1
|
Scheepers R, Araujo RP. Robust homeostasis of cellular cholesterol is a consequence of endogenous antithetic integral control. Front Cell Dev Biol 2023; 11:1244297. [PMID: 37842086 PMCID: PMC10570530 DOI: 10.3389/fcell.2023.1244297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Although cholesterol is essential for cellular viability and proliferation, it is highly toxic in excess. The concentration of cellular cholesterol must therefore be maintained within tight tolerances, and is thought to be subject to a stringent form of homeostasis known as Robust Perfect Adaptation (RPA). While much is known about the cellular signalling interactions involved in cholesterol regulation, the specific chemical reaction network structures that might be responsible for the robust homeostatic regulation of cellular cholesterol have been entirely unclear until now. In particular, the molecular mechanisms responsible for sensing excess whole-cell cholesterol levels have not been identified previously, and no mathematical models to date have been able to capture an integral control implementation that could impose RPA on cellular cholesterol. Here we provide a detailed mathematical description of cholesterol regulation pathways in terms of biochemical reactions, based on an extensive review of experimental and clinical literature. We are able to decompose the associated chemical reaction network structures into several independent subnetworks, one of which is responsible for conferring RPA on several intracellular forms of cholesterol. Remarkably, our analysis reveals that RPA in the cholesterol concentration in the endoplasmic reticulum (ER) is almost certainly due to a well-characterised control strategy known as antithetic integral control which, in this case, involves the high-affinity binding of a multi-molecular transcription factor complex with cholesterol molecules that are excluded from the ER membrane. Our model provides a detailed framework for exploring the necessary biochemical conditions for robust homeostatic control of essential and tightly regulated cellular molecules such as cholesterol.
Collapse
Affiliation(s)
| | - Robyn P. Araujo
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
2
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
3
|
Abstract
T cell activation is initiated by the recognition of specific antigenic peptides and subsequently accomplished by complex signaling cascades. These aspects have been extensively studied for decades as pivotal factors in the establishment of adaptive immunity. However, how receptors or signaling molecules are organized in the resting state prior to encountering antigens has received less attention. Recent advancements in super-resolution microscopy techniques have revealed topographically controlled pre-formed organization of key molecules involved in antigen recognition and signal transduction on microvillar projections of T cells before activation and substantial effort has been dedicated to characterizing the topological structure of resting T cells over the past decade. This review will summarize our current understanding of how key surface receptors are pre-organized on the T-cell plasma membrane and discuss the potential role of these receptors, which are preassembled prior to ligand binding in the early activation events of T cells.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Nano-Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
4
|
Xu Y, Song D, Wang W, Li S, Yue T, Xia T, Shi Y. Clec12a inhibits MSU-induced immune activation through lipid raft expulsion. Life Sci Alliance 2023; 6:e202301938. [PMID: 37339805 PMCID: PMC10282328 DOI: 10.26508/lsa.202301938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Monosodium uric acid (MSU) crystal, the etiological agent of gout, has been shown to trigger innate immune responses via multiple pathways. It is known that MSU-induced lipid sorting on plasma membrane promotes the phosphorylation of Syk and eventually leads to the activation of phagocytes. However, whether this membrane lipid-centric mechanism is regulated by other processes is unclear. Previous studies showed that Clec12a, a member of the C-type lectin receptor family, is reported to recognize MSU and suppresses this crystalline structure-induced immune activation. How this scenario is integrated into the lipid sorting-mediated inflammatory responses by MSU, and particularly, how Clec12a intercepts lipid raft-originated signaling cascade remains to be elucidated. Here, we found that the ITIM motif of Clec12a is dispensable for its inhibition of MSU-mediated signaling; instead, the transmembrane domain of Clec12a disrupts MSU-induced lipid raft recruitment and thus attenuates downstream signals. Single amino acid mutagenesis study showed the critical role of phenylalanine in the transmembrane region for the interactions between C-type lectin receptors and lipid rafts, which is critical for the regulation of MSU-mediated lipid sorting and phagocyte activation. Overall, our study provides new insights for the molecular mechanisms of solid particle-induced immune activation and may lead to new strategies in inflammation control.
Collapse
Affiliation(s)
- Ying Xu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Dingka Song
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Tie Xia
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Saini P, Anugula S, Fong YW. The Role of ATP-Binding Cassette Proteins in Stem Cell Pluripotency. Biomedicines 2023; 11:1868. [PMID: 37509507 PMCID: PMC10377311 DOI: 10.3390/biomedicines11071868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Pluripotent stem cells (PSCs) are highly proliferative cells that can self-renew indefinitely in vitro. Upon receiving appropriate signals, PSCs undergo differentiation and can generate every cell type in the body. These unique properties of PSCs require specific gene expression patterns that define stem cell identity and dynamic regulation of intracellular metabolism to support cell growth and cell fate transitions. PSCs are prone to DNA damage due to elevated replicative and transcriptional stress. Therefore, mechanisms to prevent deleterious mutations in PSCs that compromise stem cell function or increase the risk of tumor formation from becoming amplified and propagated to progenitor cells are essential for embryonic development and for using PSCs including induced PSCs (iPSCs) as a cell source for regenerative medicine. In this review, we discuss the role of the ATP-binding cassette (ABC) superfamily in maintaining PSC homeostasis, and propose how their activities can influence cellular signaling and stem cell fate decisions. Finally, we highlight recent discoveries that not all ABC family members perform only canonical metabolite and peptide transport functions in PSCs; rather, they can participate in diverse cellular processes from genome surveillance to gene transcription and mRNA translation, which are likely to maintain the pristine state of PSCs.
