1
|
Lim JJ, Klaassen CD, Cui JY. Deciphering the cell type-specific and zonal distribution of drug-metabolizing enzymes, transporters, and transcription factors in livers of mice using single-cell transcriptomics. Drug Metab Dispos 2025; 53:100029. [PMID: 39919554 DOI: 10.1016/j.dmd.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
The liver contains multiple cell types, including resident cell types and immune cells. The liver is also categorized into 3 zones: periportal (zone 1), midzonal (zone 2), and centrilobular (zone 3). The goal of this study was to characterize the distribution of drug-processing genes (DPGs) in mouse liver using published single-cell and nuclei transcriptomic datasets, which were subjected to zonal deconvolution. Filtering, normalization, clustering, and differential expression analyses were performed using Seurat V5 in R. Hepatocytes were assigned to 3 zones based on known zonal markers and validated with published spatial transcriptomics data. Among the 195 DPGs profiled, most were expressed highest in hepatocytes (61.3%). Interestingly, certain DPGs were expressed most highly in nonparenchymal cells, such as in cholangiocytes (11.2%, eg, carboxylesterase [Ces] 2e, Ces2g), endothelial cells (7.2%, eg, aldo-keto reductase [Akr] 1c19, Akr1e1), Kupffer cells (5.3%, eg, Akr1a1, Akr1b10), stellate cells (5.1%, eg, retinoic acid receptor [Rar] α, Rarβ), myofibroblasts (2.9%, RAR-related orphan receptor [Rar] α), and a few were expressed in immune cell types. In hepatocytes, 72.4% of phase-I enzymes were enriched in zone 3. Phase-II conjugation enzymes such as UDP-glucuronosyltransferases (75%) were enriched in zone 3, whereas sulfotransferases (40%) were enriched in zone 1. Hepatic xenobiotic transporters were enriched in zone 3. The xenobiotic biotransformation-regulating transcription factors were enriched in zone 3 hepatocytes. The enrichment of DPGs in liver cell types, including non-parenchymal cells and zone 1 hepatocytes, may serve as an additional repertoire for xenobiotic biotransformation. SIGNIFICANCE STATEMENT: Our study is among the first to systematically characterize the baseline mRNA enrichment of important drug-processing genes in different cell types and zones in the liver. This finding will aid in further understanding the mechanisms of chemical-induced liver injury with improved resolution and precision.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington
| | - Curtis Dean Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas, Kansas City, Kanas.
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington; Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington.
| |
Collapse
|
2
|
Mooli RGR, Mukhi D, Watt M, Nagati V, Reed SM, Gandhi NK, Oertel M, Ramakrishnan SK. Hypoxia-Inducible Factor-2α Promotes Liver Fibrosis by Inducing Hepatocellular Death. Int J Mol Sci 2024; 25:13114. [PMID: 39684823 DOI: 10.3390/ijms252313114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in liver fibrosis has not been addressed. Hepatic HIF-2α expression was examined in mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. Conditional hepatocyte Hif-2α knockout mice were employed to investigate the role of hepatocyte HIF-2α in fibrosis. Markers of apoptosis, proliferation, inflammation, and fibrosis were assessed through biochemical, molecular, and histological analyses. We found an induction of HIF-2α in CCL4-injected liver injury and fibrosis mouse models. Hepatocyte-specific deletion of HIF-2α attenuated stellate cell activation and fibrosis, with no significant difference in inflammation. Disrupting hepatocyte HIF-2α led to reduced injury-mediated hepatocellular apoptosis. Surviving hepatocytes exhibited hypertrophy, which was strongly associated with the activation of c-JUN signaling. Our study demonstrates a direct role of hepatocyte HIF-2α in liver fibrosis by promoting hepatocyte apoptosis. The reduction in apoptosis and induction of hepatocyte hypertrophy following HIF-2α disruption is closely linked to enhanced c-JUN signaling, a survival mechanism in response to liver injury. These findings highlight HIF-2α as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mikayla Watt
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sara M Reed
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikita K Gandhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Oertel
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Nierath WF, Leitner E, Reimann S, Schwarz R, Hinz B, Bleich A, Vollmar B, Zechner D. GSK805 inhibits alpha-smooth muscle expression and modulates liver inflammation without impairing the well-being of mice. FASEB J 2024; 38:e23889. [PMID: 39157975 DOI: 10.1096/fj.202400733r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), lead to inflammation and severe hepatic damage with limited therapeutic options. This study assessed the efficacy of the inverse RORγt agonist, GSK805, both in vitro using the hepatic stellate cell-line LX-2 and in vivo using male bile duct-ligated BALB/c mice. In vitro, 0.3 μM GSK805 reduced alpha-smooth muscle actin expression in LX-2 cells. In vivo, GSK805 significantly decreased IL-23R, TNF-α, and IFN-γ expression in cholestatic liver. Despite high concentrations of GSK805 in the liver, no significant reduction in fibrosis was noticed. GSK805 significantly increased aspartate aminotransferase and alanine aminotransferase activity in the blood, while levels of glutamate dehydrogenase, alkaline phosphatase, and bilirubin were not substantially increased. Importantly, GSK805 did neither increase an animal distress score nor substantially reduce body weight, burrowing activity, or nesting behavior. These results suggest that a high liver concentration of GSK805 is achieved by daily oral administration and that this drug modulates inflammation in cholestatic mice without impairing animal well-being.
Collapse
Affiliation(s)
- Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Sabrina Reimann
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Fareed MM, Khalid H, Khalid S, Shityakov S. Deciphering Molecular Mechanisms of Carbon Tetrachloride- Induced Hepatotoxicity: A Brief Systematic Review. Curr Mol Med 2024; 24:1124-1134. [PMID: 37818557 DOI: 10.2174/0115665240257603230919103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
The liver plays a critical role in metabolic processes, making it vulnerable to injury. Researchers often study carbon tetrachloride (CCl4)-induced hepatotoxicity in model organisms because it closely resembles human liver damage. This toxicity occurs due to the activation of various cytochromes, including CYP2E1, CYP2B1, CYP2B2, and possibly CYP3A, which produce the trichloromethyl radical (CCl3*). CCl3* can attach to biological molecules such as lipids, proteins, and nucleic acids, impairing lipid metabolism and leading to fatty degeneration. It can also combine with DNA to initiate hepatic carcinogenesis. When exposed to oxygen, CCl3* generates more reactive CCl3OO*, which leads to lipid peroxidation and membrane damage. At the molecular level, CCl4 induces the release of several inflammatory cytokines, including TNF-α and NO, which can either help or harm hepatotoxicity through cellular apoptosis. TGF-β contributes to fibrogenesis, while IL-6 and IL-10 aid in recovery by minimizing anti-apoptotic activity and directing cells toward regeneration. To prevent liver damage, different interventions can be employed, such as antioxidants, mitogenic agents, and the maintenance of calcium sequestration. Drugs that prevent CCl4- induced cytotoxicity and proliferation or enhance CYP450 activity may offer a protective response against hepatic carcinoma.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- School of Science and Engineering, Department of Computer Science, Università degli Studi di Verona, Verona, Italy
- Laboratorio di Bioinformatica Applicata, Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Hina Khalid
- Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sana Khalid
- School of Life Science and Medicine, Shandong University of Technology, Zibo, China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
6
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
7
|
Cohen SM, Bevan C, Gollapudi B, Klaunig JE. Evaluation of the carcinogenicity of carbon tetrachloride. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:342-370. [PMID: 37282619 DOI: 10.1080/10937404.2023.2220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, US
| | | | | | - James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, US
| |
Collapse
|
8
|
Ali Mondal S, Sathiaseelan R, Mann SN, Kamal M, Luo W, Saccon TD, Isola JVV, Peelor FF, Li T, Freeman WM, Miller BF, Stout MB. 17α-estradiol, a lifespan-extending compound, attenuates liver fibrosis by modulating collagen turnover rates in male mice. Am J Physiol Endocrinol Metab 2023; 324:E120-E134. [PMID: 36516471 PMCID: PMC9902223 DOI: 10.1152/ajpendo.00256.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Estrogen signaling is protective against chronic liver diseases, although men and a subset of women are contraindicated for chronic treatment with 17β-estradiol (17β-E2) or combination hormone replacement therapies. We sought to determine if 17α-estradiol (17α-E2), a naturally occurring diastereomer of 17β-E2, could attenuate liver fibrosis. We evaluated the effects of 17α-E2 treatment on collagen synthesis and degradation rates using tracer-based labeling approaches in male mice subjected to carbon tetrachloride (CCl4)-induced liver fibrosis. We also assessed the effects of 17α-E2 on markers of hepatic stellate cell (HSC) activation, collagen cross-linking, collagen degradation, and liver macrophage content and polarity. We found that 17α-E2 significantly reduced collagen synthesis rates and increased collagen degradation rates, which was mirrored by declines in transforming growth factor β1 (TGF-β1) and lysyl oxidase-like 2 (LOXL2) protein content in liver. These improvements were associated with increased matrix metalloproteinase 2 (MMP2) activity and suppressed stearoyl-coenzyme A desaturase 1 (SCD1) protein levels, the latter of which has been linked to the resolution of liver fibrosis. We also found that 17α-E2 increased liver fetuin-A protein, a strong inhibitor of TGF-β1 signaling, and reduced proinflammatory macrophage activation and cytokines expression in the liver. We conclude that 17α-E2 reduces fibrotic burden by suppressing HSC activation and enhancing collagen degradation mechanisms. Future studies will be needed to determine if 17α-E2 acts directly in hepatocytes, HSCs, and/or immune cells to elicit these benefits.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wenyi Luo
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tatiana D Saccon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Tiangang Li
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
9
|
Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, Zhao X, Xia Q, Zhong Q, Zhang J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ 2022; 29:1705-1718. [PMID: 35260822 PMCID: PMC9433446 DOI: 10.1038/s41418-022-00957-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia followed by reperfusion (I/R), a major clinical problem during liver surgical procedures, can induce liver injury with severe cell death including ferroptosis which is characterized by iron-dependent accumulation of lipid peroxidation. The HECT domain-containing ubiquitin E3 ligase HUWE1 (also known as MULE) was initially shown to promote apoptosis. However, our preliminary study demonstrates that high expression of HUWE1 in the liver donors corelates with less injury and better hepatic function after liver transplantation in patients. Thus, we investigate the role of HUWE1 in acute liver injury, and identify HUWE1 as a negative ferroptosis modulator through transferrin receptor 1(TfR1). Deficiency of Huwe1 in mice hepatocytes (HKO) exacerbated I/R and CCl4-induced liver injury with more ferroptosis occurrence. Moreover, Suppression of Huwe1 remarkably enhances cellular sensitivity to ferroptosis in primary hepatocytes and mouse embryonic fibroblasts. Mechanistically, HUWE1 specifically targets TfR1 for ubiquitination and proteasomal degradation, thereby regulates iron metabolism. Importantly, chemical and genetic inhibition of TfR1 dramatically diminishes the ferroptotic cell death in Huwe1 KO cells and Huwe1 HKO mice. Therefore, HUWE1 is a potential protective factor to antagonize both aberrant iron accumulation and ferroptosis thereby mitigating acute liver injury. These findings may provide clinical implications for patients with the high-expression Huwe1 alleles.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huike Jiao
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbo Yue
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuting Jin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiang Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuehan Wei
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hanyan Luo
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Xuyun Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Sun L, Zhang Y, Wen S, Li Q, Chen R, Lai X, Zhang Z, Zhou Z, Xie Y, Zheng X, Zhang K, Li D, Sun S. Extract of Jasminum grandiflorum L. alleviates CCl 4-induced liver injury by decreasing inflammation, oxidative stress and hepatic CYP2E1 expression in mice. Biomed Pharmacother 2022; 152:113255. [PMID: 35689859 DOI: 10.1016/j.biopha.2022.113255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022] Open
Abstract
Jasminum grandiflorum L. (JG) is a medicinal plant containing many bioactive ingredients. Herein, we analyzed the effects of four different extracts and two compounds of JG on acute liver injury caused by carbon tetrachloride (CCl4) and underlying molecular mechanisms. 7 weeks old C57BL/6 male mice were used to establish a liver injury model by injecting with 1% CCl4, 10 mL/kg ip. Four different extracts and two compounds of JG were given to mice by gavage for 3 days. Clinical and histological chemistry assays were performed to assess liver injury. Moreover, hepatic oxidative stress and inflammation related markers were determined by immunohistochemistry and western blotting. As a result, JG extracts and two functional components showed different degree of protect effects against CCl4-induced liver injury by the decrease of elevated serum transaminases and liver index, and the attenuation of histopathological changes in mice, among which JG extracted with petroleum ether (PET) had the most significant effect. In addition, PET remarkably alleviated hepatic oxidative stress and inflammation. Further studies revealed that PET significantly inhibited the TNF-α expression, signal pathway expression, NF-κB p65 and inflammatory factors IL-1β and IL-6 expression in CCl4-induced liver injury mice. Nevertheless, hydroxytyrosol (HT) alleviated liver injury by reducing oxidative stress. Apart from PET extract, other extracts of JG can inhibit cytochrome CYP2E1 expression to protect liver tissue. These findings suggest that the extracts and its components of JG possesses the potential protective effects against CCl4-induced liver injury in mice by exerting antioxidative stress and anti-inflammation.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Yizi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhiyan Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yinzheng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
11
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
12
|
Xiao S, Wang L, Han W, Gu L, Cui X, Wang C. Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis. Pharm Res 2022; 39:2431-2446. [PMID: 35359240 DOI: 10.1007/s11095-022-03239-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
In this study, a novel hydrogel system incorporating an amino acid-based deep eutectic solvent (DES) was prepared, and the skin-permeation enhancement of traditional Chinese herb medicine was evaluated using "sanwujiaowan" extract as the model formula. Briefly, a DES-extract complex was constructed by co-heating the herb formula extracts with the amino acid as the hydrogen receptor and citric acid as the hydrogen donor. The DES-extract complex demonstrated excellent dissolution and skin permeability of the complicated ingredients in the extracts. Consequently, the DES-extract complex was introduced to a hydrogel system, which showed better mechanical properties and viscoelasticity performance. Using a collagen-induced arthritis rat model, the DES-hydrogels exerted an enhanced therapeutic effect that significantly reduced the inflammatory response with systemic toxicity of the extracts. Therefore, our work suggests a novel strategy for synergistic transdermal delivery of Chinese herb medicine and local treatments for rheumatoid arthritis.
Collapse
Affiliation(s)
- Suyun Xiao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Liyun Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Wei Han
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liyun Gu
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China. .,Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| |
Collapse
|
13
|
Humpton TJ, Hock AK, Kiourtis C, Donatis MD, Fercoq F, Nixon C, Bryson S, Strathdee D, Carlin LM, Bird TG, Blyth K, Vousden KH. A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Sci Signal 2022; 15:eabd9099. [PMID: 35133863 PMCID: PMC7612476 DOI: 10.1126/scisignal.abd9099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Marco De Donatis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Frederic Fercoq
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Sheila Bryson
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Thomas G. Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, EH164TJ, United Kingdom
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Karen H Vousden
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| |
Collapse
|
14
|
Cheng W, Li X, Zhou Y, Yu H, Xie Y, Guo H, Wang H, Li Y, Feng Y, Wang Y. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150328. [PMID: 34571217 DOI: 10.1016/j.scitotenv.2021.150328] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/27/2023]
Abstract
Microplastic particles (MP) has been detected in the environment widespread. Human beings are inevitably exposed to MP via multiple routines. However, the hazard identifications, as direct evidence of exposure and health risk, have not been fully characterized in human beings. Many studies suggest the liver is a potential target organ, but currently no study regarding the MP on human liver has been reported. In this study, we used a novel in vitro 3D model, the liver organoids (LOs) generated from human pluripotent stem cells, as an alternative model to the human liver, to explore the adverse biological effect of 1 μm polystyrene-MP (PS-MP) microbeads applying a non-static exposure approach. When the LOs were exposed to 0.25, 2.5 and 25 μg/mL PS-MP (the lowest one was relevant to the environmental concentrations, calculated to be 102 ± 7 items/mL). The potential mechanisms of PS-MP induced hepatotoxicity and lipotoxicity, in aspects of cytotoxicity, levels of key molecular markers, ATP production, alteration in lipid metabolism, ROS generation, oxidative stress and inflammation response, were determined. Specifically, it has been firstly observed that PS-MP could increase the expression of hepatic HNF4A and CYP2E1. Based on these findings, the potential adverse outcome pathways (AOPs) relevant to PS-MP were proposed, and the potential risks of PS-MP on liver steatosis, fibrosis and cancer were implicated. The combined application of novel LOs model and AOPs framework provides a new insight into the risk assessment of MP. Further studies are anticipated to validate the hepatotoxic molecular mechanism of PS-MP based on HNF4A or CYP2E1, and to investigate the MP-induced physical damage and its relationship to hepatic adverse effect for human beings. CAPSULE: Microplastics cause hepatotoxicity and disrupt lipid metabolism in the human pluripotent stem cells-derived liver organoids, providing evidence for human implication.
Collapse
Affiliation(s)
- Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaolan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hengyi Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichun Xie
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Ali H, Jahan A, Samrana S, Ali A, Ali S, Kabir N, Ali A, Ullah R, Mothana RA, Murtaza BN, Kalim M. Hepatoprotective Potential of Pomegranate in Curbing the Incidence of Acute Liver Injury by Alleviating Oxidative Stress and Inflammatory Response. Front Pharmacol 2021; 12:694607. [PMID: 34899284 PMCID: PMC8662995 DOI: 10.3389/fphar.2021.694607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatitis is an inflammatory disease of the liver and is considered one of the leading causes of death worldwide. Due to its scavenging activity, Punica granatum may be used for the treatment and prevention of liver diseases. The current study investigated the protective mechanism underlying the effects of pomegranate against a rat model of carbon tetrachloride–induced liver injury. Intraperitoneal injection of CCl4 resulted in liver inflammation, oxidative stress, and accumulation of lipid in hepatocytes. CCl4 induced a downregulation of superoxide dismutase (SOD), glutathione (GSH), and melonaldehyde (MDA). Pomegranate protection was assessed in terms of biochemical parameters, histopathology, and immunohistochemistry. Promegranate administration decreased inflammation, elevated serum enzymes and ROS production, and countered the debilitating effects caused by CCl4. In addition, CCl4-induced histological changes were absent in the crude pomegranate extract group, which also enhanced the scavenging activity of reactive oxygen species by enhancing the antioxidant defense mechanism as confirmed by detecting MDA, SOD, and GSH expressions. The migration of CD68+ macrophages was halted at the injured area of the central vein and the number of macrophages was reduced to the normal control by the crude extract compared to the positive control silymarin group. Likewise, protective effects of ethylacetate and the aqueous fraction of the crude extract were also observed. However, the butanol and n-hexane fractions displayed increased levels of ALT, AST, and ALP as compared to silymarin. About 25% damage to hepatocytes was observed in the butanol and n-hexane group by histopathological examination, which is a little better compared to the CCl4-treated group. The crude extract and its ethyl acetate and aqueous fractions may be accountable for the hepatoprotective potential of Punica granatum, which was further confirmed by in vivo experiments. Together, these findings confirm that pomegranate exerts hepatoprotective activity against CCl4-induced oxidative stress and liver damage.
