1
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
2
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Kumar PS, Radhakrishnan A, Mukherjee T, Khamaru S, Chattopadhyay S, Chattopadhyay S. Understanding the role of Ca 2+ via transient receptor potential (TRP) channel in viral infection: Implications in developing future antiviral strategies. Virus Res 2023; 323:198992. [PMID: 36309316 PMCID: PMC10194134 DOI: 10.1016/j.virusres.2022.198992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation-specific permeable channels primarily conducting Ca2+ions across various membranes of the cell. The perturbation of the Ca2+ homeostasis is the hallmark of viral infection. Viruses hijack the host cell Ca2+ signaling, employing tailored Ca2+ requirements via TRP channels to meet their own cellular demands. This review summarizes the importance of Ca2+ across diverse viruses based on the Baltimore classification and focuses on the associated role of Ca2+-conducting TRP channels in viral pathophysiology. More emphasis has been given to the role of the TRP channel in viral life-cycle events such as viral fusion, viral entry, viral replication, virion maturation, and egress. Additionally, this review highlights the TRP channel as a store-operated channel which has been discussed vividly. The TRP channels form an essential aspect of host-virus interaction by virtue of its Ca2+ permeability. These channels are directly involved in regulating the viral calcium dynamics in host cells and thereby affect the viral infection. Considering its immense potential in regulating viral infection, the TRP channels may act as a target for antiviral therapeutics.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India; Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
4
|
Nugues C, Helassa N, Haynes LP. Mitosis, Focus on Calcium. Front Physiol 2022; 13:951979. [PMID: 35784871 PMCID: PMC9247304 DOI: 10.3389/fphys.2022.951979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal 2021; 19:99. [PMID: 34579758 PMCID: PMC8477534 DOI: 10.1186/s12964-021-00781-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a common malignant tumor of plasma cells. Despite several treatment approaches in the past two decades, MM remains an aggressive and incurable disease in dire need of new treatment strategies. Approximately 70–80% of patients with MM have myeloma bone disease (MBD), often accompanied by pathological fractures and hypercalcemia, which seriously affect the prognosis of the patients. Calcium channels and transporters can mediate Ca2+ balance inside and outside of the membrane, indicating that they may be closely related to the prognosis of MM. Therefore, this review focuses on the roles of some critical calcium channels and transporters in MM prognosis, which located in the plasma membrane, endoplasmic reticulum and mitochondria. The goal of this review is to facilitate the identification of new targets for the treatment and prognosis of MM.![]() Video Abstract
Collapse
Affiliation(s)
- Tingting Li
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China.,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
6
|
Time-dependent expression of ryanodine receptors in sea urchin eggs, zygotes and early embryos. ZYGOTE 2021; 30:213-216. [PMID: 34315559 DOI: 10.1017/s0967199421000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, the presence of calcium-dependent calcium channels and their receptors (RyR) has been investigated in Paracentrotus lividus eggs and early embryos, from unfertilized egg to four-blastomere stages. Electrophysiological recordings of RyR single-channel current fluctuations showed that RyRs are functional during the first developmental events with a maximum at zygote stage, c. 40 min after fertilization, corresponding to the first cleavage. The nature of vertebrate-like RyRs active at this stage was established by specific activation/blockade experiments.
Collapse
|
7
|
Rosendo-Pineda MJ, Vicente JJ, Vivas O, Pacheco J, Loza-Huerta A, Sampieri A, Wordeman L, Moreno C, Vaca L. Phosphorylation of NMDA receptors by cyclin B/CDK1 modulates calcium dynamics and mitosis. Commun Biol 2020; 3:665. [PMID: 33184446 PMCID: PMC7665045 DOI: 10.1038/s42003-020-01393-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells. We found that neurotransmitter-evoked calcium entry via endogenous NMDAR in cortical astrocytes was transient during mitosis. The same occurred in HEK293 cells transfected with the NR1/NR2A subunits of NMDAR. This transient calcium entry during mitosis was due to phosphorylation of the first intracellular loop of NMDAR (S584 of NR1 and S580 of NR2A) by cyclin B/CDK1. Expression of phosphomimetic mutants resulted in transient calcium influx and enhanced NMDAR inactivation independent of the cell cycle phase. Phosphomimetic mutants increased entry of calcium in interphase and generated several alterations during mitosis: increased mitotic index, increased number of cells with lagging chromosomes and fragmentation of pericentriolar material. In summary, by controlling cytosolic calcium, NMDAR modulate mitosis and probably cell differentiation/proliferation. Our results suggest that phosphorylation of NMDAR by cyclin B/CDK1 during mitosis is required to preserve mitotic fidelity. Altering the modulation of the NMDAR by cyclin B/CDK1 may conduct to aneuploidy and cancer.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jonathan Pacheco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Arlet Loza-Huerta
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Alicia Sampieri
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Claudia Moreno
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF, 04510, Mexico.
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Movsisyan N, Pardo LA. Kv10.1 Regulates Microtubule Dynamics during Mitosis. Cancers (Basel) 2020; 12:cancers12092409. [PMID: 32854244 PMCID: PMC7564071 DOI: 10.3390/cancers12092409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kv10.1 (potassium voltage-gated channel subfamily H member 1, known as EAG1 or Ether-à-go-go 1), is a voltage-gated potassium channel, prevailingly expressed in the central nervous system. The aberrant expression of Kv10.1 is detected in over 70% of all human tumor tissues and correlates with poorer prognosis. In peripheral tissues, Kv10.1 is expressed almost exclusively during the G2/M phase of the cell cycle and regulates its progression-downregulation of Kv10.1 extends the duration of the G2/M phase both in cancer and healthy cells. Here, using biochemical and imaging techniques, such as live-cell measurements of microtubule growth and of cytosolic calcium, we elucidate the mechanisms of Kv10.1-mediated regulation at the G2/M phase. We show that Kv10.1 has a dual effect on mitotic microtubule dynamics. Through the functional interaction with ORAI1 (calcium release-activated calcium channel protein 1), it modulates cytosolic calcium oscillations, thereby changing microtubule behavior. The inhibition of either Kv10.1 or ORAI1 stabilizes the microtubules. In contrast, the knockdown of Kv10.1 increases the dynamicity of mitotic microtubules, resulting in a stronger spindle assembly checkpoint, greater mitotic spindle angle, and a decrease in lagging chromosomes. Understanding of Kv10.1-mediated modulation of the microtubule architecture will help to comprehend how cancer tissue benefits from the presence of Kv10.1, and thereby increase the efficacy and safety of Kv10.1-directed therapeutic strategies.
Collapse
|
9
|
Saunders CA, Parent CA. Emerging roles for the nucleus during neutrophil signal relay and NETosis. Curr Opin Cell Biol 2019; 62:135-143. [PMID: 31835148 DOI: 10.1016/j.ceb.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
Abstract
The nucleus houses and protects genomic DNA, which is surrounded by the nuclear envelope. Owing to its size and stiffness, the nucleus is often a barrier to migration through confined spaces. Neutrophils are terminally differentiated, short-lived cells that migrate through tissues in response to injury and infections. The neutrophil nucleus is soft, multilobular, and exhibits altered levels of key nuclear envelope proteins. These alterations result in a multifunctional organelle that serves as a signaling hub during migration and NETosis, a process by which neutrophils release decondensed chromatin decorated with granular enzymes that entrap pathogens. In this review, we present emerging evidence suggesting that a unique, ambiguous cell-cycle state is critical for NETosis and migration. Finally, we discuss how the mechanisms underlying migration and NETosis are evolutionarily conserved.
