1
|
Liu J, Liu L, Zeng S, Meng X, Lei N, Yang H, Li R, Mu X, Guo X. Inhibition of EV71 replication by an interferon-stimulated gene product L3HYPDH. Virus Res 2024; 342:199336. [PMID: 38342315 PMCID: PMC10875296 DOI: 10.1016/j.virusres.2024.199336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Enterovirus 71 (EV71) is the common causative agent of hand-foot-mouth disease (HFMD). Despite evidence in mice model suggested that the interferon (IFN) signaling pathways play a role in defending against this virus, knowledge on the IFN-mediated antiviral response is still limited. Here we identified an IFN-stimulated gene (ISG) called L3HYPDH, whose expression inhibits EV71 replication. Mapping assay indicated that amino acids 61-120 and 295-354 are critical for its optimal antiviral activity. Mechanismly, L3HYPDH specifically inhibits protein translation mediated by EV71 internal ribosome entry site (IRES). Our data thus uncovered a new mechanism utilized by the host cell to restrict EV71 replication.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Logen Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Shinuan Zeng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou 514031, China
| | - Nanfeng Lei
- Meizhou People's Hospital, Meizhou 514031, China
| | - Hai Yang
- Meizhou People's Hospital, Meizhou 514031, China
| | - Runcai Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China; Meizhou People's Hospital, Meizhou 514031, China; Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou 514031, China.
| |
Collapse
|
2
|
Brown ZP, Abaeva IS, De S, Hellen CUT, Pestova TV, Frank J. Molecular architecture of 40S translation initiation complexes on the hepatitis C virus IRES. EMBO J 2022; 41:e110581. [PMID: 35822879 DOI: 10.15252/embj.2022110581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus mRNA contains an internal ribosome entry site (IRES) that mediates end-independent translation initiation, requiring a subset of eukaryotic initiation factors (eIFs). Biochemical studies revealed that direct binding of the IRES to the 40S ribosomal subunit places the initiation codon into the P site, where it base pairs with eIF2-bound Met-tRNAiMet forming a 48S initiation complex. Subsequently, eIF5 and eIF5B mediate subunit joining, yielding an elongation-competent 80S ribosome. Initiation can also proceed without eIF2, in which case Met-tRNAiMet is recruited directly by eIF5B. However, the structures of initiation complexes assembled on the HCV IRES, the transitions between different states, and the accompanying conformational changes have remained unknown. To fill these gaps, we now obtained cryo-EM structures of IRES initiation complexes, at resolutions up to 3.5 Å, that cover all major stages from the initial ribosomal association, through eIF2-containing 48S initiation complexes, to eIF5B-containing complexes immediately prior to subunit joining. These structures provide insights into the dynamic network of 40S/IRES contacts, highlight the role of IRES domain II, and reveal conformational changes that occur during the transition from eIF2- to eIF5B-containing 48S complexes and prepare them for subunit joining.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Irina S Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Fadl N, Salem TZ. Hepatitis C genotype 4: A report on resistance-associated substitutions in NS3, NS5A, and NS5B genes. Rev Med Virol 2020; 30:e2120. [PMID: 32478480 DOI: 10.1002/rmv.2120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
AUTHOR CONTRIBUTION FN performed the literature review and wrote the manuscript; STZ coauthored, edited, and reviewed the manuscript. ABSTRACT Treatment response in Hepatitis C virus (HCV) has generated varied effects in patients. Recently, nonresponsive and relapse patients related to host and genotype variabilities have been reported in clinical trials. However, these trials included minimal sample sizes of patients with genotype 4, the most prevalent genotype in Egypt and the Middle East, compared with genotypes 1 and 2. The genetic variabilities that have been detected within the HCV genes, especially the ones associated with genotype 4, and are linked to treatment response, will be the focus of this review with emphasis on direct acting antiviral agents. In addition, the major studies and clinical trials performed globally and their inclusivity of genotype 4 are reported. This review also delineates future study areas and missing data that need further investigation when it comes to genotype 4.
Collapse
Affiliation(s)
- Nahla Fadl
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Tamer Z Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Microbial Genetics, AGERI, ARC, Giza, Egypt
| |
Collapse
|
4
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:ijms21041479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
|
5
|
Koirala D, Lewicka A, Koldobskaya Y, Huang H, Piccirilli JA. Synthetic Antibody Binding to a Preorganized RNA Domain of Hepatitis C Virus Internal Ribosome Entry Site Inhibits Translation. ACS Chem Biol 2020; 15:205-216. [PMID: 31765566 DOI: 10.1021/acschembio.9b00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Structured RNA elements within the internal ribosome entry site (IRES) of hepatitis C virus (HCV) genome hijack host cell machinery for translation initiation through a cap-independent mechanism. Here, using a phage display selection, we obtained two antibody fragments (Fabs), HCV2 and HCV3, against HCV IRES that bind the RNA with dissociation constants of 32 ± 7 nM and 37 ± 8 nM respectively, specifically recognizing the so-called junction IIIabc (JIIIabc). We used these Fabs as crystallization chaperones and determined the high-resolution crystal structures of JIIIabc-HCV2 and -HCV3 complexes at 1.81 Å and 2.75 Å resolution respectively, revealing an antiparallel four-way junction with the IIIa and IIIc subdomains brought together through tertiary interactions. The RNA conformation observed in the structures supports the structural model for this region derived from cryo-EM data for the HCV IRES-40S ribosome complex, suggesting that the tertiary fold of the RNA preorganizes the domain for interactions with the 40S ribosome. Strikingly, both Fabs and the ribosomal protein eS27 not only interact with a common subset of nucleotides within the JIIIabc but also use physiochemically similar sets of protein residues to do so, suggesting that the RNA surface is well-suited for interactions with proteins, perhaps analogous to the "hot spot" concept elaborated for protein-protein interactions. Using a rabbit reticulocyte lysate-based translation assay with a bicistronic reporter construct, we further demonstrated that Fabs HCV2 and HCV3 specifically inhibit the HCV IRES-directed translation, implicating disruption of the JIIIabc-ribosome interaction as a potential therapeutic strategy against HCV.
