1
|
Madl AK, Donnell MT, Covell LT. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Crit Rev Toxicol 2024:1-51. [PMID: 39287182 DOI: 10.1080/10408444.2024.2390020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.
Collapse
Affiliation(s)
- Amy K Madl
- Valeo Sciences LLC, Ladera Ranch, CA, USA
| | | | | |
Collapse
|
2
|
Ferracini T, Brown S, Simmons B, Avens H, Gaffney S, Dotson S, Sahmel J. Evaluation of airborne asbestos concentrations associated with the maintenance of brakes on an industrial overhead crane. Inhal Toxicol 2024; 36:391-405. [PMID: 38952303 DOI: 10.1080/08958378.2024.2367422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES To evaluate potential airborne asbestos exposures during brake maintenance and repair activities on a P&H overhead crane, and during subsequent handling of the mechanic's clothing. METHODS Personal (n = 27) and area (n = 61) airborne fiber concentrations were measured during brake tests, removal, hand sanding, compressed air use, removal and reattachment of chrysotile-containing brake linings, and reinstallation of the brake linings. The mechanic's clothing was used to measure potential exposure during clothes handling. RESULTS All brake linings contained between 19.9% to 52.4% chrysotile asbestos. No amphibole fibers were detected in any bulk or airborne samples. The average full-shift airborne chrysotile concentration was 0.035 f/cc (PCM-equivalent asbestos-specific fibers, or PCME). Average task-based personal air samples collected during brake maintenance, sanding, compressed air use, and brake lining removal tasks ranged from 0 to 0.48 f/cc (PCME). The calculated 30-minute time-weighted average (TWA) airborne chrysotile concentration associated with 5-15 minutes of clothes handling was 0-0.035 f/cc PCME. CONCLUSION The results indicated that personal and area TWA fiber concentrations measured during all crane brake maintenance and clothes handling tasks were below the current OSHA 8-h TWA Permissible Exposure Limit for asbestos of 0.1 f/cc. Further, no airborne asbestos fibers were measured during routine brake maintenance tasks following the manufacturer's maintenance manual procedures. All short-term airborne chrysotile concentrations measured during non-routine tasks were below the current 30-minute OSHA excursion limit for asbestos of 1 f/cc. This study adds to the available data regarding chrysotile exposure potential during maintenance on overhead cranes.
Collapse
Affiliation(s)
| | - Sarah Brown
- Insight Exposure & Risk Sciences Group, Boulder, CO
| | | | | | | | - Scott Dotson
- Insight Exposure & Risk Sciences Group, Boulder, CO
| | | |
Collapse
|
3
|
Paustenbach DJ, Stevens ME, Tuttle BP, Shore RA, Ligas S, Brew DW. Occupational exposure to asbestos in the steel industry (1972-2006). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:465-495. [PMID: 37495866 PMCID: PMC11222148 DOI: 10.1038/s41370-023-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Historically, the use of asbestos in steelmaking has been limited to a few applications. Due to its physical and chemical properties, asbestos was not necessary or suitable for most purposes in a steel mill. The few applications where asbestos were used (i.e., certain gaskets, brakes, protective cloth, refractory materials, insulation materials, and hot top products) were replaced by alternative materials as they became available. OBJECTIVE We discuss historical uses of asbestos in steel manufacturing and the associated airborne asbestos concentrations collected at sixteen U. S. Steel facilities between 1972 and 2006. METHODS A total of 495 personal airborne asbestos samples from the U. S. Steel industrial hygiene records were analyzed across four time periods corresponding to changes in the OSHA permissible exposure limit (PEL) for asbestos. 68% of the samples (n = 337) were considered representative of an employee's workday. The remaining samples (n = 158) represented task samples. Samples were grouped by facility, department, and job category within the four time periods. RESULTS The average fiber concentrations measured for each facility and department over time were below the contemporaneous OSHA PEL. The mean representative workday asbestos air concentration from 1972 and 1975 was 1.09 f/cc. The mean representative workday concentration decreased to 0.13 f/cc between 1976 and 1985, then decreased again to 0.02 f/cc between 1986 and 1993 and 0.03 f/cc between 1994 and 2006. For task samples, the mean air concentration from 1972 to 1975 was 3.29 f/cc. The mean task sample concentration decreased to 0.48 f/cc between 1976 and 1985, then decreased again to 0.01 f/cc between 1986 and 1993 and 0.03 f/cc between 1994 and 2006. Only eleven out of the 495 samples (2.2%), for both task and representative workday samples, were in exceedance of the contemporaneous PEL(as an 8-hour TWA), ten of which occurred prior to 1978. Eight of these eleven PEL exceeding samples were task samples. Of the remaining three representative workday samples, two had unknown sampling times. IMPACT This paper presents an analysis of all the available personal sampling data for airborne asbestos across 16 facilities of the U. S. Steel Corporation between 1972 and 2006. This dataset has previously never been publicly shared or analyzed. It represents one of the more complete industrial hygiene datasets from a corporation to be presented in a scientific journal and, due to the similarities in the processes at each mill, it should reflect analogous exposures throughout the steelmaking industry in the United States. One of the benefits of presenting these data is that it also provides insight into where asbestos-containing materials (ACMs) were used in the steel making process. This is just one example of a large firm that released information that had previously remained in file cabinets for decades. We believe that another benefit of publishing this paper is that it may encourage the largest firms in industry to assemble and analyze their industrial hygiene data to benefit the occupational hygiene, medical, and epidemiology communities. This can support future epidemiology studies and improve the design of future industrial hygiene programs.
Collapse
Affiliation(s)
| | - Michael E Stevens
- Paustenbach and Associates, 970 W Broadway, Suite E, Jackson, WY, 83001, USA
| | - Brett P Tuttle
- Paustenbach and Associates, 970 W Broadway, Suite E, Jackson, WY, 83001, USA
| | - Ross A Shore
- Paustenbach and Associates, 970 W Broadway, Suite E, Jackson, WY, 83001, USA
| | - Sabina Ligas
- Paustenbach and Associates, 970 W Broadway, Suite E, Jackson, WY, 83001, USA
| | - David W Brew
- Paustenbach and Associates, 970 W Broadway, Suite E, Jackson, WY, 83001, USA
| |
Collapse
|
4
|
Kadariya Y, Sementino E, Ruan M, Cheung M, Hadikhani P, Osmanbeyoglu HU, Klein-Szanto AJ, Cai K, Testa JR. Low Exposures to Amphibole or Serpentine Asbestos in Germline Bap1-mutant Mice Induce Mesothelioma Characterized by an Immunosuppressive Tumor Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:1004-1015. [PMID: 38592450 PMCID: PMC11000687 DOI: 10.1158/2767-9764.crc-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene-environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. SIGNIFICANCE We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.
Collapse
Affiliation(s)
- Yuwaraj Kadariya
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Eleonora Sementino
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maggie Ruan
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Parham Hadikhani
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Cancer Biology Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathy Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R. Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Liu K, Li Q, Andrady AL, Wang X, He Y, Li D. Underestimated activity-based microplastic intake under scenario-specific exposures. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100316. [PMID: 37860830 PMCID: PMC10583090 DOI: 10.1016/j.ese.2023.100316] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Despite increasing alarms over the health impacts of microplastics (MPs) due to their detection in human organs and feces, precise exposure evaluations remain scarce. To comprehend their risks, there is a distinct need to prioritize quantitive estimates in MP exposome, particularly at the environmentally-realistic level. Here we used a method rooted in real-world MP measurements and activity patterns to determine the daily intake of MPs through inhalation and from ground dust/soil ingestion. We found that nearly 80% of this intake comes from residential sectors, with activity intensity and behavioral types significantly affecting the human MP burden. The data showed a peak in MP exposure for those aged 18-64. When compared to dietary MP intake sources like seafood, salt, and water, we identified a previously underestimated exposure from inhalation and dust/soil ingestion, emphasizing the need for more realistic evaluations that incorporate activity factors. This discovery raises questions about the accuracy of past studies and underscores MP's potential health risks. Moreover, our time-based simulations revealed increased MP intake during the COVID-19 lockdown due to more surface dust ingestion, shedding light on how global health crises may inadvertently elevate MP exposure risks.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Anthony L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200062, China
- Plastic Marine Debris Research Center, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
6
|
Okhrimenko DV, Rasmussen KH, Bøtner JA, Ceccato M, Foss M, Solvang M. Dissolution behavior of stone wool fibers in synthetic lung fluids: Impact of iron oxidation state changes induced by heat treatment for binder removal. Toxicol Lett 2024; 393:33-46. [PMID: 38232781 DOI: 10.1016/j.toxlet.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Stone wool fiber materials are commonly used for thermal and acoustic insulation, horticulture and filler purposes. Biosolubility of the stone wool fiber (SWF) materials accessed through acellular in vitro dissolution tests can potentially be used in future as an indicator of fiber biopersistence in vivo. To correlate acellular in vitro studies with in vivo and epidemiological investigations, not only a robust dissolution procedure is needed, but fundamental understanding of fiber behavior during sample preparation and dissolution is required. We investigated the influence of heat treatment procedure for binder removal on the SWF iron oxidation state as well as on the SWF dissolution behavior in simulant lung fluids (with and without complexing agents). We used heat treatments at 450 °C for 5 min and 590 °C for 1 h. Both procedures resulted in complete binder removal from the SWF. Changes of iron oxidation state were moderate if binder was removed at 450 °C for 5 min, and there were no substantial changes of SWF's dissolution behavior in all investigated fluids after this heat treatment. In contrast, if binder was removed at 590 °C for 1 h, complete Fe(II) oxidation to Fe(III) was observed and significant increase of dissolution was shown in fluids without complexing agent (citrate). PHREEQC solution speciation modeling showed that in this case, released Fe(III) may form ferrihydrite precipitate in the solution. Precipitation of ferrihydrite solid phase leads to removal of iron cations from the solution, thus shifting reaction towards the dissolution products and increasing total mass loss of fiber samples. This effect is not observed for heat treated fibers if citrate is present in the fluid, because Fe(III) binds with citrate and remains mobile in the solution. Therefore, for developing the most accurate SWF in vitro acellular biosolubility test, SWF heat treatment for binder removal is not recommended in combination with dissolution testing in fluids without citrate as a complexing agent.
