue-type plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury; however, the expression levels of these mRNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia (approval No. U12-18) on July 30, 2018.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jie Chen
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mohammed Al Hawwas
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ting-Hua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
32
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
33
|
Stevenson W, Hase Y, Wilson E, Hollins A, Hase M, Ennaceur A, Craggs L, Ihara M, Horsburgh K, Kalaria RN. Long-term effects of experimental carotid stenosis on hippocampal infarct pathology, neurons and glia and amelioration by environmental enrichment. Brain Res Bull 2020; 163:72-83. [PMID: 32707262 DOI: 10.1016/j.brainresbull.2020.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023]
Abstract
Hippocampal atrophy and pathology are common in ageing-related disorders and associated with cognitive impairment and dementia. We explored whether environmental enrichment (EE) ameliorated the pathological sequelae in the hippocampus subsequent to chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Seventy-four male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 -h exposure to EE per day (3 h) or full-time exposure to EE (full) for 3 months. Four months after surgery, the hippocampus was examined for the extent of vascular brain injury and neuronal and glial changes. Results showed that long-term BCAS induced strokes, most often in CA1 subfield, reduced 40-50 % CA1 neurons (P < 0.01) and increased microglia/macrophage in CA1-CA3 subfields (P < 0.02). Remarkably, both 3 h and full-time EE regimes attenuated hippocampal neuronal death and repressed recurrent strokes with complete prevention of larger infarcts in mice on full-time EE (P < 0.01). Full-time EE also reduced astrocytic clasmatodendrosis and microglial/macrophage activation in all CA subfields. Our results suggest that exposure to EE differentially reduces long-term hypoperfusive hippocampal damage. The implementation of even limited EE may be beneficial for patients diagnosed with vascular cognitive impairment.
Collapse
Affiliation(s)
- William Stevenson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Elle Wilson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Annabel Hollins
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mai Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abdel Ennaceur
- Department of Pharmacy, Sunderland Pharmacy School, The University of Sunderland, Sunderland, UK
| | - Lucy Craggs
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Moretti R, Caruso P. An Iatrogenic Model of Brain Small-Vessel Disease: Post-Radiation Encephalopathy. Int J Mol Sci 2020; 21:6506. [PMID: 32899565 PMCID: PMC7555594 DOI: 10.3390/ijms21186506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
We studied 114 primitive cerebral neoplasia, that were surgically treated, and underwent radiotherapy (RT), and compared their results to those obtained by 190 patients diagnosed with subcortical vascular dementia (sVAD). Patients with any form of primitive cerebral neoplasia underwent whole-brain radiotherapy. All the tumor patients had regional field partial brain RT, which encompassed each tumor, with an average margin of 2.6 cm from the initial target tumor volume. We observed in our patients who have been exposed to a higher dose of RT (30-65 Gy) a cognitive and behavior decline similar to that observed in sVAD, with the frontal dysexecutive syndrome, apathy, and gait alterations, but with a more rapid onset and with an overwhelming effect. Multiple mechanisms are likely to be involved in radiation-induced cognitive impairment. The active site of RT brain damage is the white matter areas, particularly the internal capsule, basal ganglia, caudate, hippocampus, and subventricular zone. In all cases, radiation damage inside the brain mainly focuses on the cortical-subcortical frontal loops, which integrate and process the flow of information from the cortical areas, where executive functions are "elaborated" and prepared, towards the thalamus, subthalamus, and cerebellum, where they are continuously refined and executed. The active mechanisms that RT drives are similar to those observed in cerebral small vessel disease (SVD), leading to sVAD. The RT's primary targets, outside the tumor mass, are the blood-brain barrier (BBB), the small vessels, and putative mechanisms that can be taken into account are oxidative stress and neuro-inflammation, strongly associated with the alteration of NMDA receptor subunit composition.
Collapse
Affiliation(s)
- Rita Moretti
- Department Medical, Surgical, Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy;
- Neurological Clinic, Department of Internal Medicine and Neurology, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Paola Caruso
- Department Medical, Surgical, Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy;
- Neurological Clinic, Department of Internal Medicine and Neurology, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| |
Collapse
|
35
|
Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2020; 21:ijms21186475. [PMID: 32899855 PMCID: PMC7554896 DOI: 10.3390/ijms21186475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.
