1
|
Qiu T, Zhang J, Song J, Wu C, Yao X, Wang N, Yang G, Bai J, Lv L, Sun X. Arsenic inducible islet β-cell dysfunction and ferroptosis through m 6A-YTHDF2-dependent CHAC1 enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117479. [PMID: 39667319 DOI: 10.1016/j.ecoenv.2024.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/21/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Arsenic, recognized as an environmental and food contaminant, has been linked to the dysfunction of islet β-cells, the primary lesions in type 2 diabetes (T2D). Ferroptosis, a regulated cell death pathway dependent on GPX4, has been implicated in arsenic-induced β-cell dysfunction. However, the underlying molecular mechanisms remain unclear. GPX4 activity is significantly modulated by glutathione levels. In this study, we demonstrate that arsenic inhibits GPX4 expression by upregulating the expression of glutathione-specific γ-glutamylcyclotransferase 1 (CHAC1) (>2-fold in vivo and 1.5-fold in vitro). Conversely, arsenic does not affect the expression of the glutathione-cysteine ligase catalytic subunit (GCLC), which is crucial for glutathione synthesis. Notably, CHAC1 knockdown significantly ameliorated arsenic-induced β-cell dysfunction and ferroptosis. N6-methyladenosine (m6A) plays a crucial role in the post-transcriptional modification of mRNA. Arsenic treatment downregulated the expression of methyltransferases METTL3/14 (approximately 0.5-fold), and overexpression of METTL3 alleviated arsenic-induced β-cell dysfunction and ferroptosis. The m6A modification site on CHAC1 was identified, and RIP assays confirmed that arsenic treatment inhibited the interaction between METTL3/YTHDF2 and CHAC1. Furthermore, METTL3 overexpression reduced the half-life of CHAC1 mRNA (almost 0.5-fold). This study uncovers a novel mechanism by which arsenic modulates CHAC1 and ferroptosis through m6A in β-cell dysfunction, highlighting potential therapeutic targets for arsenic-related T2D.
Collapse
Affiliation(s)
- Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Chenbing Wu
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, 116044, PR China
| | - Li Lv
- Department of Pathology, the Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
2
|
Erickson MA, Johnson RS, Damodarasamy M, MacCoss MJ, Keene CD, Banks WA, Reed MJ. Data-independent acquisition proteomic analysis of the brain microvasculature in Alzheimer's disease identifies major pathways of dysfunction and upregulation of cytoprotective responses. Fluids Barriers CNS 2024; 21:84. [PMID: 39434151 PMCID: PMC11492478 DOI: 10.1186/s12987-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Brain microvascular dysfunction is an important feature of Alzheimer's disease (AD). To better understand the brain microvascular molecular signatures of AD, we processed and analyzed isolated human brain microvessels by data-independent acquisition liquid chromatography with tandem mass spectrometry (DIA LC-MS/MS) to generate a quantitative dataset at the peptide and protein level. Brain microvessels were isolated from parietal cortex grey matter using protocols that preserve viability for downstream functional studies. Our cohort included 23 subjects with clinical and neuropathologic concordance for Alzheimer's disease, and 21 age-matched controls. In our analysis, we identified 168 proteins whose abundance was significantly increased, and no proteins that were significantly decreased in AD. The most highly increased proteins included amyloid beta, tau, midkine, SPARC related modular calcium binding 1 (SMOC1), and fatty acid binding protein 7 (FABP7). Additionally, Gene Ontology (GO) enrichment analysis identified the enrichment of increased proteins involved in cellular detoxification and antioxidative responses. A systematic evaluation of protein functions using the UniProt database identified groupings into common functional themes including the regulation of cellular proliferation, cellular differentiation and survival, inflammation, extracellular matrix, cell stress responses, metabolism, coagulation and heme breakdown, protein degradation, cytoskeleton, subcellular trafficking, cell motility, and cell signaling. This suggests that AD brain microvessels exist in a stressed state of increased energy demand, and mount a compensatory response to ongoing oxidative and cellular damage that is associated with AD. We also used public RNAseq databases to identify cell-type enriched genes that were detected at the protein level and found no changes in abundance of these proteins between control and AD groups, indicating that changes in cellular composition of the isolated microvessels were minimal between AD and no-AD groups. Using public data, we additionally found that under half of the proteins that were significantly increased in AD microvessels had concordant changes in brain microvascular mRNA, implying substantial discordance between gene and protein levels. Together, our results offer novel insights into the molecular underpinnings of brain microvascular dysfunction in AD.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
| |
Collapse
|
3
|
Xu C, Bian Z, Wang X, Niu N, Liu L, Xiao Y, Zhu J, Huang N, Zhang Y, Chen Y, Wu Q, Sun F, Zhu X, Pan Q. SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res 2023; 42:331. [PMID: 38049865 PMCID: PMC10696674 DOI: 10.1186/s13046-023-02906-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies and is characterized by reprogrammed metabolism. Ferroptosis, a programmed cell death dependent on iron, has emerged as a promising strategy for CRC treatment. Although small nucleolar RNAs are extensively involved in carcinogenesis, it is unclear if they regulate ferroptosis during CRC pathogenesis. METHODS The dysregulated snoRNAs were identified using published sequencing data of CRC tissues. The expression of the candidate snoRNAs, host gene and target gene were assessed by real-time quantitative PCR (RT-qPCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and western blots. The biological function of critical molecules was investigated using in vitro and in vivo strategies including Cell Counting Kit-8 (CCK8), colony formation assay, flow cytometry, Fe2+/Fe3+, GSH/GSSG and the xenograft mice models. The ribosomal activities were determined by polysome profiling and O-propargyl-puromycin (OP-Puro) assay. The proteomics was conducted to clarify the downstream targets and the underlying mechanisms were validated by IHC, Pearson correlation analysis, protein stability and rescue assays. The clinical significance of the snoRNA was explored using the Cox proportional hazard model, receiver operating characteristic (ROC) and survival analysis. RESULTS Here, we investigated the SNORA56, which was elevated in CRC tissues and plasma, and correlated with CRC prognosis. SNORA56 deficiency in CRC impaired proliferation and triggered ferroptosis, resulting in reduced tumorigenesis. Mechanistically, SNORA56 mediated the pseudouridylation of 28 S rRNA at the U1664 site and promoted the translation of the catalytic subunit of glutamate cysteine ligase (GCLC), an indispensable rate-limiting enzyme in the biosynthesis of glutathione, which can inhibit ferroptosis by suppressing lipid peroxidation. CONCLUSIONS Therefore, the SNORA56/28S rRNA/GCLC axis stimulates CRC progression by inhibiting the accumulation of cellular peroxides, and it may provide biomarker and therapeutic applications in CRC.
Collapse
Affiliation(s)
- Chang Xu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Na Niu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Li Liu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Yixuan Xiao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Nan Huang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yan Chen
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qi Wu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiaoli Zhu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China.