Collapse
Affiliation(s)
- Prince Saini
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharath Anugula
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yick W. Fong
- Brigham Regenerative Medicine Center, Brigham and Women’s Hospital, Boston, MA 02115, USA; (P.S.); (S.A.)
- Department of Medicine, Cardiovascular Medicine Division, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat Chem Biol 2023; 19:750-758. [PMID: 36997644 PMCID: PMC10771812 DOI: 10.1038/s41589-023-01268-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023]
Abstract
Plasma membrane heterogeneity has been tied to a litany of cellular functions and is often explained by analogy to membrane phase separation; however, models based on phase separation alone fall short of describing the rich organization available within cell membranes. Here we present comprehensive experimental evidence motivating an updated model of plasma membrane heterogeneity in which membrane domains assemble in response to protein scaffolds. Quantitative super-resolution nanoscopy measurements in live B lymphocytes detect membrane domains that emerge upon clustering B cell receptors (BCRs). These domains enrich and retain membrane proteins based on their preference for the liquid-ordered phase. Unlike phase-separated membranes that consist of binary phases with defined compositions, membrane composition at BCR clusters is modulated through the protein constituents in clusters and the composition of the membrane overall. This tunable domain structure is detected through the variable sorting of membrane probes and impacts the magnitude of BCR activation.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Park JS, Kim JH, Soh WC, Kim NY, Lee KS, Kim CH, Chung IJ, Lee S, Kim HR, Jun CD. Trogocytic molting of T cell microvilli upregulates T cell receptor surface expression and promotes clonal expansion. Nat Commun 2023; 14:2980. [PMID: 37221214 DOI: 10.1038/s41467-023-38707-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Although T cell activation is known to involve the internalization of the T cell antigen receptor (TCR), much less is known regarding the release of TCRs following T cell interaction with cognate antigen-presenting cells. In this study, we examine the physiological mechanisms underlying TCR release following T cell activation. We show that T cell activation results in the shedding of TCRs in T cell microvilli, which involves a combined process of trogocytosis and enzymatic vesiculation, leading to the loss of membrane TCRs and microvilli-associated proteins and lipids. Surprisingly, unlike TCR internalization, this event results in the rapid upregulation of surface TCR expression and metabolic reprogramming of cholesterol and fatty acid synthesis to support cell division and survival. These results demonstrate that TCRs are lost through trogocytic 'molting' following T cell activation and highlight this mechanism as an important regulator of clonal expansion.
Collapse
Affiliation(s)
- Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jun-Hyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kyung-Sik Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Edwards-Hicks J, Apostolova P, Buescher JM, Maib H, Stanczak MA, Corrado M, Klein Geltink RI, Maccari ME, Villa M, Carrizo GE, Sanin DE, Baixauli F, Kelly B, Curtis JD, Haessler F, Patterson A, Field CS, Caputa G, Kyle RL, Soballa M, Cha M, Paul H, Martin J, Grzes KM, Flachsmann L, Mitterer M, Zhao L, Winkler F, Rafei-Shamsabadi DA, Meiss F, Bengsch B, Zeiser R, Puleston DJ, O'Sullivan D, Pearce EJ, Pearce EL. Phosphoinositide acyl chain saturation drives CD8 + effector T cell signaling and function. Nat Immunol 2023; 24:516-530. [PMID: 36732424 PMCID: PMC10908374 DOI: 10.1038/s41590-023-01419-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Petya Apostolova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Maib
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michal A Stanczak
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Maria Elena Maccari
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E Carrizo
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Beth Kelly
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Annette Patterson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - George Caputa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Melanie Soballa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Minsun Cha
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry Paul
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob Martin
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lea Flachsmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances Winkler
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - David Ali Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
10
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Porciello N, Cipria D, Masi G, Lanz AL, Milanetti E, Grottesi A, Howie D, Cobbold SP, Schermelleh L, He HT, D'Abramo M, Destainville N, Acuto O, Nika K. Role of the membrane anchor in the regulation of Lck activity. J Biol Chem 2022; 298:102663. [PMID: 36372231 PMCID: PMC9763865 DOI: 10.1016/j.jbc.2022.102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Theoretical work suggests that collective spatiotemporal behavior of integral membrane proteins should be modulated by boundary lipids sheathing their membrane anchors. Here, we show evidence for this prediction while investigating the mechanism for maintaining a steady amount of the active form of integral membrane protein Lck kinase (LckA) by Lck trans-autophosphorylation regulated by the phosphatase CD45. We used super-resolution microscopy, flow cytometry, and pharmacological and genetic perturbation to gain insight into the spatiotemporal context of this process. We found that LckA is generated exclusively at the plasma membrane, where CD45 maintains it in a ceaseless dynamic equilibrium with its unphosphorylated precursor. Steady LckA shows linear dependence, after an initial threshold, over a considerable range of Lck expression levels. This behavior fits a phenomenological model of trans-autophosphorylation that becomes more efficient with increasing LckA. We then challenged steady LckA formation by genetically swapping the Lck membrane anchor with structurally divergent ones, such as that of Src or the transmembrane domains of LAT, CD4, palmitoylation-defective CD4 and CD45 that were expected to drastically modify Lck boundary lipids. We observed small but significant changes in LckA generation, except for the CD45 transmembrane domain that drastically reduced LckA due to its excessive lateral proximity to CD45. Comprehensively, LckA formation and maintenance can be best explained by lipid bilayer critical density fluctuations rather than liquid-ordered phase-separated nanodomains, as previously thought, with "like/unlike" boundary lipids driving dynamical proximity and remoteness of Lck with itself and with CD45.
