1
|
Geissler CF, Frings C, Domes G. The effects of stress on working-memory-related prefrontal processing: an fNIRS study. Stress 2025; 28:2472067. [PMID: 40034019 DOI: 10.1080/10253890.2025.2472067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Acute stress causes a shift from executive to automated behavior. A key executive function suffering from this shift is working memory. Working memory is mainly negatively affected in the first 10 and more than 25 minutes after acute stress. These phases coincide with increased central levels of noradrenaline and cortisol. Increased levels of both hormones can cause a relative deactivation in prefrontal areas related to working memory processing. However, so far, there is little research that investigates the complete relationship between acute stress and resulting changes in stress hormones, neural activation, and working memory processing, over time. In this study, we used functional near-infrared spectroscopy to measure prefrontal activity during an nback task in a stress (28 subjects, 7 female/21 male) and a control group (28 subjects, 10 female/18 male) once (20 minutes) before and twice (4 and 24 minutes) after a socially evaluated cold pressor test or a warm water control condition. Additionally, we regularly measured changes in salivary cortisol and α-amylase (a correlate of central noradrenaline) during the experiment. While salivary cortisol was increased starting 14 minutes after acute stress, no effect of stress on salivary α-amylase or working memory performance was found. On a neural level, we found a marginally stronger decline in 3-back-related prefrontal activity from the first to the third measurement point in the stress than in the control group. These results present tentative evidence for a negative effect of acute stress on working-memory-related prefrontal processing mediated by central cortisol levels.
Collapse
Affiliation(s)
| | - Christian Frings
- Institute for Cognitive & Affective Neuroscience, Trier University, Trier, Germany
- Department of Cognitive Psychology, Trier University, Trier, Germany
| | - Gregor Domes
- Institute for Cognitive & Affective Neuroscience, Trier University, Trier, Germany
- Department of Biological and Clinical Psychology, Trier University, Trier, Germany
| |
Collapse
|
2
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Braunwarth JI, Ferdinand NK. The impact of emotional feedback in learning easy and difficult tasks - an ERP study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01284-2. [PMID: 40148734 DOI: 10.3758/s13415-025-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Learning from the emotional reaction of others is crucial in our everyday lives. We assumed that additional emotional information could be especially beneficial, when a task is difficult and the limits of working memory capacity are reached. For this reason, we examined whether a potential benefit of emotional feedback during reinforcement learning is dependent on working memory load. In addition to learning performance, we analysed the neural mechanisms of reinforcement learning by examining two event-related potentials (ERPs): feedback-related negativity (FRN) and P3b. Participants were divided into two difficulty groups (with n = 21 in the difficult and n = 22 in the easy group), performing a learning task with emotional or non-emotional feedback. Task difficulty was manipulated by varying the number of stimulus-response associations. Participants' showed learning in all conditions. Emotional feedback led to increased accuracy and decreased reaction times in both groups. However, this benefit occurred earlier in the easy condition. The detection of unexpected events, as reflected in the peak-to-peak FRN, as well as working memory updating, as reflected in the P3b, were enhanced after emotional in contrast to non-emotional feedback for both groups. In contrast, task difficulty had no effect on the detection of unexpected events but led to a P3b that was more evenly distributed over the scalp, which could indicate that additional frontal resources were recruited to perform the difficult task. Our results suggest that working memory load and emotional information independently influence feedback processing without interacting.
Collapse
|
4
|
Sato SD, Shah VA, Fettrow T, Hall KG, Tays GD, Cenko E, Roy A, Clark DJ, Ferris DP, Hass CJ, Manini TM, Seidler RD. Resting state brain network segregation is associated with walking speed and working memory in older adults. Neuroimage 2025; 310:121155. [PMID: 40101865 DOI: 10.1016/j.neuroimage.2025.121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m walk test at participants' self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular) was higher in older adults with higher physical function compared to older adults with lower physical function. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. The interaction of left sensorimotor network segregation and age groups was associated with higher working memory function. Higher left sensorimotor, left vestibular, right anterior cingulate cortex, and interaction of left anterior cingulate cortex network segregation and age groups were associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.
Collapse
Affiliation(s)
- Sumire D Sato
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA.
| | - Valay A Shah
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Tyler Fettrow
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA; NASA Langley Research Center, Hampton, VA, USA
| | - Kristina G Hall
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Grant D Tays
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Fukumoto Y, Bizen H, Todo M, Kimura D, Suzuki T. Age bias in changes in finger dexterity based on brain activation and spinal motor nerve excitability induced by motor imagery practice. Neuroscience 2025; 568:408-418. [PMID: 39880299 DOI: 10.1016/j.neuroscience.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.0 ± 0.5 years) and eight elderly (mean age 69.5 ± 2.3 years) subjects of matched sex ratio at rest and during motor imagery. Purdue Pegboard scores were also measured before and after motor imagery, and changes in hand dexterity were assessed. The results showed that motor imagery improved hand dexterity without an age bias, and in a similar trend, spinal motor nerve excitability increased during motor imagery. Functional brain connectivity analysis showed the formation of a working memory network in both groups. However, in the analysis of single brain region activation, the young group, but not the elderly group, showed increased activity in the supplementary motor cortex during motor imagery. In addition, regardless of age-related changes, causal coupling indicated the supplementary motor cortex was associated with the changes of spinal motor nerve excitability. Although the changes in brain activation during motor imagery were influenced by age, motor imagery-induced improvements in hand dexterity are also expected in the elderly. Furthermore, changes in spinal motor nerve excitability may be useful in determining the qualitative aspects of motor imagery.
Collapse
Affiliation(s)
- Yuki Fukumoto
- Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.
| | - Hiroki Bizen
- Kansai University of Health Sciences, Faculty of Health Sciences, Department of Occupational Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan
| | - Marina Todo
- Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan
| | - Daisuke Kimura
- Nagoya Women's University, Faculty of Medical Science, Department of Occupational Therapy, 3-40 Shioji Mizuho Nagoya, Aichi 467-8610 Japan
| | - Toshiaki Suzuki
- Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan
| |
Collapse
|
6
|
Deschwanden PF, Hotz I, Mérillat S, Jäncke L. Functional connectivity-based compensation in the brains of non-demented older adults and the influence of lifestyle: A longitudinal 7-year study. Neuroimage 2025; 308:121075. [PMID: 39914511 DOI: 10.1016/j.neuroimage.2025.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION The aging brain is characterized by structural decline and functional connectivity changes towards dedifferentiation, leading to cognitive decline. To some degree, the brain can compensate for structural deterioration. In this study, we aim to answer two questions: Where can we detect longitudinal functional connectivity-based compensation in the brains of cognitively healthy older adults? Can lifestyle predict the strength of this functional compensation? METHODS Using longitudinal data from 228 cognitively healthy older adults, we analyzed five measurement points over 7 years. Network-based statistics and latent growth modeling were employed to examine changes in structural and functional connectivity, as well as potential functional compensation for declines in processing speed and memory. Random forest and linear regression were used to predict the amplitude of compensation based on demographic, biological, and lifestyle factors. RESULTS Both functional and structural connectivity showed increases and decreases over time, depending on the specific connection and measure. Increased functional connectivity of 27 connections was linked to smaller declines in cognition. Five of those connections showed simultaneous decreases in fractional anisotropy, indicating direct compensation. The degree of compensation depended on the type of compensation and the cognitive ability, with demographic, biological, and lifestyle factors explaining 3.4-8.9% of the variance. CONCLUSIONS There are widespread changes in structural and functional connectivity in older adults. Despite the trend of dedifferentiation in functional connectivity, we detected both direct and indirect compensatory subnetworks that mitigated the decline in cognitive performance. The degree of compensation was influenced by demographic, biological, and lifestyle factors.
Collapse
Affiliation(s)
- Pascal Frédéric Deschwanden
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland.
| | - Isabel Hotz
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Susan Mérillat
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland; Healthy Longevity Center, University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Lutz Jäncke
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| |
Collapse
|
7
|
Suárez-Pellicioni M, McDonough IM. Separating neurocognitive mechanisms of maintenance and compensation to support financial ability in middle-aged and older adults: The role of language and the inferior frontal gyrus. Arch Gerontol Geriatr 2025; 130:105705. [PMID: 39616875 DOI: 10.1016/j.archger.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
This study investigated the role of brain regions involved in arithmetic processing in explaining individual differences in financial ability in 67 50-74-year-old cognitively normal adults. Structural integrity and resting-state functional connectivity measures were collected in the MRI scanner. Outside the scanner, participants performed financial ability and other cognitive tasks, and answered questionnaires to determine dementia risk, and financial risk and protective factors. Regions of interest involved in arithmetic processing were defined, focusing on language- and quantity-processing areas in temporo-frontal and parieto-frontal cortices, respectively. Our results showed that structural integrity and functional connectivity in brain regions associated with arithmetic retrieval were positively associated with financial ability, with language skill mediating left IFG structural integrity and financial ability. Connectivity patterns suggested that reliance on quantity mechanisms (i.e. calculation) was associated with poorer financial ability. Analyses revealed that reliance on these brain mechanisms did not depend on participants' age or risk of dementia and that protective factors such as household income or financial literacy supported the maintenance of connectivity related to financial abilities.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, BOX 870348, Tuscaloosa, AL 35487, USA
| | - Ian M McDonough
- Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| |
Collapse
|
8
|
Hennessy S, Janata P, Ginsberg T, Kaplan J, Habibi A. Music-Evoked Nostalgia Activates Default Mode and Reward Networks Across the Lifespan. Hum Brain Mapp 2025; 46:e70181. [PMID: 40083173 PMCID: PMC11907061 DOI: 10.1002/hbm.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
Nostalgia is a mixed emotion that is often evoked by music. Nostalgic music may induce temporary improvements in autobiographical memory in individuals with cognitive decline. However, the neural mechanism underlying music-evoked nostalgia and its associated memory improvements is unclear. With the ultimate goal of understanding how nostalgia-evoking music may help retrieve autobiographical memories in individuals with cognitive impairment, we first sought to understand the neural underpinnings of these processes in healthy younger and older adults. Methodological constraints, including the lack of personally tailored and experimentally controlled stimuli, have impeded our understanding of this mechanism. Here, we utilized an innovative machine-learning-based method to construct three categories of songs, all matched for musical features: (1) personalized nostalgic, (2) familiar non-nostalgic, and (3) unfamiliar non-nostalgic. In 57 participants (29 aged 18-35; 28 aged 60 and older), we investigated the functional neural correlates of music-evoked nostalgia using fMRI. Four main findings emerged: (1) Listening to nostalgic music, more than familiar non-nostalgic or unfamiliar music, was associated with bilateral activity in the default mode network, salience network, reward network, medial temporal lobe, and supplementary motor regions, (2) Psychophysiological interaction (PPI) models indicated that listening to nostalgic music involved increased functional connectivity of self-referential (posteromedial cortex) and affect-related regions (insula), (3) Older adults had stronger BOLD signals than younger adults in nostalgia-related regions during nostalgic listening, (4) While the BOLD response to nostalgic music in younger adults was associated with trait-level factors of nostalgia proneness and cognitive ability, the response in older adults was related to affective responses to the music. Overall, our findings serve as a foundation for understanding the neural basis of music-evoked nostalgia and its potential use in future clinical interventions.