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China.
| |
Collapse
|
4
|
Characterization of glutamate‐cysteine ligase and glutathione synthetase from the δ‐proteobacterium
Myxococcus xanthus. Proteins 2022; 90:1547-1560. [DOI: 10.1002/prot.26333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
|
5
|
Zhang H, Li L, Li H, Qu P, Xiao M, Zhang G, Wu S, Zhu G, Lu X. Corn Embryo Ameliorates Cognitive Dysfunction and Anxiety-like Behaviors in D-galactose-induced Aging Rats via Attenuating Oxidative Stress, Apoptosis and Up-regulating Neurotrophic Factors. J Chem Neuroanat 2022; 121:102088. [DOI: 10.1016/j.jchemneu.2022.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
|
6
|
Güller P, Budak H, Şişecioğlu M, Çiftci M. An in vivo and in vitro comparison of the effects of amoxicillin, gentamicin, and cefazolin sodium antibiotics on the mouse hepatic and renal glutathione reductase enzyme. J Biochem Mol Toxicol 2020; 34:e22496. [DOI: 10.1002/jbt.22496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 03/12/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Pınar Güller
- Department of ChemistryFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Harun Budak
- Department of Molecular Biology and GeneticsFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and GeneticsFaculty of Science, Atatürk UniversityErzurum Turkey
| | - Mehmet Çiftci
- Department of ChemistryFaculty of Arts and Sciences, Bingöl University Bingöl Turkey
| |
Collapse
|
7
|
Lee SB, Sellers BN, DeNicola GM. The Regulation of NRF2 by Nutrient-Responsive Signaling and Its Role in Anabolic Cancer Metabolism. Antioxid Redox Signal 2018; 29:1774-1791. [PMID: 28899208 DOI: 10.1089/ars.2017.7356] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The stress responsive transcription factor nuclear factor erythroid 2 p45-related factor 2, or NRF2, regulates the expression of many cytoprotective enzymes to mitigate oxidative stress under physiological conditions. NRF2 is activated in response to oxidative stress, growth factor signaling, and changes in nutrient status. In addition, somatic mutations that disrupt the interaction between NRF2 and its negative regulator Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated 1 (KEAP1) commonly occur in cancer and are thought to promote tumorigenesis. Recent Advances: While it is well established that aberrant NRF2 activation results in enhanced antioxidant capacity in cancer cells, recent exciting findings demonstrate a role for NRF2-mediated metabolic deregulation that supports cancer cell proliferation. CRITICAL ISSUES In this review, we describe how the NRF2-KEAP1 signaling pathway is altered in cancer, how NRF2 is regulated by changes in cellular metabolism, and how NRF2 reprograms cellular metabolism to support proliferation. FUTURE DIRECTIONS Future studies will delineate the NRF2-regulated processes critical for metabolic adaptation to nutrient availability, cellular proliferation, and tumorigenesis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Sae Bom Lee
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Brianna N Sellers
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Gina M DeNicola
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute , Tampa, Florida
| |
Collapse
|
8
|
Sørvik IB, Solum EJ, Labba NA, Hansen TV, Paulsen RE. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radic Res 2018; 52:273-287. [DOI: 10.1080/10715762.2018.1430363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Irene B. Sørvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eirik Johansson Solum
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils A. Labba
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Jiang Y, Tao R, Shen Z, Sun L, Zhu F, Yang S. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation. Appl Biochem Biotechnol 2016; 180:1446-1455. [PMID: 27380420 DOI: 10.1007/s12010-016-2178-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
Abstract
Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l-1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol-1 added cysteine and a productivity of 6.1 ± 0.0 g l-1 h-1. This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, 201201, China
| | - Rongsheng Tao
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
| | - Zhengquan Shen
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
| | - Liangdong Sun
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
| | - Fuyun Zhu
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China. .,Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, 201201, China. .,Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, 313000, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 200237, China.
| |
Collapse
|
10
|
Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys 2016; 593:12-23. [DOI: 10.1016/j.abb.2016.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/28/2023]
|
11
|
Robert SM, Ogunrinu-Babarinde T, Holt KT, Sontheimer H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem Int 2014; 73:181-91. [PMID: 24418113 DOI: 10.1016/j.neuint.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
Abstract
Redox homeostasis is especially important in the brain where high oxygen consumption produces an abundance of harmful oxidative by-products. Glutathione (GSH) is a tripeptide non-protein thiol. It is the central nervous system's most abundant antioxidant and the master controller of brain redox homeostasis. The glutamate transporters, System xc(-) (SXC) and the Excitatory Amino Acid Transporters (EAAT), play important, synergistic roles in the synthesis of GSH. In glial cells, SXC mediates the uptake of cystine, which after intracellular reduction to cysteine, reacts with glutamate during the rate-limiting step of GSH synthesis. EAAT3 mediates direct cysteine uptake for neuronal GSH synthesis. SXC and EAAT work in concert in glial cells to provide two intracellular substrates for GSH synthesis, cystine and glutamate. Their cyclical basal function also prevents a buildup of extracellular glutamate, which SXC releases extracellularly in exchange for cystine uptake. Maintaining extracellular glutamate homeostasis is critical to prevent neuronal toxicity, as well as glutamate-mediated SXC inhibition, which could lead to a depletion of intracellular GSH and loss of cellular redox control. Many neurological diseases show evidence of GSH dysfunction, and increased GSH has been widely associated with chemotherapy and radiotherapy resistance of gliomas. We present evidence suggesting that gliomas expressing elevated levels of SXC are more reliant on GSH for growth and survival. They have an increased inherent radiation resistance, however, inhibition of SXC can increase tumor sensitivity at low radiation doses. GSH depletion through SXC inhibition may be a viable mechanism to enhance current glioma treatment strategies and make tumors more sensitive to radiation and chemotherapy protocols.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| | - Toyin Ogunrinu-Babarinde
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Kenneth T Holt
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 2013; 18:522-55. [PMID: 22667998 PMCID: PMC3545354 DOI: 10.1089/ars.2011.4391] [Citation(s) in RCA: 689] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The antiporter system x(c)(-) imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along with cystine, it also forms a key redox couple on its own. Glutamate is a major neurotransmitter in the central nervous system (CNS). By phylogenetic analysis, we show that system x(c)(-) is a rather evolutionarily new amino acid transport system. In addition, we summarize the current knowledge regarding the molecular mechanisms that regulate system x(c)(-), including the transcriptional regulation of the xCT light chain, posttranscriptional mechanisms, and pharmacological inhibitors of system x(c)(-). Moreover, the roles of system x(c)(-) in regulating GSH levels, the redox state of the extracellular cystine/cysteine redox couple, and extracellular glutamate levels are discussed. In vitro, glutamate-mediated system x(c)(-) inhibition leads to neuronal cell death, a paradigm called oxidative glutamate toxicity, which has successfully been used to identify neuroprotective compounds. In vivo, xCT has a rather restricted expression pattern with the highest levels in the CNS and parts of the immune system. System x(c)(-) is also present in the eye. Moreover, an elevated expression of xCT has been reported in cancer. We highlight the diverse roles of system x(c)(-) in the regulation of the immune response, in various aspects of cancer and in the eye and the CNS.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Redox-dependent stability of the γ-glutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation. Biochem J 2013; 449:783-94. [DOI: 10.1042/bj20120204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutathione is a thiol-containing tripeptide that plays important roles in redox-related processes. The first step in glutathione biosynthesis is catalysed by γ-GCS (γ-glutamylcysteine synthetase). The crystal structure of Escherichia coli γ-GCS has revealed the presence of a disulfide bond. As the disulfide-bonding cysteine residues Cys372 and Cys395 are not well conserved among γ-GCS enzymes in this lineage, we have initiated a biochemical genetic strategy to investigate the functional importance of these and other cysteine residues. In a cysteine-free γ-GCS that was non-functional, suppressor analysis yielded combinations of cysteine and aromatic residues at the position of the disulfide bond, and one mutant that lacked any cysteine residues. Kinetic analysis of the wild-type and mutant enzymes revealed that the disulfide bond was not involved in determining the affinity of the enzyme towards its substrate, but had an important role in determining the stability of the protein, and its catalytic efficiency. We show that in vivo the γ-GCS enzyme can also exist in a reduced form and that the mutants lacking the disulfide bond show a decreased half-life. These results demonstrate a novel means of regulation of γ-GCS by the redox environment that works by an alteration in its stability.