Collapse
Affiliation(s)
- Hamid Ali
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Azra Jahan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Samrana Samrana
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Abid Ali
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Safdar Ali
- Department of Physics, University of Swabi-Anbar, Mardan, Pakistan
| | - Nurul Kabir
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Muhammad Kalim
- Cancer Research Institute, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Yang T, Poenisch M, Khanal R, Hu Q, Dai Z, Li R, Song G, Yuan Q, Yao Q, Shen X, Taubert R, Engel B, Jaeckel E, Vogel A, Falk CS, Schambach A, Gerovska D, Araúzo-Bravo MJ, Vondran FWR, Cantz T, Horscroft N, Balakrishnan A, Chevessier F, Ott M, Sharma AD. Therapeutic HNF4A mRNA attenuates liver fibrosis in a preclinical model. J Hepatol 2021; 75:1420-1433. [PMID: 34453962 DOI: 10.1016/j.jhep.2021.08.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Taihua Yang
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany; Present address of TY, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, , China
| | | | - Rajendra Khanal
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qingluan Hu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Guangqi Song
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Florian W R Vondran
- Department of General, Visceral and Transplant Surgery Regenerative Medicine and Experimental Surgery, Hannover Medical School, Hannover, Germany; German Center for Infection Research Partner Site Hannover-Braunschweig Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nigel Horscroft
- CureVac AG, Tübingen, Germany; Present address of NH, MRM Health NV Technologie park-Zwijnaarde 94, 9052 Gent, Belgium
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
17
|
Gárate-Rascón M, Recalde M, Jimenez M, Elizalde M, Azkona M, Uriarte I, Latasa MU, Urtasun R, Bilbao I, Sangro B, Garcia-Ruiz C, Fernandez-Checa JC, Corrales FJ, Esquivel A, Pineda-Lucena A, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Splicing Factor SLU7 Prevents Oxidative Stress-Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology 2021; 74:2791-2807. [PMID: 34170569 DOI: 10.1002/hep.32029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. APPROACH AND RESULTS Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. CONCLUSIONS Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.
Collapse
Affiliation(s)
| | - Miriam Recalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Maddalen Jimenez
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - María Azkona
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Uxue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Idoia Bilbao
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Garcia-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - José C Fernandez-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
- Liver Unit, Hospital Clinic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Fernando J Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Functional Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Argitxu Esquivel
- Molecular Therapeutics Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - María Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
18
|
Yang H, Li SQ, Wang SL, Song Y, Cheng WG, Wang Y, Zhang BB, Wang DM, Wang YL. Comparison of the Effects of Intraperitoneal Injection with Carbon Tetrachloride on Acute Liver Toxicity in Male and Female Kunming Mice. Med Sci Monit 2021; 27:e931427. [PMID: 34366426 PMCID: PMC8362337 DOI: 10.12659/msm.931427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Acute chemical liver injury needs to be further explored. The present study aimed to compare the effects of intraperitoneal injection with carbon tetrachloride on acute liver toxicity after 24 h in male and female Kunming mice. Material/Methods In this study, female and male mice were simultaneously divided into 3 different groups. Each group was treated differently, and after 24 h, blood samples were collected to check for changes in the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were used to assess liver toxicity. Liver samples were used for hematoxylin-eosin staining, and periodic acid Schiff reagent staining was performed to detect the pathological changes of each group. The expression level of biomarker molecules in liver cells was also systematically analyzed. Results Our results showed that, compared with male mice, female mice showed more serious damage: reduced glycogen and higher degree of necrosis, and the levels of heatshock protein 27 (HSP27), heat-shock protein 70 (HSP70), proliferating cell nuclear antigen (PCNA) and B cell lymphoma/lewkmia-2 (Bcl-2) were significantly lower than in the male group (P<0.05 or P<0.01), while the results of Bcl-2-associated X protein (Bax), cysteinyl aspartate specific proteinase 3 (Caspase3), and cytochrome P450 2E1 (CYP2E1) were the opposite (P<0.05 or P<0.01). Conclusions The findings from this study showed that, compared with male mice, at 24 h after CCl4 toxicity, female mice showed more severe changes of hepatocyte necrosis and PAS-positivity, with significantly reduced expression of HSP27, HSP70, PCNA, and Bcl-2, and significantly increased expression of Bax, caspase-3, and CYP2E1.
Collapse
Affiliation(s)
- Huan Yang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - San-Qiang Li
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Shan-Long Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Ying Song
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Wei-Gang Cheng
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Yong Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Bing-Bing Zhang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Dong-Mei Wang
- The Molecular Medicine Key Laboratory of Liver Injury and Repair, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China (mainland).,Henan Center for Engineering and Technology Research on Prevention and Treatment of liver Diseases, Luoyang, Henan, China (mainland)
| | - Yun-Long Wang
- Henan Bioengineering Research Center, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
19
|
Rabiei S, Rezaei M, Nikoo M, Khezri M, Rafieian-Kopai M, Anjomshoaa M. Antioxidant properties of Klunzinger's mullet ( Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. FOOD SCI TECHNOL INT 2021; 28:233-246. [PMID: 33832340 DOI: 10.1177/10820132211005297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antioxidant activity of Klunzinger's mullet (Liza klunzingeri) muscle hydrolysates obtained using Bacillus licheniformis fermentation and enzymatic hydrolysis was determined. Hydrolysates obtained after 6 days of fermentation with B. licheniformis showed the highest free radical scavenging activity, metal chelating ability and ferric reducing antioxidant power (FRAP) (P ≤ 0.05). Microbial fermentation led to a higher percentage of small peptides and higher solubility compared with Alcalase hydrolysis (P ≤ 0.05). Hydrolysates showing the highest antioxidant properties attenuated serum, liver, and kidney oxidative stress biomarkers in male Wister rats stressed by carbon tetrachloride (P ≤ 0.05). At 300 mg/kg oral administration, hydrolysates increased serum, renal, and hepatic total antioxidant capacity (TAC) (P ≤ 0.05) and reduced their elevated levels of malondialdehyde (MDA), nitric oxide (NO•), and serum liver enzymes (AST, ALP, and ALT) (P ≤ 0.05). The hydrolysates were able to ameliorate hepatic damage by reducing necrosis, fatty changes, and inflammation. Results showed the antioxidant and hepato-toxic protective activities of Klunzinger's mullet muscle hydrolysates obtained using microbial fermentation, which may, therefore, potentially be considered as a functional food ingredient.
Collapse
Affiliation(s)
- Sana Rabiei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Mohammad Khezri
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Kurdistan, Iran
| | - Mahmoud Rafieian-Kopai
- Medical Plants Research Center, Basic Health Sciences Institutes, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoaa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
20
|
Otto S, Marina PF, Zhou F, Blencowe A. Thermoresponsive polysaccharides with tunable thermoresponsive properties via functionalisation with alkylamide groups. Carbohydr Polym 2021; 254:117280. [PMID: 33357856 DOI: 10.1016/j.carbpol.2020.117280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Polysaccharides have been used widely in many industries, from food technology and mining to cosmetics and biomedical applications. Over recent years there has been growing interest in the development of responsive polysaccharides with unique and switchable properties, particularly systems that display lower-critical solution temperatures (LCSTs). Therefore, in this study we aimed to investigate a novel strategy that would allow the conversion of non-responsive polysaccharides into thermoresponsive polysaccharides with tuneable LCSTs. Through the functionalisation of dextran with alkylamide groups (isopropyl amide, diethyl amide, piperidinyl and diisobutyl amide) using a carbodiimide coupling approach in conjunction with amic acid derivatives, we prepared a library of novel dextrans with various degrees of substitution (DS), which were characterised via nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). The alkylamide-functionalised dextrans were found to have good solubility in aqueous solutions, with the exception of those having a high DS of large hydrophobic substituents. Determination of the thermoresponsive characteristics of the polymer solutions via UV-vis spectroscopy revealed that the LCST of the alkylamide-functionalised dextrans was highly dependent on the type of alkylamide group and the DS and could be tuned over a large range (5-35 °C). Above the LCST, all of the thermoresponsive alkylamide-functionalised dextrans formed colloidal dispersions with particles sizes ranging from 400 -600 nm, as determined by dynamic light scattering (DLS). In addition, the polymers were found to exhibit a fast and reversible phase transition in solution with narrow hysteresis (∼ 1-5 °C). Finally, the injectability and biocompatibility of the novel thermoresponsive dextrans was confirmed in vivo via subcutaneous and intracranial ventricle injections, with no local or systemic toxicity noted over a 14 d period. Overall, the alkylamide-functionalised dextrans display interesting thermoresponsive properties and trends that may make them useful in biomedical applications, such as drug-delivery.