Collapse
Affiliation(s)
- Sarah Hennessy
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Petr Janata
- Center for Mind and BrainUniversity of California DavisDavisCaliforniaUSA
| | - Talia Ginsberg
- Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jonas Kaplan
- Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Assal Habibi
- Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Gijbels L, Lee AKC, Lalonde K. Integration of audiovisual speech perception: From infancy to older adults. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:1981-2000. [PMID: 40126041 DOI: 10.1121/10.0036137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
One of the most prevalent and relevant social experiences for humans - engaging in face-to-face conversations - is inherently multimodal. In the context of audiovisual (AV) speech perception, the visual cues from the speaker's face play a crucial role in language acquisition and in enhancing our comprehension of incoming auditory speech signals. Nonetheless, AV integration reflects substantial individual differences, which cannot be entirely accounted for by the information conveyed through the speech signal or the perceptual abilities of the individual. These differences illustrate changes in response to experience with auditory and visual sensory processing across the lifespan, and within a phase of life. To improve our understanding of integration of AV speech, the current work offers a perspective for understanding AV speech processing in relation to AV perception in general from a prelinguistic and a linguistic viewpoint, and by looking at AV perception through the lens of humans as Bayesian observers implementing a causal inference model. This allowed us to create a cohesive approach to look at differences and similarities of AV integration from infancy to older adulthood. Behavioral and neurophysiological evidence suggests that both prelinguistic and linguistic mechanisms exhibit distinct, yet mutually influential, effects across the lifespan within and between individuals.
Collapse
Affiliation(s)
- Liesbeth Gijbels
- University of Washington, Department of Speech and Hearing Sciences, Seattle, Washington 98195, USA
- University of Washington, Institute for Learning and Brain Sciences, Seattle, Washington 98915, USA
| | - Adrian K C Lee
- University of Washington, Department of Speech and Hearing Sciences, Seattle, Washington 98195, USA
- University of Washington, Institute for Learning and Brain Sciences, Seattle, Washington 98915, USA
| | - Kaylah Lalonde
- Boys Town National Research Hospital, Center for Hearing Research, Omaha, Nebraska 68131, USA
| |
Collapse
|
10
|
Vergani AA, Mazzeo S, Moschini V, Burali R, Lassi M, Amato LG, Carpaneto J, Salvestrini G, Fabbiani C, Giacomucci G, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Sorbi S, Bessi V, Grippo A, Mazzoni A. Event-related potential markers of subjective cognitive decline and mild cognitive impairment during a sustained visuo-attentive task. Neuroimage Clin 2025; 45:103760. [PMID: 40023055 PMCID: PMC11919406 DOI: 10.1016/j.nicl.2025.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease stages lack well-defined electrophysiological correlates, creating a critical gap in the identification of robust biomarkers for early diagnosis and intervention. In this study, we analysed event-related potentials (ERPs) recorded during a sustained visual attention task in a cohort of 178 individuals (119 SCD, 40 MCI, and 19 healthy subjects, HS) to investigate sensory and cognitive processing alterations associated with these conditions. SCD patients exhibited significant attenuation in both sensory (P1, N1, P2) and cognitive (P300, P600, P900) components compared to HS, with cognitive components showing performance-related gains. In contrast, MCI patients did not show a further decrease in any ERP component compared to SCD. Instead, they exhibited compensatory enhancements, reversing the downward trend observed in SCD. This compensation resulted in a non-monotonic pattern of ERP alterations across clinical conditions, suggesting that MCI patients engage neural mechanisms to counterbalance sensory and cognitive deficits. These findings support the use of electrophysiological markers in support of medical decision-making, enhancing personalized prognosis and guiding targeted interventions in cognitive decline.
Collapse
Affiliation(s)
- A A Vergani
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - S Mazzeo
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy; IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - V Moschini
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - R Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - M Lassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - L G Amato
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - J Carpaneto
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - G Salvestrini
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - C Fabbiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - G Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - C Morinelli
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - F Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - B Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Padiglioni
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - S Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - V Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy.
| | - A Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - A Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| |
Collapse
|
11
|
Carpenter CM, Mullin HA, Cwiek A, Carter E, Vervoordt S, Lan X, Dennis NA, Rabinowitz A, Venkatesan UM, Hillary FG. Hippocampal network connectivity and episodic memory in individuals aging with traumatic brain injury. Brain Imaging Behav 2025:10.1007/s11682-025-00979-x. [PMID: 39982608 DOI: 10.1007/s11682-025-00979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Aging is associated with marked declines in episodic memory corresponding with decreased volume in studies of morphology and reduced network response in studies of functional connectomics. Furthermore, recent research has demonstrated that reductions in resting state network connectivity are related to declines in episodic memory, specifically in the default mode and frontoparietal cortical networks. Additionally, the interactive effects of aging and traumatic brain injury (TBI) are associated with increased risk for neurodegeneration and episodic memory impairments. However, there is a gap in the literature examining episodic memory and hippocampal-subcortical resting state connectivity differences related to aging with and without TBI. The current work aims to investigate episodic memory differences between older adults with TBI (N = 45) and older adults with no history of TBI (N = 28) and how that relates to hippocampal-subcortical network differences at rest. We demonstrate a positive relationship between default mode and frontoparietal network connectivity and memory performance differentially between those aging with and without moderate-severe TBI (msTBI). Additionally, we demonstrate that reliability in the strength of resting state functional connectivity between parcellations is weakest among connections to the hippocampus compared to other cortical connections but is generally reliable across other connections.
Collapse
Affiliation(s)
| | - Hollie A Mullin
- The Pennsylvania State University, State College, University Park, USA
| | - Andrew Cwiek
- The Pennsylvania State University, State College, University Park, USA
| | - Emily Carter
- The Pennsylvania State University, State College, University Park, USA
| | | | - Xinhui Lan
- The Pennsylvania State University, State College, University Park, USA
| | - Nancy A Dennis
- The Pennsylvania State University, State College, University Park, USA
| | - Amanda Rabinowitz
- Moss Rehabilitation Research Institute, Philadelphia, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Philadelphia, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, USA
| | - Frank G Hillary
- The Pennsylvania State University, State College, University Park, USA.
| |
Collapse
|
12
|
Paitel ER, Otteman CBD, Polking MC, Licht HJ, Nielson KA. Functional and effective EEG connectivity patterns in Alzheimer's disease and mild cognitive impairment: a systematic review. Front Aging Neurosci 2025; 17:1496235. [PMID: 40013094 PMCID: PMC11861106 DOI: 10.3389/fnagi.2025.1496235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Alzheimer's disease (AD) might be best conceptualized as a disconnection syndrome, such that symptoms may be largely attributable to disrupted communication between brain regions, rather than to deterioration within discrete systems. EEG is uniquely capable of directly and non-invasively measuring neural activity with precise temporal resolution; connectivity quantifies the relationships between such signals in different brain regions. EEG research on connectivity in AD and mild cognitive impairment (MCI), often considered a prodromal phase of AD, has produced mixed results and has yet to be synthesized for comprehensive review. Thus, we performed a systematic review of EEG connectivity in MCI and AD participants compared with cognitively healthy older adult controls. Methods We searched PsycINFO, PubMed, and Web of Science for peer-reviewed studies in English on EEG, connectivity, and MCI/AD relative to controls. Of 1,344 initial matches, 124 articles were ultimately included in the systematic review. Results The included studies primarily analyzed coherence, phase-locked, and graph theory metrics. The influence of factors such as demographics, design, and approach was integrated and discussed. An overarching pattern emerged of lower connectivity in both MCI and AD compared to healthy controls, which was most prominent in the alpha band, and most consistent in AD. In the minority of studies reporting greater connectivity, theta band was most commonly implicated in both AD and MCI, followed by alpha. The overall prevalence of alpha effects may indicate its potential to provide insight into nuanced changes associated with AD-related networks, with the caveat that most studies were during the resting state where alpha is the dominant frequency. When greater connectivity was reported in MCI, it was primarily during task engagement, suggesting compensatory resources may be employed. In AD, greater connectivity was most common during rest, suggesting compensatory resources during task engagement may already be exhausted. Conclusion The review highlighted EEG connectivity as a powerful tool to advance understanding of AD-related changes in brain communication. We address the need for including demographic and methodological details, using source space connectivity, and extending this work to cognitively healthy older adults with AD risk toward advancing early AD detection and intervention.
Collapse
Affiliation(s)
- Elizabeth R. Paitel
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Christian B. D. Otteman
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Mary C. Polking
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Henry J. Licht
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Kristy A. Nielson
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Olivier JM, Srokova S, Hill PF, Rugg MD. Moderating effects of cortical thickness, volume, and memory performance on age differences in neural reinstatement of scene information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636759. [PMID: 39975164 PMCID: PMC11839063 DOI: 10.1101/2025.02.06.636759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The strength of neural reinstatement, a correlate of episodic memory retrieval, reportedly reflects the amount and fidelity of mnemonic content and is weaker in older than younger adults, especially for scene memoranda. Given evidence that age-related declines in cortical thickness and volume contribute to age-related cognitive decline, we analyzed fMRI data acquired from healthy young and older adults to examine relationships between cortical thickness, cortical volume, age, and scene- related reinstatement in the parahippocampal place area (PPA) and medial place area (MPA), two cortical regions implicated in scene processing. A 'reinstatement index' was estimated from fMRI data collected during tests of source memory for scene images, and multiple regression analyses were employed to examine the effects of the variables of interest on scene reinstatement. There were robust age differences in reinstatement, cortical thickness, and cortical volume. In both regions of interest, cortical volume fully mediated the effects of age on reinstatement. Additionally, PPA reinstatement strength predicted source memory performance independently of cortical volume or age. These findings suggest that age differences in scene reinstatement are mediated by cortical volume and that memory performance and cortical volume are associated with unique components of variance in reinstatement strength.