Collapse
|
14
|
Hou HS, Liao CL, Sytwu HK, Liao NS, Huang TY, Hsieh TY, Chu HC. Deficiency of interleukin-15 enhances susceptibility to acetaminophen-induced liver injury in mice. PLoS One 2012; 7:e44880. [PMID: 23028657 PMCID: PMC3445599 DOI: 10.1371/journal.pone.0044880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes have a direct necrotic role in acetaminophen (APAP)-induced liver injury (AILI), prolonged secondary inflammatory response through innate immune cells and cytokines also significantly contributes to APAP hepatotoxicity. Interleukin 15 (IL-15), a multifunction cytokine, regulates the adaptive immune system and influences development and function of innate immune cells. To better understand the role of IL-15 in liver injury, we treated wild-type (WT) and IL-15-knockout (Il15⁻/⁻) mice with a hepatotoxic dose of APAP to induce AILI and evaluated animal survival, liver damage, APAP metabolism in livers and the inflammatory response. Production of pro-inflammatory cytokines/chemokines was greater in Il15⁻/⁻ than WT mice. Subanalysis of hepatic infiltrated monocytes revealed greater neutrophil influx, along with greater hepatic induction of inducible nitric oxide synthase (iNOS), in Il15⁻/⁻ than WT mice. In addition, the level of hepatic hemeoxygenase 1 (HO-1) was partially suppressed in Il15⁻/⁻ mice, but not in WT mice. Interestingly, elimination of Kupffer cells and neutrophils did not alter the vulnerability to excess APAP in Il15⁻/⁻ mice. However, injection of galactosamine, a hepatic transcription inhibitor, significantly reduced the increased APAP sensitivity in Il15⁻/⁻ mice but had minor effect on WT mice. We demonstrated that deficiency of IL-15 increased mouse susceptibility to AILI. Moreover, Kupffer cell might affect APAP hepatotoxicity through IL-15.
Collapse
Affiliation(s)
- Hsein-San Hou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Len Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Nan-Shih Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Heng-Cheng Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Djukic MM, Jovanovic MD, Ninkovic M, Stevanovic I, Ilic K, Curcic M, Vekic J. Protective role of glutathione reductase in paraquat induced neurotoxicity. Chem Biol Interact 2012; 199:74-86. [DOI: 10.1016/j.cbi.2012.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
|
16
|
|
17
|
Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. J Biotechnol 2011; 154:261-8. [DOI: 10.1016/j.jbiotec.2011.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 11/21/2022]
|
18
|
Biterova EI, Barycki JJ. Structural basis for feedback and pharmacological inhibition of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem 2010; 285:14459-66. [PMID: 20220146 DOI: 10.1074/jbc.m110.104802] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural characterization of glutamate cysteine ligase (GCL), the enzyme that catalyzes the initial, rate-limiting step in glutathione biosynthesis, has revealed many of the molecular details of substrate recognition. To further delineate the mechanistic details of this critical enzyme, we have determined the structures of two inhibited forms of Saccharomyces cerevisiae GCL (ScGCL), which shares significant sequence identity with the human enzyme. In vivo, GCL activity is feedback regulated by glutathione. Examination of the structure of ScGCL-glutathione complex (2.5 A; R = 19.9%, R(free) = 25.1%) indicates that the inhibitor occupies both the glutamate- and the presumed cysteine-binding site and disrupts the previously observed Mg(2+) coordination in the ATP-binding site. l-Buthionine-S-sulfoximine (BSO) is a mechanism-based inhibitor of GCL and has been used extensively to deplete glutathione in cell culture and in vivo model systems. Inspection of the ScGCL-BSO structure (2.2 A; R = 18.1%, R(free) = 23.9%) confirms that BSO is phosphorylated on the sulfoximine nitrogen to generate the inhibitory species and reveals contacts that likely contribute to transition state stabilization. Overall, these structures advance our understanding of the molecular regulation of this critical enzyme and provide additional details of the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Ekaterina I Biterova
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | |
Collapse
|
19
|
Mutation screening of the glutamate cysteine ligase modifier (GCLM) gene in patients with schizophrenia. Psychiatr Genet 2009; 19:201-8. [PMID: 19455074 DOI: 10.1097/ypg.0b013e32832cef21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Experimental evidences show that glutathione and its rate-limiting synthesizing enzyme, the glutamate-cysteine ligase (GCL), are involved in the pathogenesis of schizophrenia. Furthermore, genetic association has been previously reported between two single nucleotide polymorphisms lying in noncoding regions of glutamate cysteine ligase modifier (GCLM) gene, which specifies for the modifier subunit of GCL and schizophrenia. OBJECTIVE We wanted to investigate the presence of GCLM true functional mutations, likely in linkage disequilibrium with the previously identified single nucleotide polymorphism alleles, in the same set of cases that allowed the detection of the original association signal. METHODS We screened all the coding regions of GCLM and their intronic flanking vicinities in 353 patients with schizophrenia by direct DNA sequencing. RESULTS Ten sequence variations were identified, five of which were not previously described. None of these DNA changes was within the GCLM coding sequence and in-silico analysis failed to indicate functional impairment induced by these variations. Furthermore, screening of normal controls and downstream statistical analyses revealed no significant relationship of any of these DNA variants with schizophrenia. CONCLUSION It is unlikely that functional mutations in the GCLM gene could play a major role in genetic predisposition to schizophrenia and further studies will be required to assess its etiological function in the disease.