Collapse
Affiliation(s)
- Sarah Otto
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Fiona Zhou
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; School of Medicine, University of Adelaide, South Australia, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
21
|
Period1 mediates rhythmic metabolism of toxins by interacting with CYP2E1. Cell Death Dis 2021; 12:76. [PMID: 33436540 PMCID: PMC7804260 DOI: 10.1038/s41419-020-03343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023]
Abstract
The biological clock is an endogenous biological timing system, which controls metabolic functions in almost all organs. Nutrient metabolism, substrate processing, and detoxification are circadian controlled in livers. However, how the clock genes respond to toxins and influence toxicity keeps unclear. We identified the clock gene Per1 was specifically elevated in mice exposed to toxins such as carbon tetrachloride (CCl4). Mice lacking Per1 slowed down the metabolic rate of toxins including CCl4, capsaicin, and acetaminophen, exhibiting relatively more residues in the plasma. Liver injury and fibrosis induced by acute and chronic CCl4 exposure were markedly alleviated in Per1-deficient mice. These processes involved the binding of PER1 protein and hepatocyte nuclear factor-1alpha (HNF-1α), which enhances the recruitment of HNF-1α to cytochrome P450 2E1 (Cyp2e1) promoter and increases Cyp2e1 expression, thereby promoting metabolism for toxins in the livers. These results indicate that PER1 mediates the metabolism of toxins and appropriate suppression of Per1 response is a potential therapeutic target for toxin-induced hepatotoxicity.
Collapse
|
22
|
Chhimwal J, Sharma S, Kulurkar P, Patial V. Crocin attenuates CCl 4-induced liver fibrosis via PPAR-γ mediated modulation of inflammation and fibrogenesis in rats. Hum Exp Toxicol 2020; 39:1639-1649. [PMID: 32633567 DOI: 10.1177/0960327120937048] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Liver fibrosis is a chronic pathological condition with a leading cause of liver-related mortality worldwide. In the present study, we have evaluated the antifibrotic effect of crocin, a carotenoid present in the stigma of Crocus sativus, and also explored its putative mechanism of action. METHODS Liver fibrosis was induced by intraperitoneal administration of 30% carbon tetrachloride (CCl4). The crocin was administered orally at 20, 40 and 80 mg/kg body weight along with CCl4 up to 8 weeks. RESULTS Chronic exposure to CCl4 resulted in elevated levels of liver enzymes and reduced cytochrome P450 2E1 (CYP2E1) activity in the liver. The liver tissue showed cellular swelling, vacuolization, necrosis, infiltration of inflammatory cells and fibrotic changes. The crocin treatment significantly lowered the levels of liver enzymes in serum and improved the liver CYP2E1 mRNA levels. The pathological changes in the liver were also lowered by crocin treatment. The level of pro-inflammatory cytokines, nuclear factor-kappa B, interleukin-6 and tumor necrosis factor α and fibrogenic factor, transforming growth factor β, and α-smooth muscle actin were elevated by the CCl4 in the liver tissue. However, crocin treatment at different doses significantly reduced the expression of these factors. The increased caspase 3/7 activity was also lowered by crocin. CCl4 administration decreased the expression of peroxisome proliferator-activated receptor γ (PPAR-γ) in liver tissue. The improved PPAR-γ expression in the liver by crocin treatment indicates its role in the therapeutic effect of crocin. CONCLUSIONS Crocin attenuated the various events in the progression of liver fibrosis via PPAR-γ mediated modulation of inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- J Chhimwal
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh, India
| | - S Sharma
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh, India
| | - P Kulurkar
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - V Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), 29065CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh, India
| |
Collapse
|
23
|
Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats. Nutrients 2020; 12:nu12092784. [PMID: 32932999 PMCID: PMC7551424 DOI: 10.3390/nu12092784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic iron overload is well known as an important risk factor for progression of liver diseases; however, it is unknown whether it can alter the susceptibility to drug-induced hepatotoxicity. Here we investigate the pathological roles of iron overload in two single-dose models of chemically-induced liver injury. Rats were fed a high-iron (Fe) or standard diet (Cont) for four weeks and were then administered with allyl alcohol (AA) or carbon tetrachloride (CCl4). Twenty-four hours after administration mild mononuclear cell infiltration was seen in the periportal/portal area (Zone 1) in Cont-AA group, whereas extensive hepatocellular necrosis was seen in Fe-AA group. Centrilobular (Zone 3) hepatocellular necrosis was prominent in Cont-CCl4 group, which was attenuated in Fe-CCl4 group. Hepatic lipid peroxidation and hepatocellular DNA damage increased in Fe-AA group compared with Cont-AA group. Hepatic caspase-3 cleavage increased in Cont-CCl4 group, which was suppressed in Fe-CCl4 group. Our results showed that dietary iron overload exacerbates AA-induced Zone-1 liver injury via enhanced oxidative stress while it attenuates CCl4-induced Zone-3 liver injury, partly via the suppression of apoptosis pathway. This study suggested that susceptibility to drugs or chemical compounds can be differentially altered in iron-overloaded livers.
Collapse
|
24
|
Tuominen I, Fuqua BK, Pan C, Renaud N, Wroblewski K, Civelek M, Clerkin K, Asaryan A, Haroutunian SG, Loureiro J, Borawski J, Roma G, Knehr J, Carbone W, French S, Parks BW, Hui ST, Mehrabian M, Magyar C, Cantor RM, Ukomadu C, Lusis AJ, Beaven SW. The Genetic Architecture of Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:199-220. [PMID: 32866618 PMCID: PMC7674618 DOI: 10.1016/j.jcmgh.2020.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics. METHODS Chronic liver injury was induced by CCl4 injections twice weekly for 6 weeks. Four hundred thirty-seven mice received CCl4 and 256 received vehicle, after which animals were euthanized for liver histology and gene expression. Using automated digital image analysis, we quantified fibrosis as the collagen proportionate area of the whole section, excluding normal collagen. RESULTS We discovered broad variation in fibrosis among the Hybrid Mouse Diversity Panel strains, demonstrating a significant genetic influence. Genome-wide association analyses revealed significant and suggestive loci underlying susceptibility to fibrosis, some of which overlapped with loci identified in mouse crosses and human population studies. Liver global gene expression was assessed by RNA sequencing across the strains, and candidate genes were identified using differential expression and expression quantitative trait locus analyses. Gene set enrichment analyses identified the underlying pathways, of which stellate cell involvement was prominent, and coexpression network modeling identified modules associated with fibrosis. CONCLUSIONS Our results provide a rich resource for the design of experiments to understand mechanisms underlying fibrosis and for rational strain selection when testing antifibrotic drugs.
Collapse
Affiliation(s)
- Iina Tuominen
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brie K Fuqua
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Calvin Pan
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nicole Renaud
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Kevin Wroblewski
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mete Civelek
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kara Clerkin
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ashot Asaryan
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sara G Haroutunian
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jason Borawski
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | | | | | - Samuel French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brian W Parks
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Simon T Hui
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Margarete Mehrabian
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Clara Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Rita M Cantor
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Chinweike Ukomadu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Aldons J Lusis
- Departments of Medicine, Microbiology and Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Simon W Beaven
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases at UCLA and Pfleger Liver Institute, David Geffen School of Medicine at UCLA, Los Angeles, California.
| |
Collapse
|
25
|
Yamakawa Y, Doi T, Naitou Y, Kawai H, Mitsumoto A, Kudo N, Kawashima Y. A single pretreatment with clofibric acid attenuates carbon tetrachloride-induced necrosis, but not steatosis, in rat liver. Food Chem Toxicol 2020; 145:111591. [PMID: 32739454 DOI: 10.1016/j.fct.2020.111591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 01/14/2023]
Abstract
The present study investigated whether a single pretreatment with clofibric acid suppresses liver injury in rats after CCl4 intoxication. Rats received a single pretreatment with clofibric acid (100 mg/kg, i.p.) 1 h prior to a CCl4 (1 mL/kg, p.o.) challenge, and were euthanized 24 h after the CCl4 administration. A single pretreatment with clofibric acid effectively suppressed increases in the serum aminotransferase activities and the severity of necrosis following the CCl4 challenge, whereas the pretreatment did not protect against CCl4-induced fatty liver. The clofibric acid pretreatment did not affect blood concentrations of CCl4 in the early stage after CCl4 dosing, or the level of the CCl4 reaching the liver 1 h after the CCl4 challenge. Moreover, the clofibric acid pretreatment did not affect the intensity of the covalent binding of the [14C]CCl4 metabolite to microsomal proteins and lipids. The clofibric acid pretreatment did not alter microsomal cytochrome P450 2E1 activity. Based on these results, we conclude that protection against CCl4-induced hepatocellular necrosis by a clofibric acid pretreatment does not require its repeated administration, and that a single and brief pre-exposure to clofibric acid prior to CCl4 dosing markedly suppresses necrosis without affecting the development and progression of steatosis.