Collapse
|
14
|
Sato SD, Shah VA, Fettrow T, Hall KG, Tays GD, Cenko E, Roy A, Clark DJ, Ferris DP, Hass CJ, Manini TM, Seidler RD. Resting state brain network segregation is associated with walking speed and working memory in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.07.592861. [PMID: 38766046 PMCID: PMC11100712 DOI: 10.1101/2024.05.07.592861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m-walk test at participants' self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular) was higher in older adults with higher physical function compared to older adults with lower physical function. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. The interaction of left sensorimotor network segregation and age groups was associated with higher working memory function. Higher left sensorimotor, left vestibular, right anterior cingulate cortex, and interaction of left anterior cingulate cortex network segregation and age groups were associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.
Collapse
Affiliation(s)
- Sumire D Sato
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Valay A Shah
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Tyler Fettrow
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
- NASA Langley Research Center, Hampton, VA, USA
| | - Kristina G Hall
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Grant D Tays
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Erta Cenko
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - David J Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| | - Todd M Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Kinesiology and Physiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2025; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
16
|
Yu L, Chen X, He Y, Hong X, Yu S. Age-Specific Functional Connectivity Changes After Partial Sleep Deprivation Are Correlated With Neurocognitive and Molecular Signatures. CNS Neurosci Ther 2025; 31:e70272. [PMID: 39932149 PMCID: PMC11811888 DOI: 10.1111/cns.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND This study aimed to investigate age-specific alterations in functional connectivity after sleep deprivation (SD) and decode brain functional changes from neurocognitive and transcriptomic perspectives. METHODS Here, we examined changes in global and regional graph measures, particularly regional network strength (RNS), in 41 young participants and 36 older participants with normal sleep and after 3 h of SD. Additionally, by utilizing cognitive probabilistic maps from Neurosynth and gene expression data from the Allen Human Brain Atlas, we applied partial least-squares regression analysis to identify the neurocognitive and transcriptional correlates of these RNS changes. RESULTS After SD, older participants exhibited decreased RNS in the default mode network (DMN) and dorsal attention network, with increased RNS in the visual network. Young participants also showed decreased RNS in the DMN, notably in the left inferior parietal lobe, left dorsolateral prefrontal cortex, and left posterior cingulate cortex. In young participants, SD-induced RNS changes significantly correlated with cognitive processes such as "attention," "cognitive control," and "working memory," while in older participants, they correlated with "learning," "focus," and "decision." Gene-category enrichment analysis indicated that specific genes related to signal transduction, ion channels, and immune signaling might influence SD pathophysiology by affecting functional connectivity in young participants. CONCLUSIONS This study elucidates shared and age-specific brain functional network alterations associated with SD, providing a neurocognitive and molecular basis for understanding the underlying pathophysiology.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Xuanyi Chen
- School of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuqi He
- School of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaojuan Hong
- School of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM)Ministry of EducationChengduChina
| | - Siyi Yu
- School of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM)Ministry of EducationChengduChina
| |
Collapse
|
17
|
Li G, Xia H, Teng G, Chen A. The neural correlates of physical exercise-induced general cognitive gains: A systematic review and meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2025; 169:106008. [PMID: 39798632 DOI: 10.1016/j.neubiorev.2025.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The general-domain effect of physical exercise-induced cognitive gains in behavioral outcomes is well-documented, but a consensus on the neural correlates remains elusive. This meta-analysis aims to identify the neural correlates of physical exercise-induced general cognitive gains by examining task-related brain activation consistently modulated by physical exercise and its relationship to those gains. Our analysis of 52 studies with 1503 participants shows that physical exercise enhances cognitive task performance (Hedges' g = 0.271) and consistently increases task-related brain activation primarily in the bilateral precuneus. These increases in task-related brain activation correlate positively with cognitive task performance improvements improvements. Notably, physical exercise intensity, adherence, and social environment significantly modulate task-related brain activation changes induced by physical exercise. This meta-analysis offers an unprecedented comprehensive assessment of how physical exercise modulates task-related brain activation changes, providing neural evidence to support the general-domain effects on cognitive function induced by physical exercise.
Collapse
Affiliation(s)
- Geng Li
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China.
| | - Haishuo Xia
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China; 7T Magnetic Resonance Translational Medicine Research Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Gesi Teng
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China.
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China; Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai, China.
| |
Collapse
|
18
|
Alyan E, Arnau S, Getzmann S, Reiser JE, Karthaus M, Wascher E. Age-related differences in eye blink-related neural activity and functional connectivity during driving. Heliyon 2025; 11:e41164. [PMID: 39758399 PMCID: PMC11699334 DOI: 10.1016/j.heliyon.2024.e41164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Driving is a complex task that requires effective neural processing and coordination, which degrade with aging. Previous studies suggest that age-related changes in cognitive and motor functions can influence driving performance. Herein, we investigated age-related differences and differences between reactive and proactive driving in blink behavior-related potentials, and source-level functional connectivity. Seventy-six subjects participated in two experiments with reactive (19 young, 28 older) and proactive (16 young, 13 older) driving scenarios, consisting of a lane-keeping task with either varying levels of crosswind or curve road, respectively. While blink rate analysis revealed no significant age or driving condition effects, blink duration was notably longer in younger participants. Also, significant age effects were observed in blink-related potentials, mainly in the frontal N2 and occipital P0 and P2 components, with higher amplitudes in younger participants, signifying more efficient neural processing. The parietal N2 component showed significant age and interaction effects, with older individuals showing higher amplitudes in reactive conditions, potentially due to increased cognitive effort and attentional demands. Furthermore, functional connectivity analysis revealed that aging most significantly affects the visual network in the beta band. More specifically, younger participants showed an increase in the clustering coefficient and degrees of the networks, reflecting more robust neural network integration. This pattern of higher connectivity measures in younger participants was also observed in the default mode, control, and limbic networks. Conversely, the dorsal attention network in the theta band showed an increased degree and clustering coefficient in older adults, which could indicate a compensatory mechanism for maintaining cognitive demands. This study highlights the impact of aging on neural activity and connectivity characteristics during driving and emphasizes the requirement of age-tailored interventions, aimed to improve driving safety.
Collapse
Affiliation(s)
- Emad Alyan
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Stefan Arnau
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Stephan Getzmann
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Julian Elias Reiser
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Melanie Karthaus
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| |
Collapse
|
19
|
Mooraj Z, Salami A, Campbell KL, Dahl MJ, Kosciessa JQ, Nassar MR, Werkle-Bergner M, Craik FIM, Lindenberger U, Mayr U, Rajah MN, Raz N, Nyberg L, Garrett DD. Toward a functional future for the cognitive neuroscience of human aging. Neuron 2025; 113:154-183. [PMID: 39788085 DOI: 10.1016/j.neuron.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age. Crucially, however, neither is able to capture brain activity representing specific cognitive processes as they occur. In contrast, task-based functional imaging allows a direct probe into how aging affects real-time brain-behavior associations in any cognitive domain, from perception to higher-order cognition. Here, we outline why task-based functional neuroimaging must move center stage to better understand the neural bases of cognitive aging. In turn, we sketch a multi-modal, behavior-first research framework that is built upon cognitive experimentation and emphasizes the importance of theory and longitudinal design.
Collapse
Affiliation(s)
- Zoya Mooraj
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet & Stockholm University, 17165 Stockholm, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Julian Q Kosciessa
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, the Netherlands
| | - Matthew R Nassar
- Robert J. & Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Fergus I M Craik
- Rotman Research Institute at Baycrest, Toronto, ON M6A 2E1, Canada
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - M Natasha Rajah
- Department of Psychiatry, McGill University Montreal, Montreal, QC H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Medical and Translational Biology, Umeå University, 90187 Umeå, Sweden; Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden
| | - Douglas D Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK.
| |
Collapse
|
20
|
Festini SB, Kegler G, Reuter-Lorenz PA. Hemispheric organization of the brain and its prevailing impact on the neuropsychology of aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:169-180. [PMID: 40074395 DOI: 10.1016/b978-0-443-15646-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Age differences in brain hemispheric asymmetry have figured prominently in the neuropsychology of aging. Here, a broad overview of these empirical and theoretical approaches is provided that dates back to the 1970s and continues to the present day. Methodological advances often brought new evidence to bear on older ideas and promoted the development of new ones. The deficit-focused hypothesis of accelerated right-hemisphere aging is reviewed first, followed by subsequent accounts pertaining to compensation, reserve, and their potential hemispheric underpinnings. Structural and functional neuroimaging reveal important and consistent age-related patterns, including indications of reduced brain asymmetry in older relative to younger adults. While not mutually exclusive, different neuropsychologic theories of aging offer divergent interpretations of such patterns, including age-related reductions in neural specificity (dedifferentiation) and age-related compensatory bilateral recruitment [e.g., Hemispheric Asymmetry Reduction in Older Adults (HAROLD); Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH)]. Further, recent neurobehavioral evidence suggests that the right hemisphere plays a unique role in resisting the neurocognitive effects of aging via brain reserve. Future advances in human cognitive neuroscience, including neurostimulation methods for targeted interventions, along with analytic techniques informed by machine learning promise new insights into the neuropsychology of aging and the role of hemispheric processes in resilience and decline.
Collapse
|
21
|
Derya D, Wallraven C. Resting State Network Connectivity Patterns in Early Aging: Late Middle-age Adults Contrasted with Young Adults. Exp Neurobiol 2024; 33:282-294. [PMID: 39806942 PMCID: PMC11738472 DOI: 10.5607/en24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis. Using rs-fMRI, we compared middle-aged adults (n=30) with younger adults (n=70) via an ROI-to-ROI correlation analysis, showing lower connectivity between the cerebellar (posterior) network and the salience network (left rostral prefrontal cortex), as well as between the salience network and the visual network (occipital regions) in the middle-aged group. This reduced connectivity suggests that aging affects how these brain regions synchronize and process information, potentially impairing the integration of cognitive, sensory, and emotional inputs. Additional within-group analyses showed that middle-aged adults exhibited weakened connections between networks but increased connections within the dorsal attention, fronto-parietal, visual, and default mode networks. In contrast, younger adults demonstrated enhanced connections between networks. These results underscore the role of the cerebellar, salience, and visual networks in brain aging and reveal distinct connectivity patterns associated with signs of early aging.