Collapse
|
20
|
Kulinsky VI, Kolesnichenko LS. The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Wu H, White CC, Isanhart JP, McBride TJ, Kavanagh TJ, Hooper MJ. Optimization and application of glutamate cysteine ligase measurement in wildlife species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:572-578. [PMID: 18403016 DOI: 10.1016/j.ecoenv.2008.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/25/2008] [Accepted: 03/01/2008] [Indexed: 05/26/2023]
Abstract
Glutamate cysteine ligase (GCL), synthesizing gamma-glutamylcysteine from glutamate and cysteine, is the rate-limiting enzyme in glutathione (GSH) biosynthesis. GCL activity measurement was optimized in tissues from deer mice, Sprague Dawley rats, and mallard ducks. Varying glutamic acid concentrations from 5 to 80 mM did not affect GCL activities markedly, whereas cysteine concentrations from 2.5 to 40 mM influenced GCL activities substantially. Optimal cysteine concentrations for deer mouse, Sprague Dawley rat, and mallard duck (respectively) were 30, 30, and 20 mM in liver, 10, 10, and 20 mM in kidney, 20, 20, and 30 mM in brain, and 30 mM in heart for all three species. Responses of mallard duck GCL activity to acid metalliferous water were evaluated. After subacute exposure, low doses increased GCL activity and GSH content in liver by 48.3% and 54.4%, respectively. High doses reduced GCL activities significantly in liver and kidney to 31.2% and 43.0% of the control, respectively.
Collapse
Affiliation(s)
- Hongmei Wu
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson's disease: Is this the elephant in the room? Biomed Pharmacother 2008; 62:236-49. [DOI: 10.1016/j.biopha.2008.01.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022] Open
|
23
|
Castro C, Millian NS, Garrow TA. Liver betaine-homocysteine S-methyltransferase activity undergoes a redox switch at the active site zinc. Arch Biochem Biophys 2008; 472:26-33. [PMID: 18262489 DOI: 10.1016/j.abb.2008.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022]
Abstract
Using a redox-inert methyl acceptor, we show that betaine-homocysteine S-methyltransferase (BHMT) requires a thiol reducing agent for activity. Short-term exposure of BHMT to reducing agent-free buffer inactivates the enzyme without causing any loss of its catalytic zinc. Activity can be completely restored by the re-addition of a thiol reducing agent. The catalytic zinc of BHMT is bound by three thiolates and one hydroxyl group. Thiol modification experiments indicate that a disulfide bond is formed between two of the three zinc-binding ligands when BHMT is inactive in a reducing agent-free buffer, and that this disulfide can be readily reduced with the concomitant restoration of activity by re-establishing reducing conditions. Long-term exposure of BHMT to reducing agent-free buffer results in the slow, irreversible loss of its catalytic Zn and a corresponding loss of activity. Experiments using the glutamate-cysteine ligase modifier subunit knockout mice Gclm(-/-), which are severely impaired in glutathione synthesis, show that BHMT activity is reduced about 75% in Gclm(-/-) compared to Gclm(+/+) mice.
Collapse
Affiliation(s)
- Carmen Castro
- Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
24
|
Chen Y, Yang Y, Miller ML, Shen D, Shertzer HG, Stringer KF, Wang B, Schneider SN, Nebert DW, Dalton TP. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 2007; 45:1118-28. [PMID: 17464988 DOI: 10.1002/hep.21635] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Oxidative stress is considered to be a critical mediator in liver injury of various etiologies. Depletion of glutathione (GSH), the major antioxidant in liver, has been associated with numerous liver diseases. To explore the specific role of hepatic GSH in vivo, we targeted Gclc, a gene essential for GSH synthesis, so that it was flanked by loxP sites and used the albumin-cyclization recombination (Alb-Cre) transgene to disrupt the Gclc gene specifically in hepatocytes. Deletion within the Gclc gene neared completion by postnatal day (PND)14, and loss of GCLC protein was complete by PND21. Cellular GSH was progressively depleted between PND14 and PND28-although loss of mitochondrial GSH was less severe. Nevertheless, ultrastructural examination of liver revealed dramatic changes in mitochondrial morphology; these alterations were accompanied by striking decreases in mitochondrial function in vitro, cellular ATP, and a marked increase in lipid peroxidation. Plasma liver biochemistry tests from these mice were consistent with progressive severe parenchymal damage. Starting at PND21, livers from hepatocyte-specific Gclc knockout [Gclc(h/h)] mice showed histological features of hepatic steatosis; this included inflammation and hepatocyte death, which progressed in severity such that mice died at approximately 1 month of age due to complications from liver failure. CONCLUSION GSH is essential for hepatic function and loss of hepatocyte GSH synthesis leads to steatosis with mitochondrial injury and hepatic failure.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mattes WB, Daniels KK, Summan M, Xu ZA, Mendrick DL. Tissue and species distribution of the glutathione pathway transcriptome. Xenobiotica 2007; 36:1081-121. [PMID: 17118919 DOI: 10.1080/00498250600861793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The goal of this study was to compare and contrast the basal gene expression levels of the various enzymes involved in glutathione metabolism among tissues and genders of the rat, mouse and canine. The approach taken was to use Affymetrix GeneChip microarray data for rat, mouse and canine tissues, comparing intensity levels for individual probes between tissues and genders. As was hypothesized, the relative expression in liver, lung, heart, kidney and testis varied from gene to gene, with differences of expression between tissues sometimes greater than a 1000-fold. The pattern of differential expression was usually similar between male and female animals, but varied greatly between the three species. Gstp1 appears to be expressed at high levels in male mouse liver, reasonable levels in canine liver, but very low levels in male rat liver. In all species examined, Gstp1 expression was below detectable levels in testis. Gsta3/Yc2 expression appeared high in rodent liver and female canine liver, but not male canine liver. Finally, Mgst1 and Gpx3 expression appeared to be lower in canine heart and testis than seen in rodents. Given the critical role of the glutathione pathway in the detoxification of many drugs and xenobiotics, the observed differences in basal tissue distribution among mouse, rat and canine has far-reaching implications in comparing responses of these species in safety testing.
Collapse
Affiliation(s)
- W B Mattes
- Department of Toxicogenomics Services, Gene Logic Inc, Gaithersburg, MD, USA.
| | | | | | | | | |
Collapse
|
26
|
Kino K, Kuratsu S, Noguchi A, Kokubo M, Nakazawa Y, Arai T, Yagasaki M, Kirimura K. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum. Biochem Biophys Res Commun 2006; 352:351-9. [PMID: 17123467 DOI: 10.1016/j.bbrc.2006.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 11/07/2006] [Indexed: 01/23/2023]
Abstract
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.