Collapse
Affiliation(s)
| | - K H Rasmussen
- ROCKWOOL A/S, Hovedgaden 584, Hedehusene 2640, Denmark; Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus 8000, Denmark
| | - J A Bøtner
- ROCKWOOL A/S, Hovedgaden 584, Hedehusene 2640, Denmark
| | - M Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus 8000, Denmark
| | - M Foss
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus 8000, Denmark
| | - M Solvang
- ROCKWOOL A/S, Hovedgaden 584, Hedehusene 2640, Denmark
| |
Collapse
|
7
|
Pacella A, Ballirano P, Di Carlo MC, Fantauzzi M, Rossi A, Nardi E, Viti C, Arrizza L, Campopiano A, Cannizzaro A, Bloise A, Montereali MR. Dissolution Reaction and Surface Modification of UICC Amosite in Mimicked Gamble's Solution: A Step towards Filling the Gap between Asbestos Toxicity and Its Crystal Chemical Features. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2933. [PMID: 37999287 PMCID: PMC10674585 DOI: 10.3390/nano13222933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
This study focuses on the dissolution process and surface characterization of amosite fibres following interaction with a mimicked Gamble's solution at a pH of 4.5 and T = 37 °C, up to 720 h. To achieve this, a multi-analytical approach was adopted, and the results were compared to those previously obtained on a sample of asbestos tremolite and UICC crocidolite, which were investigated under the same experimental conditions. Combining surface chemical data obtained by XPS with cation release quantified by ICP-OES, an incongruent behaviour of the fibre dissolution was highlighted for amosite fibres, similarly to asbestos tremolite and UICC crocidolite. In particular, a preferential release of Mg and Ca from the amphibole structure was observed, in agreement with their Madelung site energies. Notably, no Fe release from amosite fibres was detected in our experimental conditions (pH of 4.5 and atmospheric pO2), despite the occurrence of Fe(II) at the M(4) site of the amphibole structure, where cations are expected to be rapidly leached out during mineral dissolution. Moreover, the oxidation of both the Fe centres initially present on the fibre surface and those promoted from the bulk, because of the erosion of the outmost layers, was observed. Since biodurability (i.e., the resistance to dissolution) is one of the most important toxicity parameters, the knowledge of the surface alteration of asbestos possibly occurring in vivo may help to understand the mechanisms at the basis of its long-term toxicity.
Collapse
Affiliation(s)
- Alessandro Pacella
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
| | - Paolo Ballirano
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
- Rectoral Laboratory Fibres and Inorganic Particulate, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Cristina Di Carlo
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.B.); (M.C.D.C.)
| | - Marzia Fantauzzi
- INSTM Research Unit, Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (A.R.)
| | - Antonella Rossi
- INSTM Research Unit, Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.F.); (A.R.)
| | - Elisa Nardi
- Institute for Environmental Protection and Research, ISPRA, Via Vitaliano Brancati 48, 00144 Rome, Italy;
| | - Cecilia Viti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy;
| | - Lorenzo Arrizza
- Microscopy Center, University of L’ Aquila, Via Vetoio, Locality Coppito, 67100 L’Aquila, Italy;
| | - Antonella Campopiano
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Via Fontana Candida 1, 00078 Rome, Italy; (A.C.); (A.C.)
| | - Annapaola Cannizzaro
- Department of Medicine, Epidemiology, Occupational and Environmental Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Via Fontana Candida 1, 00078 Rome, Italy; (A.C.); (A.C.)
| | - Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, V. P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Rita Montereali
- Italian National Agency for New Technologies, ENEA, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| |
Collapse
|
8
|
Jeżowski P, Kowalczewski PŁ. Isinglass as an Alternative Biopolymer Membrane for Green Electrochemical Devices: Initial Studies of Application in Electric Double-Layer Capacitors and Future Perspectives. Polymers (Basel) 2023; 15:3557. [PMID: 37688181 PMCID: PMC10490271 DOI: 10.3390/polym15173557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The presented work discusses in detail the preparation of a cheap and environmentally friendly biopolymer membrane from isinglass and its physicochemical characterisation. One of the possible uses of the obtained membrane can be as a separator between electrodes in novel green electrochemical devices as in, for example, electric double-layer capacitors (EDLCs). The functionality of the mentioned membrane was investigated and demonstrated by classical electrochemical techniques such as cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), and electrochemical impedance spectroscopy (EIS). The obtained values of capacitance (approximately 30 F g-1) and resistance (approximately. 3 Ohms), as well as the longevity of the EDLC during electrochemical floating at a voltage of 1.6 V (more than 200 h), show that the proposed biopolymer membrane could be an interesting alternative among the more environmentally friendly energy storage devices, while additionally it could be more economically justified.
Collapse
Affiliation(s)
- Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| |
Collapse
|
9
|
Potter RM, Hoffman JW, Hadley JG. Predicting the in vitro dissolution rate constant of mineral wool fibers from fiber composition. Inhal Toxicol 2023; 35:40-47. [PMID: 36648029 DOI: 10.1080/08958378.2023.2166167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We developed predictive formulae for the in vitro dissolution rate constant kdis of acid-soluble synthetic vitreous fibers (SVF), paralleling our earlier work with glass wools, which are typically more soluble at neutral pH. Developing simple models for predicting the kdis of a fiber can allow prediction of in vivo behavior, aid fiber developers, and potentially reduce in vivo testing. METHODS The kdis of several acid-soluble SVF were determined using high simulant fluid flow/fiber surface area (F/A) conditions via a single-fiber measurement system. Four fluids were employed, varying in base composition and citrate levels. Equations predicting the kdis were derived from fiber chemistry and dissolution measurements for two of the fluids. RESULTS Testing of several fibers showed a ∼10× increase in the kdis when citrate was included in the simulant solution. Data from tests with Stefaniak's citrate-free Phagoloysosmal Simulant Fluid (PSF) yielded kdis values aligned with expectations from in vivo results, unlike results from citrate-containing modified Gamble's solution. Predictive equations relating fiber chemistry to kdis showed reasonable agreement between the measured and predicted values. CONCLUSIONS Citrate inclusion in the solution under high F/A conditions significantly increased the measured kdis. This resulted in more biorelevant data being obtained using the PSF fluid with the high F/A method used. The developed predictive equations, sufficient for fiber development work, require refinement before a recommending their use in place of in vivo biopersistence testing. Significant fit improvements are possible through additional measurements under these experimental conditions.
Collapse
Affiliation(s)
| | - John W Hoffman
- Owens Corning Science and Technology Center, Granville, OH, USA
| | - John G Hadley
- Owens Corning Science and Technology Center, Granville, OH, USA
| |
Collapse
|
10
|
Abstract
This study explored morphological, mineralogical, and physicochemical features of suspected toxic mordenite fibers from Northern Italy. All the mordenite samples (FAS1, GC1, SP1) show similar structural and chemical character, are Na-rich (Na > Ca > K), and the Al content decrease reflects the unit cell volumes in the series: FAS1 > SP1 > GC1. The aerodynamic diameter (Dae) values of the mordenite fibers are 1.19 μm for the GC1 sample, 2.69 μm for FAS1, and 3.91 μm for SP1. All the studied mordenite samples are characterized by “respirable” fibers despite the size differences, which could reach the deeper parts of the lungs. For this reason, fibrous mordenite could represent a potential health hazard and then need to be handled with attention, but further toxicity studies are needed.