Collapse
Affiliation(s)
- Yoshihiro Yamakawa
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Takaaki Doi
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Yoshizumi Naitou
- Research and Development Laboratories, Maruho Co, 1 Awatacho, Chudoji, Shimogyo-ku, Kyoto, 600-8815, Japan
| | - Hiroshi Kawai
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Atsushi Mitsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Gumyo, Togane, Chiba, 283-8555, Japan
| | - Naomi Kudo
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Yoichi Kawashima
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
26
|
Zhou J, Zhang Y, Li S, Zhou Q, Lu Y, Shi J, Liu J, Wu Q, Zhou S. Dendrobium nobile Lindl. alkaloids-mediated protection against CCl 4-induced liver mitochondrial oxidative damage is dependent on the activation of Nrf2 signaling pathway. Biomed Pharmacother 2020; 129:110351. [PMID: 32535387 DOI: 10.1016/j.biopha.2020.110351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway has been involved in the mechanisms of a variety of protective agents against cellular oxidative stress. We recently demonstrated that Dendrobium nobile Lindl. alkaloids (DNLA), the active ingredients of Dendrobium, protects mice from CCl4-induced liver injury, dependent on the Nrf2 signaling pathway. The present study was aimed to determine whether the protection against mitochondrial oxidative damage plays a role in the mode of action of DNLA on CCl4-induced liver injury, and to further investigate whether the DNLA-conferred mitochondrial beneficial effects is dependent on the activation of Nrf2 signaling. The CCl4-induced acute liver injury model was employed in both wild-type (WT) and Nrf2-knockout (Nrf2-/-) mice. The results showed that in WT mice DNLA reduced CCl4-induced liver injury, accompanied by a significant reduction in CCl4-induced mitochondrial oxidative stress as evidenced by a decrease in mitochondrial H2O2 content and MDA production, and a marked increase in GSH level and Mn-SOD activity. However, these protective effects were significantly attenuated in Nrf2-/- mice. Furthermore, the administration of DNLA improved mitochondrial oxygen consumption, elevated ATP production, and decreased CCl4-induced apoptosis in the WT mice, whereas the DNLA-mediated protections on mitochondrial function were diminished in the Nrf2 null mice. These results demonstrate that the improvement of mitochondrial oxidative stress and mitochondrial dysfunction is implicated in the mechanism of DNLA-mediated protection on CCl4-induced liver injury, and this DNLA-modulated mode of action is dependent on the activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jinxin Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Ya Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shiyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Qian Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
27
|
Antioxidant properties and hepatoprotective effect of the edible halophyte Crithmum maritimum L. against carbon tetrachloride-induced liver injury in rats. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03498-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hoshi M, Osawa Y, Nakamoto K, Morita N, Yamamoto Y, Ando T, Tashita C, Nabeshima T, Saito K. Kynurenine produced by indoleamine 2,3-dioxygenase 2 exacerbates acute liver injury by carbon tetrachloride in mice. Toxicology 2020; 438:152458. [PMID: 32289347 DOI: 10.1016/j.tox.2020.152458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
Kynurenine (Kyn) plays an important role as an immune check-point molecule and regulates various immune responses through its aryl hydrocarbon receptor (Ahr). Kyn is synthesized by indoleamine 2,3-dioxygenase (Ido) and tryptophan 2,3-dioxygenase (Tdo). Ido contributes approximately 90% of tryptophan catabolism. Although Kyn is increased in various liver disorders, the roles of Kyn in liver injury are complicated because Ido1, Ido2, and Tdo are activated in different cell types. In this study, the roles of Ido2 in carbon tetrachloride (CCl4; 1 ml/kg, i.p.)-induced acute liver injury were examined using Ido2 knockout mice and Ido2 inhibitor. After CCl4 treatment, the ratio of Kyn to tryptophan and levels of Kyn in the liver were increased, accompanied by activation of Ahr-mediated signaling, as revealed by increased nuclear Ahr and Cyp1a1 mRNA. Knockout of Ido2 (Ido2-/-) and treatment with Ido2 inhibitor 1-methyl-D-tryptophan (D-1MT; 100 mg/kg, i.p.) attenuated CCl4-induced liver injury, with decreased induction of Ahr-mediated signaling. Administration of D-Kyn (100 mg/kg, i.p.) to Ido2-/- mice canceled the effect of Ido2 deficiency and exacerbated acute liver damage by CCl4 treatment. In addition, liver fibrosis induced by repeated CCl4 administration was suppressed in Ido2-/- mice. In conclusion, the action of Ido2 and Kyn in the liver may prevent severe hepatocellular damage and liver fibrosis.
Collapse
Affiliation(s)
- Masato Hoshi
- Department of Biochemical and Analytical Sciences, Aichi, 470-1192, Japan.
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Kentaro Nakamoto
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Nanaka Morita
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan
| | - Tatsuya Ando
- Research Promotion and Support Headquarters Fujita Health University Graduate School of Health Sciences, Aichi, 470-1192, Japan
| | - Chieko Tashita
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan; Department of Medical Technology, Gifu University of Medical Science, Gifu, 501-3892, Japan
| | | | - Kuniaki Saito
- Department of Disease Control and Prevention, Aichi, 470-1192, Japan; Advanced Diagnostic System Research Laboratory, Aichi, 470-1192, Japan
| |
Collapse
|
29
|
Yoshikawa N, Fumoto S, Yoshikawa K, Hu D, Okami K, Kato R, Nakashima M, Miyamoto H, Nishida K. Interaction of Lipoplex with Albumin Enhances Gene Expression in Hepatitis Mice. Pharmaceutics 2020; 12:E341. [PMID: 32290201 PMCID: PMC7238045 DOI: 10.3390/pharmaceutics12040341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding the in vivo fate of lipoplex, which is composed of cationic liposomes and DNA, is an important issue toward gene therapy. In disease conditions, the fate of lipoplex might change compared with the normal condition. Here, we examined the contribution of interaction with serum components to in vivo transfection using lipoplex in hepatitis mice. Prior to administration, lipoplex was incubated with serum or albumin. In the liver, the interaction with albumin enhanced gene expression in hepatitis mice, while in the lung, the interaction with serum or albumin enhanced it. In normal mice, the interaction with albumin did not enhance hepatic and pulmonary gene expression. Furthermore, hepatic and pulmonary gene expression levels of albumin-interacted lipoplex were correlated with serum transaminases in hepatitis mice. The albumin interaction increased the hepatic accumulation of lipoplex and serum tumor necrosis factor-α level. We suggest that the interaction with albumin enhanced the inflammation level after the administration of lipoplex in hepatitis mice. Consequently, the enhancement of the inflammation level might enhance the gene expression level. Information obtained in the current study will be valuable toward future clinical application of the lipoplex.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Keiko Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Kazuya Okami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Riku Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8501, Japan
| |
Collapse
|
30
|
Ustuner D, Kolac UK, Ustuner MC, Tanrikut C, Ozdemir Koroglu Z, Burukoglu Donmez D, Ozen H, Ozden H. Naringenin Ameliorate Carbon Tetrachloride-Induced Hepatic Damage Through Inhibition of Endoplasmic Reticulum Stress and Autophagy in Rats. J Med Food 2020; 23:1192-1200. [PMID: 32125927 DOI: 10.1089/jmf.2019.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis emerges upon exposure of liver to various chemicals and if not treated, it develops various diseases such as cirrhosis and cancer. Carbon tetrachloride (CCl4) is a widely used toxin in animal models to develop hepatic fibrosis. Accumulation of unfolded proteins in cells causes stress in the endoplasmic reticulum (ER) and various mechanisms are involved in the cell to reduce the damage caused by these unfolding proteins. The most well known of these is the unfolded protein response. Further, autophagy works to remove these proteins if the damage cannot be repaired and is permanent. In our study, we investigated the effects of naringenin (NRG), a flavanon abundant in citrus fruits, on ER stress and autophagy in CCl4-injured rat liver. The animals were given 0.2 mL/kg of CCl4 for 10 days and treatment group was administered 100 mg/kg of NRG for 14 days. Histopathological examination was performed to show liver damage and to determine the therapeutic properties of the active substance. Transmission electron microscopy (TEM) analysis was carried out to establish cell level damage and effect of treatment. In addition, levels of ER stress and autophagy markers of liver were measured. According to our findings, TEM demonstrated positive effect of NRG and histological examinations reported ameliorative effects. In addition, NRG reduced levels of ER stress markers and inhibited autophagy significantly compared to CCl4-treated group. As a result, NRG significantly reduced damage in hepatocytes and provided a significant amelioration.