Collapse
Affiliation(s)
- Dilara Derya
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
- Department of Artificial Intelligence, Korea University, Seoul 02841, Korea
| |
Collapse
|
22
|
Zheng H, Xiao H, Zhang Y, Jia H, Ma X, Gan Y. Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning. Clin Neurophysiol 2024; 170:110-119. [PMID: 39708531 DOI: 10.1016/j.clinph.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/22/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify distinct FC patterns as potential biomarkers for differential diagnosis. METHODS Resting-state EEG data from 36 AD patients, 23 FTD patients, and 29 healthy controls were analyzed using time-frequency and bandpass filtering FC metrics. These metrics were estimated through Pearson's correlations, mutual information, and phase lag index, and served as input features in a support vector machine (SVM) with Leave-One-Out Cross-Validation for group classification. RESULTS Both AD and FTD exhibited significantly decreased FC in the theta band within the frontal lobe and increased FC in the beta band in the posterior regions. Additionally, a decreased FC in central regions at theta band was observed uniquely in AD, but not in FTD. SVM classification accuracies reached 95% for AD and 86% for FTD. CONCLUSIONS High classification accuracies underscore the potential of these FC alterations as reliable biomarkers for AD and FTD. SIGNIFICANCE This is the first study to integrate time-frequency and bandpass filtering FC metrics to reveal brain network alterations in AD and FTD, providing new insights for diagnostics and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Huang Zheng
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| | - Han Xiao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| | - Yinan Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Haozhe Jia
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Xing Ma
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yiqun Gan
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
| |
Collapse
|
23
|
Mulholland MM, Stuifbergen A, De La Torre Schutz A, Franco Rocha OY, Blayney DW, Kesler SR. Evidence of compensatory neural hyperactivity in a subgroup of breast cancer survivors treated with chemotherapy and its association with brain aging. Front Aging Neurosci 2024; 16:1421703. [PMID: 39723153 PMCID: PMC11668692 DOI: 10.3389/fnagi.2024.1421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Chemotherapy-related cognitive impairment (CRCI) remains poorly understood in terms of the mechanisms of cognitive decline. Neural hyperactivity has been reported on average in cancer survivors, but it is unclear which patients demonstrate this neurophenotype, limiting precision medicine in this population. Methods We evaluated a retrospective sample of 80 breast cancer survivors and 80 non-cancer controls, aged 35-73, for which we had previously identified and validated three data-driven, biological subgroups (biotypes) of CRCI. We measured neural activity using the z-normalized percent amplitude of fluctuation from resting-state functional magnetic resonance imaging (MRI). We tested established, quantitative criteria to determine whether hyperactivity can accurately be considered compensatory. We also calculated the brain age gap by applying a previously validated algorithm to anatomic MRI. Results We found that neural activity differed across the three CRCI biotypes and controls (F = 13.5, p < 0.001), with Biotype 2 demonstrating significant hyperactivity compared to the other groups (p < 0.004, corrected), primarily in prefrontal regions. Alternatively, Biotypes 1 and 3 demonstrated significant hypoactivity (p < 0.02, corrected). Hyperactivity in Biotype 2 met several of the criteria to be considered compensatory. However, we also found a positive relationship between neural activity and the brain age gap in these patients (r = 0.45, p = 0.042). Discussion Our results indicated that neural hyperactivity is specific to a subgroup of breast cancer survivors and, while it seems to support preserved cognitive function, it could also increase the risk of accelerated brain aging. These findings could inform future neuromodulatory interventions with respect to the risks and benefits of upregulation or downregulation of neural activity.
Collapse
Affiliation(s)
- Michele M. Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | - Alexa Stuifbergen
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Alexa De La Torre Schutz
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Oscar Y. Franco Rocha
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Blayney
- Department of Medical Oncology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Shelli R. Kesler
- Division of Adult Health, School of Nursing, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
24
|
Power SK, Venkatesan S, Qu S, McLaurin J, Lambe EK. Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models. Transl Neurodegener 2024; 13:58. [PMID: 39623428 PMCID: PMC11613856 DOI: 10.1186/s40035-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cognitive reserve allows for resilience to neuropathology, potentially through active compensation. Here, we examine ex vivo electrophysiological evidence for active compensation in Alzheimer's disease (AD) focusing on the cholinergic innervation of layer 6 in prefrontal cortex. Cholinergic pathways are vulnerable to neuropathology in AD and its preclinical models, and their modulation of deep layer prefrontal cortex is essential for attention and executive function. METHODS We functionally interrogated cholinergic modulation of prefrontal layer 6 pyramidal neurons in two preclinical models: a compound transgenic AD mouse model that permits optogenetically-triggered release of endogenous acetylcholine and a transgenic AD rat model that closely recapitulates the human trajectory of AD. We then tested the impact of therapeutic interventions to further amplify the compensated responses and preserve the typical kinetic profile of cholinergic signaling. RESULTS In two AD models, we found potentially compensatory upregulation of functional cholinergic responses above non-transgenic controls after onset of pathology. To identify the locus of this enhanced cholinergic signal, we dissected key pre- and post-synaptic components with pharmacological strategies. We identified a significant and selective increase in post-synaptic nicotinic receptor signalling on prefrontal cortical neurons. To probe the additional impact of therapeutic intervention on the adapted circuit, we tested cholinergic and nicotinic-selective pro-cognitive treatments. Inhibition of acetylcholinesterase further enhanced endogenous cholinergic responses but greatly distorted their kinetics. Positive allosteric modulation of nicotinic receptors, by contrast, enhanced endogenous cholinergic responses and retained their rapid kinetics. CONCLUSIONS We demonstrate that functional nicotinic upregulation occurs within the prefrontal cortex in two AD models. Promisingly, this nicotinic signal can be further enhanced while preserving its rapid kinetic signature. Taken together, our work suggests that compensatory mechanisms are active within the prefrontal cortex that can be harnessed by nicotinic receptor positive allosteric modulation, highlighting a new direction for cognitive treatment in AD neuropathology.
Collapse
Affiliation(s)
- Saige K Power
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sarah Qu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Evelyn K Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
25
|
Kim J, Walk AM, Keye SA, Kinder CJ, Cannavale CN, Burd NA, Khan NA. Adiposity influences intraindividual variability in behavioral and neuroelectric indices of attentional inhibition. Psychophysiology 2024; 61:e14677. [PMID: 39215400 PMCID: PMC11579232 DOI: 10.1111/psyp.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
While overweight or obesity are thought to affect over 70% of the US population, the effects of adiposity on neurocognitive efficiency and stability remain unclear. Intra-individual variability or trial-to-trial variability (IIV) could provide insights into the influence of adiposity on neurophysiological stability. However, previous work examining the association between adiposity and IIV of cognitive outcomes is limited. Thus, this study examined the association between whole-body fat (%BF) and central tendency and IIV metrics of behavioral performance and event-related potentials. Adults (n = 320; 19-64 yrs) completed the Flanker task to assess attentional inhibition with concurrent electroencephalogram recordings to examine the N2 and P3b components. In addition to central tendency outcomes typically reported (i.e., mean accuracy and reaction time [RT]), dispersion outcomes (e.g., standard deviation [SD] of RT, P3b latency, N2 latency, etc.) were also extracted. Upon controlling for age and sex, %BF was inversely associated with (congruent: β = -.18, p = .016; incongruent: β = -.23, p < .001) accuracy. Increasing %BF was related to greater RT SD (congruent: β = .13, p = .032; incongruent: β = .23, p < .001). Furthermore, increased %BF was associated with slower P3b latencies (congruent: β = .21, p = .003; incongruent: β = .18, p = .010), and greater incongruent N2 (β = .16, p = .017) and P3b (β = .16, p = .025) latency SD. These findings suggest adiposity exerts a generalized negative influence on attentional inhibition for both measures of central tendency and dispersion across behavioral and neuroelectric indices.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Anne M. Walk
- Department of PsychologyEastern Illinois UniversityCharlestonIllinoisUSA
| | - Shelby A. Keye
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Christopher J. Kinder
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Corinne N. Cannavale
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Nicholas A. Burd
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Naiman A. Khan
- Department of Kinesiology and Community HealthUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
26
|
Paitel ER, Nielson KA. Inhibitory P300 subprocesses and neural compensation in genetic risk for Alzheimer's disease: The case for temporal-spatial principal component analysis. Psychophysiology 2024; 61:e14693. [PMID: 39344966 DOI: 10.1111/psyp.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The P300 event-related potential (ERP) is widely investigated in cognitive neuroscience, including related to aging, with smaller amplitudes and delayed latency consistently reported in Alzheimer's disease (AD). Given that AD-related neurological changes begin years before symptom onset, ERPs in asymptomatic elders with AD risk may characterize early changes. ERPs are seldom studied in this population. Yet, healthy carriers of apolipoprotein-E (APOE) ε4 have evidenced delayed P300 latencies, while P300 amplitude differences are seldom found. However, despite its frequent study, the specific cognitive processes reflected by P300 remain unclear. We propose that these challenges are due to the relatively long P300 window, which likely encompasses multiple underlying subprocesses that overlap in time. Temporal-spatial principal component analysis (tsPCA) maintains the high temporal resolution of EEG and is better suited to isolate processes that overlap in time. Thus, we interrogated APOE ε4 differences in P300 activity during successful stop-signal inhibitory control in healthy, cognitively intact older adults (25 ε4-, 20 ε4+), using both conventional ERP metrics (i.e., mean and peak amplitude) and P300 tsPCA factors. P300 amplitudes did not differ by ε4 using conventional metrics. tsPCA revealed two P300 factors in each ε4 group: first, a Posterior P300 (attention allocation) factor, and second, a relatively Anterior P300 (performance monitoring, evaluating, and updating) factor. tsPCA uniquely revealed greater activity in ε4+ vs. ε4- in Anterior P300. ε4 groups had comparable task performance, suggesting that greater P300 activity in ε4+ likely reflects neural compensation for ε4-related deficits, thereby enabling the maintenance of good task performance.