Collapse
Affiliation(s)
- Nicla Porciello
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Deborah Cipria
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Giulia Masi
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Anna-Lisa Lanz
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Edoardo Milanetti
- Department of Physics, University of Rome "La Sapienza", Rome, Italy
| | | | - Duncan Howie
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Steve P Cobbold
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | - Lothar Schermelleh
- Micron Advanced Bioimaging Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Hai-Tao He
- Aix Marseille Université, CNRS, INSERM, CINL, Marseille, France
| | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, UPS, Toulouse, France.
| | - Oreste Acuto
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | - Konstantina Nika
- T Cell Signalling Laboratory, Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom; Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
12
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Nuiyen A, Rattanasri A, Wipa P, Roytrakul S, Wangteeraprasert A, Pongcharoen S, Ngoenkam J. Lack of Nck1 protein and Nck-CD3 interaction caused the increment of lipid content in Jurkat T cells. BMC Mol Cell Biol 2022; 23:36. [PMID: 35902806 PMCID: PMC9330638 DOI: 10.1186/s12860-022-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The non-catalytic region of tyrosine kinase (Nck) is an adaptor protein, which is ubiquitously expressed in many types of cells. In T cells, the Nck1 isoform promotes T cell receptor signalling as well as actin polymerisation. However, the role of Nck1 in the lipid metabolism in T cells is unknown. In the present study, we investigated the effect of the Nck1 protein and Nck–CD3 interaction on lipid metabolism and on the physical and biological properties of Jurkat T cells, using a newly developed holotomographic microscope.
Results
Holotomographic microscopy showed that Nck1-knocked-out cells had membrane blebs and were irregular in shape compared to the rounded control cells. The cell size and volume of Nck1-deficient cells were comparable to those of the control cells. Nck1-knocked-out Jurkat T cells had a greater lipid content, lipid mass/cell mass ratio, and lipid metabolite levels than the control cells. Interestingly, treatment with a small molecule, AX-024, which inhibited Nck–CD3 interaction, also caused an increase in the lipid content in wild-type Jurkat T cells, as found in Nck1-deficient cells.
Conclusions
Knockout of Nck1 protein and hindrance of the Nck–CD3 interaction cause the elevation of lipid content in Jurkat T cells.
Collapse
|
14
|
Bonacina F, Moregola A, Svecla M, Coe D, Uboldi P, Fraire S, Beretta S, Beretta G, Pellegatta F, Catapano AL, Marelli-Berg FM, Norata GD. The low-density lipoprotein receptor-mTORC1 axis coordinates CD8+ T cell activation. J Cell Biol 2022; 221:213488. [PMID: 36129440 PMCID: PMC9499829 DOI: 10.1083/jcb.202202011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of T cells relies on the availability of intracellular cholesterol for an effective response after stimulation. We investigated the contribution of cholesterol derived from extracellular uptake by the low-density lipoprotein (LDL) receptor in the immunometabolic response of T cells. By combining proteomics, gene expression profiling, and immunophenotyping, we described a unique role for cholesterol provided by the LDLR pathway in CD8+ T cell activation. mRNA and protein expression of LDLR was significantly increased in activated CD8+ compared to CD4+ WT T cells, and this resulted in a significant reduction of proliferation and cytokine production (IFNγ, Granzyme B, and Perforin) of CD8+ but not CD4+ T cells from Ldlr -/- mice after in vitro and in vivo stimulation. This effect was the consequence of altered cholesterol routing to the lysosome resulting in a lower mTORC1 activation. Similarly, CD8+ T cells from humans affected by familial hypercholesterolemia (FH) carrying a mutation on the LDLR gene showed reduced activation after an immune challenge.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monika Svecla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - David Coe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Patrizia Uboldi
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sara Fraire
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Simona Beretta
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Fabio Pellegatta
- Istituti di Ricovero e Cura a Carattere Scientifico Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Multimedica, Milan, Italy
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
15
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
16
|
Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth. Nat Commun 2022; 13:4174. [PMID: 35854007 PMCID: PMC9296665 DOI: 10.1038/s41467-022-31825-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist. Stomatin is a component of lipid rafts. Here, Wu et al. show that stomatin modulates the differentiation and functions of adipocytes by regulating adipogenesis signaling and fatty acid influx such that with excessive calorie intake, increased stomatin induces adiposity.
Collapse
|
17
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
18
|
Bacterial Membranes Are More Perturbed by the Asymmetric Versus Symmetric Loading of Amphiphilic Molecules. MEMBRANES 2022; 12:membranes12040350. [PMID: 35448320 PMCID: PMC9032087 DOI: 10.3390/membranes12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Characterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a Staphylococcus aureus bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer’s electrostatic potential. Conducting asymmetric loading of molecules in only one leaflet, it was observed that anionic and cationic amphiphiles have a large impact on the Staphylococcus aureus membrane’s electrostatic potential and lateral pressure profile as compared to a symmetric distribution. Nonintuitively, we find that the cationic and anionic molecules induce a similar change in the electrostatic potential, which points to the complexity of membrane interfaces, and how asymmetry can induce biophysical consequences. Finally, we link changes in membrane structure to the rate of electroporation for the membranes, and again find a crucial impact of introducing asymmetry to the system. Understanding these physical mechanisms provides critical insights and viable pathways for the rational design of membrane-active molecules, where controlling the localization is key.