Collapse
Affiliation(s)
- Derya Ustuner
- Department of Medical Laboratory, Vocational School of Health Services Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Umut Kerem Kolac
- Department of Medical Biology, Faculty of Medicine, Aydın Adnan Menderes University, Efeler, Turkey
| | - Mehmet Cengiz Ustuner
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cihan Tanrikut
- Department of Medical Biology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Zeynep Ozdemir Koroglu
- Department of Medical Laboratory, Vocational School of Health Services Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hulya Ozen
- Department of Biostatistics and Medical Informatics, and Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hilmi Ozden
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
31
|
Weaning Mice and Adult Mice Exhibit Differential Carbon Tetrachloride-Induced Acute Hepatotoxicity. Antioxidants (Basel) 2020; 9:antiox9030201. [PMID: 32121508 PMCID: PMC7139353 DOI: 10.3390/antiox9030201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Age is a risk factor for drug-induced liver injury (DILI). However, there is a limited understanding of pediatric DILI. Here, 2-week-old weaning and 8-week-old adult male ICR mice were intraperitoneally injected with CCl4 (0.1 mmol/kg equal to 15.4 mg/kg) to comparatively evaluate the time-dependent liver damage and cellular events. CCl4 significantly enhanced the serum alanine aminotransferase/aspartate aminotransferase levels and hepatic centrilobular necrosis in the weaning mice, whereas it induced mild liver injury in the adult mice. CCl4-treated weaning mice exhibited higher hepatic levels of pro-apoptotic proteins (Bax, cleaved caspase-3, -7, and -9), activated MAPKs (p-JNK and p-Erk), and endoplasmic reticulum stress indicators (ATF6 and CHOP) and lower hepatic anti-apoptotic Bcl-2 levels than the adult mice. The weaning mice exhibited enhanced basal hepatic glutathione (GSH) levels due to high glutamate cysteine ligase (GCL) and low anti-cysteine dioxygenase (CDO) enzyme levels. However, CCl4 markedly reduced the hepatic GSH levels only in the weaning mice. Furthermore, higher hepatic levels of oxidative stress-induced malondialdehyde, 4-hydroxynonenal, nitrotyrosine-protein adducts, and oxidized proteins were observed in CCl4-treated weaning mice than in CCl4-treated adult mice. The enhanced levels of hepatic cytochrome P450 (CYP) 2E1 and CYP3A, and decreased hepatic GSH S-transferase (GST)-π and GSH reductase (GR) levels in the weaning mice may contribute to their enhanced susceptibility to liver damage.
Collapse
|
32
|
Rabiei S, Rezaei M, Abasian Z, Khezri M, Nikoo M, Rafieian-Kopaei M, Anjomshoaa M. The protective effect of Liza klunzingeri protein hydrolysate on carbon tetrachloride-induced oxidative stress and toxicity in male rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1203-1210. [PMID: 31998464 PMCID: PMC6885399 DOI: 10.22038/ijbms.2019.33201.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective(s): Today, consumers are looking for food products providing health benefits in addition to meeting the basic nutritional needs of the body. This study aimed to evaluate the antioxidant and cytotoxic effects of Liza klunzingeri protein hydrolysate both in vivo and in vitro. Materials and Methods: Fish protein hydrolysate (FPH) was prepared using enzymatic hydrolysis with papain. In vitro antioxidant activity was assessed using five different antioxidant assays. The cytotoxic effect on 4T1 cell line was evaluated using the MTT assay. The distribution of the molecular weight of FPH was measured using HPLC. In the in vivo study, CCl4-exposed Wistar rats were orally treated with FPH (150, 300, and 600 mg/kg) or gallic acid (50 mg/kg) for 28 consecutive days. Results: Enzymatic hydrolysis gave hydrolysate rich in low molecular weight peptides (<1000 Da) with strong free radicals (ABTS, DPPH, and OH) scavenging activity and cytotoxicity. Treatment of CCl4-exposed rats with all doses of FPH significantly lowered serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). FPH at doses of 300 and 600 mg/kg significantly decreased lipid peroxidation and improved total antioxidant capacity in serum, liver, and kidney of the CCl4 exposed rats. All doses of L.klunzingeri protein hydrolysate reduced CCl4-induced nitric oxide production of the kidney. Liver histopathological damage caused by CCl4 also ameliorated with all doses of FPH. Conclusion: L. klunzingeri protein hydrolysate can be considered as a functional food to alleviate oxidative stress
Collapse
Affiliation(s)
- Sana Rabiei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Zahra Abasian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Khezri
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoaa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
33
|
Wang Z, Cao D, Li C, Min L, Wang G. Mediator MED23 regulates inflammatory responses and liver fibrosis. PLoS Biol 2019; 17:e3000563. [PMID: 31805036 PMCID: PMC6917294 DOI: 10.1371/journal.pbio.3000563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/17/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, often associated with cirrhosis and hepatocellular carcinomas, is characterized by hepatic damage, an inflammatory response, and hepatic stellate cell (HSC) activation, although the underlying mechanisms are largely unknown. Here, we show that the transcriptional Mediator complex subunit 23 (MED23) participates in the development of experimental liver fibrosis. Compared with their control littermates, mice with hepatic Med23 deletion exhibited aggravated carbon tetrachloride (CCl4)-induced liver fibrosis, with enhanced chemokine production and inflammatory infiltration as well as increased hepatocyte regeneration. Mechanistically, the orphan nuclear receptor RAR-related orphan receptor alpha (RORα) activates the expression of the liver fibrosis-related chemokines C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10), which is suppressed by the Mediator subunit MED23. We further found that the inhibition of Ccl5 and Cxcl10 expression by MED23 likely occurs because of G9a (also known as euchromatic histone-lysine N-methyltransferase 2 [EHMT2])-mediated H3K9 dimethylation of the target promoters. Collectively, these findings reveal hepatic MED23 as a key modulator of chemokine production and inflammatory responses and define the MED23-CCL5/CXCL10 axis as a potential target for clinical intervention in liver fibrosis.
Collapse
Affiliation(s)
- Zhichao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chonghui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lihua Min
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Animal Models of Hepatocellular Carcinoma Prevention. Cancers (Basel) 2019; 11:cancers11111792. [PMID: 31739536 PMCID: PMC6895981 DOI: 10.3390/cancers11111792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly disease and therapeutic efficacy in advanced HCC is limited. Since progression of chronic liver disease to HCC involves a long latency period of a few decades, a significant window of therapeutic opportunities exists for prevention of HCC and improve patient prognosis. Nonetheless, there has been no clinical advancement in instituting HCC chemopreventive strategies. Some of the major challenges are heterogenous genetic aberrations of HCC, significant modulation of tumor microenvironment and incomplete understanding of HCC tumorigenesis. To this end, animal models of HCC are valuable tools to evaluate biology of tumor initiation and progression with specific insight into molecular and genetic mechanisms involved. In this review, we describe various animal models of HCC that facilitate effective ways to study therapeutic prevention strategies that have translational potential to be evaluated in a clinical context.
Collapse
|
35
|
Wu Z, Liu Q, Wang L, Zheng M, Guan M, Zhang M, Zhao W, Wang C, Lu S, Cheng J, Leng S. The essential role of CYP2E1 in metabolism and hepatotoxicity of N,N-dimethylformamide using a novel Cyp2e1 knockout mouse model and a population study. Arch Toxicol 2019; 93:3169-3181. [PMID: 31501917 DOI: 10.1007/s00204-019-02567-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
N,N-Dimethylformamide (DMF) is a widespread contaminant of leather factories and their surrounding environment. There is a lack of direct in vivo evidence supporting CYP2E1 as a primary enzyme responsible for DMF metabolism and hepatotoxicity. In this study, a novel Cyp2e1 knockout (KO) mouse model was generated and used to assess whether DMF metabolism and hepatotoxicity is CYP2E1 dependent using an acute toxicity protocol with a single dose of 1500 mg DMF/kg. An epidemiological study in 698 DMF-exposed workers and 188 non-DMF-exposed controls was conducted to investigate the associations between functional polymorphisms of CYP2E1 (rs6413432/rs2031920) and DMF metabolite (N-methylcarbmoylated-hemoglobin [NMHb]). We successfully established Cyp2e1 KO mice with evidence from DNA sequence analysis, which showed 1-bp insertion at 65 bp (C) site of Cyp2e1 Exon 1. In addition, western blot and in vivo pharmacokinetic study also showed a complete absence of CYP2E1 protein and a 92% and 88% reduction in CYP2E1 activity among males and females, respectively. DMF metabolism as evidenced by increased blood NMHb, and hepatotoxicity as evidenced by elevated liver/body weight ratio, activity of liver enzymes and massive liver necrosis were detected in wild-type (WT) mice but were completely abrogated in KO mice, strongly supporting a CYP2E1-dependent pattern of DMF metabolism and hepatotoxicity. Moreover, variant allele of CYP2E1-rs6413432 was also significantly associated with higher NMHb levels in DMF-exposed workers (P = 0.045). The increase of glucose-regulated protein 94 detected in WT mice but not in KO mice suggested CYP2E1-dependent endoplasmic reticulum stress may be a key mechanism underlying DMF-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhijun Wu
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiang Liu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Lei Wang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Mingyue Guan
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Man Zhang
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chunmin Wang
- Department of Physical and Chemical Laboratory, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Songwen Lu
- Department of Environmental Health, Suzhou Center for Disease Control and Prevention, Jiangsu, 215004, China
| | - Juan Cheng
- The Toxicology Laboratory of National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Shuguang Leng
- School of Public Health, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
36
|
Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene 2019; 38:7035-7045. [PMID: 31409896 DOI: 10.1038/s41388-019-0942-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Metformin is a hypoglycaemic agent used to treat type 2 diabetes mellitus (DM2) patients, with a broad safety profile. Since previous epidemiological studies had shown that the incidence of hepatocellular carcinoma (HCC) decreased significantly in metformin treated DM2 patients, we hypothesised that intervention with metformin could reduce the risk of neoplastic transformation of hepatocytes. HCC is the most common primary liver malignancy and it generally originates in a background of liver fibrosis and cirrhosis. In the present study, we took advantage of a transgenic mouse (TG221) characterized by microRNA-221 overexpression, with cirrhotic liver background induced by chronic administration of carbon tetrachloride (CCl4). This mouse model develops fibrosis, cirrhosis and liver tumours that become visible in 100% of mice at 5-6 months of age. Our results demonstrated that metformin intervention improves liver function, inhibits hepatic stellate cell (HSC) activation, reduces liver fibrosis, depletes lipid accumulation in hepatocytes, halts progression to decompensated cirrhosis and abrogates development HCC in CCl4 challenged transgenic mouse model. The study establishes the rationale for investigating metformin in cirrhotic patients regardless of concomitant DM2 status.