Collapse
|
11
|
Giordani M, Meli MA, Roselli C, Betti M, Peruzzi F, Taussi M, Valentini L, Fagiolino I, Mattioli M. Could soluble minerals be hazardous to human health? Evidence from fibrous epsomite. ENVIRONMENTAL RESEARCH 2022; 206:112579. [PMID: 34968437 DOI: 10.1016/j.envres.2021.112579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
From a toxicological point of view, particulates and fibres with high solubility in water and/or in biological environments have not been considered in detail and the knowledge to date in this area is very scarce. In this study, the water-soluble natural epsomite fibres from Perticara Mine (Italy) were investigated using SEM-EDS, XRPD, ICP-AES and alpha spectrometry measurements which were combined and integrated to characterise the fibres' morphology, crystal chemistry and mineralogy. The morphological and morphometric results showed that most of the fibres are of inhalable size (Dae 5.09 μm) and can be potentially adsorbed from all parts of the respiratory tract. Chemical analysis reveals significant amounts of toxic elements (As, Co, Fe, Mn, Ni, Sr, Ti, Zn) and surprisingly high contents of radioactive isotopes (210Po and 228Th) in epsomite crystals, making the inhalation of these fibres potentially hazardous to human health. Through this study, we want to focus on soluble minerals, such as epsomite, which can be present in both natural and anthropic environments and have never been considered from the point of view of their potential hazard.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Fabio Peruzzi
- Speleological Federation of the Emilia-Romagna Region, Bologna, Italy
| | - Marco Taussi
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
12
|
Okhrimenko DV, Bøtner JA, Riis HK, Ceccato M, Foss M, Solvang M. The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluids. Toxicol In Vitro 2021; 78:105270. [PMID: 34757181 DOI: 10.1016/j.tiv.2021.105270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023]
Abstract
The biopersistence of fiber materials is one of the cornerstones in estimating potential risk to human health upon inhalation. To connect epidemiological and in vivo investigations with in vitro studies, reliable and robust methods of fiber biopersistence determination and understanding of fiber dissolution mechanism are required. We investigated dissolution properties of oil treated stone wool fibers with and without sugar-based binder (SBB) at 37 °C in the liquids representing macrophages intracellular conditions (pH 4.5). Conditions varied from batch to flow of different rates. Fiber morphology and surface chemistry changes caused by dissolution were monitored with scanning electron microscopy and time-of-flight secondary ion mass spectrometry mapping. Stone wool fiber dissolution rate depends on liquid composition (presence of ligands, such as citrate), pH, reaction products transport and fibers wetting properties. The dissolution rate decreases when: 1) citrate is consumed by the reaction with the released Al cations; 2) the pH increases during a reaction in poorly buffered solutions; 3) the dissolution products are accumulated; 4) fibers are not fully wetted with the fluid. Presence of SBB has no influence on dissolution rate if fiber material was wetted prior to dissolution experiment to avoid poorly wetted fiber agglomerates formation in the synthetic lung fluids.
Collapse
Affiliation(s)
- D V Okhrimenko
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark.
| | - J A Bøtner
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - H K Riis
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - M Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - M Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - M Solvang
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| |
Collapse
|
13
|
Sauer UG, Werle K, Waindok H, Hirth S, Hachmöller O, Wohlleben W. Critical Choices in Predicting Stone Wool Biodurability: Lysosomal Fluid Compositions and Binder Effects. Chem Res Toxicol 2021; 34:780-792. [PMID: 33464877 DOI: 10.1021/acs.chemrestox.0c00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hazard potential, including carcinogenicity, of inhaled man-made vitreous fibers (MMVFs) is correlated with their biodurability in the lung, as prerequisite for biopersistence. Abiotic dissolution testing serves to predict biodurability. We re-analyzed the International Agency for Research on Cancer Monograph on MMVFs and found that the correlation between in vivo biopersistence and abiotic dissolution presented therein confounded different simulant fluids and further confounded evaluation of leaching vs structural elements. These are critical choices for abiotic dissolution testing, as are binder removal and the rate of the flow that removes ions during testing. Therefore, we experimentally demonstrated how fluid composition and binder affect abiotic dissolution of a representative stone wool MMVF. We compared six simulant fluids (all pH 4.5, reflecting the environment of alveolar macrophage lysosomes) that differed in organic acids, which have a critical role in their ability to modulate the formation of Si-rich gels on the fiber surfaces. Removing the binder accelerates the average dissolution rate by +104% (max. + 273%) across the fluids by suppression of gel formation. Apart from the high-citrate fluid that predicted a 10-fold faster dissolution than is observed in vivo, none of the five other fluids resulted in dissolution rates above 400 ng/cm2/h, the limit associated with the exoneration from classification for carcinogenicity in the literature. These findings were confirmed with and without binder. For corroboration, five more stone wool MMVFs were assessed with and without binder in one specific fluid. Again, the presence of the binder caused gel formation and reduced dissolution rates. To enhance the reliability and robustness of abiotic predictions of biodurability, we recommend replacing the critically influential citric acid in pH 4.5 fluids with other organic acids. Also, future studies should consider structural transformations of the fibers, including changes in fiber length, fiber composition, and reprecipitation of gel layers.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, 85579 Neubiberg, Germany
| | - Kai Werle
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Hubert Waindok
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Sabine Hirth
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Oliver Hachmöller
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| |
Collapse
|
14
|
Kiratipaiboon C, Voronkova M, Ghosh R, Rojanasakul LW, Dinu CZ, Chen YC, Rojanasakul Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater Sci Eng 2020; 6:5290-5304. [PMID: 33455278 DOI: 10.1021/acsbiomaterials.0c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-β-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-β, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Maria Voronkova
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yi Charlie Chen
- College of Health Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia 26416, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
15
|
Synergistic Effect of WTC-Particulate Matter and Lysophosphatidic Acid Exposure and the Role of RAGE: In-Vitro and Translational Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124318. [PMID: 32560330 PMCID: PMC7344461 DOI: 10.3390/ijerph17124318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
World Trade Center particulate matter (WTC-PM)-exposed firefighters with metabolic syndrome (MetSyn) have a higher risk of WTC lung injury (WTC-LI). Since macrophages are crucial innate pulmonary mediators, we investigated WTC-PM/lysophosphatidic acid (LPA) co-exposure in macrophages. LPA, a low-density lipoprotein metabolite, is a ligand of the advanced glycation end-products receptor (AGER or RAGE). LPA and RAGE are biomarkers of WTC-LI. Human and murine macrophages were exposed to WTC-PM, and/or LPA, and compared to controls. Supernatants were assessed for cytokines/chemokines; cell lysate immunoblots were assessed for signaling intermediates after 24 h. To explore the translatability of our in-vitro findings, we assessed serum cytokines/chemokines and metabolites of symptomatic, never-smoking WTC-exposed firefighters. Agglomerative hierarchical clustering identified phenotypes of WTC-PM-induced inflammation. WTC-PM induced GM-CSF, IL-8, IL-10, and MCP-1 in THP-1-derived macrophages and induced IL-1α, IL-10, TNF-α, and NF-κB in RAW264.7 murine macrophage-like cells. Co-exposure induced synergistic elaboration of IL-10 and MCP-1 in THP-1-derived macrophages. Similarly, co-exposure synergistically induced IL-10 in murine macrophages. Synergistic effects were seen in the context of a downregulation of NF-κB, p-Akt, -STAT3, and -STAT5b. RAGE expression after co-exposure increased in murine macrophages compared to controls. In our integrated analysis, the human cytokine/chemokine biomarker profile of WTC-LI was associated with discriminatory metabolites (fatty acids, sphingolipids, and amino acids). LPA synergistically elaborated WTC-PM’s inflammatory effects in vitro and was partly RAGE-mediated. Further research will focus on the intersection of MetSyn/PM exposure.