Collapse
|
36
|
Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population. Cells 2020; 9:cells9081885. [PMID: 32796743 PMCID: PMC7463505 DOI: 10.3390/cells9081885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of atherosclerosis, the primary risk factor for ischemic stroke. This study aims to explore the role of mitochondrial genomic variations in ischemic stroke, and to uncover the nuclear genes involved in this relationship. Eight hundred and thirty Taiwanese patients with a history of ischemic stroke and 966 normal controls were genotyped for their mitochondrial haplogroup (Mthapg). Cytoplasmic hybrid cells (cybrids) harboring different Mthapgs were used to observe functional differences under hypoxia-ischemia. RNA sequencing (RNASeq) was conducted to identify the particularly elevated mRNA. The patient study identified an association between Mthapg F1 and risk of ischemic stroke (OR 1.72:1.27-2.34, p = 0.001). The cellular study further demonstrated an impeded induction of hypoxic inducible factor 1α in the Mthapg F1 cybrid after hypoxia-ischemia. Additionally, the study demonstrated that Mthapg F cybrids were associated with an altered mitochondrial function, including decreased oxygen consumption, higher mitochondrial ROS production, and lower mitochondrial membrane potential. Mthapg F cybrids were also noted to be prone to inflammation, with increased expression of several inflammatory cytokines and elevated matrix metalloproteinase 9. The RNASeq identified significantly elevated expressions of angiopoietin-like 4 in Mthapg F1 cybrids after hypoxia-ischemia. Our study demonstrates an association between Mthapg F and susceptibility to ischemic stroke.
Collapse
|
37
|
Omori W, Hattori K, Kajitani N, Okada-Tsuchioka M, Boku S, Kunugi H, Okamoto Y, Takebayashi M. Increased matrix metalloproteinases in cerebrospinal fluids of patients with major depressive disorder and schizophrenia. Int J Neuropsychopharmacol 2020; 23:pyaa049. [PMID: 32671384 PMCID: PMC7745248 DOI: 10.1093/ijnp/pyaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic inflammation of the brain has a pivotal role in the pathophysiology of major depressive disorder (MDD) and schizophrenia (SCZ). Matrix metalloproteinases (MMPs) are extracellular proteases involved in pro-inflammatory processes and interact with IL-6, which is increased in the cerebrospinal fluid (CSF) of patients with MDD and SCZ. However, MMPs in the CSF in patients with MDD and SCZ remains unclear. Therefore, we compared MMPs in the CSF of patients with MDD and SCZ to those of healthy controls (HC). METHODS Japanese patients were diagnosed with DSM-IV-TR and clinical symptoms were assessed with the Hamilton Rating Scale for Depression for MDD and the Positive and Negative Syndrome Scale for SCZ. CSF was obtained from MDD (n=90), SCZ (n=86) and from age- and sex-matched HC (n=106). The levels of MMPs in CSF were measured with multiplex bead-based immunoassay. RESULTS The levels of MMP-2 in CSF were higher in both MDD and SCZ than HC and were positively correlated with clinical symptomatic scores in MDD, but not in SCZ. Regardless of diagnosis, the levels of MMP-2, -7 and -10 were positively correlated with each other, and the levels of MMP-7 and -10 were higher in MDD, but not in SCZ, compared to HC. CONCLUSION Increased CSF levels of MMP-2 in MDD and SCZ may be associated with brain inflammation. State-dependent alteration of MMP-2 and activation of cascades involving MMP-2, -7, and -10 appeared to have a role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry, NHO Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center, Kure, Hiroshima, Japan
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
38
|
Cancemi P, Aiello A, Accardi G, Caldarella R, Candore G, Caruso C, Ciaccio M, Cristaldi L, Di Gaudio F, Siino V, Vasto S. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediators Inflamm 2020; 2020:8635158. [PMID: 32454796 PMCID: PMC7222606 DOI: 10.1155/2020/8635158] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/29/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.