Collapse
|
37
|
Park HS, Jo E, Han JH, Jung SH, Lee DH, Park I, Heo KS, Na M, Myung CS. Hepatoprotective effects of an Acer tegmentosum Maxim extract through antioxidant activity and the regulation of autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111912. [PMID: 31029758 DOI: 10.1016/j.jep.2019.111912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acer tegmentosum Maxim (AT), the East Asian stripe maple, is an herb used to treat liver disease and is approved as a functional food in Korea. AT protects against hepatic disorders, atopic dermatitis, and diabetes mellitus. AIM OF THE STUDY We explored the mechanism of the hepatoprotective effects of AT extract in in vitro and in vivo levels. MATERIALS AND METHODS AT extract from Acer tegmentosum Maxim was extracted by hot water. Hepatoprotective effects of AT extract were confirmed using carbon tetrachloride (CCl4)- or alcohol-induced mouse model, and H2O2- or alcohol-induced HepG2 (liver hepatocellular carcinoma cell line) cells by measuring GOT, GPT, TG, and MDA levels. Hematoxylin and eosin (H&E) staining was used to observe the pathological analysis. Cytotoxicity or protective effect of AT extract was confirmed using MTT assay in HepG2 cells. Antioxidant effect of AT extract was measured using DPPH or H2DCFDA assay. Mechanism study of antioxidant and autophagy was carried out using western blotting and immunofluorescence analysis. RESULTS AT extract increased the viability of HepG2 cells treated with H2O2 and ethanol, and protected the liver against damage induced by CCl4 and alcohol. The AT extract increased the levels of nuclear respiratory factor 2 (Nrf2) and heme oxygenase-1 (HO-1). The level of microtubule-associated protein light chain 3 (LC3)-Ⅱ, beclin-1, autophagy-related genes (Atg) such as Atg3 and Atg12-5 as markers of autophagy activation was also increased. Moreover, the AT extract increased activation of mitogen-activated protein kinase (MAPK), which regulated autophagy and HO-1. CONCLUSION Therefore, these results indicate that the AT extract has a hepatoprotective effect by increasing antioxidant activity and inducing autophagy.
Collapse
Affiliation(s)
- Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Eunji Jo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Sang-Hyuk Jung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Do-Hyung Lee
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - InWha Park
- Pharmacognosy, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea.
| | - MinKyun Na
- Pharmacognosy, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea; Institute of Drug Research & Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, 34134, Republic of Korea; Institute of Drug Research & Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
38
|
Li S, Zhou J, Xu S, Li J, Liu J, Lu Y, Shi J, Zhou S, Wu Q. Induction of Nrf2 pathway by Dendrobium nobile Lindl. alkaloids protects against carbon tetrachloride induced acute liver injury. Biomed Pharmacother 2019; 117:109073. [PMID: 31212129 DOI: 10.1016/j.biopha.2019.109073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/25/2019] [Accepted: 06/02/2019] [Indexed: 12/18/2022] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA), the active ingredients of Dendrobium, has been shown to possess anti-oxidative effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant signaling pathway plays a critical role in the cellular response to oxidative stress. Oxidative damage has been implicated in the mechanism of various hepatotoxins induced liver injury. The present study aimed to examine the protective effects of DNLA on CCl4-induced acute liver injury, and to explore the role of the Nrf2 pathway in the protective action of DNLA. Wild-type (WT) and Nrf2-knockout (Nrf2-/-) mice were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 μL/kg, ip). In WT mice, DNLA reduced CCl4 induced liver injury, as evidenced by the reduction in the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), attenuation of malondialdehyde (MDA) production, and improved ultrastructural morphology in hepatocytes. However, the protective effect was diminished in Nrf2-/- mice, indicating an essential role of Nrf2 in DNLA-mediated protection over CCl4 liver injury. Furthermore, it was found that DNLA enhanced Nrf2 expression and nuclear accumulation and increased the expression of Nrf2 regulated downstream proteins. These results demonstrate that DNLA protects mice from CCl4 induced liver injury, probably through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shiyue Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jinxin Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jin Li
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China.
| |
Collapse
|
39
|
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:203-221. [PMID: 30362100 PMCID: PMC6743736 DOI: 10.1007/978-3-319-98788-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.
Collapse
Affiliation(s)
- Stephanie Marshall
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claire Heit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
40
|
Tsay HC, Yuan Q, Balakrishnan A, Kaiser M, Möbus S, Kozdrowska E, Farid M, Tegtmeyer PK, Borst K, Vondran FWR, Kalinke U, Kispert A, Manns MP, Ott M, Sharma AD. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. J Hepatol 2019; 70:722-734. [PMID: 30582979 DOI: 10.1016/j.jhep.2018.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fibrosis, a cardinal feature of a dysfunctional liver, significantly contributes to the ever-increasing mortality due to end-stage chronic liver diseases. The crosstalk between hepatocytes and hepatic stellate cells (HSCs) plays a key role in the progression of fibrosis. Although ample efforts have been devoted to elucidate the functions of HSCs during liver fibrosis, the regulatory functions of hepatocytes remain elusive. METHODS Using an unbiased functional microRNA (miRNA) screening, we investigated the ability of hepatocytes to regulate fibrosis by fine-tuning gene expression via miRNA modulation. The in vivo functional analyses were performed by inhibiting miRNA in hepatocytes using adeno-associated virus in carbon-tetrachloride- and 3,5-di-diethoxycarbonyl-1,4-dihydrocollidine-induced liver fibrosis. RESULTS Blocking miRNA-221-3p function in hepatocytes during chronic liver injury facilitated recovery of the liver and faster resolution of the deposited extracellular matrix. Furthermore, we demonstrate that reduced secretion of C-C motif chemokine ligand 2, as a result of post-transcriptional regulation of GNAI2 (G protein alpha inhibiting activity polypeptide 2) by miRNA-221-3p, mitigates liver fibrosis. CONCLUSIONS Collectively, miRNA modulation in hepatocytes, an easy-to-target cell type in the liver, may serve as a potential therapeutic approach for liver fibrosis. LAY SUMMARY Liver fibrosis majorly contributes to mortality resulting from various liver diseases. We discovered a small RNA known as miRNA-221-3p, whose downregulation in hepatocytes results in reduced liver fibrosis. Thus, inhibition of miRNA-221-3p may serve as one of the therapeutic approaches for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Hsin-Chieh Tsay
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Marina Kaiser
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Emilia Kozdrowska
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marwa Farid
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Pia-Katharina Tegtmeyer
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Katharina Borst
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Regenerative Medicine and Experimental Surgery (RedMediES), Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Amar Deep Sharma
- Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
41
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
42
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
43
|
Guo F, Zheng K, Benedé-Ubieto R, Cubero FJ, Nevzorova YA. The Lieber-DeCarli Diet-A Flagship Model for Experimental Alcoholic Liver Disease. Alcohol Clin Exp Res 2018; 42:1828-1840. [DOI: 10.1111/acer.13840] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Feifei Guo
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Kang Zheng
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Raquel Benedé-Ubieto
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ORL; School of Medicine; Complutense University of Madrid; Madrid Spain
- 12 de Octubre Health Research Institute (imas12); Madrid Spain
| | - Yulia A. Nevzorova
- Department of Genetics, Physiology and Microbiology; Faculty of Biology; Complutense University of Madrid; Madrid Spain
- Department of Internal Medicine III; University Hospital RWTH Aachen; Aachen Germany
| |
Collapse
|
44
|
Hammad S, Othman A, Meyer C, Telfah A, Lambert J, Dewidar B, Werle J, Nwosu ZC, Mahli A, Dormann C, Gao Y, Gould K, Han M, Yuan X, Gogiashvili M, Hergenröder R, Hellerbrand C, Thomas M, Ebert MP, Amasheh S, Hengstler JG, Dooley S. Confounding influence of tamoxifen in mouse models of Cre recombinase-induced gene activity or modulation. Arch Toxicol 2018; 92:2549-2561. [PMID: 29974145 DOI: 10.1007/s00204-018-2254-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.