Collapse
|
16
|
Barone-Adesi F, Ferrante D, Chellini E, Merler E, Pavone V, Silvestri S, Miligi L, Gorini G, Bressan V, Girardi P, Ancona L, Romeo E, Luberto F, Sala O, Scarnato C, Menegozzo S, Oddone E, Tunesi S, Perticaroli P, Pettinari A, Cuccaro F, Curti S, Baldassarre A, Cena T, Angelini A, Marinaccio A, Mirabelli D, Musti M, Pirastu R, Ranucci A, Magnani C. Role of asbestos clearance in explaining long-term risk of pleural and peritoneal cancer: a pooled analysis of cohort studies. Occup Environ Med 2020; 76:611-616. [PMID: 31413184 DOI: 10.1136/oemed-2019-105779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/06/2019] [Accepted: 07/10/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Models based on the multistage theory of cancer predict that rates of malignant mesothelioma continuously increase with time since first exposure (TSFE) to asbestos, even after the end of external exposure. However, recent epidemiological studies suggest that mesothelioma rates level off many years after first exposure to asbestos. A gradual clearance of asbestos from the lungs has been suggested as a possible explanation for this phenomenon. We analysed long-term trends of pleural and peritoneal cancer mortality in subjects exposed to asbestos to evaluate whether such trends were consistent with the clearance hypothesis. METHODS We used data from a pool of 43 Italian asbestos cohorts (51 801 subjects). The role of asbestos clearance was explored using the traditional mesothelioma multistage model, generalised to include a term representing elimination of fibres over time. RESULTS Rates of pleural cancer increased until 40 years of TSFE, but remained stable thereafter. On the other hand, we observed a monotonic increase of peritoneal cancer with TSFE. The model taking into account asbestos clearance fitted the data better than the traditional one for pleural (p=0.004) but not for peritoneal (p=0.09) cancer. CONCLUSIONS Rates of pleural cancer do not increase indefinitely after the exposure to asbestos, but eventually reach a plateau. This trend is well described by a model accounting for a gradual elimination of the asbestos fibres. These results are relevant for the prediction of future rates of mesothelioma and in asbestos litigations.
Collapse
Affiliation(s)
| | - Daniela Ferrante
- Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont and CPO-Piemonte, Novara, Italy
| | - Elisabetta Chellini
- Environmental and Occupational Epidemiology, Cancer Prevention and Research Institute (ISPO), Firenze, Italy
| | - Enzo Merler
- Mesothelioma Register of the Veneto Region, Local Health Unit, Padua, Italy
| | - Venere Pavone
- Department of Public Health, Prevention and Security Area Work Environments, Local Health Authority, Bologna, Italy
| | | | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, ISPO Cancer Prevention and Research Institute, Florence, Italy
| | - Giuseppe Gorini
- Environmental and Occupational Epidemiology, Cancer Prevention and Research Institute (ISPO), Firenze, Italy
| | - Vittoria Bressan
- Mesothelioma Register of the Veneto Region, Local Health Unit, Padua, Italy
| | - Paolo Girardi
- Local Health Authority of Padua, Venetian Mesothelioma Registry, Padua, Italy
| | - Laura Ancona
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Elisa Romeo
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Ferdinando Luberto
- Inter-institutional Epidemiology Unit, AUSL Reggio Emilia and Arcispedale Santa Maria Nuova, IRCCS, Reggio Emilia, Italy
| | - Orietta Sala
- ARPAE Emilia Romagna, Sezione Provinciale di Reggio Emilia, Reggio Emilia, Italy
| | - Corrado Scarnato
- Occupational Epidemiology, Department of Public Health, Prevention and Security Area Work Environments, Local Health Authority, Bologna, Italy
| | - Simona Menegozzo
- National Cancer Institute IRCCS Fondazione Pascale, Napoli, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Sara Tunesi
- Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont and CPO-Piemonte, Novara, Italy
| | | | | | - Francesco Cuccaro
- Statistics and Epidemiology, Local Health Unit of Barletta-Andria-Trani, Barletta, Italy
| | - Stefania Curti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Antonio Baldassarre
- Interdisciplinary Department of Medicine - Occupational Medicine 'B. Ramazzini', Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Tiziana Cena
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Alessandro Marinaccio
- Occupational Medicine Department, Italian Workers' Compensation Authority (INAIL), Rome, Italy
| | - Dario Mirabelli
- Epidemiologia dei Tumori 1, Ospedale San Giovanni Battista di Torino, Torino, Italy
| | - Marina Musti
- Interdisciplinary Department of Medicine, Occupational Medicine "B. Ramazzini", University of Bari, Bari, Italy
| | - Roberta Pirastu
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza Rome University, Rome, Italy
| | - Alessandra Ranucci
- Epidemiology Unit - Department of Translational Medicine, CPO Piemonte and University of Eastern Piedmont, Turin, Italy
| | - Corrado Magnani
- Dipartimento di Medicina Traslazionale, SCDU Epidemiologia del Tumori, Universita del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
17
|
Bernstein DM, Toth B, Rogers RA, Kling DE, Kunzendorf P, Phillips JI, Ernst H. Evaluation of the exposure, dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO 2, chrysotile, crocidolite or amosite asbestos in a 90-day quantitative inhalation toxicology study - Interim results Part 1: Experimental design, aerosol exposure, lung burdens and BAL. Toxicol Appl Pharmacol 2019; 387:114856. [PMID: 31836523 DOI: 10.1016/j.taap.2019.114856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
This 90-day repeated-dose inhalation toxicology study of brake-dust (BD) (brakes manufactured with chrysotile) in rats provides a comprehensive understanding of the biokinetics and potential toxicology in the lung and pleura. Exposure was 6 h/d, 5d/wk., 13wks followed by lifetime observation (~20 % survival). Control groups included a particle control (TiO2), chrysotile, commercial crocidolite and amosite asbestos. Aerosol fiber distributions of the chrysotile, crocidolite and amosite were similar (fibers L > 20 μm/cm3: chrysotile-Low/High 29/72; crocidolite 24; amosite 47 fibers/cm3; WHO-fibers/cm3: chrysotile-Low/High 119/233; crocidolite 181; amosite 281 fibers/cm3). The number of particles/cm3 in the BD was similar to that in the chrysotile, crocidolite & amosite exposures (BD 470-715; chrysotile 495-614; crocidolite 415; amosite 417 particles/cm3). In the BD groups, few fibers L > 20 μm were observed in the lungs at the end of exposure and no fibers L > 20 μm at 90d post exposure. In the chrysotile groups, means of 204,000 and 290,000 fibers(L > 20 μm)/lung were measured at 89d. By 180d, means of 1 and 3.9 fibers were counted on the filter corresponding to 14,000 and 55,000 fibers(L > 20 μm)/lung. In the crocidolite and amosite groups mean lung concentrations were 9,055,000 and 11,645,000 fibers(L > 20 μm)/lung at 89d. At 180d the means remained similar with 8,026,000 and 11,591,000 fibers(L > 20 μm)/lung representing 10-13% of the total lung fibers. BAL determined the total number of macrophages, lymphocytes, neutrophils, eosinophils, epithelial-cells and IL-1 beta, TNF-alpha and TGF-beta. At the moderate aerosol concentrations used in this study, neutrophil counts increased ~5 fold in the amphibole asbestos exposure groups. All other groups and parameters showed no important differences at these exposure concentrations. The exposure and lung burden results provide a sound basis for assessing the potential toxicity of the brake dust in comparison to the TiO2 particle control and the chrysotile, crocidolite and amosite asbestos control groups. The BAL results provide an initial indication of the differential response. Part 2 presents the presentation and discussion of the histopathological and confocal microscopy findings in this study through 90 days post exposure.