Collapse
Affiliation(s)
- Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, “P. Giaccone” Palermo University Hospital, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, “P. Giaccone” Palermo University Hospital, Palermo, Italy
- Unit of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Laura Cristaldi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Francesca Di Gaudio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Medicon Village, Lund, Sweden
| | - Sonya Vasto
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
39
|
Lin QM, Tang XH, Lin SR, Chen BD, Chen F. Bone marrow-derived mesenchymal stem cell transplantation attenuates overexpression of inflammatory mediators in rat brain after cardiopulmonary resuscitation. Neural Regen Res 2020; 15:324-331. [PMID: 31552906 PMCID: PMC6905325 DOI: 10.4103/1673-5374.265563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggests that bone marrow-derived mesenchymal stem cell transplantation improves neurological function after cardiac arrest and cardiopulmonary resuscitation; however, the precise mechanisms remain unclear. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cell treatment on expression profiles of multiple cytokines in the brain after cardiac arrest and cardiopulmonary resuscitation. Cardiac arrest was induced in rats by asphyxia and cardiopulmonary resuscitation was initiated 6 minutes after cardiac arrest. One hour after successful cardiopulmonary resuscitation, rats were injected with either phosphate-buffered saline (control) or 1 × 106 bone marrow-derived mesenchymal stem cells via the tail vein. Serum S100B levels were measured by enzyme-linked immunosorbent assay and neurological deficit scores were evaluated to assess brain damage at 3 days after cardiopulmonary resuscitation. Serum S100B levels were remarkably decreased and neurological deficit scores were obviously improved in the mesenchymal stem cell group compared with the phosphate-buffered saline group. Brains were isolated from the rats and expression levels of 90 proteins were determined using a RayBio Rat Antibody Array, to investigate the cytokine profiles. Brain levels of the inflammatory mediators tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, macrophage inflammatory protein-3α, macrophage-derived chemokine, and matrix metalloproteinase-2 were decreased ≥ 1.5-fold, while levels of the anti-inflammatory factor interleukin-10 were increased ≥ 1.5-fold in the mesenchymal stem cell group compared with the control group. Donor mesenchymal stem cells were detected by immunofluorescence to determine their distribution in the damaged brain, and were primarily observed in the cerebral cortex. These results indicate that bone marrow-derived mesenchymal stem cell transplantation attenuates brain damage induced by cardiac arrest and cardiopulmonary resuscitation, possibly via regulation of inflammatory mediators. This experimental protocol was approved by the Institutional Animal Care and Use Committee of Fujian Medical University, China in January 2016 (approval No. 2016079).
Collapse
Affiliation(s)
- Qing-Ming Lin
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Xia-Hong Tang
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Shi-Rong Lin
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Ben-Dun Chen
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| | - Feng Chen
- Institute of Fujian Emergency Medicine, Clinical College of Fujian Medical University; Department of Emergency, Fujian Provincial Hospital, Fujian Provincial Emergency Center, Fuzhou, Fujian Province, China
| |
Collapse
|
40
|
Montaner J, Ramiro L, Simats A, Hernández-Guillamon M, Delgado P, Bustamante A, Rosell A. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76:3117-3140. [PMID: 31165904 PMCID: PMC11105215 DOI: 10.1007/s00018-019-03175-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and "a disintegrin and metalloproteinase" (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.
Collapse
Affiliation(s)
- Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| |
Collapse
|
41
|
Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell Mol Life Sci 2019; 76:3207-3228. [PMID: 31172215 PMCID: PMC6647627 DOI: 10.1007/s00018-019-03180-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of over twenty proteases, operating chiefly extracellularly to cleave components of the extracellular matrix, cell adhesion molecules as well as cytokines and growth factors. By virtue of their expression and activity patterns in animal models and clinical investigations, as well as functional studies with gene knockouts and enzyme inhibitors, MMPs have been demonstrated to play a paramount role in many physiological and pathological processes in the brain. In particular, they have been shown to influence learning and memory processes, as well as major neuropsychiatric disorders such as schizophrenia, various kinds of addiction, epilepsy, fragile X syndrome, and depression. A possible link connecting all those conditions is either physiological or aberrant synaptic plasticity where some MMPs, e.g., MMP-9, have been demonstrated to contribute to the structural and functional reorganization of excitatory synapses that are located on dendritic spines. Another common theme linking the aforementioned pathological conditions is neuroinflammation and MMPs have also been shown to be important mediators of immune responses.