Collapse
Affiliation(s)
- Elizabeth R Paitel
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Jin X, Zhang L, Wu G, Wang X, Du Y. Compensation or Preservation? Different Roles of Functional Lateralization in Speech Perception of Older Non-musicians and Musicians. Neurosci Bull 2024; 40:1843-1857. [PMID: 38839688 PMCID: PMC11625043 DOI: 10.1007/s12264-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 06/07/2024] Open
Abstract
Musical training can counteract age-related decline in speech perception in noisy environments. However, it remains unclear whether older non-musicians and musicians rely on functional compensation or functional preservation to counteract the adverse effects of aging. This study utilized resting-state functional connectivity (FC) to investigate functional lateralization, a fundamental organization feature, in older musicians (OM), older non-musicians (ONM), and young non-musicians (YNM). Results showed that OM outperformed ONM and achieved comparable performance to YNM in speech-in-noise and speech-in-speech tasks. ONM exhibited reduced lateralization than YNM in lateralization index (LI) of intrahemispheric FC (LI_intra) in the cingulo-opercular network (CON) and LI of interhemispheric heterotopic FC (LI_he) in the language network (LAN). Conversely, OM showed higher neural alignment to YNM (i.e., a more similar lateralization pattern) compared to ONM in CON, LAN, frontoparietal network (FPN), dorsal attention network (DAN), and default mode network (DMN), indicating preservation of youth-like lateralization patterns due to musical experience. Furthermore, in ONM, stronger left-lateralized and lower alignment-to-young of LI_intra in the somatomotor network (SMN) and DAN and LI_he in DMN correlated with better speech performance, indicating a functional compensation mechanism. In contrast, stronger right-lateralized LI_intra in FPN and DAN and higher alignment-to-young of LI_he in LAN correlated with better performance in OM, suggesting a functional preservation mechanism. These findings highlight the differential roles of functional preservation and compensation of lateralization in speech perception in noise among elderly individuals with and without musical expertise, offering insights into successful aging theories from the lens of functional lateralization and speech perception.
Collapse
Affiliation(s)
- Xinhu Jin
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Wu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuyi Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Du
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
28
|
Yu L, Liu MM, Guan MQ, Wang R, Yang XR, Zhang XM, Wei JJ, Wu SF, Gu H, Fu Q, Guo JH, Li YL. Peripheral CD4 + T cell phenotype and brain microglial activation associated with cognitive heterogeneity in aged rats. Immun Ageing 2024; 21:81. [PMID: 39543616 PMCID: PMC11562703 DOI: 10.1186/s12979-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cognitive decline is a critical hallmark of brain aging. Although aging is a natural process, there is significant heterogeneity in cognition levels among individuals; however, the underlying mechanisms remain uncertain. In our study, we classified aged male Sprague‒Dawley rats into aged cognition-unimpaired (AU) group and aged cognition-impaired (AI) group by using an attentional set-shifting task. The transcriptome sequencing results of medial prefrontal cortex (mPFC) demonstrated significant differences in microglial activation and inflammatory response pathways between the two groups. Specifically, compared to AU rats, AI rats exhibited a greater presence of CD86-positive microglia and major histocompatibility complex class II (MHC-II)-positive microglia, along with elevated inflammatory molecules, in mPFC. Conversely, AI rats exhibited a reduction in the percentage of microglia expressing CD200R and the anti-inflammatory molecules Arg-1 and TGF-β. Additionally, peripheral blood analysis of AI rats demonstrated elevated levels of Th17 and Th1 cells, along with proinflammatory molecules; however, decreased levels of Treg cells, along with anti-inflammatory molecules, were observed in AI rats. Our research suggested that peripheral Th17/Treg cells and central microglial activation were associated with cognitive heterogeneity in aged rats. These findings may provide a new target for healthy aging.
Collapse
Affiliation(s)
- Lian Yu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Miao-Miao Liu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Mei-Qi Guan
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Rui Wang
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Rong Yang
- The Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiu-Min Zhang
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing-Jing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Shu-Fen Wu
- Department of Pediatrics, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Gu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qiang Fu
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jun-Hong Guo
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yan-Li Li
- Department of Neurology, Research Center for Neurological Diseases, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
29
|
Constantinou M, Pecchinenda A, Burianová H, Yankouskaya A. The Impact of Ageing on Episodic Memory Retrieval: How Valence Influences Neural Functional Connectivity. NEUROSCI 2024; 5:542-564. [PMID: 39585108 PMCID: PMC11587483 DOI: 10.3390/neurosci5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Age-related decline in episodic memory is often linked to structural and functional changes in the brain. Here, we investigated how these alterations might affect functional connectivity during memory retrieval following exposure to emotional stimuli. Using functional magnetic resonance imaging (fMRI), participants viewed images with varying emotional valences (positive, negative, and neutral) followed by unrelated non-arousing videos and were then asked to retrieve an episodic detail from the previously shown video. We conducted Multivariate Pattern Analysis (MVPA) to identify regions with divergent responses between age groups, which then served as seeds in Seed-Based Connectivity (SBC) analyses. The results revealed an age-related decline in behavioural performance following exposure to negative stimuli but preserved performance following positive stimuli. Young adults exhibited increased functional connectivity following negative valence. Conversely, old adults displayed increased connectivity more scarcely, and only following positive valence. These findings point to an adaptive response of the impact of emotions on task performance that depends on neural adaptations related to ageing. This suggests that age-related changes in functional connectivity might underlie how emotions influence memory, highlighting the need to tailor memory support strategies in older adulthood.
Collapse
Affiliation(s)
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Hana Burianová
- School of Psychology, Swansea University, Swansea SA2 8PQ, UK;
| | - Ala Yankouskaya
- Department of Psychology, Bournemouth University, Bournemouth BH12 5BB, UK;
| |
Collapse
|
30
|
Al-Shargie F, Glassen M, DeLuca J, Saleh S. Obstacle Avoidance in Healthy Adults and People With Multiple Sclerosis: Preliminary fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3966-3976. [PMID: 39466870 DOI: 10.1109/tnsre.2024.3487526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This study examined how gait adaptation during predictable and non-predictable obstacle avoidance affects the sensorimotor network in both healthy controls (HC) and persons with multiple sclerosis (pwMS). We utilized fNIRS measurements of HbO2 and HHb to estimate cortical activations and connectivity networks, which were then analyzed using power spectral density (PSD) and partial directed coherence (PDC). The findings revealed distinct patterns of cortical activation and connectivity for each task condition in both groups. Healthy individuals displayed lower cortical activations in the bilateral motor cortex (MC) during non-predictable obstacle avoidance, indicating efficient neural processing. On the other hand, pwMS exhibited lower cortical activations across most brain areas during non-predictable tasks, suggesting potential limitations in neural resource allocation. When tasks were combined, pwMS demonstrated higher cortical activation across all recorded brain areas compared to HC, indicating a compensatory mechanism to maintain gait stability. Functional connectivity analysis revealed that pwMS recruited higher bilateral somatosensory association cortex (SAC) than HC, whereas healthy individuals engaged more bilateral premotor cortices (PMC). These findings suggest alterations in sensorimotor integration and motor planning in pwMS. Four machine learning models (KNN, SVM, DT, and DA) achieved high classification accuracies (92-99%) in differentiating between task conditions within each group. These results highlight the potential of integrating fNIRS-based cortical activation and connectivity measures with machine learning as biomarkers for MS-related impairments in cognitive-motor interaction. Such biomarkers could aid in predicting future mobility decline, fall risk, and disease progression.
Collapse
|
31
|
Zhang C, Xu C, Yan H, Liang J, Li X, Tang C, Yu Y, Xie G, Guo W. Correlations between alterations in global brain functional connectivity in patients with major depressive disorder and their genetic characteristics. World J Biol Psychiatry 2024; 25:560-570. [PMID: 39412289 DOI: 10.1080/15622975.2024.2412651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024]
Abstract
This study aims to elucidate the neuroimaging changes associated with major depressive disorder (MDD) and their relationship with genetic characteristics. We conducted a global-brain functional connectivity (GFC) and genetic-neuroimaging correlation analysis on 42 MDD patients and 42 healthy controls (HCs), exploring the correlation between GFC abnormalities and clinical variables. Results showed that compared to HCs, MDD patients had significantly decreased GFC values in the bilateral posterior cingulate cortex/precuneus and increased GFC values in the left and right cerebellum Crus I/II. Additionally, a negative correlation was observed between the GFC values of the left cerebellum Crus I/II and subjective support scores, as well as social support revalued scale total scores. We identified genes associated with GFC changes in MDD, which are enriched in biological processes such as synaptic transmission and ion transport. Our findings indicate the presence of abnormal GFC values in severe depression, complementing the pathological research on the condition. Furthermore, this study provides preliminary evidence for the correlation between social support levels and brain functional connectivity, offering insights into the potential association between GFC changes and gene expression in MDD patients.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Yang Yu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
Gozdas E, Avelar-Pereira B, Fingerhut H, Dacorro L, Jo B, Williams L, O'Hara R, Hosseini SMH. Long-term cognitive training enhances fluid cognition and brain connectivity in individuals with MCI. Transl Psychiatry 2024; 14:447. [PMID: 39443463 PMCID: PMC11500385 DOI: 10.1038/s41398-024-03153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a risk factor for Alzheimer's disease (AD). Multi-domain cognitive training (CT) may slow cognitive decline and delay AD onset. However, most work involves short interventions, targeting single cognitive domains or lacking active controls. We conducted a single-blind randomized controlled trial to investigate the effect of a 6-month, multi-domain CT on Fluid Cognition, functional connectivity in memory and executive functioning networks (primary outcomes), and white matter microstructural properties (secondary outcome) in aMCI. Sixty participants were randomly assigned to either a multi-domain CT or crossword training (CW) group, and thirty-four participants completed the intervention. We found a significant group-by-time interaction in Fluid Cognition (p = 0.007, F (1,28) = 8.26, Cohen's d = 0.38, 95% confidence interval [CI]: 2.45-14.4), with 90% of CT patients showing post-intervention improvements (p < 0.01, Cohen's d = 0.7). The CT group also showed better post-intervention Fluid Cognition than healthy controls (HCs, N = 45, p = 0.045). Functional connectivity analyses showed a significant group-by-time interaction (Cohen's d ≥ 0.8) in the dorsolateral prefrontal cortex (DLPFC) and inferior parietal cortex (IPC) networks. Specifically, CT displayed post-intervention increases whereas CW displayed decreases in functional connectivity. Moreover, increased connectivity strength between the left DLPFC and medial PFC was associated with improved Fluid Cognition. At a microstructural level, we observed a decline in fiber density (FD) for both groups, but the CT group declined less steeply (1.3 vs. 2%). The slower decline in FD for the CT group in several tracts, including the cingulum-hippocampus tract, was associated with better working memory. Finally, we identified regions in cognitive control and memory networks for which baseline functional connectivity and microstructural properties were associated with changes in Fluid Cognition. Long-term, multi-domain CT improves cognitive functioning and functional connectivity and delays structural brain decline in aMCI (ClinicalTrials.gov number: NCT03883308).