Collapse
Affiliation(s)
- Kuniki Kino
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qiang W, Kuang X, Liu J, Liu N, Scofield VL, Reid AJ, Jiang Y, Stoica G, Lynn WS, Wong PKY. Astrocytes survive chronic infection and cytopathic effects of the ts1 mutant of the retrovirus Moloney murine leukemia virus by upregulation of antioxidant defenses. J Virol 2006; 80:3273-84. [PMID: 16537594 PMCID: PMC1440401 DOI: 10.1128/jvi.80.7.3273-3284.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ts1 mutant of Moloney murine leukemia virus (MoMuLV) induces a neurodegenerative disease in mice, in which glial cells are infected by the retrovirus but neurons are not. ts1 infection of primary astrocytes, or of the immortalized astrocytic cell line C1, results in accumulation of the ts1 gPr80(env) envelope protein in the endoplasmic reticulum (ER), with ER and oxidative stress. Notably, only about half of the infected astrocytes die in these cultures, while the other half survive, continue to proliferate, and continue to produce virus. To determine how these astrocytes survive ts1 infection in culture, we established a chronically infected subline of the living cells remaining after the death of all acutely infected cells in an infected C1 cell culture (C1-ts1-S). We report here that C1-ts1-S cells proliferate more slowly, produce less virus, show reduced H2O2 levels, increase their uptake of cystine, and maintain higher levels of intracellular GSH and cysteine compared to acutely infected or uninfected C1 cells. C1-ts1-S cells also upregulate their thiol antioxidant defenses by activation of the transcription factor NF-E2-related factor 2 (Nrf2) and its target genes. Interestingly, despite maintenance of higher levels of intracellular reduced thiols, C1-ts1-S cells are more sensitive to cystine deprivation than uninfected C1 cells. We conclude that some ts1-infected astrocytes survive and adapt to virus-induced oxidative stress by successfully mobilizing their thiol redox defenses.
Collapse
Affiliation(s)
- Wenan Qiang
- Department of Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vergauwen B, De Vos D, Van Beeumen JJ. Characterization of the Bifunctional γ-Glutamate-cysteine Ligase/Glutathione Synthetase (GshF) of Pasteurella multocida. J Biol Chem 2006; 281:4380-94. [PMID: 16339152 DOI: 10.1074/jbc.m509517200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-cysteine ligase (gamma-ECL) and glutathione synthetase (GS) are the two unrelated ligases that constitute the glutathione biosynthesis pathway in most eukaryotes, purple bacteria, and cyanobacteria. gamma-ECL is a member of the glutamine synthetase family, whereas GS enzymes group together with highly diverse carboxyl-to-amine/thiol ligases, all characterized by the so-called two-domain ATP-grasp fold. This generalized scheme toward the formation of glutathione, however, is incomplete, as functional steady-state levels of intracellular glutathione may also accumulate solely by import, as has been reported for the Pasteurellaceae member Haemophilus influenzae, as well as for certain Gram-positive enterococci and streptococci, or by the action of a bifunctional fusion protein (termed GshF), as has been reported recently for the Gram-positive firmicutes Streptococcus agalactiae and Listeria monocytogenes. Here, we show that yet another member of the Pasteurellaceae family, Pasteurella multocida, acquires glutathione both by import and GshF-driven biosynthesis. Domain architecture analysis shows that this P. multocida GshF bifunctional ligase contains an N-terminal gamma-proteobacterial gamma-ECL-like domain followed by a typical ATP-grasp domain, which most closely resembles that of cyanophycin synthetases, although it has no significant homology with known GS ligases. Recombinant P. multocida GshF overexpresses as an approximately 85-kDa protein, which, on the basis of gel-sizing chromatography, forms dimers in solution. The gamma-ECL activity of GshF is regulated by an allosteric type of glutathione feedback inhibition (K(i) = 13.6 mM). Furthermore, steady-state kinetics, on the basis of which we present a novel variant of half-of-the-sites reactivity, indicate intimate domain-domain interactions, which may explain the bifunctionality of GshF proteins.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | | | | |
Collapse
|
29
|
Nakayama Y, Kinoshita A, Tomita M. Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition. Theor Biol Med Model 2005; 2:18. [PMID: 15882454 PMCID: PMC1142344 DOI: 10.1186/1742-4682-2-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 05/09/2005] [Indexed: 02/06/2023] Open
Abstract
Background Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. Results Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. Conclusion The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency.
Collapse
Affiliation(s)
- Yoichi Nakayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Ayako Kinoshita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| |
Collapse
|
30
|
Abstract
Gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS), distinct enzymes that together account for glutathione (GSH) synthesis, have been isolated and characterized from several Gram-negative prokaryotes and from numerous eukaryotes including mammals, amphibians, plants, yeast, and protozoa. Glutathione synthesis is relatively uncommon among the Gram-positive bacteria, and, to date, neither the genes nor the proteins involved have been identified. In the present report, we show that crude extracts of Streptococcus agalactiae catalyze the gamma-GCS and GS reactions and can synthesize GSH from its constituent amino acids. The putative gene for S. agalactiae gamma-GCS was identified and cloned, and the corresponding protein was expressed and purified. Surprisingly, it was found that the isolated enzyme catalyzes both the ATP-dependent synthesis of L-gamma-glutamyl-L-cysteine from L-glutamate and L-cysteine and the ATP-dependent synthesis of GSH from L-gamma-glutamyl-L-cysteine and glycine. This novel bifunctional enzyme, referred to as gamma-GCS-GS, has been characterized in terms of catalytic activity, substrate specificity, and inhibition by GSH, cystamine, and transition state analog sulfoximines. The N-terminal 518 amino acids of gamma-GCS-GS (total M(r) 85,000) show 32% identity and 43% similarity with E. coli gamma-GCS (M(r) 58,000), but the C-terminal putative GS domain (remaining 202 amino acids) of gamma-GCS-GS shows no significant homology with known GS sequences. The C terminus (360 amino acids) is, however, homologous to D-Ala, D-Ala ligase (24% identity; 38% similarity), an enzyme having the same protein fold as known GS proteins. These results are discussed in terms of the evolution of GSH synthesis and the possible occurrence of a similar bifunctional GSH synthesis enzyme in other bacterial species.
Collapse
Affiliation(s)
- Blythe E Janowiak
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
31
|
Toroser D, Sohal RS. Kinetic characteristics of native gamma-glutamylcysteine ligase in the aging housefly, Musca domestica L. Biochem Biophys Res Commun 2005; 326:586-93. [PMID: 15596139 PMCID: PMC2837084 DOI: 10.1016/j.bbrc.2004.11.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Indexed: 11/26/2022]
Abstract
The catalytic activity of gamma-glutamylcysteine ligase (gamma-GCL; EC 6.3.2.2) was compared between relatively young (4-day-old) and old (19-day-old) houseflies (Musca domestica) in order to understand the mechanism of putative deterioration of glutathione homeostasis during the aging process. Hanes-Woolf analyses ([S]/v vs [S]) indicated that gamma-GCL had significantly higher affinities for its substrates in the young than in the old flies. The K(m) values in the young and old flies were, respectively, for glutamate 0.6 and 5.5 mM; for cysteine 0.3 and 4.6 mM; and for ATP 1.2 and 2.9 mM. Furthermore, young but not old flies exhibited substrate-dependent inhibition of gamma-GCL activity at >5 mM cysteine indicating a loss of metabolic regulation during aging. The age-associated differences in the affinity of native gamma-GCL towards its substrates suggest that de novo synthesis of glutathione would be relatively less efficient in the old houseflies.