Collapse
Affiliation(s)
- Anna Beroun
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Piotr Michaluk
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | - Barbara Pijet
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland
| | | | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
42
|
Nan D, Jin H, Deng J, Yu W, Liu R, Sun W, Huang Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress. FASEB J 2019; 33:10152-10164. [PMID: 31184927 DOI: 10.1096/fj.201900326r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress is essential for brain ischemia/reperfusion (I/R) injury. However, whether it contributes to I/R-induced blood-brain barrier (BBB) injury remains unclear. cilostazol exerts protective effects toward I/R-induced BBB injury, with unclear mechanisms. This study explored the potential role of ER stress in I/R-induced endothelial cell damage and determined whether the therapeutic potential of cilostazol, with respect to I/R-induced endothelial cell damage, is related to inhibition of ER stress. We found that exposing brain endothelial cells (bEnd.3) to oxygen-glucose deprivation/reoxygenation (OGD/R) significantly activated ER stress and diminished the barrier function of cell monolayers; treatment with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) or cilostazol prevented OGD/R-induced ER stress and preserved barrier function. Furthermore, OGD/R induced the expression and secretion of matrix metalloproteinase-9 and nuclear translocation of phosphorylated NF-κB. These changes were partially reversed by 4-PBA or cilostazol treatment. In vivo, 4-PBA or cilostazol significantly attenuated I/R-induced ER stress and ameliorated Evans blue leakage and tight junction loss. These results demonstrate that I/R-induced ER stress participates in BBB disruption. Targeting ER stress could be a useful strategy to protect the BBB from ischemic stroke, and cilostazol is a promising therapeutic agent for this process.-Nan, D., Jin, H., Deng, J., Yu, W., Liu, R., Sun, W., Huang, Y. Cilostazol ameliorates ischemia/reperfusion-induced tight junction disruption in brain endothelial cells by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ding Nan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
43
|
Shiao ML, Yuan C, Crane AT, Voth JP, Juliano M, Stone LLH, Nan Z, Zhang Y, Kuzmin-Nichols N, Sanberg PR, Grande AW, Low WC. Immunomodulation with Human Umbilical Cord Blood Stem Cells Ameliorates Ischemic Brain Injury - A Brain Transcriptome Profiling Analysis. Cell Transplant 2019; 28:864-873. [PMID: 31066288 PMCID: PMC6719500 DOI: 10.1177/0963689719836763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our group previously demonstrated that administration of a CD34-negative fraction of human non- hematopoietic umbilical cord blood stem cells (UCBSC) 48 h after ischemic injury could reduce infarct volume by 50% as well as significantly ameliorate neurological deficits. In the present study, we explored possible mechanisms of action using next generation RNA sequencing to analyze the brain transcriptome profiles in rats with ischemic brain injury following UCBSC therapy. Two days after ischemic injury, rats were treated with UCBSC. Five days after administration, total brain mRNA was then extracted for RNAseq analysis using Illumina Hiseq 2000. We found 275 genes that were significantly differentially expressed after ischemic injury compared with control brains. Following UCBSC treatment, 220 of the 275 differentially expressed genes returned to normal levels. Detailed analysis of these altered transcripts revealed that the vast majority were associated with activation of the immune system following cerebral ischemia which were normalized following UCBSC therapy. Major alterations in gene expression profiles after ischemia include blood-brain-barrier breakdown, cytokine production, and immune cell infiltration. These results suggest that UCBSC protect the brain following ischemic injury by down regulating the aberrant activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Maple L Shiao
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Both the authors are co-first authors in this article
| | - Ce Yuan
- 2 Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, USA.,Both the authors are co-first authors in this article
| | - Andrew T Crane
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph P Voth
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Mario Juliano
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Laura L Hocum Stone
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA
| | - Zhenghong Nan
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Ying Zhang
- 4 Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, USA
| | | | - Paul R Sanberg
- 6 Center for Brain Repair and Department of Neurosurgery, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Andrew W Grande
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA.,7 Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Both the authors are co-senior authors of this article
| | - Walter C Low
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,2 Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA.,7 Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Both the authors are co-senior authors of this article
| |
Collapse
|
44
|
Loss of interneurons and disruption of perineuronal nets in the cerebral cortex following hypoxia-ischaemia in near-term fetal sheep. Sci Rep 2018; 8:17686. [PMID: 30523273 PMCID: PMC6283845 DOI: 10.1038/s41598-018-36083-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
Hypoxia-ischaemia (HI) in term infants is a common cause of brain injury and neurodevelopmental impairment. Development of gamma-aminobutyric acid (GABA)ergic circuitry in the cerebral cortex is a critical event in perinatal brain development. Perineuronal nets (PNNs) are specialised extracellular matrix structures that surround GABAergic interneurons, and are important for their function. Herein, we hypothesised that HI would reduce survival of cortical interneurons and disrupt PNNs in a near-term fetal sheep model of global cerebral ischaemia. Fetal sheep (0.85 gestation) received sham occlusion (n = 5) or 30 min of reversible cerebral ischaemia (HI group; n = 5), and were recovered for 7 days. Expression of interneurons (glutamate decarboxylase [GAD]+; parvalbumin [PV]+) and PNNs (Wisteria floribunda agglutinin, WFA) was assessed in the parasagittal cortex by immunohistochemistry. HI was associated with marked loss of both GAD+ and PV+ cortical interneurons (all layers of the parasagittal cortex and layer 6) and PNNs (layer 6). The expression and integrity of PNNs was also reduced on surviving GAD+ interneurons. There was a trend towards a linear correlation of the proportion of GAD+ neurons that were WFA+ with seizure burden (r2 = 0.76, p = 0.0534). Overall, these data indicate that HI may cause deficits in the cortical GABAergic system involving loss of interneurons and disruption of PNNs, which may contribute to the range of adverse neurological outcomes following perinatal brain injury.