Collapse
Affiliation(s)
| | - Carole A Parent
- Department of Pharmacology; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Abstract
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
Collapse
|
11
|
Liu T, Zhao J, Ibarra C, Garcia MU, Uhlén P, Nistér M. Glycosylation controls sodium-calcium exchanger 3 sub-cellular localization during cell cycle. Eur J Cell Biol 2018. [PMID: 29526322 DOI: 10.1016/j.ejcb.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The Na+/Ca2+ exchanger (NCX) is a membrane antiporter that has been identified in the plasma membrane, the inner membrane of the nuclear envelope and in the membrane of the endoplasmic reticulum (ER). In humans, three genes have been identified, encoding unique NCX proteins. Although extensively studied, the NCX's sub-cellular localization and mechanisms regulating the activity of different subtypes are still ambiguous. Here we investigated the subcellular localization of the NCX subtype 3 (NCX3) and its impact on the cell cycle. Two phenotypes, switching from one to the other during the cell cycle, were detected. One phenotype was NCX3 in the plasma membrane during S and M phase, and the other was NCX3 in the ER membrane during resting and interphase. Glycosylation of NCX3 at the N45 site was required for targeting the protein to the plasma membrane, and the N45 site functioned as an on-off switch for the translocation of NCX3 to either the plasma membrane or the membrane of the ER. Introduction of an N-glycosylation deficient NCX3 mutant led to an arrest of cells in the G0/G1 phase of the cell cycle. This was accompanied by accumulation of de-glycosylated NCX3 in the cytosol (that is in the ER), where it transported calcium ions (Ca2+) from the cytosol to the ER. These results, obtained in transfected HEK293T and HeLa and confirmed endogenously in SH-SY5Y cells, suggest that cells can use a dynamic Ca2+ signaling toolkit in which the NCX3 sub-cellular localization changes in synchrony with the cell cycle.
Collapse
Affiliation(s)
- Tong Liu
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | - Cristian Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Maxime U Garcia
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
12
|
Meckelburg N, Pinto K, Farah A, Iorio N, Pierro V, dos Santos K, Maia L, Antonio A. Antibacterial effect of coffee: calcium concentration in a culture containing teeth/biofilm exposed to Coffea Canephora
aqueous extract. Lett Appl Microbiol 2014; 59:342-7. [DOI: 10.1111/lam.12281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/20/2014] [Accepted: 05/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- N. Meckelburg
- Departamento de Odontopediatria e Ortodontia; Faculdade de Odontologia; UFRJ; Rio de Janeiro Brazil
| | - K.C. Pinto
- Departamento de Odontopediatria e Ortodontia; Faculdade de Odontologia; UFRJ; Rio de Janeiro Brazil
| | - A. Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo; Instituto de Nutrição; UFRJ; Rio de Janeiro Brazil
| | - N.L.P. Iorio
- Departamento de Ciências Básicas; UFF - Pólo Nova Friburgo; Nova Friburgo Brazil
| | - V.S.S. Pierro
- Departamento de Odontopediatria; Universidade Salgado de Oliveira; Niterói Brazil
| | - K.R.N. dos Santos
- Departamento de Microbiologia Médica; Instituto de Microbiologia Prof. Paulo de Góes; UFRJ; Rio de Janeiro Brazil
| | - L.C. Maia
- Departamento de Odontopediatria e Ortodontia; Faculdade de Odontologia; UFRJ; Rio de Janeiro Brazil
| | - A.G. Antonio
- Departamento de Odontopediatria e Ortodontia; Faculdade de Odontologia; UFRJ; Rio de Janeiro Brazil
| |
Collapse
|
13
|
Bignotti E, Zanotti L, Calza S, Falchetti M, Lonardi S, Ravaggi A, Romani C, Todeschini P, Bandiera E, Tassi RA, Facchetti F, Sartori E, Pecorelli S, Roque DM, Santin AD. Trop-2 protein overexpression is an independent marker for predicting disease recurrence in endometrioid endometrial carcinoma. BMC Clin Pathol 2012; 12:22. [PMID: 23151048 PMCID: PMC3534488 DOI: 10.1186/1472-6890-12-22] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/07/2012] [Indexed: 01/16/2023] Open
Abstract
Background Endometrial cancer is the most common gynecologic malignancy in developed countries. Trop-2 is a glycoprotein involved in cellular signal transduction and is differentially overexpressed relative to normal tissue in a variety of human adenocarcinomas, including endometrioid endometrial carcinomas (EEC). Trop-2 overexpression has been proposed as a marker for biologically aggressive tumor phenotypes. Methods Trop-2 protein expression was quantified using tissue microarrays consisting of formalin-fixed paraffin-embedded specimens from 118 patients who underwent surgical staging from 2001–9 by laparotomy for EEC. Clinicopathologic characteristics including age, stage, grade, lymphovascular space invasion, and medical comorbidities were correlated with immunostaining score. Univariate and multivariate analyses were performed for overall survival, disease-free survival, and progression-free survival in relation to clinical parameters and Trop-2 protein expression. Results Clinical outcome data were available for 103 patients. Strong Trop-2 immunostaining was significantly associated with higher tumor grade (p=0.02) and cervical involvement (p<0.01). Univariate analyses showed a significant association with reduced disease-free survival (DFS) (p=0.01), and a trend towards significance for overall and progression-free survival (p=0.06 and p=0.05, respectively). Multivariate analyses revealed Trop-2 overexpression and advanced FIGO stage to be independent prognostic factors for poor DFS (p=0.04 and p <0.001, respectively). Conclusions Trop-2 protein overexpression is significantly associated with higher tumor grade and serves as an independent prognostic factor for DFS in endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Eliana Bignotti
- "Angelo Nocivelli" Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
SOCE (store-operated calcium entry) is a ubiquitous cellular mechanism linking the calcium depletion of the ER (endoplasmic reticulum) to the activation of PM (plasma membrane) Ca2+-permeable channels. The activation of SOCE channels favours the entry of extracellular Ca2+ into the cytosol, thereby promoting the refilling of the depleted ER Ca2+ stores as well as the generation of long-lasting calcium signals. The molecules that govern SOCE activation comprise ER Ca2+ sensors [STIM1 (stromal interaction molecule 1) and STIM2], PM Ca2+-permeable channels {Orai and TRPC [TRP (transient receptor potential) canonical]} and regulatory Ca2+-sensitive cytosolic proteins {CRACR2 [CRAC (Ca2+ release-activated Ca2+ current) regulator 2]}. Upon Ca2+ depletion of the ER, STIM molecules move towards the PM to bind and activate Orai or TRPC channels, initiating calcium entry and store refilling. This molecular rearrangement is accompanied by the formation of specialized compartments derived from the ER, the pre-cER (cortical ER) and cER. The pre-cER appears on the electron microscope as thin ER tubules enriched in STIM1 that extend along microtubules and that are devoid of contacts with the PM. The cER is located in immediate proximity to the PM and comprises thinner sections enriched in STIM1 and devoid of chaperones that might be dedicated to calcium signalling. Here, we review the molecular interactions and the morphological changes in ER structure that occur during the SOCE process.
Collapse
|
15
|
Arredouani A, Yu F, Sun L, Machaca K. Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 2010; 123:2155-62. [PMID: 20554894 DOI: 10.1242/jcs.069690] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic Ca(2+) signals are central to numerous cell physiological processes, including cellular proliferation. Historically, much of the research effort in this area has focused on the role of Ca(2+) signals in cell-cycle progression. It is becoming clear, however, that the relationship between Ca(2+) signaling and the cell cycle is a 'two-way street'. Specifically, Ca(2+)-signaling pathways are remodeled during M phase, leading to altered Ca(2+) dynamics. Such remodeling probably better serves the large variety of functions that cells must perform during cell division compared with during interphase. This is clearly the case during oocyte meiosis, because remodeling of Ca(2+) signals partially defines the competence of the egg to activate at fertilization. Store-operated Ca(2+) entry (SOCE) is a ubiquitous Ca(2+)-signaling pathway that is regulated during M phase. In this Commentary, we discuss the latest advances in our understanding of how SOCE is regulated during cell division.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Doha, Qatar
| | | | | | | |
Collapse
|
16
|
Cubas R, Zhang S, Li M, Chen C, Yao Q. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol Cancer 2010; 9:253. [PMID: 20858281 PMCID: PMC2946292 DOI: 10.1186/1476-4598-9-253] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/21/2010] [Indexed: 11/15/2022] Open
Abstract
Background Trop2 is a cell-surface glycoprotein overexpressed by a variety of epithelial carcinomas with reported low to restricted expression in normal tissues. Expression of Trop2 has been associated with increased tumor aggressiveness, metastasis and decreased patient survival, but the signaling mechanisms mediated by Trop2 are still unknown. Here, we studied the effects murine Trop2 (mTrop2) exerted on tumor cellular functions and some of the signaling mechanisms activated by this oncogene. Results mTrop2 expression significantly increased tumor cell proliferation at low serum concentration, migration, foci formation and anchorage-independent growth. These in vitro characteristics translated to increased tumor growth in both subcutaneous and orthotopic pancreatic cancer murine models and also led to increased liver metastasis. mTrop2 expression also increased the levels of phosphorylated ERK1/2 mediating cell cycle progression by increasing the levels of cyclin D1 and cyclin E as well as downregulating p27. The activation of ERK was also observed in human pancreatic ductal epithelial cells and colorectal adenocarcinoma cells overexpressing human Trop2. Conclusions These findings demonstrate some of the pathogenic effects mediated by mTrop2 expression on cancer cells and the importance of targeting this cell surface glycoprotein. This study also provides the first indication of a molecular signaling pathway activated by Trop2 which has important implications for cancer cell growth and survival.