Collapse
|
19
|
Wu H, Cao R, Wei S, Pathan-Chhatbar S, Wen M, Wu B, Schamel WW, Wang S, OuYang B. Cholesterol Binds in a Reversed Orientation to TCRβ-TM in Which Its OH Group is Localized to the Center of the Lipid Bilayer. J Mol Biol 2021; 433:167328. [PMID: 34688686 DOI: 10.1016/j.jmb.2021.167328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
T cell receptor (TCR) signaling in response to antigen recognition is essential for the adaptive immune response. Cholesterol keeps TCRs in the resting conformation and mediates TCR clustering by directly binding to the transmembrane domain of the TCRβ subunit (TCRβ-TM), while cholesterol sulfate (CS) displaces cholesterol from TCRβ. However, the atomic interaction of cholesterol or CS with TCRβ remains elusive. Here, we determined the cholesterol and CS binding site of TCRβ-TM in phospholipid bilayers using solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulation. Cholesterol binds to the transmembrane residues within a CARC-like cholesterol recognition motif. Surprisingly, the polar OH group of cholesterol is placed in the hydrophobic center of the lipid bilayer stabilized by its polar interaction with K154 of TCRβ-TM. An aromatic interaction with Y158 and hydrophobic interactions with V160 and L161 stabilize this reverse orientation. CS binds to the same site, explaining how it competes with cholesterol. Site-directed mutagenesis of the CARC-like motif disrupted the cholesterol/CS binding to TCRβ-TM, validating the NMR and MD results.
Collapse
Affiliation(s)
- Hongyi Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shukun Wei
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Salma Pathan-Chhatbar
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), University Clinics and University of Freiburg, Freiburg, Germany
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany; Centre for Chronic Immunodeficiency (CCI), University Clinics and University of Freiburg, Freiburg, Germany.
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Lang EN, Porter AG, Ouyang T, Shi A, Hayes TR, Davis TC, Claridge SA. Oleylamine Impurities Regulate Temperature-Dependent Hierarchical Assembly of Ultranarrow Gold Nanowires on Biotemplated Interfaces. ACS NANO 2021; 15:10275-10285. [PMID: 33998802 DOI: 10.1021/acsnano.1c02414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of 9-cis-octadeceneamine with trans-unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon vs. nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of trans and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near -5 °C (20-30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of trans and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.
Collapse
Affiliation(s)
- Erin N Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashlin G Porter
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tianhong Ouyang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Nlrp3 Inflammasome Signaling Regulates the Homing and Engraftment of Hematopoietic Stem Cells (HSPCs) by Enhancing Incorporation of CXCR4 Receptor into Membrane Lipid Rafts. Stem Cell Rev Rep 2021; 16:954-967. [PMID: 32661868 PMCID: PMC7456406 DOI: 10.1007/s12015-020-10005-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fast and efficient homing and engraftment of hematopoietic stem progenitor cells (HSPCs) is crucial for positive clinical outcomes from transplantation. We found that this process depends on activation of the Nlrp3 inflammasome, both in the HSPCs to be transplanted and in the cells in the recipient bone marrow (BM) microenvironment. For the first time we provide evidence that functional deficiency in the Nlrp3 inflammasome in transplanted cells or in the host microenvironment leads to defective homing and engraftment. At the molecular level, functional deficiency of the Nlrp3 inflammasome in HSPCs leads to their defective migration in response to the major BM homing chemoattractant stromal-derived factor 1 (SDF-1) and to other supportive chemoattractants, including sphingosine-1-phosphate (S1P) and extracellular adenosine triphosphate (eATP). We report that activation of the Nlrp3 inflammasome increases autocrine release of eATP, which promotes incorporation of the CXCR4 receptor into membrane lipid rafts at the leading surface of migrating cells. On the other hand, a lack of Nlrp3 inflammasome expression in BM conditioned for transplantation leads to a decrease in expression of SDF-1 and danger-associated molecular pattern molecules (DAMPs), which are responsible for activation of the complement cascade (ComC), which in turn facilitates the homing and engraftment of HSPCs.
Collapse
|
23
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
24
|
Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, Codreanu GS, Nava Lauson CB, Tiberti S, Raimondi A, Jones MA, Reyzer M, Bates BM, Spraggins JM, Patterson NH, McLean JA, Rai K, Tacchetti C, Tucci S, Wargo JA, Rodighiero S, Clise-Dwyer K, Sherrod SD, Kim M, Navin NE, Caprioli RM, Greenberg PD, Draetta G, Nezi L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J Exp Med 2021; 217:151833. [PMID: 32491160 PMCID: PMC7398173 DOI: 10.1084/jem.20191920] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Collapse
Affiliation(s)
- Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Boone M Prentice
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Kristin G Anderson
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Ayush Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aislyn Schalck
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Carina B Nava Lauson
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Marissa A Jones
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Michelle Reyzer
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Breanna M Bates
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jeffrey M Spraggins
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Nathan H Patterson
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Simona Rodighiero
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas E Navin
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard M Caprioli
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luigi Nezi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
25
|
Blevins LK, Crawford RB, Azzam DJ, Guilarte TR, Kaminski NE. Surface translocator protein 18 kDa (TSPO) localization on immune cells upon stimulation with LPS and in ART-treated HIV + subjects. J Leukoc Biol 2020; 110:123-140. [PMID: 33205494 DOI: 10.1002/jlb.3a1219-729rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a well-known outer mitochondrial membrane protein and it is widely used as a biomarker of neuroinflammation and brain injury. Although it is thought that TSPO plays key roles in a multitude of host cell functions, including steroid biosynthesis, apoptosis, generation of reactive oxygen species, and proliferation, some of these functions have recently been questioned. Here, we report the unexpected finding that circulating immune cells differentially express basal levels of TSPO on their cell surface, with a high percentage of monocytes and neutrophils expressing cell surface TSPO. In vitro stimulation of monocytes with LPS significantly increases the frequency of cells with surface TSPO expression in the absence of altered gene expression. Importantly, the LPS increase in TSPO cell surface expression in monocytes appears to be selective for LPS because two other distinct monocyte activators failed to increase the frequency of cells with surface TSPO. Finally, when we quantified immune cell TSPO surface expression in antiretroviral therapy-treated HIV+ donors, a chronic inflammatory disease, we found significant increases in the frequency of TSPO surface localization, which could be pharmacologically suppressed with ∆9 -tetrahydrocannabinol. These findings suggest that cell surface TSPO in circulating leukocytes could serve as a peripheral blood-based biomarker of inflammation.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Crawford
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, Florida, USA
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Center for Research on Ingredient Safety, Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
27
|
Chung JK, Huang WYC, Carbone CB, Nocka LM, Parikh AN, Vale RD, Groves JT. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophys J 2020; 120:1257-1265. [PMID: 33080222 DOI: 10.1016/j.bpj.2020.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Lipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the linker for activation of T cells (LAT):growth-factor-receptor-bound protein 2 (Grb2):son of sevenless (SOS) protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that the assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.