Collapse
|
45
|
Setyopranoto I, Malueka RG, Panggabean AS, Widyadharma IPE, Sadewa AH, Lamsudin R, Wibowo S. Association between Increased Matrix Metalloproteinase-9 (MMP-9) Levels with Hyperglycaemia Incidence in Acute Ischemic Stroke Patients. Open Access Maced J Med Sci 2018; 6:2067-2072. [PMID: 30559862 PMCID: PMC6290450 DOI: 10.3889/oamjms.2018.459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND: Hyperglycemia is common in acute stroke patients. Hyperglycemia can induce the production of reactive oxygen species, causing increased activity of matrix metalloproteinase-9 (MMP-9). AIM: This study aimed to determine an association between the increased levels of MMP-9 and the incidence of hyperglycemia in acute ischemic stroke patients. METHODS: This is a case-control study. Acute ischemic stroke patients admitted to the Stroke Unit of a reference hospital in Yogyakarta, Indonesia was divided into the hyperglycemic and non-hyperglycemic group. Demographic and clinical characteristics of each subject were recorded, and blood levels of MMP-9 were measured. Seventy-one patients were recruited, 40 subjects in the hyperglycemic group and 31 subjects in the non-hyperglycemic group. RESULTS: The median levels of blood MMP-9 level in the hyperglycemic and non-hyperglycemic group were 974.37 and 748.48 ng/mL, respectively, and the difference was statistically not significant (95% CI, 191.24-2849.53; p = 0.07). When the calculated cut-off point of 600.99 ng/mL was used, the proportion of patients with higher MMP-9 levels was significantly more in the hyperglycemic group compared with the ones in the non-hyperglycemic group (82.5% and 54.8%, respectively; OR = 3.88; p = 0.011). CONCLUSION: We concluded that the proportion of patients with MMP-9 level >600.99 ng/mL was significantly higher in acute ischemic stroke patients with hyperglycemia.
Collapse
Affiliation(s)
- Ismail Setyopranoto
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - I Putu Eka Widyadharma
- Department of Neurology, Faculty of Medicine, Udayana University and Sanglah General Hospital, Bali, Indonesia
| | - Ahmad Hamim Sadewa
- Department of Biochemistry, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rusdi Lamsudin
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Samekto Wibowo
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada and Dr Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
46
|
de Miguel I, Orbe J, Sánchez-Arias JA, Rodríguez JA, Salicio A, Rabal O, Belzunce M, Sáez E, Xu M, Wu W, Tan H, Ma H, Páramo JA, Oyarzabal J. Phenotypic Screening To Discover Novel Chemical Series as Efficient Antihemorrhagic Agents. ACS Med Chem Lett 2018; 9:428-433. [PMID: 29795754 DOI: 10.1021/acsmedchemlett.7b00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
In an effort to find novel chemical series as antifibrinolytic agents, we explore α-phenylsulfonyl-α-spiropiperidines bearing different zinc-binding groups (ZBGs) to target those metalloproteinases involved in the fibrinolytic process: MMP3 and MMP10. Surprisingly, all these new chemical series were inactive against these metalloproteinases; however, several new molecules retained the antifibrinolytic activity in a phenotypic functional assay using thromboelastometry and human whole blood. Further optimization led to compound 38 as a potent antifibrinolytic agent in vivo, three times more efficacious than the current standard-of-care (tranexamic acid, TXA) at 300 times lower dose. Finally, in order to decipher the underlying mode-of-action leading to this phenotypic response, an affinity-based probe 39 was successfully designed to identify the target involved in this response: a potentially unknown mechanism-of-action in the fibrinolytic process.