Collapse
Affiliation(s)
- Rafael Cubas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Radu L, Durussel I, Assairi L, Blouquit Y, Miron S, Cox JA, Craescu CT. Scherffelia dubia Centrin Exhibits a Specific Mechanism for Ca2+-Controlled Target Binding. Biochemistry 2010; 49:4383-94. [DOI: 10.1021/bi901764m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Radu
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Isabelle Durussel
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | - Liliane Assairi
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Yves Blouquit
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Simona Miron
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| | - Jos A. Cox
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | - Constantin T. Craescu
- Institut Curie Centre de Recherche, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
- INSERM U759, Centre Universitaire Paris-Sud, 91405 Orsay Cedex, France
| |
Collapse
|
18
|
Wang C, Swanson WF, Herrick JR, Lee K, Machaty Z. Analysis of cat oocyte activation methods for the generation of feline disease models by nuclear transfer. Reprod Biol Endocrinol 2009; 7:148. [PMID: 20003339 PMCID: PMC2797514 DOI: 10.1186/1477-7827-7-148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Somatic cell nuclear transfer in cats offers a useful tool for the generation of valuable research models. However, low birth rates after nuclear transfer hamper exploitation of the full potential of the technology. Poor embryo development after activation of the reconstructed oocytes seems to be responsible, at least in part, for the low efficiency. The objective of this study was to characterize the response of cat oocytes to various stimuli in order to fine-tune existing and possibly develop new activation methods for the generation of cat disease models by somatic cell nuclear transfer. METHODS First, changes in the intracellular free calcium concentration [Ca2+]i in the oocytes induced by a number of artificial stimuli were characterized. The stimuli included electroporation, ethanol, ionomycin, thimerosal, strontium-chloride and sodium (Na+)-free medium. The potential of the most promising treatments (with or without subsequent incubation in the presence of cycloheximide and cytochalasin B) to stimulate oocyte activation and support development of the resultant parthenogenetic embryos was then evaluated. Finally, the most effective methods were selected to activate oocytes reconstructed during nuclear transfer with fibroblasts from mucopolysaccharidosis I- and alpha-mannosidosis-affected cats. RESULTS All treatments were able to elicit a [Ca2+]i elevation in the ooplasm with various characteristics. Pronuclear formation and development up to the blastocyst stage was most efficiently triggered by electroporation (60.5 +/- 2.9 and 11.5 +/- 1.7%) and the combined thimerosal/DTT treatment (67.7 +/- 1.8 and 10.6 +/- 1.9%); incubation of the stimulated oocytes with cycloheximide and cytochalasin B had a positive effect on embryo development. When these two methods were used to activate oocytes reconstructed during nuclear transfer, up to 84.9% of the reconstructed oocytes cleaved. When the 2 to 4-cell embryos (a total of 220) were transferred into 19 recipient females, 4 animals became pregnant. All of the fetuses developed from oocytes activated by electroporation followed by cycloheximide and cytochalasin B incubation; no fetal development was detected as a result of thimerosal/DTT activation. Although heartbeats were detected in two of the cloned fetuses, no term development occurred. CONCLUSION Electroporation proved to be the most effective method for the activation of cat oocytes reconstructed by nuclear transfer. The combined thimerosal/DTT treatment followed by cycloheximide and cytochalasin B incubation triggered development effectively to the blastocyst stage; whether it is a viable option to stimulate term development of cloned cat embryos needs further investigations.
Collapse
Affiliation(s)
- Chunmin Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - William F Swanson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, OH 45220, USA
| | - Jason R Herrick
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, Cincinnati, OH 45220, USA
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kiho Lee
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW. Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 2009; 11:1465-72. [PMID: 19881501 PMCID: PMC3552519 DOI: 10.1038/ncb1995] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 08/21/2009] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) and Ca(2+) release-activated Ca(2+) currents (I(crac)) are strongly suppressed during cell division, the only known physiological situation in which Ca(2+) store depletion is uncoupled from the activation of Ca(2+) influx [corrected]. We found that the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 failed to rearrange into near-plasma membrane puncta in mitotic cells, a critical step in the SOCE-activation pathway. We also found that STIM1 from mitotic cells is recognized by the phospho-specific MPM-2 antibody, suggesting that STIM1 is phosphorylated during mitosis. Removal of ten MPM-2 recognition sites by truncation at amino acid 482 abolished MPM-2 recognition of mitotic STIM1, and significantly rescued STIM1 rearrangement and SOCE response in mitosis. We identified Ser 486 and Ser 668 as mitosis-specific phosphorylation sites, and STIM1 containing mutations of these sites to alanine also significantly rescued mitotic SOCE. Therefore, phosphorylation of STIM1 at Ser 486 and Ser 668, and possibly other sites, underlies suppression of SOCE during mitosis.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Troidl C, Troidl K, Schierling W, Cai WJ, Nef H, Möllmann H, Kostin S, Schimanski S, Hammer L, Elsässer A, Schmitz-Rixen T, Schaper W. Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. J Cell Mol Med 2009; 13:2613-2621. [PMID: 19017361 DOI: 10.1111/j.1582-4934.2008.00579.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The development of a collateral circulation (arteriogenesis), bypassing an arterial occlusion, is important for tissue survival, but it remains functionally defective. Micro array data of growing collateral vessels, exposed to chronically elevated fluid shear stress (FSS), showed increased transcription of the transient receptor potential cation channel, subfamily V, member 4 (Trpv4). Thus, the aim of this study was to investigate the role of the shear stress sensitive Trpv4 in transmitting this physical stimulus into an active growth response. qRT-PCR at different time points during the growth of collateral vessels after femoral artery ligature (FAL) in rats showed a strong positive correlation of Trpv4 transcription and the intensity of FSS. An increased protein expression of Trpv4 was localized in the FSS-sensing endothelium by means of confocal immunohistochemistry. Cultured porcine endothelial cells showed a dose-dependent expression of Trpv4 and an increased level of Ki67-positive cells upon treatment with 4alpha-Phorbol 12,13-didecanoate (4alphaPDD), a specific Trpv4 activator. This was also demonstrated by flow culture experiments. These results were confirmed by in vivo application of 4alphaPDD in rabbit hind limb circulation via an osmotic mini-pump after FAL. Trpv4 expression as well as Ki67-positive staining was significantly increased in collateral vessels. Finally, 4alphaPDD treatment after FAL led to a 61% (215.5 ml/min/mmHg versus 350 ml/min/mmHg) recovery of conductance when compared with the non-occluded artery. Cell culture and in vivo studies demonstrate that an FSS- or a 4alphaPDD-induced activation of Trpv4 leads to an active proliferation of vascular cells and finally triggers collateral growth. Trpv4, a well-known FSS-sensitive vasodilator, has hitherto not been implicated in active growth processes of collateral arteries. This new function may lead to new therapeutic strategies for the treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- Christian Troidl
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kerstin Troidl
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wilma Schierling
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wei-Jun Cai
- Xiangsha School of Medicine, Department of Anatomy, Central South University Changsha, Hunan, China
| | - Holger Nef
- Kerckhoff Heart Center, Department of Cardiology, Bad Nauheim, Germany
| | - Helge Möllmann
- Kerckhoff Heart Center, Department of Cardiology, Bad Nauheim, Germany
| | - Sava Kostin
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sylvia Schimanski
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Linda Hammer
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Albrecht Elsässer
- Kerckhoff Heart Center, Department of Cardiology, Bad Nauheim, Germany
| | - Thomas Schmitz-Rixen
- Division of Vascular and Endovascular Surgery, Goethe-Univ. of Frankfurt/Main, Germany
| | - Wolfgang Schaper
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
21
|
He X, Wu C, Yarbrough D, Sim L, Niu G, Merritt J, Shi W, Qi F. The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol Microbiol 2008; 70:112-26. [PMID: 18681938 DOI: 10.1111/j.1365-2958.2008.06390.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptococcus mutans is a primary pathogen for dental caries in humans. CiaR and CiaH of S. mutans comprise a two-component signal transduction system (TCS) involved in regulating various virulent factors. However, the signal that triggers the CiaRH response remains unknown. In this study, we show that calcium is a signal for regulation of the ciaRH operon, and that a double-glycine-containing small peptide encoded within the ciaRH operon (renamed ciaX) mediates this regulation. CiaX contains a serine + aspartate (SD) domain that is shared by calcium-binding proteins. A markerless in-frame deletion of ciaX reduced ciaRH operon expression and diminished the calcium repression of operon transcription. Point mutations of the SD domain resulted in the same phenotype as the in-frame deletion, indicating that the SD domain is required for CiaX function. Further characterization of ciaX demonstrated that it is involved in calcium-mediated biofilm formation. Furthermore, inactivation of ciaR or ciaH led to the same phenotype as the in-frame deletion of ciaX, suggesting that all three genes are involved in the same regulatory pathway. Sequence analysis and real-time RT-PCR identified a putative CiaR binding site upstream of ciaX. We conclude that the ciaXRH operon is a three-component, self-regulatory system modulating cellular functions in response to calcium.