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bárbara Avelar-Pereira
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Leanne Williams
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Sirevåg K, Stavestrand SH, Specht K, Nordhus IH, Hammar Å, Molde H, Mohlman J, Endal TB, Halmøy A, Andersson E, Sjøbø T, Nordahl HM, Thayer JF, Hovland A. Executive functions in older adults with generalised anxiety disorder and healthy controls: Associations with heart rate variability, brain-derived neurotrophic factor, and physical fitness. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-10. [PMID: 39418257 DOI: 10.1080/23279095.2024.2415421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Executive functions (EF) decline with age and this decline in older adults with generalised anxiety disorder (GAD) may be influenced by heart rate variability (HRV), brain-derived neurotrophic factor (BDNF), and physical fitness. Understanding these relationships is important for tailored treatments in this population. In this study, 51 adults with GAD (M age = 66.46, SD = 4.08) and 51 healthy controls (M age = 67.67, SD = 4.04) were assessed on cognitive inhibition (Stroop task), shifting (Trails part 4), flexibility (Wisconsin Card Sorting Test - Perseverative errors), working memory (Digit Span Backwards), IQ (Wechsler Abbreviated Scale of Intelligence), high frequency HRV, serum mature BDNF levels, and VO2 max. Results indicated that participants with GAD exhibited better cognitive inhibition compared to controls, with no general reduction in EF. Cognitive inhibition was predicted by gender, HRV, and BDNF levels, while cognitive shifting was predicted by gender and IQ, and cognitive flexibility and working memory by IQ. The enhanced cognitive inhibition in GAD participants might stem from maladaptive use of this function, characteristic of GAD, or protection from EF decline due to normal HRV. Increased BDNF levels, possibly due to good fitness, or compensatory mechanisms related to the disorder, might also play a role. These findings highlight the complexity of EF and related mechanisms in GAD, highlighting the need for interventions that consider both cognitive and physiological factors for optimal outcomes.
Collapse
Affiliation(s)
- Kristine Sirevåg
- Solli DPS, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Karsten Specht
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| | | | - Åsa Hammar
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Sweden
| | - Helge Molde
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Trygve Bruun Endal
- Solli DPS, Bergen, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Halmøy
- Department of Psychiatry, Haukeland University Hospital, Kronstad DPS, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eva Andersson
- The Swedish School of Sport and Health Sciences, Stockholm, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Hans M Nordahl
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Anders Hovland
- Solli DPS, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
- Helse Fonna Hospital Trust, Haugesund, Norway
| |
Collapse
|
34
|
Gonzalez C, Ranchod S, Rakobowchuk M. Using multivariate partial least squares on fNIRS data to examine load-dependent brain-behaviour relationships in aging. PLoS One 2024; 19:e0312109. [PMID: 39401216 PMCID: PMC11472942 DOI: 10.1371/journal.pone.0312109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
Researchers implementing non-invasive neuroimaging have reported distinct load-dependent brain activity patterns in older adults compared with younger adults. Although findings are mixed, these age-related patterns are often associated with compensatory mechanisms of cognitive decline even in the absence of direct comparisons between brain activity and cognitive performance. This study investigated the effects of cognitive load on brain-behavior relationships in younger and older adults using a data-driven, multivariate partial least squares (PLS) analysis of functional near-infrared spectroscopy (fNIRS) data. We measured bilateral prefrontal brain activity in 31 older and 27 younger adults while they performed single and dual 2-back tasks. Behavioral PLS analysis was used to determine relationships between performance metrics (reaction time and error rate) and brain oxygenation (HbO) and deoxygenation (HbR) patterns across groups and task loads. Results revealed significant age-group differences in brain-behavior relationships. In younger adults, increased brain activity (i.e., increased HbO and decreased HbR) was associated with faster reaction times and better accuracy in the single task, indicating sufficient neural capacity. Conversely, older adults showed a negative correlation between HbR and error rates in the single task; however, in the dual task, they demonstrated a positive relationship between HbO and performance, indicative of compensatory mechanisms under the higher cognitive load. Overall, older adults' showed relationships with either HbR or HbO, but not both, indicating that the robustness of the relationship between brain activity and behavior varies across task load conditions. Our PLS approach revealed distinct load-dependent brain activity between age groups, providing further insight into neurocognitive aging patterns, such as compensatory mechanisms, by emphasizing the variability and complexity of brain-behavior relationships. Our findings also highlight the importance of considering task complexity and cognitive demands in interpreting age-related brain activity patterns.
Collapse
Affiliation(s)
- Claudia Gonzalez
- Psychology Department, Faculty of Arts, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Supreeta Ranchod
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Mark Rakobowchuk
- Biology Department, Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|
35
|
Neudorf J, Shen K, McIntosh AR. Reorganization of structural connectivity in the brain supports preservation of cognitive ability in healthy aging. Netw Neurosci 2024; 8:837-859. [PMID: 39355433 PMCID: PMC11398719 DOI: 10.1162/netn_a_00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/09/2024] [Indexed: 10/03/2024] Open
Abstract
The global population is aging rapidly, and a research question of critical importance is why some older adults suffer tremendous cognitive decline while others are mostly spared. Past aging research has shown that older adults with spared cognitive ability have better local short-range information processing while global long-range processing is less efficient. We took this research a step further to investigate whether the underlying structural connections, measured in vivo using diffusion magnetic resonance imaging (dMRI), show a similar shift to support cognitive ability. We analyzed the structural connectivity streamline probability (representing the probability of connection between regions) and nodal efficiency and local efficiency regional graph theory metrics to determine whether age and cognitive ability are related to structural network differences. We found that the relationship between structural connectivity and cognitive ability with age was nuanced, with some differences with age that were associated with poorer cognitive outcomes, but other reorganizations that were associated with spared cognitive ability. These positive changes included strengthened local intrahemispheric connectivity and increased nodal efficiency of the ventral occipital-temporal stream, nucleus accumbens, and hippocampus for older adults, and widespread local efficiency primarily for middle-aged individuals.
Collapse
Affiliation(s)
- Josh Neudorf
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, Canada
| | - Kelly Shen
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, Canada
| | - Anthony R. McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
36
|
Kim HI, Jo S, Kwon M, Park JE, Han JW, Kim KW. Association of Compensatory Mechanisms in Prefrontal Cortex and Impaired Anatomical Correlates in Semantic Verbal Fluency: A Functional Near-Infrared Spectroscopy Study. Psychiatry Investig 2024; 21:1065-1075. [PMID: 39255965 PMCID: PMC11513872 DOI: 10.30773/pi.2023.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/16/2024] [Accepted: 07/07/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE Semantic verbal fluency (SVF) engages cognitive functions such as executive function, mental flexibility, and semantic memory. Left frontal and temporal lobes, particularly the left inferior frontal gyrus (IFG), are crucial for SVF. This study investigates SVF and associated neural processing in older adults with mild SVF impairment and the relationship between structural abnormalities in the left IFG and functional activation during SVF in those individuals. METHODS Fifty-four elderly individuals with modest level of mild cognitive impairment whose global cognition were preserved to normal but exhibited mild SVF impairment were participated. Prefrontal oxyhemoglobin (HbO2) activation and frontal cortical thickness were collected from the participants using functional near-infrared spectroscopy (fNIRS) and brain MRI, respectively. We calculated the β coefficient of HbO2 activation induced by tasks, and performed correlation analysis between SVF induced HbO2 activation and cortical thickness in frontal areas. RESULTS We observed increased prefrontal activation during SVF task compared to the resting and control task. The activation distinct to SVF was identified in the midline superior and left superior prefrontal regions (p<0.05). Correlation analysis revealed an inverse relationship between SVF-specific activation and cortical thickness in the left IFG, particularly in pars triangularis (r(54)=-0.304, p=0.025). CONCLUSION The study contributes to understanding the relationship between reduced cortical thickness in left IFG and increased functional activity in cognitively normal individuals with mild SVF impairment, providing implications on potential compensatory mechanisms for cognitive preservation.
Collapse
Affiliation(s)
- Hae-In Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sungman Jo
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minjeong Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Opwonya J, Kim K, Lee KH, Kim JI, Kim JU. Task-evoked pupillary responses as potential biomarkers of mild cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70019. [PMID: 39391021 PMCID: PMC11465026 DOI: 10.1002/dad2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Eye movement alterations are effective biomarkers for Alzheimer's disease (AD). This study examines task-evoked pupillary responses (TEPRs) as potential biomarkers of the mild cognitive impairment (MCI), the symptomatic stage preceding AD. METHODS The prospective cohort study included 213 MCI patients and 514 cognitively normal controls (CNs). Participants performed a prosaccade (PS) or antisaccade (AS) task while their eye movements were tracked using a Tobii Pro Spectrum system. RESULTS The CNs showed unique TEPRs linked to better performance, characterized by larger baselines, greater PS target-onset variability, and smaller AS target-onset variability. Conversely, for MCI patients, better performance was linked to larger AS target-onset sizes. Furthermore, MCI patients displayed reduced dilation during the cue and target-onset periods compared to CNs. DISCUSSION MCI patients showed altered pupillary response patterns associated with cognitive task performance, highlighting the potential of oculomotor changes as a biomarker for early cognitive decline. Highlights MCI patients displayed markedly smaller pupil dilation than CNs in response to cue and target stimuli.For MCI patients, larger pupil size upon target appearance during antisaccades correlated with better performance.Faster and more consistent prosaccades were linked to better performance in both groups.For MCI patients, the association between longer AS latencies and better performance was more pronounced than in CNs.Combined analysis of TEPRs and saccade performances in a sizeable cohort strengthens the generalizability of our findings to the broader MCI population.