Collapse
Affiliation(s)
- Jean K Chung
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - William Y C Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Catherine B Carbone
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Atul N Parikh
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, California; The Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
28
|
Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metab Eng 2020; 61:96-105. [DOI: 10.1016/j.ymben.2020.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
29
|
Wu A, Wojtowicz K, Savary S, Hamon Y, Trombik T. Do ABC transporters regulate plasma membrane organization? Cell Mol Biol Lett 2020; 25:37. [PMID: 32647530 PMCID: PMC7336681 DOI: 10.1186/s11658-020-00224-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022] Open
Abstract
The plasma membrane (PM) spatiotemporal organization is one of the major factors controlling cell signaling and whole-cell homeostasis. The PM lipids, including cholesterol, determine the physicochemical properties of the membrane bilayer and thus play a crucial role in all membrane-dependent cellular processes. It is known that lipid content and distribution in the PM are not random, and their transversal and lateral organization is highly controlled. Mainly sphingolipid- and cholesterol-rich lipid nanodomains, historically referred to as rafts, are extremely dynamic “hot spots” of the PM controlling the function of many cell surface proteins and receptors. In the first part of this review, we will focus on the recent advances of PM investigation and the current PM concept. In the second part, we will discuss the importance of several classes of ABC transporters whose substrates are lipids for the PM organization and dynamics. Finally, we will briefly present the significance of lipid ABC transporters for immune responses.
Collapse
Affiliation(s)
- Ambroise Wu
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Stephane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, Dijon, France
| | - Yannick Hamon
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Tomasz Trombik
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
30
|
Kourounakis AP, Bavavea E. New applications of squalene synthase inhibitors: Membrane cholesterol as a therapeutic target. Arch Pharm (Weinheim) 2020; 353:e2000085. [PMID: 32557793 DOI: 10.1002/ardp.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 11/06/2022]
Abstract
Squalene synthase (SQS) inhibitors, mostly known as antihyperlipidemic agents for controlling blood cholesterol levels, have been increasingly used to study alterations of the cholesterol content in cell membranes. As such, SQS inhibitors have been demonstrated to control cellular activities related to cancer cell proliferation and migration, neuron degeneration, and parasite growth. While the mechanisms behind the effects of cellular cholesterol are still being revealed in detail, the evidence for SQS as a therapeutic target for several seemingly unrelated diseases is increasing. SQS inhibitors may be the next promising candidates targeting the three remaining primary therapeutic areas, beyond cardiovascular disease, which still need to be addressed; their application as anticancer, antimicrobial, and antineurodegenerative agents appears promising for new drug discovery projects underway.
Collapse
Affiliation(s)
- Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eugenia Bavavea
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Cutillo G, Saariaho AH, Meri S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell Mol Immunol 2020; 17:313-322. [PMID: 32152553 PMCID: PMC7109116 DOI: 10.1038/s41423-020-0388-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/05/2023] Open
Abstract
Gangliosides are structurally and functionally polymorphic sialic acid containing glycosphingolipids that are widely distributed in the human body. They play important roles in protecting us against immune attacks, yet they can become targets for autoimmunity and act as receptors for microbes, like the influenza viruses, and toxins, such as the cholera toxin. The expression patterns of gangliosides vary in different tissues, during different life periods, as well as in different animals. Antibodies against gangliosides (AGA) can target immune attack e.g., against neuronal cells and neutralize their complement inhibitory activity. AGAs are important especially in acquired demyelinating immune-mediated neuropathies, like Guillain-Barré syndrome (GBS) and its variant, the Miller-Fisher syndrome (MFS). They can emerge in response to different microbial agents and immunological insults. Thereby, they can be involved in a variety of diseases. In addition, antibodies against GM3 were found in the sera of patients vaccinated with Pandemrix®, who developed secondary narcolepsy, strongly supporting the autoimmune etiology of the disease.
Collapse
Affiliation(s)
- Gianni Cutillo
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Humanitas University, Milan, Rozzano, Italy
| | - Anna-Helena Saariaho
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Translational Immunology Research Program and the Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.
- Humanitas University, Milan, Rozzano, Italy.
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
32
|
Toshima K, Nagafuku M, Okazaki T, Kobayashi T, Inokuchi JI. Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. Int Immunol 2020; 31:211-223. [PMID: 30561621 DOI: 10.1093/intimm/dxy082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingomyelin (SM) in combination with cholesterol forms specialized membrane lipid microdomains in which specific receptors and signaling molecules are localized or recruited to mediate intracellular signaling. SM-microdomain levels in mouse thymus were low in the early CD4+CD8+ double-positive (DP) stage prior to thymic selection and increased >10-fold during late selection. T-cell receptor (TCR) signal strength is a key factor determining whether DP thymocytes undergo positive or negative selection. We examined the role of SM-microdomains in thymocyte development and related TCR signaling, using SM synthase 1 (SMS1)-deficient (SMS1-/-) mice which display low SM expression in all thymocyte populations. SMS1 deficiency caused reduced cell numbers after late DP stages in TCR transgenic models. TCR-dependent apoptosis induced by anti-CD3 treatment was enhanced in SMS1-/- DP thymocytes both in vivo and in vitro. SMS1-/- DP thymocytes, relative to controls, showed increased phosphorylation of TCR-proximal kinase ZAP-70 and increased expression of Bim and Nur77 proteins involved in negative selection following TCR stimulation. Addition of SM to cultured normal DP thymocytes led to greatly increased surface expression of SM-microdomains, with associated reduction of TCR signaling and TCR-induced apoptosis. Our findings indicate that SM-microdomains are increased in late DP stages, function as negative regulators of TCR signaling and modulate the efficiency of TCR-proximal signaling to promote thymic selection events leading to subsequent developmental stages.