Collapse
Affiliation(s)
| | - B Toth
- Citoxlab Hungary, Veszprém, Szabadságpuszta, Hungary
| | | | | | - P Kunzendorf
- GSA Gesellschaft für Schadstoffanalytik mbH, Ratingen, Germany
| | - J I Phillips
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg South Africa and Department of Biomedical Technology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - H Ernst
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
18
|
Barly SHQ, Okhrimenko DV, Solvang M, Yue Y, Stipp SLS. Dissolution of Stone Wool Fibers with Phenol-urea-formaldehyde Binder in a Synthetic Lung Fluid. Chem Res Toxicol 2019; 32:2398-2410. [DOI: 10.1021/acs.chemrestox.9b00179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Mette Solvang
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - Yuanzheng Yue
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Susan L. S. Stipp
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Kiratipaiboon C, Stueckle TA, Ghosh R, Rojanasakul LW, Chen YC, Dinu CZ, Rojanasakul Y. Acquisition of Cancer Stem Cell-like Properties in Human Small Airway Epithelial Cells after a Long-term Exposure to Carbon Nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2019; 6:2152-2170. [PMID: 31372228 PMCID: PMC6675031 DOI: 10.1039/c9en00183b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, 26505, United States
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia, 26416, United States
| | - Cerasela Zoica Dinu
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia, 26506, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences and WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, 26506, United States
| |
Collapse
|
20
|
Gualtieri AF, Lusvardi G, Zoboli A, Di Giuseppe D, Lassinantti Gualtieri M. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. ENVIRONMENTAL RESEARCH 2019; 171:550-557. [PMID: 30763876 DOI: 10.1016/j.envres.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The mechanisms by which mineral fibers induce adverse effects in vivo are still not well understood. The mechanisms of fiber dissolution in the lungs and subsequent release of metals in the extracellular/intracellular environment must be taken into account. AIM For the first time, the kinetics of release of metals during the acellular in vitro dissolution of chrysotile, crocidolite and fibrous erionite were determined. METHODS In vitro acellular dissolution of chrysotile, crocidolite, and fibrous erionite-Na was conducted using a solution mimicking the phagolysosome environment active during the phagocytosis process (pH=4.5, at 37 °C). The kinetics of release of a representative selection of metals were determined over a period of three months. RESULTS Despite the fact that the difference in Fe content between chrysotile and crocidolite is one order of magnitude, the much faster dissolution rate of chrysotile compared to crocidolite prompts greater release of available active surface Fe in the first weeks of the dissolution experiment and comparable amounts after 90 d. Such active iron may promote the formation of toxic hydroxyl radicals. The fast release of metals like Cr, Ni and Mn from chrysotile is also a source of concern whereas the release of V in solution is negligible. CONCLUSION Because chrysotile undergoes fast dissolution with respect to crocidolite and fibrous erionite, it behaves like a carrier that releases its metals' cargo in the lung environment, mimicking the phenomenon that explains the toxicity of nanoparticles. Hence, the toxicity paradigm of a non biodurable fiber like chrysotile should also take into account the release of toxic metals in the intracellular/extracellular medium during the rapid dissolution process.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy.
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Alessandro Zoboli
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena, Italy
| | - Magdalena Lassinantti Gualtieri
- Department of Engineering "Enzo Ferrari", The University of Modena and Reggio Emilia, Via Vivarelli 10, I-41125 Modena, Italy
| |
Collapse
|
21
|
Poland CA, Duffin R. The toxicology of chrysotile-containing brake debris: implications for mesothelioma. Crit Rev Toxicol 2019; 49:11-35. [DOI: 10.1080/10408444.2019.1568385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Craig A. Poland
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Institute of Occupational Medicine, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Concept Life Sciences, Dundee, UK
| |
Collapse
|
22
|
Utell MJ, Maxim L. Refractory ceramic fibers: Fiber characteristics, potential health effects and clinical observations. Toxicol Appl Pharmacol 2018; 361:113-117. [DOI: 10.1016/j.taap.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
|
23
|
Gualtieri AF, Pollastri S, Bursi Gandolfi N, Gualtieri ML. In vitro acellular dissolution of mineral fibres: A comparative study. Sci Rep 2018; 8:7071. [PMID: 29728675 PMCID: PMC5935704 DOI: 10.1038/s41598-018-25531-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94–177 days, very short if compared to that of amphibole fibres (49–245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9–12 months.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Modena, Italy.
| | - Simone Pollastri
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Bursi Gandolfi
- Department of Chemical and Geological Sciences, The University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
24
|
Maxim LD, Utell MJ. Review of refractory ceramic fiber (RCF) toxicity, epidemiology and occupational exposure. Inhal Toxicol 2018; 30:49-71. [PMID: 29564943 DOI: 10.1080/08958378.2018.1448019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This literature review on refractory ceramic fibers (RCF) summarizes relevant information on manufacturing, processing, applications, occupational exposure, toxicology and epidemiology studies. Rodent toxicology studies conducted in the 1980s showed that RCF caused fibrosis, lung cancer and mesothelioma. Interpretation of these studies was difficult for various reasons (e.g. overload in chronic inhalation bioassays), but spurred the development of a comprehensive product stewardship program under EPA and later OSHA oversight. Epidemiology studies (both morbidity and mortality) were undertaken to learn more about possible health effects resulting from occupational exposure. No chronic animal bioassay studies on RCF have been conducted since the 1980s. The results of the ongoing epidemiology studies confirm that occupational exposure to RCF is associated with the development of pleural plaques and minor decrements in lung function, but no interstitial fibrosis or incremental lung cancer. Evidence supporting a finding that urinary tumors are associated with RCF exposure remains, but is weaker. One reported, but unconfirmed, mesothelioma was found in an individual with prior occupational asbestos exposure. An elevated SMR for leukemia was found, but was absent in the highly exposed group and has not been observed in studies of other mineral fibers. The industry will continue the product stewardship program including the mortality study.
Collapse
Affiliation(s)
- L Daniel Maxim
- a Everest Consulting Associates , West Windsor , NJ , USA
| | - Mark J Utell
- b University of Rochester School of Medicine and Dentistry , Rochester , NY , USA
| |
Collapse
|
25
|
Sturm R. Theoretical approach to the hit probability of lung-cancer-sensitive epithelial cells by mineral fibers with various aspect ratios. Thorac Cancer 2018; 1:116-125. [PMID: 27755797 DOI: 10.1111/j.1759-7714.2010.00023.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inhalation of fibers may lead to the damage and, as a further consequence, to the malignant transformation of specific (most of all non-ciliated) cells of the bronchial and bronchiolar airway epithelium. In order to accurately estimate the cancer risk induced by inhaled fibers, hit probabilities of non-ciliated (secretory) cells by mineral fibers (asbestos and chrysotile) were computed. METHODS Besides the use of a stochastic lung geometry and a particle transport/deposition model being based upon the random-walk algorithm, histological data of cell distributions in the human lungs were applied for the theoretical calculations. Diameters of computer-generated fibers ranged from 0.1 µm to 10 µm, whilst two values (3 and 100) were selected for the aspect ratios (ratios of fiber length to fiber diameter), thereby simulating the behavior of short and very long fibrous particles. RESULTS According to the modeling results, the highest regional hit probabilities (up to 10%) are available for fibers with a diameter of 1.0 µm, whereby cells of the bronchiolar compartment represent a preferential target of these particles. For fibers with a diameter of 0.1 µm, bronchiolar hit probabilities reach 2-3%, whereas fibers with a diameter of 10 µm penetrate to the peripheral lung parts with only low amounts (<0.1%). A change of the inhalation conditions from sitting to light-work breathing enhances the extrathoracic and bronchial filtering of large particles (diameter ≥1 µm), whilst penetration of small particles towards distal lung airways is subject to a reinforcement. Further refinement of hit probabilities by considering single airway generations results in the circumstance that fibers with diameters ≤1.0 µm preferably collide with cancer-sensitive cells of airway generations 12-15. In contrast, fibers with a diameter of 10 µm mainly represent a hazard for cancer-sensitive cells being located in the uppermost airways. A change of breathing conditions both supports the effect of short fibers and enhances the filtering of long ones. CONCLUSION Based upon the results of this contribution it can be concluded that highest cancer risk is generated by the inhalation of mineral fibers with diameters ≤1.0 µm, whereby fiber length has to be classified as a parameter with lower importance.
Collapse
Affiliation(s)
- Robert Sturm
- Division of Material Science and Physics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
26
|
Barlow CA, Grespin M, Best EA. Asbestos fiber length and its relation to disease risk. Inhal Toxicol 2018; 29:541-554. [DOI: 10.1080/08958378.2018.1435756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite. MINERALS 2018. [DOI: 10.3390/min8020069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharmacol 2018; 94:252-270. [PMID: 29444452 DOI: 10.1016/j.yrtph.2018.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
The typical insulation rock, slag and glass wool fibers are high volume materials. Current exposure levels in industry (generally ≤ 1 fiber/cm3 with a median diameter ∼1 μm and length ≥10 μm) are not considered carcinogenic or causing other types of severe lung effects. However, epidemiological studies are not informative on effects in humans at fiber levels >1 fiber/cm3. Effects may be inferred from valid rat studies, conducted with rat respirable fibers (diameter ≤ 1.5 μm). Therefore, we estimate delivery and deposition in human and rat airways of the industrial fibers. The deposition fractions in humans head regions by nasal (∼0.20) and by mouth breathing (≤0.08) are lower than in rats (0.50). The delivered dose into the lungs per unit lung surface area during a 1-day exposure at a similar air concentration is estimated to be about two times higher in humans than in rats. The deposition fractions in human lungs by nasal (∼0.20) and by mouth breathing (∼0.40) are higher than in rats (∼0.04). The human lung deposition may be up to three times by nasal breathing and up to six times higher by oral breathing than in rats, qualifying assessment factor setting for deposition.