Collapse
Affiliation(s)
- Xuesong He
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chaube SK, Dubey PK, Mishra SK, Shrivastav TG. Verapamil reversibly inhibits spontaneous parthenogenetic activation in aged rat eggs cultured in vitro. CLONING AND STEM CELLS 2008; 9:608-17. [PMID: 18154520 DOI: 10.1089/clo.2007.0001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study was designed to investigate whether verapamil could inhibit spontaneous parthenogenetic activation in aged rat eggs cultured in vitro. Eggs collected from oviduct after 19 h post human chorionic gonadotropin (hCG) were arrested at the metaphase-II (M-II) stage and exhibited a first polar body. Culture of these aged eggs in calcium/magnesium (Ca(2+)/Mg(2+))-deficient and serum-free medium for 3 h induced exit from M-II, a morphological sign of spontaneous parthenogenetic activation in all eggs. However, verapamil reversibly inhibited spontaneous parthenogenetic activation in a dose-dependent manner. Further, lower doses (6.25, 12.5, and 25 muM) of verapamil induced egg survival, while higher doses (50 and 100 muM) were associated with the appearance of morphological apoptotic features such as shrinkage, membrane blebbing and cytoplasmic granulation prior to degeneration. The DNA fragmentation was induced [as evidenced by terminal deoxynucleotidyl transferase (TdT) nick-end labeling (TUNEL) positive staining] in eggs undergoing morphological apoptotic changes. On the other hand, caspase-3 inhibitor (1 muM) partially inhibited morphological apoptotic changes (44.34+/-3.53%) suggesting the involvement of both Ca(2+)and caspase-3-mediated apoptotic pathways. These findings suggest that verapamil reversibly inhibits spontaneous parthenogenetic activation and induces egg survival at lower doses, while higher doses induce cell death via apoptosis.
Collapse
Affiliation(s)
- Shail K Chaube
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Baba Gang Nath Marg, Munirka, New Delhi, India
| | | | | | | |
Collapse
|
23
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
24
|
Wong JL, Wessel GM. FRAP analysis of secretory granule lipids and proteins in the sea urchin egg. Methods Mol Biol 2008; 440:61-76. [PMID: 18369937 DOI: 10.1007/978-1-59745-178-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cortical granules of the sea urchin are secreted at fertilization in response to sperm fusion. Approximately 15,000 of these vesicles are tightly tethered to the cytoplasmic face of the egg plasma membrane prior to insemination such that the vesicle-plasma membrane complex may be isolated and manipulated in vitro. Furthermore, this complex remains fusion competent and can thus be used for in vitro biochemical studies of secretion on a per-vesicle or a population scale. We document approaches to study the dynamics of membrane lipids and proteins in these secretory vesicles. Their large size (1.3-microm diameter), vast number, and ease of manipulation enable several unique approaches to study general secretion mechanisms.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | | |
Collapse
|
25
|
Browne CL, Swan JB, Rankin EE, Calvert H, Griffiths S, Tytell M. Extracellular heat shock protein 70 has novel functional effects on sea urchin eggs and coelomocytes. ACTA ACUST UNITED AC 2007; 210:1275-87. [PMID: 17371926 DOI: 10.1242/jeb.02743] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous reports document that the 70 kDa heat shock proteins are not only intracellular proteins but are also present in blood and other extracellular compartments. How they affect cell function from the extracellular space remains unclear. Using two well-characterized cell types from the sea urchin, we show that extracellular mixtures of the constitutive and inducible forms of the 70 kDa heat shock proteins (Hsc70 and Hsp70, respectively) have dramatic effects on initiation of cell division in fertilized eggs and on the clotting reaction of hypotonically stressed coelomocytes. In suspensions of fertilized eggs to which Hsc70 or a 2:3 mixture of Hsc and Hsp70 was added, progression to the first mitotic division was accelerated. Evidence is provided that the extracellular Hsc70 passes into the egg cells in an unconventional manner, being distributed through the cytoplasm, and that it may alter the intracellular signaling cascade initiated by sperm penetration. In coelomocytes that were stimulated by hypotonic shock to mimic injury, the spreading reaction of the clotting response was significantly inhibited when either Hsp70 or Hsc70 was in the medium. These results suggest that the presence of Hsc and/or Hsp70 in the extracellular fluid may promote mitosis of dividing cells and suppress the reactivity of immune system cells.
Collapse
Affiliation(s)
- Carole L Browne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Martins RAP, Pearson RA. Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 2007; 1192:37-60. [PMID: 17597590 DOI: 10.1016/j.brainres.2007.04.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
In the developing vertebrate retina, precise coordination of retinal progenitor cell proliferation and cell-cycle exit is essential for the formation of a functionally mature retina. Unregulated or disrupted cell proliferation may lead to dysplasia, retinal degeneration or retinoblastoma. Both cell-intrinsic and -extrinsic factors regulate the proliferation of progenitor cells during CNS development. There is now growing evidence that in the developing vertebrate retina, both slow and fast neurotransmitter systems modulate the proliferation of retinal progenitor cells. Classic neurotransmitters, such as GABA (gamma-amino butyric acid), glycine, glutamate, ACh (acetylcholine) and ATP (adenosine triphosphate) are released, via vesicular or non-vesicular mechanisms, into the immature retinal environment. Furthermore, these neurotransmitters signal through functional receptors even before synapses are formed. Recent evidence indicates that the activation of purinergic and muscarinic receptors may regulate the cell-cycle machinery and consequently the expansion of the retinal progenitor pool. Interestingly, GABA and glutamate appear to have opposing roles, inducing retinal progenitor cell-cycle exit. In this review, we present recent findings that begin to elucidate the roles of neurotransmitters as regulators of progenitor cell proliferation at early stages of retinal development. These studies also raise several new questions, including how these neurotransmitters regulate specific cell-cycle pathways and the mechanisms by which retinal progenitor cells integrate the signals from neurotransmitters and other exogenous factors during vertebrate retina development.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, MS323, Memphis, TN 38105, USA.