Collapse
Affiliation(s)
- Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, 83523, Qena, Egypt.
| | - Amnah Othman
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Christoph Meyer
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Ahmad Telfah
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Joerg Lambert
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Bedair Dewidar
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31527, Tanta, Egypt
| | - Julia Werle
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Zeribe Chike Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Abdo Mahli
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Christof Dormann
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yan Gao
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Kerry Gould
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Mei Han
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Xiaodong Yuan
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Mikheil Gogiashvili
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für analytische Wissenschaften, ISAS e.V., 44139 Dortmund, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Salah Amasheh
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Free University of Berlin, 14163, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 44139, Dortmund, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
45
|
Saijou E, Enomoto Y, Matsuda M, Yuet‐Yin Kok C, Akira S, Tanaka M, Miyajima A. Neutrophils alleviate fibrosis in the CCl 4-induced mouse chronic liver injury model. Hepatol Commun 2018; 2:703-717. [PMID: 29881822 PMCID: PMC5983199 DOI: 10.1002/hep4.1178] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022] Open
Abstract
Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1-deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4-induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1-deficient liver. Consistently, transplantation of Trib1-deficient bone marrow cells into wild-type mice alleviated CCl4-induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 (Cxcl1) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl4-induced fibrosis; infusion of wild-type neutrophils in CCl4-treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4-induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703-717).
Collapse
Affiliation(s)
- Eiko Saijou
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| | - Yutaka Enomoto
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| | - Michitaka Matsuda
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Cindy Yuet‐Yin Kok
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Shizuo Akira
- Immunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Minoru Tanaka
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
- Research InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan
| |
Collapse
|
46
|
Li SQ, Wang P, Wang DM, Lu HJ, Li RF, Duan LX, Zhu S, Wang SL, Zhang YY, Wang YL. Molecular mechanism for the influence of gender dimorphism on alcoholic liver injury in mice. Hum Exp Toxicol 2018; 38:65-81. [PMID: 29792338 DOI: 10.1177/0960327118777869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is known that women develop alcoholic liver injury more rapidly and have a lower alcohol toxic threshold than men. However, the detailed molecular mechanisms remain unclear. The precise mechanism responsible for the sex difference needs to be determined. Female and male mice were given ethanol by intragastric infusion every day for 4 weeks. The pathological changes were detected by hematoxylin-eosin, Sirius red, oil red O, periodic acid-Schiff, and Hochest33258 staining in the liver of female and male mice. The related gene and protein expression of hepatocytes stress, proliferation and apoptosis, glycogen synthesis, lipid metabolism, and hepatic fibrosis were also systematically analyzed in the female and male mice. Livers from ethanol-treated female mice had more serious hepatocyte necrosis, liver fibrosis ( P < 0.01), substantial micro/macrovesicular steatosis ( p < 0.01), glycogen consumption ( p < 0.05), and hepatocytes apoptosis ( p < 0.05) than ethanol-treated male mice. The expression of heat shock protein 27 (HSP27), HSP70, proliferating cell nuclear antigen, B-cell lymphoma/leukemia-2 (Bcl-2), and phosphorylated signal transducer and activators of transcription 3 (p-STAT3) was higher in ethanol-treated male mice than ethanol-treated female mice ( P < 0.05 or P < 0.01). But, the expression of Bax (Bcl-2-associated X protein), Caspase 3, CYP2E1 (cytochrome P4502E1), and transforming growth factor βl had the contrary results. Our study suggested that ethanol treatment induced more expression of HSP27 and HSP70, faster hepatocyte proliferation, higher level of glycogen, and interleukin-6 signaling pathway activation, but less hepatocyte apoptosis and CYP2E1 expression in male mice than female mice, which could be helpful to understand the molecular mechanism for the influence of sex difference on alcoholic liver injury.
Collapse
Affiliation(s)
- S-Q Li
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - P Wang
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - D-M Wang
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - H-J Lu
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - R-F Li
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - L-X Duan
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - S Zhu
- 2 Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - S-L Wang
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Y-Y Zhang
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Y-L Wang
- 1 The Molecular Medicine Key Laboratory of Liver Injury and Repair, Medical College, Henan University of Science and Technology, Luoyang, People's Republic of China.,3 Henan Bioengineering Research Center, Zhengzhou, People's Republic of China
| |
Collapse
|
47
|
Khodaei F, Ahmadi K, Kiyani H, Hashemitabar M, Rezaei M. Mitochondrial Effects of Teucrium Polium and Prosopis Farcta Extracts in Colorectal Cancer Cells. Asian Pac J Cancer Prev 2018; 19:103-109. [PMID: 29373899 PMCID: PMC5844602 DOI: 10.22034/apjcp.2018.19.1.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Teucrium Polium and Prosopis Farcta have been traditionally employed in cancer treatment. In this study we evaluated the effects of methanolic extracts of these two plants in HT-29 cells. Methods: IC50s of extracts were obtained via MTT assay and the levels of ROS production, cell death, collapse of mitochondrial membrane potential and Sirt3 enzyme activity were determined. Results: After 48 hours exposure, IC50s for Teucrium and Prosopis extracts were 3 and 2µg/ml, respectively. Extracts induced higher ROS production after 6 hours than after 12 hours. Mitochondrial membrane potential collapse and cell death rate were also increased; Teucrium caused greater cell death than Prosopis. Extracts from both plants increased Sirt3 activity in its normal form, but only Teucrium extract caused a significant increase in activity of Sirt3 enzyme isolated from cancer cells. Conclusion: Teucrium and Prosopis extracts exert anticancer activity via mitochondrial alterations, as exemplified by increased ROS levels, Sirt3 activity and cell death in HT-29 colorectal cancer cells.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran. ,
| | | | | | | | | |
Collapse
|
48
|
Neoboutonia melleri var velutina Prain: in vitro and in vivo hepatoprotective effects of the aqueous stem bark extract on acute hepatitis models. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:24. [PMID: 29357846 PMCID: PMC5778785 DOI: 10.1186/s12906-018-2091-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatitis is a liver inflammation caused by different agents and remains a public health problem worldwide. Medicinal plants are an important source of new molecules being considered for treatment of this disease. Our work aims at evaluating the hepatoprotective properties of Neoboutonia velutina, a Cameroonian medicinal plant. METHODS The aqueous extract has been prepared using phytochemical methods. HepG2 cells were used to assess anti-inflammatory properties of the extract at different concentrations. Acute hepatitis models (Carbon tetrachloride and Concanavalin A) were performed in mice receiving or not receiving, different extract doses by gavage. Liver injury was assessed using histology, transaminases and pro-inflammatory markers. Extract antioxidant and radical scavenging capacities were evaluated. RESULTS The extract led to a significant decrease in pro-inflammatory cytokine expression in vitro and to a remarkable protection of mice from carbon tetrachloride-induced liver injury, as shown by a significant decrease in dose-dependent transaminases level. Upon extract treatment, inflammatory markers were significantly decreased and liver injuries were limited as well. In the Concanavalin A model, the extract displayed weak effects. CONCLUSIONS Taking into account underlying mechanisms in both hepatitis models, we demonstrate the extract's radical scavenging capacity. Neoboutonia velutina displays a potent hepatoprotective effect mediated through radical scavenging properties.
Collapse
|
49
|
Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018; 24:1502-1517. [PMID: 29637855 PMCID: PMC6053342 DOI: 10.2174/1381612824666180410091511] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022]
Abstract
Alcohol consumption causes liver diseases, designated as Alcoholic Liver Disease (ALD). Because alcohol is detoxified by alcohol dehydrogenase (ADH), a major ethanol metabolism system, the development of ALD was initially believed to be due to malnutrition caused by alcohol metabolism in liver. The discovery of the microsomal ethanol oxidizing system (MEOS) changed this dogma. Cytochrome P450 enzymes (CYP) constitute the major components of MEOS. Cytochrome P450 2E1 (CYP2E1) in MEOS is one of the major ROS generators in liver and is considered to be contributive to ALD. Our labs have been studying the relationship between CYP2E1 and ALD for many years. Recently, we found that human CYP2A6 and its mouse analog CYP2A5 are also induced by alcohol. In mice, the alcohol induction of CYP2A5 is CYP2E1-dependent. Unlike CYP2E1, CYP2A5 protects against the development of ALD. The relationship of CYP2E1, CYP2A5, and ALD is a major focus of this review.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University
- Center of Excellence for Inflammation, Infectious Disease and Immunity, East Tennessee State University
| | - Arthur I. Cederbaum
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
50
|
Xu J, Ma H, Liang S, Sun M, Karin G, Koyama Y, Hu R, Quehenberger O, Davidson NO, Dennis EA, Kisseleva T, Brenner DA. The role of human cytochrome P450 2E1 in liver inflammation and fibrosis. Hepatol Commun 2017; 1:1043-1057. [PMID: 29404441 PMCID: PMC5721400 DOI: 10.1002/hep4.1115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/22/2017] [Accepted: 09/01/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human CYP2E1 gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries. After intragastric alcohol feeding, CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation, fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipidomics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins support these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057).
Collapse
Affiliation(s)
- Jun Xu
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Hsiao‐Yen Ma
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Shuang Liang
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Mengxi Sun
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Gabriel Karin
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Yukinori Koyama
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Ronglin Hu
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Oswald Quehenberger
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of PharmacologyUniversity of California San DiegoLa JollaCA
| | | | - Edward A. Dennis
- Department of PharmacologyUniversity of California San DiegoLa JollaCA
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCA
| | | | - David A. Brenner
- Department of MedicineUniversity of California San DiegoLa JollaCA
| |
Collapse
|