Collapse
Affiliation(s)
- Dikran Toroser
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Rajindar S. Sohal
- Department of Molecular Pharmacology and Toxicology, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| |
Collapse
|
32
|
Qiang W, Cahill JM, Liu J, Kuang X, Liu N, Scofield VL, Voorhees JR, Reid AJ, Yan M, Lynn WS, Wong PKY. Activation of transcription factor Nrf-2 and its downstream targets in response to moloney murine leukemia virus ts1-induced thiol depletion and oxidative stress in astrocytes. J Virol 2004; 78:11926-38. [PMID: 15479833 PMCID: PMC523278 DOI: 10.1128/jvi.78.21.11926-11938.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The neuroimmunodegenerative syndrome that develops in mice infected with ts1, a mutant of Moloney murine leukemia virus, resembles human AIDS. Both ts1 and human immunodeficiency virus type 1 infect astrocytes, microglia, and oligodendrocytes but do not infect neurons. Oxidative stress has been implicated in the neuropathology of AIDS dementia and other neurodegenerative diseases. We report here that ts1 infection of astrocytes (both transformed C1 cells and primary cultures) also induces thiol (i.e., glutathione and cysteine) depletion and reactive oxygen species (ROS) accumulation, events occurring in parallel with viral envelope precursor gPr80(env) accumulation and upregulated expression of endoplasmic reticulum chaperones GRP78 and GRP94. Furthermore, ts1-infected astrocytes mobilize their thiol redox defenses by upregulating levels of the Nrf-2 transcription factor, as well its targets, the xCT cystine/glutamate antiporter, gamma-glutamylcysteine ligase, and glutathione peroxidase. Depleting intracellular thiols by treating uninfected astrocytes with buthionine sulfoximine (BSO), a glutathione synthesis inhibitor, or by culturing in cystine-deficient medium, also induces ROS accumulation, activates Nrf-2, and upregulates Nrf-2 target gene expression in these astrocytes. Overexpression of Nrf-2 in astrocytes specifically increases expression of the above thiol synthesis-related proteins. Further treatment with BSO or N-acetylcysteine in transfected cells modulates this expression. Thiol depletion also accelerates cell death, while thiol supplementation promotes survival of ts1-infected cells. Together, our results indicate that ts1 infection of astrocytes, along with ts1-induced gPr80(env) accumulation, endoplasmic reticulum stress, thiol depletion, and oxidative stress, accelerates cell death; in response to the thiol depletion and oxidative stress, astrocytes activate their Nrf-2-mediated thiol antioxidant defenses, promoting cell survival.
Collapse
Affiliation(s)
- Wenan Qiang
- University of Texas, M. D. Anderson Cancer Center, Science Park-Research Division, P.O. Box 389, Smithville, TX 78957, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, Kavanagh TJ, Forman HJ. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys 2004; 423:116-25. [PMID: 14871475 DOI: 10.1016/j.abb.2003.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/05/2003] [Indexed: 10/26/2022]
Abstract
Glutamate cysteine ligase (GCL), composed of a catalytic (GCLC) and modulatory (GCLM) subunit, catalyzes the first step of glutathione (GSH) biosynthesis. Using 4-hydroxy-2-nonenal (4HNE), 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and tertiary-butylhydroquinone (tBHQ) as models of oxidative stress which are known to work through different mechanisms, we measured changes in cellular GSH, GCL mRNA, and GCL protein. 4HNE and tBHQ treatments increased cellular GSH levels, while DMNQ exposure depleted GSH. Furthermore, changes in the two GCL mRNAs largely paralleled changes in the GCL proteins; however, the magnitudes differed, suggesting some form of translational control. The molar ratio of GCLC:GCLM ranged from 3:1 to 17:1 in control human bronchial epithelial (HBE1) cells and all treatments further increased this ratio. Data from several mouse tissues show molar ratios of GCLC:GCLM that range from 1:1 to 10:1 in support of these findings. These data demonstrate that alterations in cellular GSH are clearly correlated with GCLC to a greater extent than GCLM. Surprisingly, both control HBE1 cells and some mouse tissues have more GCLC than GCLM and GCLM increases to a much lesser extent than GCLC, suggesting that the regulatory role of GCLM is minimal under physiologically relevant conditions of oxidative stress.
Collapse
Affiliation(s)
- David M Krzywanski
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hamilton D, Wu JH, Alaoui-Jamali M, Batist G. A novel missense mutation in the gamma-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production. Blood 2003; 102:725-30. [PMID: 12663448 DOI: 10.1182/blood-2002-11-3622] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma-glutamylcysteine synthetase (gamma-GCS) catalyzes the first and rate-limiting step in glutathione (GSH) biosynthesis: the adenosine triphosphate (ATP)-dependent ligation of glutamate and cysteine. gamma-GCS consists of a catalytic (gamma-GCSH) and modifier (gamma-GCSL) subunit. Hereditary deficiency of gamma-GCS has been reported in a small number of patients and is associated with low erythrocyte levels of gamma-GCS and GSH leading to hemolytic anemia. Here we report a novel gamma-GCSH mutation, isolated from the cDNA of 2 related patients diagnosed with gamma-GCS deficiency. Each was found to be homozygous for a C>T missense mutation at nucleotide 379, encoding for a predicted Arg127Cys amino acid change. Computerized structure modeling identified that the mutated amino acid lies within a cleft on the protein surface of gamma-GCSH, and the border of this cleft was shown to contain Cys249, an evolutionarily conserved residue that has been proven to lie near the binding site of gamma-GCSH. Transfection studies showed that the mutation is associated with decreased GSH production, and binding studies using purified recombinant protein showed that the mutant protein has markedly decreased enzymatic activity compared to wild type.
Collapse
Affiliation(s)
- David Hamilton
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
35
|
Kim SJ, Shin YH, Kim K, Park EH, Sa JH, Lim CJ. Regulation of the gene encoding glutathione synthetase from the fission yeast. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:326-31. [PMID: 12787490 DOI: 10.5483/bmbrep.2003.36.3.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSH) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, gamma-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multicopy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride (10 microM) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal 8 amino acid-coding region were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of beta-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of gamma-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.