| | | |
Collapse
|
27
|
Chen YC, Tsai WJ, Wu MH, Lin LC, Kuo YC. Suberosin inhibits proliferation of human peripheral blood mononuclear cells through the modulation of the transcription factors NF-AT and NF-kappaB. Br J Pharmacol 2007; 150:298-312. [PMID: 17179947 PMCID: PMC2013892 DOI: 10.1038/sj.bjp.0706987] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/26/2006] [Accepted: 10/30/2006] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Extracts of Plumbago zeylanica containing suberosin exhibit anti-inflammatory activity. We purified suberosin from such extracts and studied its effects on a set of key regulatory events in the proliferation of human peripheral blood mononuclear cells (PBMC) stimulated by phytohemagglutinin (PHA). EXPERIMENTAL APPROACH Proliferation of PBMC in culture was measured by uptake of 3H-thymidine; production of cytokines and cyclins by Western blotting and RT-PCR. Transcription factors NF-AT and NF-kappaB were assayed by immunocytochemistry and EMSA. KEY RESULTS Suberosin suppressed PHA-induced PBMC proliferation and arrested cell cycle progression from the G1 transition to the S phase. Suberosin suppressed, in activated PBMC, transcripts of interleukin-2 (IL-2), interferon-gamma (IFN-gamma), and cyclins D3, E, A, and B. DNA binding activity and nuclear translocation of NF-AT and NF-kappaB induced by PHA were blocked by suberosin. Suberosin decreased the rise in intracellular Ca2+ concentration ([Ca2+]i) in PBMC stimulated with PHA. Suberosin did not affect phosphorylation of p38 and JNK but did reduce activation of ERK in PHA-treated PBMC. Pharmacological inhibitors of NF-kappaB, NF-AT, and ERK decreased expression of mRNA for the cyclins, IL-2, and IFN-gamma and cell proliferation in PBMC activated by PHA. CONCLUSIONS AND IMPLICATIONS The inhibitory effects of suberosin on PHA-induced PBMC proliferation, were mediated, at least in part, through reduction of [Ca2+]i, ERK, NF-AT, and NF-kappaB activation, and early gene expression in PBMC including cyclins and cytokines, and arrest of cell cycle progression in the cells. Our observations provide an explanation for the anti-inflammatory activity of P. zeylanica.
Collapse
Affiliation(s)
- Y-C Chen
- Institute of Pharmacology, National Yang-Ming University Taipei, Taiwan, ROC
| | - W-J Tsai
- National Research Institute of Chinese Medicine Taipei, Taiwan, ROC
- Institute of Life Science, National Tai-Tung University Taitung, Taiwan, ROC
| | - M-H Wu
- Institute of Pharmacology, National Yang-Ming University Taipei, Taiwan, ROC
| | - L-C Lin
- National Research Institute of Chinese Medicine Taipei, Taiwan, ROC
| | - Y-C Kuo
- Institute of Life Science, Fu-Jen University Taipei Hsien, Taiwan, ROC
| |
Collapse
|
28
|
Abstract
The cell division cycle comprises successive rounds of genome replication and segregation that are never error-free. A complex signalling network chaperones cell cycle events to ensure that cell cycle progression does not occur until any errors detected are put right. The signalling network consists of cell cycle control proteins that are phosphorylated and dephosphorylated, synthesized and degraded interactively to generate a set of sensors and molecular switches that are thrown at appropriate times to permit or trigger cell cycle progression. In early embryos, discrete calcium signals have been shown to be a key component of the molecular switch mechanism. In somatic cells in contrast, the participation of calcium signals in cell cycle control is far from clear. Recent experiments in syncytial Drosophila embryos have shown that localised calcium signals in the nucleus and mitotic spindle can be detected. It appears that the nucleus comprises a calcium signalling microdomain bounded by endoplasmic reticulum that isolates the nucleus and spindle. These findings offer a possible explanation for the apparent absence of calcium signals in somatic cells during mitosis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Parry H, McDougall A, Whitaker M. Endoplasmic reticulum generates calcium signalling microdomains around the nucleus and spindle in syncytial Drosophila embryos. Biochem Soc Trans 2006; 34:385-8. [PMID: 16709168 DOI: 10.1042/bst0340385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell cycle calcium signals are generated by inositol trisphosphate-mediated release of calcium from internal stores [Ciapa, Pesando, Wilding and Whitaker (1994) Nature (London) 368, 875–878; Groigno and Whitaker (1998) Cell 92, 193–204]. The major internal calcium store is the ER (endoplasmic reticulum): the spatial organization of the ER during mitosis is important in defining a microdomain around the nucleus and mitotic spindle in early Drosophila embryos [Parry, McDougall and Whitaker (2005) J. Cell Biol. 171, 47–59]. Nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Mitosis is prevented by the InsP3 antagonists Xestospongin C and heparin. Nuclear-localized transients and cortical transients rely on extraembryonic calcium, suggesting that ER calcium levels are maintained by calcium influx.
Collapse
Affiliation(s)
- H Parry
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, UK
| | | | | |
Collapse
|
30
|
Pettkó-Szandtner A, Mészáros T, Horváth GV, Bakó L, Csordás-Tóth E, Blastyák A, Zhiponova M, Miskolczi P, Dudits D. Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:111-23. [PMID: 16553899 DOI: 10.1111/j.1365-313x.2006.02677.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Kip-related proteins (KRPs) play a central role in the regulation of the cell cycle and differentiation through modulation of cyclin-dependent kinase (CDK) functions. We have identified a CDK inhibitor gene from Medicago truncatula (Mt) by a yeast two-hybrid screen. The KRPMt gene was expressed in all plant organs and cultured cells, and its transcripts accumulated after abscisic acid and NaCl treatment. The KRPMt protein exhibits seven conserved sequence domains and a PEST motif that is also detected in various Arabidopsis KRPs. In the yeast two-hybrid test, the KRPMt protein interacted with CDK (Medsa;CDKA;1) and D-type cyclins. However, in the pull-down assays, B-type CDK complexes were also detectable. Recombinant KRPMt differentially inhibited various alfalfa CDK complexes in phosphorylation assays. The immunoprecipitated Medsa;CDKA;1/A;2 complex was strongly inhibited, whereas the mitotic Medsa;CDKB2;1 complex was the most sensitive to inhibition. Function of Medsa;CDKB1;1 complex was not inhibited by the KRPMt protein. The mitotic Medsa;CYCB2 and Medsa;CYCA2;1 complexes responded weakly to this inhibitor protein. Kinase complexes from G2/M cells showed increased sensitivity towards the inhibitor compared with those isolated from G1/S-phase cells. In vitro phosphorylation of Medicago retinoblastoma-related protein was also reduced in the presence of KRPMt. Phosphorylation of this inhibitor protein by the recombinant calmodulin-like domain protein kinase (MsCPK3) resulted in enhanced inhibition of CDK function. The data presented emphasize the selective sensitivity of various cyclin-dependent kinase complexes to this inhibitor protein, and suggest a role for CDK inhibitors and CPKs in cross-talk between Ca2+ signalling and regulation of cell-cycle progression in plants.