Collapse
Affiliation(s)
- Kaoru Toshima
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Toshiro Okazaki
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
33
|
Uyama M. Control of Lipid Self-Assembled Structures & Assessment of Lipid Membrane Fluidity by Fluorescence Spectroscopy. J Oleo Sci 2020; 69:83-91. [PMID: 31941866 DOI: 10.5650/jos.ess19244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well known that lipids form various kinds of self-assembled structures. First, lipid nanoparticles dispersed with hydroxy propyl methyl cellulose acetate succinate (HPMCAS) were introduced. The influence of polymers on the lipid self-assembled structures was evaluated by small and wide angle X-ray scattering (SWAXS). Self-assembled structures containing higher alcohols have attracted much attention in the cosmetic industry. The α-form hydrated crystalline phase (often called α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and higher alcohols. As surfactants in this study, an ionic complex or a silicone type were used. This review also reports the lipid membrane fluidity by using fluorescence spectroscopy.
Collapse
|
34
|
Masson W, Rossi E, Mora-Crespo LM, Cornejo-Peña G, Pessio C, Gago M, Alvarado RN, Scolnik M. Cardiovascular risk stratification and appropriate use of statins in patients with systemic lupus erythematosus according to different strategies. Clin Rheumatol 2019; 39:455-462. [PMID: 31802350 DOI: 10.1007/s10067-019-04856-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION/OBJECTIVES Cardiovascular risk management of patients with systemic lupus erythematosus (SLE) is medically relevant. The objectives were to estimate the cardiovascular risk by different strategies in patients with SLE, analyzing which proportion of patients would be candidates to receive statin therapy, and identify how many patients with statin indication received such drugs. METHOD A cross-sectional study was performed from a secondary database. Following the recommendations of National Institute for Health and Care Excellence (NICE) guidelines and the Argentine Consensus, the QRISK-3 and the adjusted Framingham (multiplying factor × 2) scores were calculated in primary prevention subjects. The indications for statin therapy according to these recommendations were analyzed. RESULTS In total, 110 patients were included. Regarding patients without previous cardiovascular history, the median adjusted Framingham score was 12.8% (4.1-21.9), and 45.2%, 22.6%, and 32.2% of them were classified at low, moderate, or high risk. The median QRISK-3 score was 6.0% (2.1-14.1) and 42.1% of subjects were classified "at risk". Only 60% of subjects in secondary prevention received statins, although no patient received the recommended doses. Analyzing patients in primary prevention who did not receive statins (87%), 43.4% and 45.2% of the patients were eligible for statin therapy according to NICE guidelines and Argentine Consensus, respectively. CONCLUSIONS Our findings showed that a large proportion of patients with SLE have a considerable cardiovascular risk and many of them would be eligible for statin therapy. However, the statin use observed was low.Key Points• A large proportion of patients with lupus have a considerable cardiovascular risk, explained in part by dyslipidemia.• Many patients with SLE would be eligible for statin therapy according to risk stratification based on conventional risk factors.• The use of statins in this population is inadequate.
Collapse
Affiliation(s)
- Walter Masson
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Emiliano Rossi
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorena M Mora-Crespo
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Cornejo-Peña
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Pessio
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Gago
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rodolfo N Alvarado
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Scolnik
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Gilson RC, Gunasinghe SD, Johannes L, Gaus K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog Lipid Res 2019; 76:101010. [PMID: 31682868 DOI: 10.1016/j.plipres.2019.101010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022]
Abstract
Galectin-3 (Gal3) is a multifaceted protein which belongs to a family of lectins and binds β-galactosides. Gal3 expression is altered in many types of cancer, with increased expression generally associated with poor prognosis. Although the mechanisms remain unknown, Gal3 has been implicated in several biological processes involved in cancer progression, including suppression of T cell-mediated immune responses. Extracellular Gal3 binding to the plasma membrane of T cells alters membrane organization and the formation of an immunological synapse. Its multivalent capacity allows Gal3 to interact specifically with different membrane proteins and lipids, influencing endocytosis, trafficking and T cell receptor signalling. The ability of Gal3 to inhibit T cell responses may provide a mechanism by which Gal3 aids in cancer progression. In this review, we seek to give an overview of the mechanisms by which Gal3 alters the spatial organization of cell membranes and how these processes impact on T cell activation.