Collapse
Affiliation(s)
- Julius Opwonya
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| | - Kahye Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementias (GARD) Cohort Research CenterChosun UniversityGwangjuSouth Korea
- Department of Biomedical ScienceChosun UniversityGwangjuSouth Korea
- Dementia Research GroupKorea Brain Research InstituteDaeguSouth Korea
| | - Joong Il Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| | - Jaeuk U. Kim
- Digital Health Research DivisionKorea Institute of Oriental MedicineDaejeonSouth Korea
- Korean Convergence Medical ScienceUniversity of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
38
|
Powell A, Lam BCP, Foxe D, Close JCT, Sachdev PS, Brodaty H. Frequency of cognitive "super-aging" in three Australian samples using different diagnostic criteria. Int Psychogeriatr 2024; 36:939-955. [PMID: 37997622 DOI: 10.1017/s1041610223000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES To investigate the frequency of exceptional cognition (cognitive super-aging) in Australian older adults using different published definitions, agreement between definitions, and the relationship of super-aging status with function, brain imaging markers, and incident dementia. DESIGN Three longitudinal cohort studies. SETTING Participants recruited from the electoral roll, Australian Twins Registry, and community advertisements. PARTICIPANTS Older adults (aged 65-106) without dementia from the Sydney Memory and Ageing Study (n = 1037; median age 78), Older Australian Twins Study (n = 361; median age 68), and Sydney Centenarian Study (n = 217; median age 97). MEASUREMENTS Frequency of super-aging was assessed using nine super-aging definitions based on performance on neuropsychological testing. Levels of agreement between definitions were calculated, and associations between super-aging status for each definition and functioning (Bayer ADL score), structural brain imaging measures, and incident dementia were explored. RESULTS Frequency of super-aging varied between 2.9 and 43.4 percent with more stringent definitions associated with lower frequency. Agreement between different criteria varied from poor (K = 0.04, AC1 = .24) to very good (K = 0.83, AC1 = .91) with better agreement between definitions using similar tests and cutoffs. Super-aging was associated with better functional performance (4.7-11%) and lower rates of incident dementia (hazard ratios 0.08-0.48) for most definitions. Super-aging status was associated with a lower burden of white matter hyperintensities (3.8-33.2%) for all definitions. CONCLUSIONS The frequency of super-aging is strongly affected by the demographic and neuropsychological testing parameters used. Greater consistency in defining super-aging would enable better characterization of this exceptional minority.
Collapse
Affiliation(s)
- Alice Powell
- Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ben C P Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - David Foxe
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jacqueline C T Close
- Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Morand A, Laniepce A, Cabé N, Boudehent C, Segobin S, Pitel AL. Compensation patterns and altered functional connectivity in alcohol use disorder with and without Korsakoff's syndrome. Brain Commun 2024; 6:fcae294. [PMID: 39309684 PMCID: PMC11414044 DOI: 10.1093/braincomms/fcae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Alcohol use disorder is a chronic disease characterized by an inappropriate pattern of drinking, resulting in negative consequences for the individual's physical, mental and social health. Korsakoff's syndrome is a complication of alcohol use disorder and is characterized by severe memory and executive deficits. The fronto-cerebellar and Papez circuits are structurally affected in patients with alcohol use disorder with and without Korsakoff's syndrome. The first objective of the present study was to measure the effect of chronic and excessive alcohol consumption on resting-state functional connectivity of these two functional brain networks. The second objective was to identify, for the first time, resting-state functional connectivity abnormalities specific to amnesic patients with Korsakoff's syndrome. In the present study, a neuropsychological assessment and a resting-state functional magnetic resonance imaging examination were conducted in 31 healthy controls (43.6 ± 6.1 years) and 46 patients (46.6 ± 9.1 years) with alcohol use disorder including 14 patients with Korsakoff's syndrome (55.5 ± 5.3 years) to examine the effect of chronic and heavy alcohol consumption on functional connectivity of the fronto-cerebellar and the Papez circuits at rest and the specificity of functional connectivity changes in Korsakoff's syndrome compared to alcohol use disorder without Korsakoff's syndrome. The resting-state functional connectivity analyses focused on the nodes of the fronto-cerebellar and Papez circuits and combined region of interest and graph theory approaches, and whether these alterations are associated with the neuropsychological profile. In patients pooled together compared to controls, lower global efficiency was observed in the fronto-cerebellar circuit. In addition, certain regions of the fronto-cerebellar and Papez circuits were functionally hyperconnected at rest, which positively correlated with executive functions. Patients with Korsakoff's syndrome showed lower resting-state functional connectivity, lower local and global efficiency within the Papez circuit compared to those without Korsakoff's syndrome. Resting-state functional connectivity positively correlated with several cognitive scores in patients with Korsakoff's syndrome. The fronto-cerebellar and Papez circuits, two normally well-segregated networks, are functionally altered by alcohol use disorder. The Papez circuit attempts to compensate for deficits in the fronto-cerebellar circuit, albeit insufficiently as evidenced by patients' overall lower cognitive performance. Korsakoff's syndrome is characterized by altered functional connectivity in the Papez circuit known to be centrally involved in memory.
Collapse
Affiliation(s)
- Alexandrine Morand
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Laboratoire DysCo, Université Paris 8 Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Alice Laniepce
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Normandie Université, UNIROUEN, CRFDP (EA 7475), 76000 Rouen, France
| | - Nicolas Cabé
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Service d’addictologie, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| | - Céline Boudehent
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Service d’addictologie, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| | - Shailendra Segobin
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, GIP Cyceron, 14000 Caen, France
| | - Anne-Lise Pitel
- Normandie Université, UNICAEN, INSERM, U1237, PhIND ‘Physiopathology and Imaging of Neurological Disorders’, Team NeuroPresage, Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
40
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
41
|
Ball JD, Davies A, Gurung D, Mankoo A, Panerai R, Minhas JS, Robinson T, Beishon L. The effect of posture on the age dependence of neurovascular coupling. Physiol Rep 2024; 12:e70031. [PMID: 39218618 PMCID: PMC11366444 DOI: 10.14814/phy2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies report contradicting age-related neurovascular coupling (NVC). Few studies assess postural effects, but less investigate relationships between age and NVC within different postures. Therefore, this study investigated the effect of age on NVC in different postures with varying cognitive stimuli. Beat-to-beat blood pressure, heart rate and end-tidal carbon dioxide were assessed alongside middle and posterior cerebral artery velocities (MCAv and PCAv, respectively) using transcranial Doppler ultrasonography in 78 participants (31 young-, 23 middle- and 24 older-aged) with visuospatial (VST) and attention tasks (AT) in various postures at two timepoints (T2 and T3). Between-group significance testing utilized one-way analysis-of-variance (ANOVA) (Tukey post-hoc). Mixed three-way/one-way ANOVAs explored task, posture, and age interactions. Significant effects of posture on NVC were driven by a 3.8% increase from seated to supine. For AT, mean supine %MCAv increase was greatest in younger (5.44%) versus middle (0.12%) and older-age (0.09%) at T3 (p = 0.005). For VST, mean supine %PCAv increase was greatest at T2 and T3 in middle (10.99%/10.12%) and older-age (17.36%/17.26%) versus younger (9.44%/8.89%) (p = 0.004/p = 0.002). We identified significant age-related NVC effects with VST-induced hyperactivation. This may reflect age-related compensatory processes in supine. Further work is required, using complex stimuli while standing/walking, examining NVC, aging and falls.
Collapse
Affiliation(s)
- James D. Ball
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Aaron Davies
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Dewakar Gurung
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Alex Mankoo
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Ronney Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Jatinder S. Minhas
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Thompson Robinson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research CentreGlenfield HospitalLeicesterUK
| | - Lucy Beishon
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
42
|
Junco-Muñoz ML, Mejía-Rodríguez O, Cervantes-Alfaro JM, Téllez-Anguiano ADC, López-Vázquez MÁ, Olvera-Cortés ME. Correlates of Theta and Gamma Activity during Visuospatial Incidental/Intentional Encoding and Retrieval Indicate Differences in Processing in Young and Elderly Healthy Participants. Brain Sci 2024; 14:786. [PMID: 39199479 PMCID: PMC11352628 DOI: 10.3390/brainsci14080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Incidental visuospatial learning acquired under incidental conditions is more vulnerable to aging than in the intentional case. The theta and gamma correlates of the coding and retrieval of episodic memory change during aging. Based on the vulnerability of incidental coding to aging, different theta and gamma correlates could occur under the incidental versus intentional coding and retrieval of visuospatial information. Theta and gamma EEG was recorded from the frontotemporal regions, and incidental/intentional visuospatial learning was evaluated in young (25-60 years old) and elderly (60-85 years old) participants. The EEG recorded during encoding and retrieval was compared between incidental low-demand, incidental high-demand, and intentional conditions through an ANCOVA considering the patient's gender, IQ, and years of schooling as covariates. Older adults exhibited worse performances, especially in place-object associations. After the intentional study, older participants showed a further increase in false-positive errors. Higher power at the theta and gamma bands was observed for frontotemporal derivations in older participants for both encoding and retrieval. Under retrieval, only young participants had lower power in terms of errors compared with correct responses. In conclusion, the different patterns of power and coherence support incidental and intentional visuospatial encoding and retrieval in young and elderly individuals. The correlates of power with behavior are sensitive to age and performance.
Collapse
Affiliation(s)
- Mariana Lizeth Junco-Muñoz
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
- Facultad de Psicología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico
| | - Oliva Mejía-Rodríguez
- División de Investigación Clínica, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, División de Estudios de Posgrado, Facultad de Ciencias Médicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58194, Michoacán, Mexico;
| | | | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58060, Michoacán, Mexico;
| |
Collapse
|
43
|
Hsu CL, Holtzer R, Tam RC, Al Keridy W, Liu-Ambrose T. Physical reserve and its underpinning functional neural networks moderate the relationship between white matter hyperintensity and postural balance in older adults with subcortical ischemic vascular cognitive impairment. Sci Rep 2024; 14:17161. [PMID: 39060551 PMCID: PMC11282073 DOI: 10.1038/s41598-024-68050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
White matter hyperintensities (WMH) are markers of subcortical ischemic vascular cognitive impairment (SIVCI) associated with impaired postural balance. Physical reserve (PR) is a recently established construct that reflects one's capacity to maintain physical function despite brain pathology. This cross-sectional study aims to map functional networks associated with PR, and examining the relationship between PR, WMH, and postural balance. PR was defined in 22 community-dwelling older adults with SIVCI. Functional networks of PR were computed using general linear model. Subsequent analyses examined whether PR and relevant networks moderated the relationship between WMH and postural balance under two conditions-eyes open while standing on foam (EOF) or on floor (EONF). We found that PR and the relevant networks-frontoparietal network (FPN) and default mode network (DMN)-significantly moderated the association between WMH and postural balance. For individuals with high PR, postural balance remained stable regardless of the extent of WMH load; whereas for those with low PR, postural balance worsened as WMH load increased. These results suggest the attenuated effects of WMH on postural stability due to PR may be underpinned by functional neural network reorganization in the FPN and DMN as a part of compensatory processes.