Collapse
Affiliation(s)
- Su-Jung Kim
- Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Nieto N, Marí M, Cederbaum AI. Cytochrome P450 2E1 responsiveness in the promoter of glutamate-cysteine ligase catalytic subunit. Hepatology 2003; 37:96-106. [PMID: 12500194 DOI: 10.1053/jhep.2003.50003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies have shown cytochrome P450 2E1 (CYP2E1)-dependent transcriptional up-regulation of glutamate-cysteine ligase (GCL). To identify sequences mediating constitutive and induced expression of the catalytic subunit of GCL (GCLC), a series of deletion mutants from the 5'-flanking region (-3,802 to +465) were transfected into control (C34) and CYP2E1-overexpressing (E47) HepG2 cells. Increased luciferase expression, both basal (2- to 3-fold) and following exposure to ethanol, arachidonic acid (AA), or AA plus iron, was detected in E47 cells with the full-length but not shorter reporter vectors. Basal induction was blocked by CYP2E1 inhibitors and catalase. Basal and inducible luciferase expression in E47 cells was blunted by the full-length construct mutated in the ARE4 site. Catalase and diallyl sulfide prevented basal and AA-induced messenger RNA (mRNA) levels of GCLC and the modulatory subunit of GCL (GCLM). Preincubation with low doses of AA increased glutathione (GSH) levels as well as GCLC and GCLM mRNAs, and this protected against H(2)O(2) and menadione toxicity. Primary hepatocytes from pyrazole-injected rats with high levels of CYP2E1 showed an increase in GSH levels as well as GCLC and GCLM mRNAs compared with saline controls, and this was prevented by diallyl sulfide. In conclusion, redox-sensitive elements directing constitutive and induced expression of the GCLC in CYP2E1-expressing cells are present in the ARE4 distal portion of the 5'-flanking region, between positions -3,802 and -2,752, perhaps a reflection of metabolic adaptation to CYP2E1-generated oxidative stress.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
37
|
Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, Dalton TP. Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 2002; 277:49446-52. [PMID: 12384496 DOI: 10.1074/jbc.m209372200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the GSH biosynthesis pathway. In higher eukaryotes, this enzyme is a heterodimer comprising a catalytic subunit (GCLC) and a modifier subunit (GCLM), which change the catalytic characteristics of the holoenzyme. To define the cellular function of GCLM, we disrupted the mouse Gclm gene to create a null allele. Gclm(-/-) mice are viable and fertile and have no overt phenotype. In liver, lung, pancreas, erythrocytes, and plasma, however, GSH levels in Gclm(-/-) mice were 9-16% of that in Gclm(+/+) littermates. Cysteine levels in Gclm(-/-) mice were 9, 35, and 40% of that in Gclm(+/+) mice in kidney, pancreas, and plasma, respectively, but remained unchanged in the liver and erythrocytes. Comparing the hepatic GCL holoenzyme with GCLC in the genetic absence of GCLM, we found the latter had an approximately 2-fold increase in K(m) for glutamate and a dramatically enhanced sensitivity to GSH inhibition. The major decrease in GSH, combined with diminished GCL activity, rendered Gclm(-/-) fetal fibroblasts strikingly more sensitive to chemical oxidants such as H(2)O(2). We conclude that the Gclm(-/-) mouse represents a model of chronic GSH depletion that will be very useful in evaluating the role of the GCLM subunit and GSH in numerous pathophysiological conditions as well as in environmental toxicity associated with oxidant insult.
Collapse
Affiliation(s)
- Yi Yang
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | |
Collapse
|
38
|
Camera E, Picardo M. Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:181-206. [PMID: 12450659 DOI: 10.1016/s1570-0232(02)00618-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced glutathione (GSH, gamma-L-glutamyl-L-cysteinylglycine) is a fundamental low-molecular mass antioxidant that serves several biological functions. Upon enzymatic and non-enzymatic oxidation, GSH forms glutathione disulfide (GSSG) and, under particular conditions, may generate other oxidative products. The determination of GSH, its precursors, and metabolites in several bio-matrices is a useful tool in studying oxidative stress. Many separative and non-separative methods have been developed and improved for the assay of GSH and related compounds. At present, high-performance liquid chromatography and capillary electrophoresis are the most used separative techniques to determine GSH and congeners. The review will deal with analytical methods developed over the last few years for the determination of GSH and related compounds, and with the procedures performed in sample pre-treatment in order to minimize analytical errors. Since GSH, GSSG, and related compounds lack of strong chromophores or fluorophores, it is advantageous, in many assays, to derivatize the compounds in order to improve the detection limit with UV-Vis and to allow fluorescence, thus the most commonly used labeling agents are also described.
Collapse
Affiliation(s)
- Emanuela Camera
- Laboratorio di Fisiopatologia Cutanea dell'Istituto Dermatologico San Gallicano (IRCCS), Via San Gallicano 25/A, I-00153 Rome, Italy.
| | | |
Collapse
|
39
|
Fraser JA, Saunders RDC, McLellan LI. Drosophila melanogaster glutamate-cysteine ligase activity is regulated by a modifier subunit with a mechanism of action similar to that of the mammalian form. J Biol Chem 2002; 277:1158-65. [PMID: 11698394 DOI: 10.1074/jbc.m106683200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate-cysteine ligase (GCL) plays an important role in regulating glutathione homeostasis. In mammals, it comprises a catalytic (GCLC) and modifier (GCLM) subunit. The existence of a modifier subunit in invertebrates has not been described to date. We now demonstrate that GCL from Drosophila melanogaster has a functional modifier subunit (DmGCLM). A putative DmGCLM was obtained as an expressed sequence tag with 27% identity to human GCLM at the amino acid level. D. melanogaster GCLC (DmGCLC) and the candidate DmGCLM were expressed separately in Escherichia coli, purified, mixed, and then subjected to gel filtration, where they eluted as an approximately 140-kDa complex. DmGCLC co-immunoprecipitated with DmGCLM from S2 cell extracts, suggesting that they also associate in vivo. Enzyme kinetic analyses showed that DmGCLC has a K(m) for glutamate of 2.88 mm, but when complexed with DmGCLM, the K(m) for glutamate is 0.45 mm. Inhibition of DmGCLC activity by glutathione was found to be competitive with respect to glutamate (K(i) = 0.03 mm), whereas inhibition of the GCL complex was mixed (K(i) = 0.67 mm), suggesting allosteric effects. In accordance with this, DmGCLC and DmGCLM have the ability to form reversible intermolecular disulfide bridges. A further mechanism for control of D. melanogaster GCL was found to be induction of DmGCLC by tert-butylhydroquinone in S2 cells. DmGCLM levels were, however, unaffected by tert-butylhydroquinone.
Collapse
Affiliation(s)
- Jennifer A Fraser
- Biomedical Research Center, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | | | |
Collapse
|
40
|
Kelly BS, Antholine WE, Griffith OW. Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. J Biol Chem 2002; 277:50-8. [PMID: 11675389 DOI: 10.1074/jbc.m107961200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction.
Collapse
Affiliation(s)
- Brenda S Kelly
- Department of Biochemistry and Biophysics Institute, Medical College of Wisconsin, Milwaukee, Wiscosin 53226, USA
| | | | | |
Collapse
|
41
|
Abstract
The tripeptide glutathione is the thiol compound present in the highest concentration in cells of all organs. Glutathione has many physiological functions including its involvement in the defense against reactive oxygen species. The cells of the human brain consume about 20% of the oxygen utilized by the body but constitute only 2% of the body weight. Consequently, reactive oxygen species which are continuously generated during oxidative metabolism will be generated in high rates within the brain. Therefore, the detoxification of reactive oxygen species is an essential task within the brain and the involvement of the antioxidant glutathione in such processes is very important. The main focus of this review article will be recent results on glutathione metabolism of different brain cell types in culture. The glutathione content of brain cells depends strongly on the availability of precursors for glutathione. Different types of brain cells prefer different extracellular glutathione precursors. Glutathione is involved in the disposal of peroxides by brain cells and in the protection against reactive oxygen species. In coculture astroglial cells protect other neural cell types against the toxicity of various compounds. One mechanism for this interaction is the supply by astroglial cells of glutathione precursors to neighboring cells. Recent results confirm the prominent role of astrocytes in glutathione metabolism and the defense against reactive oxygen species in brain. These results also suggest an involvement of a compromised astroglial glutathione system in the oxidative stress reported for neurological disorders.