Collapse
Affiliation(s)
- Aladár Pettkó-Szandtner
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Temesvári krt. 62, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cuomo A, Silvestre F, De Santis R, Tosti E. Ca2+ and Na+ current patterns during oocyte maturation, fertilization, and early developmental stages ofCiona intestinalis. Mol Reprod Dev 2006; 73:501-11. [PMID: 16425233 DOI: 10.1002/mrd.20404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using the whole-cell voltage clamp technique, the electrical changes in oocyte and embryo plasma membrane were followed during different meiotic and developmental stages in Ciona intestinalis. We show, for the first time, an electrophysiological characterization of the plasma membrane in oocytes at the germinal vesicle (GV) stage with high L-type calcium (Ca2+) current activity that decreased through meiosis. Moreover, the absence of Ca2+ reduced germinal vesicle breakdown (GVBD), which is consistent with a role of Ca2+ currents in the prophase/metaphase transition. In mature oocytes at the metaphase I (MI) stage, Ca2+ currents decreased and then disappeared and sodium (Na+) currents first appeared remaining high up to the zygote stage. Intracellular Ca2+ release was higher in MI than in GV, indicating that Ca2+ currents in GV may contribute to fill the stores which are essential for oocyte contraction at fertilization. The fertilization current generated in Na+ free sea water was significantly lower than the control; furthermore, oocytes fertilized in the absence of Na+ showed high development of anomalous "rosette" embryos. Current amplitudes became negligible in embryos at the 2- and 4-cell stage, suggesting that signaling pathways that mediate first cleavage do not rely on ion current activities. At the 8-cell stage embryo, a resumption of Na+ current activity and conductance occurred, without a correlation with specific blastomeres. Taken together, these results imply: (i) an involvement of L-type Ca2+ currents in meiotic progression from the GV to MI stage; (ii) a role of Na+ currents during electrical events at fertilization and subsequent development; (iii) a major role of plasma membrane permeability and a minor function of specific currents during initial cell line segregation events.
Collapse
|
32
|
Wong JL, Wessel GM. Reactive oxygen species and Udx1 during early sea urchin development. Dev Biol 2005; 288:317-33. [PMID: 16336958 DOI: 10.1016/j.ydbio.2005.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/20/2022]
Abstract
Sea urchin fertilization is marked by a massive conversion of molecular oxygen to hydrogen peroxide by a sea urchin dual oxidase, Udx1. This enzyme is essential for completing the physical block to polyspermy. Yet, its expression is maintained during development, as indicated by the presence of both Udx1 mRNA and Udx1 protein enriched at the surface of all non-mesenchymal blastomeres. When hydrogen peroxide synthesis by Udx1 is inhibited, either pharmacologically or by specific antibody injection, cleavage is delayed. Application of exogenous hydrogen peroxide, however, partially rescues a fraction of these defective embryos. We also report an unequal distribution of reactive oxygen species between sister blastomeres during early cleavage stages, suggesting a functional role for Udx1 in intracellular signaling.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Box G-J4, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
33
|
Abstract
Mammalian eggs arrest at metaphase of the second meiotic division (MetII). Sperm break this arrest by inducing a series of Ca2+spikes that last for several hours. During this time cell cycle resumption is induced, sister chromatids undergo anaphase and the second polar body is extruded. This is followed by decondensation of the chromatin and the formation of pronuclei. Ca2+spiking is both the necessary and solely sufficient sperm signal to induce full egg activation. How MetII arrest is established, how the Ca2+spiking is induced and how the signal is transduced into cell cycle resumption are the topics of this review. Although the roles of most components of the signal transduction pathway remain to be fully investigated, here I present a model in which a sperm-specific phospholipase C (PLCζ) generates Ca2+spikes to activate calmodulin-dependent protein kinase II and so switch on the Anaphase-Promoting Complex/Cyclosome (APC/C). APC/C activation leads to securin and cyclin B1 degradation and in so doing allows sister chromatids to be segregated and to decondense.
Collapse
Affiliation(s)
- Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, Framlington Place, University of Newcastle, Newcastle, NE2 4HH, UK.
| |
Collapse
|
34
|
Parry H, McDougall A, Whitaker M. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. ACTA ACUST UNITED AC 2005; 171:47-59. [PMID: 16216922 PMCID: PMC2171230 DOI: 10.1083/jcb.200503139] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell cycle calcium signals are generated by the inositol trisphosphate (InsP3)–mediated release of calcium from internal stores (Ciapa, B., D. Pesando, M. Wilding, and M. Whitaker. 1994. Nature. 368:875–878; Groigno, L., and M. Whitaker. 1998. Cell. 92:193–204). The major internal calcium store is the endoplasmic reticulum (ER); thus, the spatial organization of the ER during mitosis may be important in shaping and defining calcium signals. In early Drosophila melanogaster embryos, ER surrounds the nucleus and mitotic spindle during mitosis, offering an opportunity to determine whether perinuclear localization of ER conditions calcium signaling during mitosis. We establish that the nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Constructs that chelate InsP3 also prevent nuclear division. An analysis of nuclear calcium concentrations demonstrates that they are differentially regulated. These observations demonstrate that mitotic calcium signals in Drosophila embryos are confined to mitotic microdomains and offer an explanation for the apparent absence of detectable global calcium signals during mitosis in some cell types.
Collapse
Affiliation(s)
- Huw Parry
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne Medical School, Newcastle upon Tyne NE2 4HH, England, UK
| | | | | |
Collapse
|
35
|
MacMillan D, Currie S, Bradley KN, Muir TC, McCarron JG. In smooth muscle, FK506-binding protein modulates IP3 receptor-evoked Ca2+ release by mTOR and calcineurin. J Cell Sci 2005; 118:5443-51. [PMID: 16278292 DOI: 10.1242/jcs.02657] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) by the IP3 receptors (IP3Rs) crucially regulates diverse cell signalling processes from reproduction to apoptosis. Release from the IP3R may be modulated by endogenous proteins associated with the receptor, such as the 12 kDa FK506-binding protein (FKBP12), either directly or indirectly by inhibition of the phosphatase calcineurin. Here, we report that, in addition to calcineurin, FKPBs modulate release through the mammalian target of rapamycin (mTOR), a kinase that potentiates Ca2+ release from the IP3R in smooth muscle. The presence of FKBP12 was confirmed in colonic myocytes and co-immunoprecipitated with the IP3R. In aortic smooth muscle, however, although present, FKBP12 did not co-immunoprecipitate with IP3R. In voltage-clamped single colonic myocytes rapamycin, which together with FKBP12 inhibits mTOR (but not calcineurin), decreased the rise in cytosolic Ca2+ concentration ([Ca2+]c) evoked by IP3R activation (by photolysis of caged IP3), without decreasing the SR luminal Ca2+ concentration ([Ca2+]l) as did the mTOR inhibitors RAD001 and LY294002. However, FK506, which with FKBP12 inhibits calcineurin (but not mTOR), potentiated the IP3-evoked [Ca2+]c increase. This potentiation was due to the inhibition of calcineurin; it was mimicked by the phosphatase inhibitors cypermethrin and okadaic acid. The latter two inhibitors also prevented the FK506-evoked increase as did a calcineurin inhibitory peptide (CiP). In aortic smooth muscle, where FKBP12 was not associated with IP3R, the IP3-mediated Ca2+ release was unaffected by FK506 or rapamycin. Together, these results suggest that FKBP12 has little direct effect on IP3-mediated Ca2+ release, even though it is associated with IP3R in colonic myocytes. However, FKBP12 might indirectly modulate Ca2+ release through two effector proteins: (1) mTOR, which potentiates and (2) calcineurin, which inhibits Ca2+ release from IP3R in smooth muscle.