Collapse
Affiliation(s)
- Chun Liang Hsu
- The Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR, China.
| | - Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Roger C Tam
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Walid Al Keridy
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, University of British Columbia Hospital, Vancouver, BC, Canada
- Geriatric Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
44
|
Yao Q, Chen L, Qu H, Fan W, He L, Li G, Hu J, Zou J, Huang G, Zeng Q. Comparable cerebral cortex activity and gait performance in elderly hypertensive and healthy individuals during dual-task walking: A fNIRS study. Brain Behav 2024; 14:e3568. [PMID: 38988039 PMCID: PMC11236899 DOI: 10.1002/brb3.3568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.
Collapse
Affiliation(s)
- Qiuru Yao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Qu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Longlong He
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Hooten M, Ortega M, Oyeyemi A, Yu F, Ofori E. Investigating the relationships between motor skills, cognitive status, and area deprivation index in Arizona: a pilot study. Front Public Health 2024; 12:1385435. [PMID: 38983257 PMCID: PMC11231207 DOI: 10.3389/fpubh.2024.1385435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Previous studies highlight the negative impact of adverse socioeconomic conditions throughout life on motor skills and cognitive health. Factors such as cognitive activity, physical activity, lifestyle, and socioeconomic position significantly affect general health status and brain health. This pilot study investigates the relationships among the Area Deprivation Index (ADI)-a measure of neighborhood-level socioeconomic deprivation, brain structure (cortical volume and thickness), and cognitive status in adults in Arizona. Identifying measures sensitive to ADI could elucidate mechanisms driving cognitive decline. Methods The study included 22 adults(mean age = 56.2 ± 15.2) in Arizona, residing in the area for over 10 years(mean = 42.7 ± 15.8). We assessed specific cognitive domains using the NeuroTrax™ cognitive screening test, which evaluates memory, executive function, visual-spatial processing, attention, information processing speed, and motor function. We also measured cortical thickness and volume in 10 cortical regions using FreeSurfer 7.2. Linear regression tests were conducted to examine the relationships between ADI metrics, cognitive status, and brain health measures. Results Results indicated a significant inverse relationship between ADI metrics and memory scores, explaining 25% of the variance. Both national and state ADI metrics negatively correlated with motor skills and global cognition (r's < -0.40, p's < 0.05). In contrast, ADI metrics generally positively correlated with motor-related volumetric and cortical thickness measures (r's > 0.40, p's < 0.05). Conclusion The findings suggest that neighborhood-level social deprivation might influence memory and motor status, primarily through its impact on motor brain health.
Collapse
Affiliation(s)
- Madeline Hooten
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Marcus Ortega
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Adewale Oyeyemi
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Fang Yu
- Edson College of Nursing and Healthcare Innovation, Arizona State University, Phoenix, AZ, United States
| | - Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
46
|
Luo X, Huang B, Huang Y, Li M, Niu W, Wang T. Central imaging based on near-infrared functional imaging technology can be useful to plan management in patients with chronic lateral ankle instability. J Orthop Surg Res 2024; 19:361. [PMID: 38890731 PMCID: PMC11184706 DOI: 10.1186/s13018-024-04790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Near infrared brain functional imaging (FNIRS) has been used for the evaluation of brain functional areas, the imaging differences of central activation of cognitive-motor dual tasks between patients with chronic lateral ankle instability (CLAI) and healthy population remain unclear. This study aimed to evaluated the role of central imaging based on FNIRS technology on the plan management in patients with CLAI, to provide insights to the clinical treatment of CLAI. METHODS CLAI patients treated in our hospital from January 1, 2021 to June 31, 2022 were selected. Both CLAI patients and health controls were intervened with simple task and cognitive-motor dual task under sitting and walking conditions, and the changes of oxygenated hemoglobin concentration in bilateral prefrontal cortex (PFC), premotor cortex (PMC) and auxiliary motor area (SMA) were collected and compared. RESULTS A total of 23 participants were enrolled. There were significant differences in the fNIRS ΔHbO2 of barefoot subtractive walking PFC-R and barefoot subtractive walking SMA-R between experimental and control group (all P < 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in other states (P > 0.05). There was no significant difference in ΔHbO2 between the experimental group and the control group in each state of the brain PMC region. CONCLUSION Adaptive alterations may occur within the relevant brain functional regions of individuals with CLAI. The differential activation observed between the PFC and the SMA could represent a compensatory mechanism emerging from proprioceptive afferent disruptions following an initial ankle sprain.
Collapse
Affiliation(s)
- Xiaoming Luo
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ben Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Yonglei Huang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Ming Li
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China
| | - Wenxin Niu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Taoli Wang
- Department of Rehabilitation, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| |
Collapse
|
47
|
Prince JB, Davis HL, Tan J, Muller-Townsend K, Markovic S, Lewis DMG, Hastie B, Thompson MB, Drummond PD, Fujiyama H, Sohrabi HR. Cognitive and neuroscientific perspectives of healthy ageing. Neurosci Biobehav Rev 2024; 161:105649. [PMID: 38579902 DOI: 10.1016/j.neubiorev.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
With dementia incidence projected to escalate significantly within the next 25 years, the United Nations declared 2021-2030 the Decade of Healthy Ageing, emphasising cognition as a crucial element. As a leading discipline in cognition and ageing research, psychology is well-equipped to offer insights for translational research, clinical practice, and policy-making. In this comprehensive review, we discuss the current state of knowledge on age-related changes in cognition and psychological health. We discuss cognitive changes during ageing, including (a) heterogeneity in the rate, trajectory, and characteristics of decline experienced by older adults, (b) the role of cognitive reserve in age-related cognitive decline, and (c) the potential for cognitive training to slow this decline. We also examine ageing and cognition through multiple theoretical perspectives. We highlight critical unresolved issues, such as the disparate implications of subjective versus objective measures of cognitive decline and the insufficient evaluation of cognitive training programs. We suggest future research directions, and emphasise interdisciplinary collaboration to create a more comprehensive understanding of the factors that modulate cognitive ageing.
Collapse
Affiliation(s)
- Jon B Prince
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia.
| | - Helen L Davis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Jane Tan
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Katrina Muller-Townsend
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Shaun Markovic
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Discipline of Psychology, Counselling and Criminology, Edith Cowan University, WA, Australia
| | - David M G Lewis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | | | - Matthew B Thompson
- School of Psychology, Murdoch University, WA, Australia; Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, WA, Australia
| | - Peter D Drummond
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, WA, Australia
| | - Hamid R Sohrabi
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, WA, Australia; Department of Biomedical Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
48
|
Ourry V, Binette AP, St-Onge F, Strikwerda-Brown C, Chagnot A, Poirier J, Breitner J, Arenaza-Urquijo EM, Rabin JS, Buckley R, Gonneaud J, Marchant NL, Villeneuve S. How Do Modifiable Risk Factors Affect Alzheimer's Disease Pathology or Mitigate Its Effect on Clinical Symptom Expression? Biol Psychiatry 2024; 95:1006-1019. [PMID: 37689129 DOI: 10.1016/j.biopsych.2023.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Epidemiological studies show that modifiable risk factors account for approximately 40% of the population variability in risk of developing dementia, including sporadic Alzheimer's disease (AD). Recent findings suggest that these factors may also modify disease trajectories of people with autosomal-dominant AD. With positron emission tomography imaging, it is now possible to study the disease many years before its clinical onset. Such studies can provide key knowledge regarding pathways for either the prevention of pathology or the postponement of its clinical expression. The former "resistance pathway" suggests that modifiable risk factors could affect amyloid and tau burden decades before the appearance of cognitive impairment. Alternatively, the resilience pathway suggests that modifiable risk factors may mitigate the symptomatic expression of AD pathology on cognition. These pathways are not mutually exclusive and may appear at different disease stages. Here, in a narrative review, we present neuroimaging evidence that supports both pathways in sporadic AD and autosomal-dominant AD. We then propose mechanisms for their protective effect. Among possible mechanisms, we examine neural and vascular mechanisms for the resistance pathway. We also describe brain maintenance and functional compensation as bases for the resilience pathway. Improved mechanistic understanding of both pathways may suggest new interventions.
Collapse
Affiliation(s)
- Valentin Ourry
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Alexa Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Clinical Memory Research Unit, Department of Clinical Sciences, Lunds Universitet, Malmö, Sweden
| | - Frédéric St-Onge
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Cherie Strikwerda-Brown
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Audrey Chagnot
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Judes Poirier
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - John Breitner
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Eider M Arenaza-Urquijo
- Environment and Health over the Lifecourse Programme, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Jennifer S Rabin
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Buckley
- Melbourne School of Psychological Sciences University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Julie Gonneaud
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Natalie L Marchant
- Division of Psychiatry, University College London, London, United Kingdom
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
49
|
McMorris T, Hale BJ, Pine BS, Williams TB. Creatine supplementation research fails to support the theoretical basis for an effect on cognition: Evidence from a systematic review. Behav Brain Res 2024; 466:114982. [PMID: 38582412 DOI: 10.1016/j.bbr.2024.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/15/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Creatine supplementation has been put forward as a possible aid to cognition, particularly for vegans, vegetarians, the elderly, sleep deprived and hypoxic individuals. However, previous narrative reviews have only provided limited support for these claims. This is despite the fact that research has shown that creatine supplementation can induce increased brain concentrations of creatine, albeit to a limited extent. We carried out a systematic review to examine the current state of affairs. The review supported claims that creatine supplementation can increases brain creatine content but also demonstrated somewhat equivocal results for effects on cognition. It does, however, provide evidence to suggest that more research is required with stressed populations, as supplementation does appear to significantly affect brain content. Issues with research design, especially supplementation regimens, need to be addressed. Future research must include measurements of creatine brain content.
Collapse
Affiliation(s)
- Terry McMorris
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom; Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom.
| | - Beverley J Hale
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Beatrice S Pine
- Institue of Sport, Nursing and Allied Health, University of Chichester, College Lane, Chichester PO19 6PE, United Kingdom
| | - Thomas B Williams
- Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO12ER, United Kingdom
| |
Collapse
|
50
|
Hwang J, Liu C, Winesett SP, Chatterjee SA, Gruber AD, Swanson CW, Manini TM, Hass CJ, Seidler RD, Ferris DP, Roy A, Clark DJ. Prefrontal cortical activity during uneven terrain walking in younger and older adults. Front Aging Neurosci 2024; 16:1389488. [PMID: 38765771 PMCID: PMC11099210 DOI: 10.3389/fnagi.2024.1389488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.
Collapse
Affiliation(s)
- Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Steven P. Winesett
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Sudeshna A. Chatterjee
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States
| | - Anthony D. Gruber
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Clayton W. Swanson
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, United States
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachael D. Seidler
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Arkaprava Roy
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, United States
| |
Collapse
|