Collapse
|
29
|
Giordani M, Mattioli M, Ballirano P, Pacella A, Cenni M, Boscardin M, Valentini L. Geological occurrence, mineralogical characterization, and risk assessment of potentially carcinogenic erionite in Italy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:81-103. [PMID: 28339348 DOI: 10.1080/10937404.2016.1263586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Erionite is a zeolite representing a well-known health hazard. In fact, exposure of humans to its fibers has been unequivocally associated with occurrence of malignant mesothelioma. For this reason, a multi-methodological approach, based upon field investigation, morphological characterization, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) chemical analysis, and structure refinement through X-ray powder diffraction (XRPD), was applied to different samples of potentially carcinogenic erionite from Northern Italy. The studied crystals have a chemical composition ranging from erionite-Ca to erionite-Na and display variable morphologies, varying from prismatic, through acicular and fibrous, to extremely fibrous asbestiform habits. The fibrous samples were characterized by an unusual preferred partition of aluminum (Al) at tetrahedral site T1 instead of tetrahedral site T2. Further, a mismatch between the a-parameter of erionite-Ca and levyne-Ca that are intergrown in the asbestiform sample was detected. This misfit was coupled to a relevant micro-strain to maintain structure coherency at the boundary. Erionite occurs in 65% of the investigated sites, with an estimated quantity of 10 to 40 vol% of the associated minerals. The presence of this mineral is of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks. The discovery of fibrous and asbestiform erionite in Northern Italy suggests the need for a detailed risk assessment in all Italian areas showing the same potential hazard, with specific studies such as a quantification of the potentially respirable airborne fibers and targeted epidemiological surveillance.
Collapse
Affiliation(s)
- Matteo Giordani
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Paolo Ballirano
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
- c Laboratorio Fibre e Particolato Inorganico , Sapienza Università di Roma , Roma , Italy
| | - Alessandro Pacella
- b Dipartimento di Scienze della Terra , Sapienza Università di Roma , Roma , Italy
| | - Marco Cenni
- a Dipartimento di Scienze Pure e Applicate , Università di Urbino Carlo Bo , Urbino , Italy
| | - Matteo Boscardin
- d Museo di Archeologia e Scienze Naturali "G. Zannato" , Montecchio Maggiore , VI , Italy
| | - Laura Valentini
- e Dipartimento di Scienze Biomolecolari , Università di Urbino Carlo Bo , Urbino , Italy
| |
Collapse
|
30
|
Cangiotti M, Battistelli M, Salucci S, Falcieri E, Mattioli M, Giordani M, Ottaviani MF. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:171-187. [PMID: 28277034 DOI: 10.1080/15287394.2016.1275901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1<BV12<MD8<GF1, may be related to the structural modifications of the model membranes when interacting with these zeolite fibers.
Collapse
Affiliation(s)
- Michela Cangiotti
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Michela Battistelli
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Sara Salucci
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Elisabetta Falcieri
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | - Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino , Urbino , Italy
| | | |
Collapse
|
31
|
A comparison of the results from intra-pleural and intra-peritoneal studies with those from inhalation and intratracheal tests for the assessment of pulmonary responses to inhalable dusts and fibres. Regul Toxicol Pharmacol 2016; 81:89-105. [DOI: 10.1016/j.yrtph.2016.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 02/01/2023]
|
32
|
Bonassi S, Milić M, Neri M. Frequency of micronuclei and other biomarkers of DNA damage in populations exposed to dusts, asbestos and other fibers. A systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:106-118. [DOI: 10.1016/j.mrrev.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
|
33
|
Giordani M, Mattioli M, Dogan M, Dogan AU. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:808-824. [PMID: 27434646 DOI: 10.1080/15287394.2016.1182453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exposure of humans to erionite fibers of suitable morphology and dimension has been unambiguously linked to the occurrence of malignant mesothelioma. For this reason, a morphological, morphometrical, mineralogical, and chemical investigation was performed on two representative samples of potential carcinogenic, fibrous erionite from Lessini Mounts, northeastern (NE) Italy, which has not apparently been examined previously. The first sample is erionite-Ca with an extremely fibrous, hair-like and flexible appearance, and growth in intimate association with levyne. The second sample is erionite-Ca with prismatic to acicular crystals and rigid behavior, enriched in K(+) and Ca(2+) extra-framework cations. Although erionite is a nominally Fe-free phase, iron (Fe) was detected in low amounts in all the analyzed crystals. In both the investigated samples, erionite is present as individual fibers of respirable size. Considering that the toxicity and carcinogenic potential of erionite is associated with its size parameters, together with its in vivo durability and high surface area, most of the investigated fibers may also be potentially carcinogenic. The presence of erionite in extensively quarried and largely employed volcanic rocks, suggesting the need for detailed health-based studies in the region.
Collapse
Affiliation(s)
- Matteo Giordani
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Michele Mattioli
- a Department of Pure and Applied Sciences , University of Urbino Carlo Bo , Urbino , Italy
| | - Meral Dogan
- b Geological Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
| | - Ahmet Umran Dogan
- c Center for Global and Regional Environmental Research, University of Iowa , Iowa City , Iowa , USA
- d Chemical and Biochemical Engineering Department , University of Iowa , Iowa City , Iowa , USA
| |
Collapse
|
34
|
Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol 2015; 12:14. [PMID: 26425136 PMCID: PMC4589117 DOI: 10.1186/s12982-015-0037-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
In 1965, Sir Austin Bradford Hill published nine “viewpoints” to help determine if observed epidemiologic associations are causal. Since then, the “Bradford Hill Criteria” have become the most frequently cited framework for causal inference in epidemiologic studies. However, when Hill published his causal guidelines—just 12 years after the double-helix model for DNA was first suggested and 25 years before the Human Genome Project began—disease causation was understood on a more elementary level than it is today. Advancements in genetics, molecular biology, toxicology, exposure science, and statistics have increased our analytical capabilities for exploring potential cause-and-effect relationships, and have resulted in a greater understanding of the complexity behind human disease onset and progression. These additional tools for causal inference necessitate a re-evaluation of how each Bradford Hill criterion should be interpreted when considering a variety of data types beyond classic epidemiology studies. Herein, we explore the implications of data integration on the interpretation and application of the criteria. Using examples of recently discovered exposure–response associations in human disease, we discuss novel ways by which researchers can apply and interpret the Bradford Hill criteria when considering data gathered using modern molecular techniques, such as epigenetics, biomarkers, mechanistic toxicology, and genotoxicology.
Collapse
Affiliation(s)
- Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, 350 West Lake Street, Fort Collins, CO 80521 USA ; Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| | - Autumn Bernal
- Cardno ChemRisk, 130 Vantis Suite 170, Aliso Viejo, CA 92656 USA
| | - Zachary A Capshaw
- Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| | - Sherilyn Gross
- Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| |
Collapse
|
35
|
Lippmann M. Toxicological and epidemiological studies on effects of airborne fibers: coherence and public [corrected] health implications. Crit Rev Toxicol 2015; 44:643-95. [PMID: 25168068 DOI: 10.3109/10408444.2014.928266] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Airborne fibers, when sufficiently biopersistent, can cause chronic pleural diseases, as well as excess pulmonary fibrosis and lung cancers. Mesothelioma and pleural plaques are caused by biopersistent fibers thinner than ∼0.1 μm and longer than ∼5 μm. Excess lung cancer and pulmonary fibrosis are caused by biopersistent fibers that are longer than ∼20 μm. While biopersistence varies with fiber type, all amphibole and erionite fibers are sufficiently biopersistent to cause pathogenic effects, while the greater in vivo solubility of chrysotile fibers makes them somewhat less causal for the lung diseases, and much less causal for the pleural diseases. Most synthetic vitreous fibers are more soluble in vivo than chrysotile, and pose little, if any, health pulmonary or pleural health risk, but some specialty SVFs were sufficiently biopersistent to cause pathogenic effects in animal studies. My conclusions are based on the following: 1) epidemiologic studies that specified the origin of the fibers by type, and especially those that identified their fiber length and diameter distributions; 2) laboratory-based toxicologic studies involving fiber size characterization and/or dissolution rates and long-term observation of biological responses; and 3) the largely coherent findings of the epidemiology and the toxicology. The strong dependence of effects on fiber diameter, length, and biopersistence makes reliable routine quantitative exposure and risk assessment impractical in some cases, since it would require transmission electronic microscopic examination, of representative membrane filter samples, for determining statistically sufficient numbers of fibers longer than 5 and 20 μm, and those thinner than 0.1 μm, based on the fiber types.