Collapse
Affiliation(s)
| | - Josune Orbe
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - José A. Rodríguez
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Agustina Salicio
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, P. R. China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, P. R. China
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, P. R. China
| | - Hongyu Ma
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, P. R. China
| | - José A. Páramo
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
47
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [PMID: 28842356 PMCID: PMC11884751 DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Stroke is the number one cause of neurological dysfunction in adults and has a heavy socioeconomic burden worldwide. The etiological origins of ischemic stroke and resulting pathological processes are mediated by a multifaceted cascade of molecular mechanisms that are in part modulated by posttranscriptional activity. Accumulating evidence has revealed a role for microRNAs (miRNAs) as essential mediators of posttranscriptional gene silencing in both the physiology of brain development and pathology of ischemic stroke. In this review, we compile miRNAs that have been reported to regulate various stroke risk factors and pre-disease mechanisms, including hypertension, atherosclerosis, and diabetes, followed by an in-depth analysis of miRNAs in ischemic stroke pathogenesis, such as excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis and neurogenesis. Since promoting or suppressing expression of miRNAs by specific pharmaceutical and non-pharmaceutical therapies may be beneficial to post-stroke recovery, we also highlight the potential therapeutic value of miRNAs in clinical settings.
Collapse
Affiliation(s)
- Guangwen Li
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | | | - Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 10053, China; Beijing Institute for Brain Disorders and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 10053, China.
| |
Collapse
|
48
|
Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y, Liu M. The Accuracy of Serum Matrix Metalloproteinase-9 for Predicting Hemorrhagic Transformation After Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2018; 27:1653-1665. [PMID: 29598905 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hemorrhagic transformation is a serious complication of acute ischemic stroke, which may cause detrimental outcomes and the delayed use of anticoagulation therapy. Early predicting and identifying the patients at high risk of hemorrhagic transformation before clinical deterioration occurrence become a research priority. OBJECTIVE To study the value of plasma matrix metalloproteinase-9 predicting hemorrhagic transformation after ischemic stroke. METHODS We searched PubMed, Ovid, Cochrane Library, and other 2 Chinese databases to identify literatures published up to September 2017 and performed meta-analysis by STATA (version 12.0, StataCorp LP, College Station, TX). RESULTS Twelve studies incorporating 1492 participants were included and 7 studies were included in the quantitative statistical analysis. The pooled sensitivity was 85% (95% confidence interval [CI]: 75%, 91%) and the pooled specificity was 79% (95% CI: 67%, 87%). The area under the receiver operating characteristic curve was .89 (95% CI .86, .91). Significant heterogeneity for all estimates value existed (all the P value < .05 and I2 > 50%). There is no threshold effect with P value greater than .05 of the correlation coefficient. Meta-regression and subgroup analysis showed cut-off value and hemorrhagic subtype contributed to heterogeneity. Deeks' funnel plot indicated no significant publication bias for 7 quantitative analysis studies. CONCLUSIONS Matrix metalloproteinase-9 has high predictive value for hemorrhagic transformation after acute ischemic stroke. It may be useful to test matrix metalloproteinase-9 to exclude patients at low risk of hemorrhage for precise treatment in the future clinical work.
Collapse
Affiliation(s)
- Lu Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chenchen Wei
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Linghui Deng
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China; West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Ziqiong Wang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengyuan Song
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yao Xiong
- Department of Neurology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Jana S, Singh SK. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. J Biomol Struct Dyn 2018; 37:944-965. [DOI: 10.1080/07391102.2018.1444510] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K. Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
50
|
Investigation of Mature BDNF and proBDNF Signaling in a Rat Photothrombotic Ischemic Model. Neurochem Res 2018; 43:637-649. [DOI: 10.1007/s11064-017-2464-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
|