Collapse
Affiliation(s)
- Debbi MacMillan
- Institute of Biomedical and Life Sciences, Neuroscience and Biomedical Systems, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
36
|
FitzHarris G, Larman M, Richards C, Carroll J. An increase in [Ca2+]i is sufficient but not necessary for driving mitosis in early mouse embryos. J Cell Sci 2005; 118:4563-75. [PMID: 16179613 DOI: 10.1242/jcs.02586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) has been shown to drive sea-urchin embryos and some fibroblasts through nuclear-envelope breakdown (NEBD) and the metaphase-to-anaphase transition. Mitotic Ca2+ transients can be pan-cellular global events or localized to the perinuclear region. It is not known whether Ca2+ is a universal regulator of mitosis or whether its role is confined to specific cell types. To test the hypothesis that Ca2+ is a universal regulator of mitosis, we have investigated the role of Ca2+ in mitosis in one-cell mouse embryos. Fertilized embryos generate Ca2+ transients during the first mitotic division. Imposing a Ca2+ transient by photorelease of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] resulted in acceleration of mitosis entry, suggesting that a [Ca2+]i increase is capable of triggering mitosis. Mitotic Ca2+ transients were inhibited using three independent approaches: injection of intracellular Ca2+ buffers; downregulation of Ins(1,4,5)P3 receptors; and removal of extracellular Ca2+. None of the interventions had any effects on the timing of NEBD or cytokinesis. The possibility that NEBD is driven by localized perinuclear Ca2+ transients was examined using two-photon microscopy but no Ca2+-dependent increases in fluorescence were found to precede NEBD. Finally, the second mitotic division took place in the absence of any detectable [Ca2+]i increase. Thus, although an induced [Ca2+]i increase can accelerate mitosis entry, neither cytosolic nor perinuclear [Ca2+] increases appear to be necessary for progression through mitosis in mouse embryos.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Chelating Agents/chemistry
- Chelating Agents/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Female
- Fertilization/physiology
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/metabolism
- Fura-2/chemistry
- Fura-2/metabolism
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Microinjections
- Microscopy, Fluorescence
- Mitosis/physiology
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Greg FitzHarris
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
37
|
Chandra S. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy. Eur J Cell Biol 2005; 84:783-97. [PMID: 16218191 DOI: 10.1016/j.ejcb.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol 1,4,5-trisphosphate (IP3)-sensitive calcium stores sensitive to arginine vasopressin, thapsigargin, and calcium ionophore A23187. The dynamic alignment of calcium stores in both half-spindles may be an integral part of the time-dependent process of a cell's overall preparation for exiting the metaphase stage in mammalian LLC-PK1 cells.
Collapse
Affiliation(s)
- Subhash Chandra
- Cornell SIMS Ion Microscopy Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
38
|
Philipova R, Larman MG, Leckie CP, Harrison PK, Groigno L, Whitaker M. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos. J Biol Chem 2005; 280:24957-67. [PMID: 15843380 PMCID: PMC3292879 DOI: 10.1074/jbc.m414437200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.
Collapse
Affiliation(s)
- Rada Philipova
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Mark G. Larman
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Calum P. Leckie
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Patrick K. Harrison
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Laurence Groigno
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| | - Michael Whitaker
- Institute of Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
39
|
Munaron L, Antoniotti S, Lovisolo D. Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med 2005; 8:161-8. [PMID: 15256064 PMCID: PMC6740139 DOI: 10.1111/j.1582-4934.2004.tb00271.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The progression through the cell cycle in non-transformed cells is under the strict control of extracellular signals called mitogens, that act by eliciting complex cascades of intracellular messengers. Among them, increases in cytosolic free calcium concentration have been long realized to play a crucial role; however, the mechanisms coupling membrane receptor activation to calcium signals are still only partially understood, as are the pathways of calcium entry in the cytosol. This article centers on the role of calcium influx from the extracellular medium in the control of proliferative processes, and reviews the current understanding of the pathways responsible for this influx and of the second messengers involved in their activation.
Collapse
Affiliation(s)
- L Munaron
- Department of Animal and Human Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | | | | |
Collapse
|
40
|
Wong JL, Créton R, Wessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 2005; 7:801-14. [PMID: 15572124 DOI: 10.1016/j.devcel.2004.10.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/19/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022]
Abstract
The sea urchin egg is a quiescent cell...until fertilization, when the egg is activated. The classic respiratory burst at fertilization is the result of prodigious hydrogen peroxide production, but the mechanism for this synthesis is not known. Here we quantitate the kinetics of hydrogen peroxide synthesis at a single-cell level using an imaging photon detector, showing that 60 nM hydrogen peroxide accumulates within the perivitelline space of each zygote. We find that the NADPH oxidation activity is enriched at the cell surface and is sensitive to a pharmacological inhibitor of NADPH oxidase enzymes. Finally, we show that a sea urchin dual oxidase homolog, Udx1, is responsible for generating the hydrogen peroxide necessary for the physical block to polyspermy. Phylogenetic analysis of the enzymatic modules in Udx1 suggests a potentially conserved role for the dual oxidase family in hydrogen peroxide production and regulation during fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Box G, Brown University, Providence, RI 02912 USA
| | | | | |
Collapse
|
41
|
Yang PM, Chiu SJ, Lin KA, Lin LY. Effect of cadmium on cell cycle progression in chinese hamster ovary cells. Chem Biol Interact 2004; 149:125-36. [PMID: 15501434 DOI: 10.1016/j.cbi.2004.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 11/20/2022]
Abstract
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.
Collapse
Affiliation(s)
- Pei-Ming Yang
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|
42
|
Talmor-Cohen A, Tomashov-Matar R, Tsai WB, Kinsey WH, Shalgi R. Fyn kinase–tubulin interaction during meiosis of rat eggs. Reproduction 2004; 128:387-93. [PMID: 15454633 DOI: 10.1530/rep.1.00266] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prior to fertilization, the spindle of vertebrate eggs must remain stable and well organized during the second meiotic meta-phase arrest (MII). In a previous study we have determined that the completion of meiosis is a Src family kinase (SFK)-dependent event. In the current study we have used the SFK inhibitors, SU6656 and PP2, and demonstrated that inhibition of SFKs caused the formation of a disorganized spindle. The observation that proper organization of an MII spindle is an SFK-dependent process, combined with our previous finding that Fyn kinase is localized at the microtubules (MTs), prompted us to examine the potential role of Fyn in MT signaling. Our results show an association between Fyn and tubulin, the ability of Fyn to phosphorylate tubulinin vitroand stimulation of meiosis completion by injection of a constitutively active form of Fyn (CAF).We suggested that SFKs mediate significant functions during the organization of the MII spindle. In view of CAF injection experiments, and of the pronounced concentration of Fyn kinase at the spindle, we propose that Fyn may play an important role in some aspects of the spindle functions, possibly those involving the MTs.
Collapse
Affiliation(s)
- A Talmor-Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 69978 Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
43
|
Sée V, Rajala NKM, Spiller DG, White MRH. Calcium-dependent regulation of the cell cycle via a novel MAPK--NF-kappaB pathway in Swiss 3T3 cells. ACTA ACUST UNITED AC 2004; 166:661-72. [PMID: 15326199 PMCID: PMC2172420 DOI: 10.1083/jcb.200402136] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear factor kappa B (NF-κB) has been implicated in the regulation of cell proliferation and transformation. We investigated the role of the serum-induced intracellular calcium increase in the NF-κB–dependent cell cycle progression in Swiss 3T3 fibroblasts. Noninvasive photoactivation of a calcium chelator (Diazo-2) was used to specifically disrupt the transient rise in calcium induced by serum stimulation of starved Swiss 3T3 cells. The serum-induced intracellular calcium peak was essential for subsequent NF-κB activation (measured by real-time imaging of the dynamic p65 and IκBα fluorescent fusion proteins), cyclin D1 (CD1) promoter-directed transcription (measured by real-time luminescence imaging of CD1 promoter-directed firefly luciferase activity), and progression to cell division. We further showed that the serum-induced mitogen-activated protein kinase (MAPK) phosphorylation is calcium dependent. Inhibition of the MAPK- but not the PtdIns3K-dependent pathway inhibited NF-κB signaling, and further, CD1 transcription and cell cycle progression. These data suggest that a serum-dependent calcium signal regulates the cell cycle via a MAPK–NF-κB pathway in Swiss 3T3 cells.
Collapse
Affiliation(s)
- Violaine Sée
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, England, UK
| | | | | | | |
Collapse
|
44
|
Abstract
Whereas the importance of calcium as a cell regulator is well established in eukaryotes, the role of calcium in prokaryotes is still elusive. Over the past few years, there has been an increased interest in the role of calcium in bacteria. It has been demonstrated that as in eukaryotic organisms, the intracellular calcium concentration in prokaryotes is tightly regulated ranging from 100 to 300 nM. It has been found that calcium ions are involved in the maintenance of cell structure, motility, transport and cell differentiation processes such as sporulation, heterocyst formation and fruiting body development. In addition, a number of calcium-binding proteins have been isolated in several prokaryotic organisms. The characterization of these proteins and the identification of other factors suggest the possibility that calcium signal transduction exists in bacteria. This review presents recent developments of calcium in bacteria as it relates to signal transduction.