Collapse
Affiliation(s)
- Rebecca C Gilson
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology unit, UMR3666, CNRS, U1143, INSERM, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
36
|
Pan J, Zhang Q, Palen K, Wang L, Qiao L, Johnson B, Sei S, Shoemaker RH, Lubet RA, Wang Y, You M. Potentiation of Kras peptide cancer vaccine by avasimibe, a cholesterol modulator. EBioMedicine 2019; 49:72-81. [PMID: 31680003 PMCID: PMC6945201 DOI: 10.1016/j.ebiom.2019.10.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background No effective approaches to target mutant Kras have yet been developed. Immunoprevention using KRAS-specific antigenic peptides to trigger T cells capable of targeting tumor cells relies heavily on lipid metabolism. To facilitate better TCR/peptide/MHC interactions that result in better cancer preventive efficacy, we combined KVax with avasimibe, a specific ACAT1 inhibitor, tested their anti-cancer efficacy in mouse lung cancer models, where Kras mutation was induced before vaccination. Methods Control of tumor growth utilizing a multi-peptide Kras vaccine was tested in combination with avasimibe in a syngeneic lung cancer mouse model and a genetically engineered mouse model (GEMM). Activation of immune responses after administration of Kras vaccine and avasimibe was also assessed by flow cytometry, ELISpot and IHC. Findings We found that Kras vaccine combined with avasimibe significantly decreased the presence of regulatory T cells in the tumor microenvironment and facilitated CD8+ T cell infiltration in tumor sites. Avasimibe also enhanced the efficacy of Kras vaccines target mutant Kras. Whereas the Kras vaccine significantly increased antigen-specific intracellular IFN-γ and granzyme B levels in CD8+ T cells, avasimibe significantly increased the number of tumor-infiltrating CD8+ T cells. Additionally, modulation of cholesterol metabolism was found to specifically impact in T cells, and not in cancer cells. Interpretation Avasimibe complements the efficacy of a multi-peptide Kras vaccine in controlling lung cancer development and growth. This treatment regimen represents a novel immunoprevention approach to prevent lung cancer.
Collapse
Affiliation(s)
- Jing Pan
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qi Zhang
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie Palen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lifen Qiao
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryon Johnson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Ronald A Lubet
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Yian Wang
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ming You
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
37
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Abstract
Plasma membrane lipid rafts are highly ordered membrane microdomains enriched for glycosphingolipids and cholesterol, which play an important role during T-cell antigen receptor (TCR) signaling. Our previous work has demonstrated that plasma membrane lipid composition is an important determinant of human CD4+ T-cell function and that defects in lipid raft expression contribute to CD4+ dysfunction in patients with autoimmunity. In this chapter we share three flow cytometry-based methods to quantitatively analyze plasma membrane lipid composition in primary human CD4+ T cells. We describe the quantification of glycosphingolipid expression using cholera toxin subunit B, cholesterol expression using filipin staining, and membrane "lipid order" using di-4-ANEPPDHQ. These methods can easily be adapted to analyze different cell types.
Collapse
Affiliation(s)
- Kirsty E Waddington
- Division of Medicine, Centre for Cardiometabolic Medicine, University College of London, London, UK
- Division of Medicine, Centre for Rheumatology, University College of London, London, UK
| | - Inés Pineda-Torra
- Division of Medicine, Centre for Cardiometabolic Medicine, University College of London, London, UK
| | - Elizabeth C Jury
- Division of Medicine, Centre for Rheumatology, University College of London, London, UK.
| |
Collapse
|
39
|
Zhang Q, Wang X, Lv L, Su G, Zhao Y. Antineoplastic Activity, Structural Modification, Synthesis and Structure-activity Relationship of Dammarane-type Ginsenosides: An Overview. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190401141138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dammarane-type ginsenosides are a class of tetracyclic triterpenoids with the same dammarane skeleton. These compounds have a wide range of pharmaceutical applications for neoplasms, diabetes mellitus and other metabolic syndromes, hyperlipidemia, cardiovascular and cerebrovascular diseases, aging, neurodegenerative disease, bone disease, liver disease, kidney disease, gastrointestinal disease and other conditions. In order to develop new antineoplastic drugs, it is necessary to improve the bioactivity, solubility and bioavailability, and illuminate the mechanism of action of these compounds. A large number of ginsenosides and their derivatives have been separated from certain herbs or synthesized, and tested in various experiments, such as anti-proliferation, induction of apoptosis, cell cycle arrest and cancer-involved signaling pathways. In this review, we have summarized the progress in structural modification, shed light on the structure-activity relationship (SAR), and offered insights into biosynthesis-structural association. This review is expected to provide a preliminary guide for the modification and synthesis of ginsenosides.
Collapse
Affiliation(s)
- Qiang Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, PR, China
| | - Xude Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR, China
| | - Liyan Lv
- Shenyang Pharmaceutical University, Shenyang 110016, PR, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, PR, China
| |
Collapse
|
40
|
The Potential Use of Metformin, Dipyridamole, N-Acetylcysteine and Statins as Adjunctive Therapy for Systemic Lupus Erythematosus. Cells 2019; 8:cells8040323. [PMID: 30959892 PMCID: PMC6523351 DOI: 10.3390/cells8040323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune condition that can potentially affect every single organ during the course of the disease, leading to increased morbidity and mortality, and reduced health-related quality of life. While curative treatment is currently non-existent for SLE, therapeutic agents such as glucocorticoids, mycophenolate, azathioprine, cyclosporine, cyclophosphamide and various biologics are the mainstay of treatment based on their immunomodulatory and immunosuppressive properties. As a result of global immunosuppression, the side-effect profile of the current therapeutic approach is unfavourable, with adverse effects including myelosuppression, infection and malignancies. Hydroxychloroquine, one of the very few Food and Drug Administration (FDA)-approved medications for the treatment of SLE, has been shown to offer a number of therapeutic benefits to SLE patients independent of its immunomodulatory effect. As such, it is worth exploring drugs similar to hydroxychloroquine that confer additional clinical benefits unrelated to immunosuppressive mechanisms. Indeed, apart from hydroxychloroquine, a number of studies have explored the use of a few conventionally non-immunosuppressive drugs that are potentially useful in the management of SLE. In this review, non-immunosuppressive therapeutic agents, namely metformin, dipyridamole, N-acetylcysteine and statins, will be critically discussed with regard to their mechanisms of action and efficacy pertaining to their potential therapeutic role in SLE.