Collapse
Affiliation(s)
- Morton Lippmann
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| |
Collapse
|
36
|
Bernstein DM, Rogers RA, Sepulveda R, Kunzendorf P, Bellmann B, Ernst H, Creutzenberg O, Phillips JI. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure. Toxicol Appl Pharmacol 2015; 283:20-34. [PMID: 25560675 DOI: 10.1016/j.taap.2014.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/26/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation.
Collapse
Affiliation(s)
| | | | | | - P Kunzendorf
- GSA Gesellschaft für Schadstoffanalytik mbH, Ratingen, Germany.
| | - B Bellmann
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - H Ernst
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | - O Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - J I Phillips
- National Institute for Occupational Health, National Health Laboratory Service, Johannesburg South Africa and Department of Biomedical Technology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
37
|
Robinson C, Solin JN, Lee YCG, Lake RA, Lesterhuis WJ. Mouse models of mesothelioma: strengths, limitations and clinical translation. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Mouse models of cancer are invaluable for obtaining detailed knowledge about tumor development and for screening therapeutic and preventive approaches. Mesothelioma is an unusual cancer because the same carcinogen, asbestos, causes a similar disease in both humans and animals. Unlike most other cancers, murine mesothelioma can therefore be regarded as a disease homolog, rather than a model as such. However, because asbestos-induced cancer has low penetrance and a long lag time, most translational studies have utilized more efficient models such as tumor transplantation. In consequence, many promising results have not translated into positive findings in patients. Here, we describe the widely used murine mesothelioma models and critically discuss their relative advantages and disadvantages. We emphasize the use of the appropriate model for the specific research question and the need to use multiple models in order to obtain robust and translatable data.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - YC Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
38
|
Greim H, Utell MJ, Maxim LD, Niebo R. Perspectives on refractory ceramic fiber (RCF) carcinogenicity: comparisons with other fibers. Inhal Toxicol 2014; 26:789-810. [PMID: 25264933 PMCID: PMC4245174 DOI: 10.3109/08958378.2014.953276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In 2011, SCOEL classified RCF as a secondary genotoxic carcinogen and supported a practical threshold. Inflammation was considered the predominant manifestation of RCF toxicity. Intrapleural and intraperitoneal implantation induced mesotheliomas and sarcomas in laboratory animals. Chronic nose-only inhalation bioassays indicated that RCF exposure in rats increased the incidence of lung cancer and similar exposures resulted in mesothelioma in hamsters, but these studies may have been compromised by overload. Epidemiological studies in the US and Europe showed an association between exposure and prevalence of respiratory symptoms and pleural plaques, but no interstitial fibrosis, mesotheliomas, or increased numbers of lung tumors were observed. As the latency of asbestos induced mesotheliomas can be up to 50 years, the relationship between RCF exposure and respiratory malignances has not been fully determined. Nonetheless, it is possible to offer useful perspectives. RCF and rock wool have similar airborne fiber dimensions and biopersistence. Therefore, it is likely that these fibers have similar toxicology. Traditional rock wool has been the subject of numerous cohort and case control studies. For rock wool, IARC (2002) concluded that the epidemiological studies did not provide evidence of carcinogenicity. Based on analogies with rock wool (read across), it is reasonable to believe that increases in lung cancer or any mesotheliomas are unlikely to be found in the RCF-exposed cohort. RCF producers have developed a product stewardship program to measure and control fiber concentrations and to further understand the health status of their workers.
Collapse
Affiliation(s)
- Helmut Greim
- Institute of Molecular Pharmacology and Toxicology, Technical University , Munich , Germany
| | | | | | | |
Collapse
|
39
|
Boulanger G, Andujar P, Pairon JC, Billon-Galland MA, Dion C, Dumortier P, Brochard P, Sobaszek A, Bartsch P, Paris C, Jaurand MC. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health 2014; 13:59. [PMID: 25043725 PMCID: PMC4112850 DOI: 10.1186/1476-069x-13-59] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/10/2014] [Indexed: 05/06/2023]
Abstract
The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long asbestos fibers (LAF) (Length: L ≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short asbestos fibers (SAF) (L < 5 μm). In a recent study we found that several air samples collected in buildings with asbestos containing materials (ACM) were composed only of SAF, sometimes in a concentration of ≥10 fibers.L-1. This exhaustive review focuses on available information from peer-review publications on the size-dependent pathogenetic effects of asbestos fibers reported in experimental in vivo and in vitro studies. In the literature, the findings that SAF are less pathogenic than LAF are based on experiments where a cut-off of 5 μm was generally made to differentiate short from long asbestos fibers. Nevertheless, the value of 5 μm as the limit for length is not based on scientific evidence, but is a limit for comparative analyses. From this review, it is clear that the pathogenicity of SAF cannot be completely ruled out, especially in high exposure situations. Therefore, the presence of SAF in air samples appears as an indicator of the degradation of ACM and inclusion of their systematic search should be considered in the regulation. Measurement of these fibers in air samples will then make it possible to identify pollution and anticipate health risk.
Collapse
Affiliation(s)
- Guillaume Boulanger
- ANSES (French Agency for Food, Environmental and Occupational Health Safety), Maisons-Alfort, France
| | - Pascal Andujar
- INSERM, U955, Equipe 4, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie Professionnelle, Créteil, France
| | - Jean-Claude Pairon
- INSERM, U955, Equipe 4, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et Pathologie Professionnelle, Créteil, France
| | | | - Chantal Dion
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail du Québec (IRSST), Montréal, Québec, Canada
- Département de santé environnementale et santé au travail, Université de Montréal, Montréal, Québec, Canada
| | - Pascal Dumortier
- Hôpital Erasme, Université libre de Bruxelles, Bruxelles, Belgique
| | - Patrick Brochard
- Laboratoire Santé Travail Environnement LSTE, EA 3672, Université de Bordeaux II, Bordeaux, France
| | - Annie Sobaszek
- Université Lille 2, Lille, France
- CHRU Lille, Lille, France
| | | | | | - Marie-Claude Jaurand
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, UMR-674, Labex Immuno-oncology, Paris, France
| |
Collapse
|
40
|
Luanpitpong S, Wang L, Castranova V, Rojanasakul Y. Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes. Part Fibre Toxicol 2014; 11:22. [PMID: 24885671 PMCID: PMC4040122 DOI: 10.1186/1743-8977-11-22] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/05/2014] [Indexed: 01/06/2023] Open
Abstract
Background Carbon nanotubes (CNT) hold great promise to create new and better products for commercial and biomedical applications, but their long-term adverse health effects are a major concern. The objective of this study was to address human lung cancer risks associated with chronic pulmonary exposure to single-walled (SW) CNT through the fundamental understanding of cellular and molecular processes leading to carcinogenesis. We hypothesized that the acquisition of cancer stem cells (CSC), a subpopulation that drive tumor initiation and progression, may contribute to CNT carcinogenesis. Methods Non-tumorigenic human lung epithelial cells were chronically exposed to well-dispersed SWCNT for a period of 6 months at the physiologically relevant concentration of 0.02 μg/cm2 surface area dose. Chronic SWCNT-exposed cells were evaluated for the presence of CSC-like cells under CSC-selective conditions of tumor spheres and side population (SP). CSC-like cells were isolated using fluorescence-activated cell sorting and were assessed for aggressive behaviors, including acquired apoptosis resistance and increased cell migration and invasion in vitro, and tumor-initiating capability in vivo. Non-small cell lung cancer cells served as a positive control. Results We demonstrated for the first time the existence of CSC-like cells in all clones of chronic SWCNT-exposed lung epithelial cells. These CSC-like cells, in contrary to their non-CSC counterpart, possessed all biological features of lung CSC that are central to irreversible malignant transformation, self-renewal, aggressive cancer behaviors, and in vivo tumorigenesis. These cells also displayed aberrant stem cell markers, notably Nanog, SOX-2, SOX-17 and E-cadherin. Restored expression of tumor suppressor p53 abrogated CSC properties of CSC-like cells. Furthermore, we identified specific stem cell surface markers CD24low and CD133high that are associated with SWCNT-induced CSC formation and tumorigenesis. Conclusions Our findings provide new and compelling evidence for the acquisition of CSC-like cells induced by chronic SWCNT exposure, which are likely to be a major driving force for SWCNT tumorigenesis. Thus, our study supports prudent adoption of prevention strategies and implementation of exposure control for SWCNT. We also suggest that the detection of CSC and associated surface markers may provide an effective screening tool for prediction of the carcinogenic potential of SWCNT and related nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Yon Rojanasakul
- Pharmaceutical and Pharmacological Sciences Program, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
41
|
Bernstein DM, Rogers R, Sepulveda R, Kunzendorf P, Bellmann B, Ernst H, Phillips JI. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: Interim results. Toxicol Appl Pharmacol 2014; 276:28-46. [DOI: 10.1016/j.taap.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|
42
|
Maxim LD, Niebo R, Utell MJ, McConnell EE, LaRosa S, Segrave AM. Wollastonite toxicity: an update. Inhal Toxicol 2014; 26:95-112. [DOI: 10.3109/08958378.2013.857372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Nielsen LS, Bælum J, Rasmussen J, Dahl S, Olsen KE, Albin M, Hansen NC, Sherson D. Occupational asbestos exposure and lung cancer--a systematic review of the literature. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2014; 69:191-206. [PMID: 24410115 DOI: 10.1080/19338244.2013.863752] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objective of this study was to evaluate the scientific literature concerning asbestos and lung cancer, emphasizing low-level exposure. A literature search in PubMed and Embase resulted in 5,864 citations. Information from included studies was extracted using SIGN. Twenty-one statements were evidence graded. The results show that histology and location are not helpful in differentiating asbestos-related lung cancer. Pleural plaques, asbestos bodies, or asbestos fibers are useful as markers of asbestos exposure. The interaction between asbestos and smoking regarding lung cancer risk is between additive and multiplicative. The findings indicate that the association between asbestos exposure and lung cancer risk is basically linear, but may level off at very high exposures. The relative risk for lung cancer increases between 1% and 4% per fiber-year (f-y)/mL, corresponding to a doubling of risk at 25-100 f-y/mL. However, one high-quality case-control study showed a doubling at 4 f-y/mL.