Collapse
Affiliation(s)
- R Dringen
- Physiologisch-chemisches Institut der Universität, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany.
| |
Collapse
|
42
|
Wild AC, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic Res 2000; 32:281-301. [PMID: 10741850 DOI: 10.1080/10715760000300291] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gamma-glutamylcysteine synthetase (GCS; also referred to as glutamate-cysteine ligase, GLCL) catalyzes the rate-limiting reaction in glutathione (GSH) biosynthesis. The GCS holoenzyme is composed of a catalytic and regulatory subunit, each encoded by a unique gene. In addition to some conditions which specifically upregulate the catalytic subunit gene, expression of both genes is increased in response to many Phase II enzyme inducers including oxidants, heavy metals, phenolic antioxidants and GSH-conjugating agents. Electrophile Response Elements (EpREs), located in 5'-flanking sequences of both the GCSh and GCSl subunit genes, are hypothesized to at least partially mediate gene induction following xenobiotic exposure. Recent experiments indicate that the bZip transcription factor Nrf2 participates in EpRE-mediated GCS subunit gene activation in combination with other bZip proteins. An AP-1-like binding sequence and an NF-kappaB site have also been implicated in regulation of the catalytic subunit gene following exposure to certain pro-oxidants. Potential signaling mechanisms mediating GCS gene induction by the diverse families of Phase II enzyme inducers include thiol modification of critical regulatory sensor protein(s) and the generation of the reactive oxygen species. This review summarizes recent progress in defining the molecular mechanisms operative in transcriptional control of the genes encoding the two GCS subunits, identifying areas of agreement and controversy. The mechanisms involved in GCS regulation might also be relevant to the transcriptional control of other components of the antioxidant defense battery.
Collapse
Affiliation(s)
- A C Wild
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53792, USA
| | | |
Collapse
|
43
|
Abstract
Prematurity has been associated with low glutathione (GSH) concentrations in bronchoalveolar lavage fluid as well as in leukocytes from tracheal aspirates and peripheral blood. To elucidate whether this is caused by deficient GSH synthesis, the expression and activity of gamma-glutamylcysteine synthetase (glutamate-cysteine ligase, GCS, EC 6.3.2.2), the rate-limiting enzyme for GSH synthesis, were measured from fetal, neonatal, and adult human liver, lung, and kidney samples. The highest activity was measured in the liver, in which mRNA expression of the catalytic GCS heavy and the regulatory light subunits, as well as activity, were, on average, similar in the various stages of development. Although GCS light subunit mRNA concentrations in the lung were higher in neonates than in fetuses and adults, enzyme activities were similar. In the adult kidney, mean enzyme activity was somewhat higher than in fetal or neonatal kidney, but this may be accounted for by the variation in the small number of samples. In conclusion, GCS is expressed and active already in the second trimester and thus low GSH concentrations found in preterm neonates appear not to be explained by deficient GSH synthesis. Other factors, such as limited availability of the GSH precursor cysteine or increased GSH consumption, may account for the lower concentrations of GSH found in preterm infants.
Collapse
Affiliation(s)
- A L Levonen
- Hospital for Children and Adolescents, University of Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Abstract
Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH) is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The intracellular GSH concentration, typically 1-8 mM, reflects a dynamic balance between the rate of GSH synthesis and the combined rate of GSH consumption within the cell and loss through efflux. The gamma-GCS reaction is rate limiting for GSH synthesis, and regulation of gamma-GCS expression and activity is critical for GSH homeostasis. Transcription of the gamma-GCS subunit genes is controlled by a variety of factors through mechanisms that are not yet fully elucidated. Glutathione synthesis is also modulated by the availability of gamma-GCS substrates, primarily L-cysteine, by feedback inhibition of gamma-GCS by GSH, and by covalent inhibition of gamma-GCS by phosphorylation or nitrosation. Because GSH plays a critical role in cellular defenses against electrophiles, oxidative stress and nitrosating species, pharmacologic manipulation of GSH synthesis has received much attention. Administration of L-cysteine precursors and other strategies allow GSH levels to be maintained under conditions that would otherwise result in GSH depletion and cytotoxicity. Conversely, inhibitors of gamma-GCS have been used to deplete GSH as a strategy for increasing the sensitivity of tumors and parasites to certain therapeutic interventions.
Collapse
Affiliation(s)
- O W Griffith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
45
|
Abstract
γ-Glutamylcysteine synthetase catalyzes the first step in glutathione synthesis. The enzyme consists of 2 subunits, heavy and light, with the heavy subunit serving as the catalytic subunit. A patient with hemolytic anemia and low red blood cell glutathione levels was found to have a deficiency of γ-glutamylcysteine synthetase activity. Examination of cDNA from the patient and her mother showed that she was homozygous and that her mother was heterozygous for a A→T transversion at nt1109 producing a deduced amino acid change of His370Leu. The partial genomic structure of the catalytic subunit of γ-glutamylcysteine synthetase (GLCLC) was determined, providing some intron/exon boundaries to make it possible to sequence an affected part of the coding region from genomic DNA. The 1109A→T mutation was not present in the DNA of 38 normal subjects. In the course of these studies we found a diallelic polymorphism in nt +206 of an intron and another polymorphism that consisted of a duplication of a CAGC at cDNA nt1972-1975 in the 3′ untranslated region. The 2 polymorphisms were found to be only in partial linkage disequilibrium.
Collapse
|
46
|
Affiliation(s)
- Shelly C. Lu
- USC Liver Disease Research CenterDivision of Gastrointestinal and Liver DiseasesDepartment of MedicineUniversity of Southern California School of Medicine Los Angeles California 90033 USA
| |
Collapse
|
47
|
Griffith OW, Mulcahy RT. The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:209-67, xii. [PMID: 10218110 DOI: 10.1002/9780470123195.ch7] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The metabolite glutathione fulfills many important and chemically complex roles in protecting cellular components from the deleterious effects of toxic species. GSH combines with hydroxyl radical, peroxynitrite, and hydroperoxides, as well as reactive electrophiles, including activated phosphoramide mustard. This thiol-containing reductant also maintains so-called thiol-enzymes in their catalytically active form, and maintains vitamins C and E in their biologically active forms. The key step in glutathione synthesis, namely the ATP-dependent synthesis of gamma-glutamylcysteine, is the topic of this review. Details are presented on (a) the enzyme's purification and protein chemistry, (b) the successful cDNA cloning, and characterization of the genes responsible for the biosynthesis of this enzyme. After considering aspects of the role of overexpression of this synthetase in terms of cancer chemotherapy, attention is focused on post-translational regulation. The remainder of the review deals with the catalytic mechanism (including substrate specificity, reactions catalyzed, steady-state kinetics, and chemical mechanism) as well as the inhibition of the enzyme (via feedback inhibition, reaction with S-alkyl homocysteine sulfoximine inhibitors, the clinical use of buthionine sulfoximine with cancer patients, and inactivation by cystamine, chloroketones, and various nitric oxide donors).
Collapse
Affiliation(s)
- O W Griffith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|