Collapse
|
41
|
Gronnier J, Gerbeau-Pissot P, Germain V, Mongrand S, Simon-Plas F. Divide and Rule: Plant Plasma Membrane Organization. TRENDS IN PLANT SCIENCE 2018; 23:899-917. [PMID: 30174194 DOI: 10.1016/j.tplants.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Since the publication of the fluid mosaic as a relevant model for biological membranes, accumulating evidence has revealed the outstanding complexity of the composition and organization of the plant plasma membrane (PM). Powerful new methodologies have uncovered the remarkable multiscale and multicomponent heterogeneity of PM subcompartmentalization, and this is emerging as a general trait with different features and properties. It is now evident that the dynamics of such a complex organization are intrinsically related to signaling pathways that regulate key physiological processes. Listing and linking recent progress in precisely qualifying these heterogeneities will help to draw an integrated picture of the plant PM. Understanding the key principles governing such a complex dynamic organization will contribute to deciphering the crucial role of the PM in cell physiology.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; Present address: Laboratory of Cyril Zipfel, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Patricia Gerbeau-Pissot
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; These authors contributed equally to this work
| | - Françoise Simon-Plas
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France; These authors contributed equally to this work.
| |
Collapse
|
42
|
Yang C, Sui Z, Xu T, Liu W, Wang X, Zeng X. Lipid raft‑associated β‑adducin participates in neutrophil migration. Mol Med Rep 2018; 18:1353-1360. [PMID: 29901076 PMCID: PMC6072155 DOI: 10.3892/mmr.2018.9113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Previous studies have demonstrated that lipid rafts and β-adducin serve an important role in leukocyte rolling. In the present study the migratory ability and behavior of neutrophils was demonstrated to rely on the integrity of the lipid raft structure. β-adducin was demonstrated to have a critical role in neutrophil migration. Knockdown of β-adducin attenuated the migratory ability of dHL-60 cells and the distribution of β-adducin in lipid raft structures was changed by N-formylmethionyl-leucyl-phenyl-alanine treatment. Furthermore, the findings demonstrated that the tyrosine phosphorylation of β-adducin was required for its relocation. The results of the present study suggested that the lipid raft-associated protein β-adducin may be a novel control point for the excessive infiltration of neutrophils during inflammation.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Zhefeng Sui
- Hulunbeier Vocational College, Hulun Buir, Inner Mongolia 02100, P.R. China
| | - Tingshuang Xu
- Department of Rheumatology and Immunology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. Chin
| | - Wenai Liu
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaoguang Wang
- Department of Bioscience, School of Life Science, Changchun Normal University, Changchun, Jilin 130032, P.R. China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
43
|
Bennett WFD. Simulating T Cell Receptor Evolution: Sequence-Structure-Dynamics-Function Relationships. Biophys J 2018. [PMID: 29539387 DOI: 10.1016/j.bpj.2018.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- W F Drew Bennett
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
44
|
Uyama M, Inoue K, Kinoshita K, Miyahara R, Yokoyama H, Nakano M. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains. J Oleo Sci 2018; 67:67-75. [PMID: 29311523 DOI: 10.5650/jos.ess17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower Tm values have a greater ability to increase the fluidity.
Collapse
Affiliation(s)
| | | | | | | | - Hirokazu Yokoyama
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
45
|
Robinson GA, Waddington KE, Pineda-Torra I, Jury EC. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function. Front Immunol 2017; 8:1636. [PMID: 29225604 PMCID: PMC5705553 DOI: 10.3389/fimmu.2017.01636] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023] Open
Abstract
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Collapse
Affiliation(s)
- George A. Robinson
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Kirsty E. Waddington
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Ines Pineda-Torra
- Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C. Jury
- Centre of Rheumatology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
46
|
Lipids, lipid metabolism and Kaposi's sarcoma-associated herpesvirus pathogenesis. Virol Sin 2017; 32:369-375. [PMID: 29019168 DOI: 10.1007/s12250-017-4027-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022] Open
Abstract
Lipids are essential for mammalian cells to maintain many physiological functions. Emerging evidence has shown that cancer cells can develop specific alterations in lipid biosynthesis and metabolism to facilitate their survival and various malignant behaviors. To date, the precise role of cellular lipids and lipid metabolism in viral oncogenesis is still largely unclear with only a handful of literature covering this topic to implicate lipid metabolism in oncogenic virus associated pathogenesis. In this review, we focus on the role of lipid biosynthesis and metabolism in the pathogenesis of the Kaposi's sarcoma-associated herpesvirus, a common causative factor for cancers arising in the immunocompromised settings.
Collapse
|
47
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
48
|
Amersfoort J, Kuiper J. T cell metabolism in metabolic disease-associated autoimmunity. Immunobiology 2017; 222:925-936. [PMID: 28363498 DOI: 10.1016/j.imbio.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
This review discusses the relevant metabolic pathways and their regulators which show potential for T cell metabolism-based immunotherapy in diseases hallmarked by both metabolic disease and autoimmunity. Multiple therapeutic approaches using existing pharmaceuticals are possible from a rationale in which T cell metabolism forms the hub in dampening the T cell component of autoimmunity in metabolic diseases. Future research into the effects of a metabolically aberrant micro-environment on T cell metabolism and its potential as a therapeutic target for immunomodulation could lead to novel treatment strategies for metabolic disease-associated autoimmunity.
Collapse
Affiliation(s)
- Jacob Amersfoort
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands.
| | - Johan Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
49
|
Hu X, Zhu M, Liang Z, Kumar D, Chen F, Zhu L, Kuang S, Xue R, Cao G, Gong C. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection. Mol Genet Genomics 2017; 292:465-474. [DOI: 10.1007/s00438-016-1284-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022]
|
50
|
|