Collapse
Affiliation(s)
- Lene Snabe Nielsen
- a Department of Occupational and Environmental Medicine , Odense University Hospital , Odense , Denmark
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ausias G, Bourmaud A, Coroller G, Baley C. Study of the fibre morphology stability in polypropylene-flax composites. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Biopersistence of Refractory Ceramic Fiber in Human Lung Tissue and a 20-Year Follow-Up of Radiographic Pleural Changes in Workers. J Occup Environ Med 2012; 54:781-8. [DOI: 10.1097/jom.0b013e31825296fd] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Nagai H, Toyokuni S. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci 2012; 103:1378-90. [PMID: 22568550 DOI: 10.1111/j.1349-7006.2012.02326.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 11/29/2022] Open
Abstract
The emergence of nanotechnology represents an important milestone, as it opens the way to a broad spectrum of applications for nanomaterials in the fields of engineering, industry and medicine. One example of nanomaterials that have the potential for widespread use is carbon nanotubes, which have a tubular structure made of graphene sheets. However, there have been concerns that they may pose a potential health risk due to their similarities to asbestos, namely their high biopersistence and needle-like structure. We recently found that despite these similarities, carbon nanotubes and asbestos differ in certain aspects, such as their mechanism of entry into mesothelial cells. In the study, we showed that non-functionalized, multi-walled carbon nanotubes enter mesothelial cells by directly piercing through the cell membrane in a diameter- and rigidity-dependent manner, whereas asbestos mainly enters these cells through the process of endocytosis, which is independent of fiber diameter. In this review, we discuss the key differences, as well as similarities, between asbestos fibers and carbon nanotubes. We also summarize previous reports regarding the mechanism of carbon nanotube entry into non-phagocytic cells. As the entry of fibers into mesothelial cells is a crucial step in mesothelial carcinogenesis, we believe that a comprehensive study on the differences by which carbon nanotubes and asbestos fibers enter into non-phagocytic cells will provide important clues for the safer manufacture of carbon nanotubes through strict regulation on fiber characteristics, such as diameter, surface properties, length and rigidity.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
47
|
Product stewardship and science: Safe manufacture and use of fiber glass. Regul Toxicol Pharmacol 2012; 62:257-77. [DOI: 10.1016/j.yrtph.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/17/2011] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
|
48
|
Phelka AD, Finley BL. Potential health hazards associated with exposures to asbestos-containing drywall accessory products: A state-of-the-science assessment. Crit Rev Toxicol 2011; 42:1-27. [PMID: 22044019 DOI: 10.3109/10408444.2011.613067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Until the late 1970s, chrysotile asbestos was an ingredient in most industrial and consumer drywall accessory products manufactured in the US. In 1977, the Consumer Product Safety Commission (CPSC) issued a ban of consumer patching compounds containing "respirable, free-form asbestos" based on their prediction of exceptionally high rates of asbestos-related diseases among individuals using patching compounds for as little as a few days. Although hundreds of thousands of workers and homeowners handling these products may have experienced exposure to asbestos prior to the ban, there has been no systematic effort to summarize and interpret the information relevant to the potential health effects of such exposures. In this analysis, we provide a comprehensive review and analysis of the scientific studies assessing fiber type and dimension, toxicological and epidemiological endpoints, and airborne fiber concentrations associated with joint compound use. We conclude that: 1) asbestos in drywall accessory products was primarily short fiber (< 5 µm) chrysotile, 2) asbestos in inhaled joint compound particulate is probably not biopersistent in the lung, 3) estimated cumulative chrysotile exposures experienced by workers and homeowners are below levels known to be associated with respiratory disease, and 4) mortality studies of drywall installers have not demonstrated a significantly increased incidence of death attributable to any asbestos-related disease. Consequently, contrary to the predictions of the CPSC, the current weight of evidence does not indicate any clear health risks associated with the use of asbestos-containing drywall accessory products. We also describe information gaps and suggest possible areas of future research.
Collapse
|
49
|
Ghanei M, Harandi AA. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal Toxicol 2011; 23:363-71. [PMID: 21639706 DOI: 10.3109/08958378.2011.576278] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM), a potent chemical weapon agent, was used by Iraqi forces against Iranian in the Iraq-Iran war (1981-1989). Chronic obstructive pulmonary disease (COPD) is a late toxic pulmonary consequence after SM exposure. The COPD observed in these patients is unique (described as Mustard Lung) and to some extent different from COPD resulted from other well-known causes. Several mechanisms have been hypothesized to contribute to the pathogenesis of COPD including oxidative stress, disruption of the balance between apoptosis and replenishment, proteinase-antiproteinase imbalance and inflammation. However, it is not obvious which of these pathways are relevant to the pathogenesis of mustard lung. In this paper, we reviewed studies addressing the pathogenicity of mustard lung, and reduced some recent ambiguities in this field. There is ample evidence in favor of crucial role of both oxidative stress and apoptosis as two known mechanisms that are more involved in pathogenesis of mustard lung comparing to COPD. However, according to available evidences there are no such considerable data supporting neither proteolytic activity nor inflammation mechanism as the main underlying pathogenesis in Mustard Lung.
Collapse
Affiliation(s)
- Mostafa Ghanei
- Research Center of Chemical Injuries, Baqiyatallah Medical Sciences University, Tehran, Iran.
| | | |
Collapse
|
50
|
Bernstein DM, Rogers RA, Sepulveda R, Donaldson K, Schuler D, Gaering S, Kunzendorf P, Chevalier J, Holm SE. Quantification of the pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite-asbestos following short-term inhalation exposure. Inhal Toxicol 2011; 23:372-91. [PMID: 21639706 PMCID: PMC3128827 DOI: 10.3109/08958378.2011.575413] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The marked difference in biopersistence and pathological response between chrysotile and amphibole asbestos has been well documented. This study is unique in that it has examined a commercial chrysotile product that was used as a joint compound. The pathological response was quantified in the lung and translocation of fibers to and pathological response in the pleural cavity determined. This paper presents the final results from the study. Rats were exposed by inhalation 6 h/day for 5 days to a well-defined fiber aerosol. Subgroups were examined through 1 year. The translocation to and pathological response in the pleura was examined by scanning electron microscopy and confocal microscopy (CM) using noninvasive methods.The number and size of fibers was quantified using transmission electron microscopy and CM. This is the first study to use such techniques to characterize fiber translocation to and the response of the pleural cavity. Amosite fibers were found to remain partly or fully imbedded in the interstitial space through 1 year and quickly produced granulomas (0 days) and interstitial fibrosis (28 days). Amosite fibers were observed penetrating the visceral pleural wall and were found on the parietal pleural within 7 days postexposure with a concomitant inflammatory response seen by 14 days. Pleural fibrin deposition, fibrosis, and adhesions were observed, similar to that reported in humans in response to amphibole asbestos. No cellular or inflammatory response was observed in the lung or the pleural cavity in response to the chrysotile and sanded particles (CSP) exposure. These results provide confirmation of the important differences between CSP and amphibole asbestos.
Collapse
|