Collapse
Affiliation(s)
- Delfina C Dominguez
- College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79902, USA.
| |
Collapse
|
45
|
Carroll J, FitzHarris G, Marangos P, Halet G. Ca2+ signalling and cortical re-organisation during the transition from meiosis to mitosis in mammalian oocytes. Eur J Obstet Gynecol Reprod Biol 2004; 115 Suppl 1:S61-7. [PMID: 15196718 DOI: 10.1016/j.ejogrb.2004.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammals, the mature ovulated egg is arrested in metaphase II of the first meiotic division. The signal that triggers the transition from meiosis to mitosis is provided by the fertilising sperm and takes the form of a series of Ca(2+) oscillations. The pattern of Ca(2+) oscillations is imposed by maternal control mechanisms that ensure Ca(2+) transients occur during M-phase of meiosis II and during the first mitotic division. The transition from meiosis to mitosis involves a major re-organisation. The unfertilised egg is polarised with the meiotic spindle located in the cortex of the animal pole and clusters of endoplasmic reticulum in the vegetal hemisphere. By the time of the first mitotic division some 20h later the spindle has formed in the centre of the embryo and is surrounded by endoplasmic reticulum. These changes in organisation have implications for the inheritance of ER in meiotic and mitotic cell divisions and may reflect different roles and requirements for Ca(2+) in meiosis and mitosis.
Collapse
Affiliation(s)
- John Carroll
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
46
|
McCalmont WF, Heady TN, Patterson JR, Lindenmuth MA, Haverstick DM, Gray LS, Macdonald TL. Design, synthesis, and biological evaluation of novel T-Type calcium channel antagonists. Bioorg Med Chem Lett 2004; 14:3691-5. [PMID: 15203145 DOI: 10.1016/j.bmcl.2004.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 05/07/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
This paper describes the synthesis of several novel T-type calcium channel antagonists that inhibit calcium influx into the cell, which in turn regulates unknown aspects of the cell cycle pathway that are responsible for cellular proliferation. A library of compounds was synthesized and a brief structure activity relationship will be described. From these studies we have identified a compound (1) that displays anti-proliferative activity in the low micromolar range across a variety of cancer cell lines.
Collapse
Affiliation(s)
- William F McCalmont
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Larman MG, Saunders CM, Carroll J, Lai FA, Swann K. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCζ. J Cell Sci 2004; 117:2513-21. [PMID: 15159452 DOI: 10.1242/jcs.01109] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the first cell cycle Ca2+ oscillations are regulated in a cell cycle-dependent manner, such that the oscillations are unique to M phase. How the Ca2+ oscillations are regulated with such cell cycle stage-dependency is unknown, despite their importance for egg activation and embryo development. We recently identified a novel, sperm-specific phospholipase C (PLCzeta; PLCζ) that triggers Ca2+ oscillations similar to those caused by sperm. We show that PLCζ-induced Ca2+ oscillations also occur exclusively during M phase. The cell cycle-dependency can be explained by PLCζ's localisation to the pronuclei, which depends specifically upon a nuclear localisation signal sequence. Preventing pronuclear localisation of PLCζ by mutation of the nuclear localisation signal, or by inhibiting pronuclear formation/import, can prolong Ca2+ oscillations or allow them to occur during interphase. These data suggest a novel mechanism for regulating a PLC through nuclear sequestration and may explain the cell cycle-dependent regulation of Ca2+ oscillations following fertilisation.
Collapse
Affiliation(s)
- Mark G Larman
- Department of Anatomy and Developmental Biology, University College London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
48
|
Abstract
Ca2+ is a ubiquitous intracellular messenger that is important for cell cycle progression. Genetic and biochemical evidence support a role for Ca2+ in mitosis. In contrast, there has been a long-standing debate as to whether Ca2+ signals are required for oocyte meiosis. Here, we show that cytoplasmic Ca2+ (Ca2+cyt) plays a dual role during Xenopus oocyte maturation. Ca2+ signals are dispensable for meiosis entry (germinal vesicle breakdown and chromosome condensation), but are required for the completion of meiosis I. Interestingly, in the absence of Ca2+cyt signals oocytes enter meiosis more rapidly due to faster activation of the MAPK-maturation promoting factor (MPF) kinase cascade. This Ca2+-dependent negative regulation of the cell cycle machinery (MAPK-MPF cascade) is due to Ca2+cyt acting downstream of protein kinase A but upstream of Mos (a MAPK kinase kinase). Therefore, high Ca2+cyt delays meiosis entry by negatively regulating the initiation of the MAPK-MPF cascade. These results show that Ca2+ modulates both the cell cycle machinery and nuclear maturation during meiosis.
Collapse
Affiliation(s)
- Lu Sun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham St., Slot 505, Little Rock, AR 72205, USA
| | | |
Collapse
|
49
|
Pesando D, Robert S, Huitorel P, Gutknecht E, Pereira L, Girard JP, Ciapa B. Effects of methoxychlor, dieldrin and lindane on sea urchin fertilization and early development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 66:225-239. [PMID: 15129766 DOI: 10.1016/j.aquatox.2003.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have studied the effects of methoxychlor (MXC), dieldrin, and lindane on fertilization and early development of sea urchin egg. These organochlorine pesticides have often been found in polluted ground and water near agricultural sites, and have therefore been detected from time to time in the food chain and in drinking water. They have been reported to alter various reproduction functions in various animals including marine populations. We observed that the rate of fertilization decreased when the sperm was incubated with dieldrin or lindane. Treatment of eggs with each pesticide did not prevent fertilization, but increased the rate in polyspermy, delayed or blocked the first mitotic divisions, and altered early embryonic development. Moreover, all pesticides could alter several intracellular biochemical pathways that control first mitotic divisions and early development, including intracellular calcium homeostasis, MPF (mitosis promoting factor) activity and formation of the bipolar mitotic spindle. We found that lindane was the most potent of the three pesticides to alter all biochemical events. All these effects were observed at relatively high concentrations. However, bio-accumulation in sediments and aquatic organisms have been reported. Sea urchin eggs may then be in contact with very high concentrations of these pesticides in areas where these pesticides are not handled or stocked properly, and then develop into abnormal embryos.
Collapse
Affiliation(s)
- Danielle Pesando
- Laboratoire Réponses des Organismes aux Stress de l'Environnement, UMR INRA-UNSA 1112, Faculté des Sciences, Parc Valrose, BP 71, 06108 Nice, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Poustka AJ, Groth D, Hennig S, Thamm S, Cameron A, Beck A, Reinhardt R, Herwig R, Panopoulou G, Lehrach H. Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters. Genome Res 2004; 13:2736-46. [PMID: 14656975 PMCID: PMC403816 DOI: 10.1101/gr.1674103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Together with the hemichordates, sea urchins represent basal groups of nonchordate invertebrate deuterostomes that occupy a key position in bilaterian evolution. Because sea urchin embryos are also amenable to functional studies, the sea urchin system has emerged as one of the leading models for the analysis of the function of genomic regulatory networks that control development. We have analyzed a total of 107,283 cDNA clones of libraries that span the development of the sea urchin Strongylocentrotus purpuratus. Normalization by oligonucleotide fingerprinting, EST sequencing and sequence clustering resulted in an EST catalog comprised of 20,000 unique genes or gene fragments. Around 7000 of the unique EST consensus sequences were associated with molecular and developmental functions. Phylogenetic comparison of the identified genes to the genome of the urochordate Ciona intestinalis indicate that at least one quarter of the genes thought to be chordate specific were already present at the base of deuterostome evolution. Comparison of the number of gene copies in sea urchins to those in chordates and vertebrates indicates that the sea urchin genome has not undergone extensive gene or complete genome duplications. The established unique gene set represents an essential tool for the annotation and assembly of the forthcoming sea urchin genome sequence. All cDNA clones and filters of all analyzed libraries are available from the resource center of the German genome project at http://www.rzpd.de.
Collapse
Affiliation(s)
- Albert J Poustka
- Evolution and Development Group, Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|