Collapse
Affiliation(s)
- Deepak Koirala
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna Lewicka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yelena Koldobskaya
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Hao Huang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Lattimer J, Stewart H, Locker N, Tuplin A, Stonehouse NJ, Harris M. Structure-function analysis of the equine hepacivirus 5' untranslated region highlights the conservation of translational mechanisms across the hepaciviruses. J Gen Virol 2019; 100:1501-1514. [PMID: 31490115 PMCID: PMC7615701 DOI: 10.1099/jgv.0.001316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5' untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5'UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5'UTR. The secondary structure was determined using selective 2' hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem-loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5'UTR, allowing us to investigate the roles of the stem-loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.
Collapse
Affiliation(s)
- Joseph Lattimer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
Cotter TG, Jensen DM. Glecaprevir/pibrentasvir for the treatment of chronic hepatitis C: design, development, and place in therapy. Drug Des Devel Ther 2019; 13:2565-2577. [PMID: 31534310 PMCID: PMC6681154 DOI: 10.2147/dddt.s172512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Direct-acting antiviral (DAA) therapy has changed the landscape of hepatitis C virus (HCV) management and has changed the focus to the possibility of HCV elimination in the near future. Glecaprevir, an NS3/4A protease inhibitor, and pibrentasvir, an HCV NS5A inhibitor, have addressed many of the existing shortcomings in the DAA therapy spectrum. This combination has proven to be a highly efficacious pan-genotypic DAA with a high barrier to resistance as a once-daily, all-oral medication. This review explores the design and development of glecaprevir and pibrentasvir, its place in current HCV management in the midst of a myriad of DAA therapy options, and also remaining challenges.
Collapse
Affiliation(s)
- Thomas G Cotter
- Center for Liver Diseases, The University of Chicago Medicine, Chicago, IL, USA
| | - Donald M Jensen
- Section of Hepatology, RUSH University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
9
|
The 5' Untranslated Region of Human Bocavirus Capsid Transcripts Regulates Viral mRNA Biogenesis and Alternative Translation. J Virol 2018; 92:JVI.00443-18. [PMID: 30111560 PMCID: PMC6189511 DOI: 10.1128/jvi.00443-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Alternative translation of HBoV1 capsid mRNAs is vital for the viral life cycle, as capsid proteins perform essential functions in genome packaging, assembly, and antigenicity. The 5′ untranslated regions (UTRs) of capsid mRNAs are generated by alternative splicing, and they contain different exons. Our study shows that the 5′ UTR not only modulates mRNA abundance but also regulates capsid expression. Two upstream ATGs (uATGs) that were upstream of the capsid translation initiation site in the 5′ UTR were found to affect viral capsid mRNA polyadenylation, alternative translation, and progeny virus production. The results reveal that uATGs play an important role in the viral life cycle and represent a new layer to regulate HBoV1 RNA processing, which could be a target for gene therapy. The capsid mRNA transcripts of human bocavirus 1 (HBoV1) can be generated by alternative splicing from the mRNA precursor transcribed from the P5 promoter. However, the alternative translation regulation mechanism of capsid mRNA transcripts is largely unknown. Here we report that the polycistronic capsid mRNA transcripts encode VP1, VP2, and VP3 in vitro and in vivo. The 5′ untranslated regions (UTRs) of capsid mRNA transcripts, which consist of exons, affected not only the abundance of mRNA but also the translation pattern of capsid proteins. Further study showed that exons 2 and 3 were critical for the abundance of mRNA, while exon 4 regulated capsid translation. Alternative translation of capsid mRNA involved a leaky scan mechanism. Mutating the upstream ATGs (uATGs) located in exon 4 resulted in more mRNA transcripts polyadenylated at the proximal polyadenylation [(pA)p] site, leading to increased capsid mRNA transcripts. Moreover, uATG mutations induced more VP1 expression, while VP3 expression was decreased, which resulted in less progeny virus production. Our data show that the 5′ UTR of HBoV1 plays a critical role in the modulation of mRNA abundance, alternative RNA processing, alternative translation, and progeny virus production. IMPORTANCE Alternative translation of HBoV1 capsid mRNAs is vital for the viral life cycle, as capsid proteins perform essential functions in genome packaging, assembly, and antigenicity. The 5′ untranslated regions (UTRs) of capsid mRNAs are generated by alternative splicing, and they contain different exons. Our study shows that the 5′ UTR not only modulates mRNA abundance but also regulates capsid expression. Two upstream ATGs (uATGs) that were upstream of the capsid translation initiation site in the 5′ UTR were found to affect viral capsid mRNA polyadenylation, alternative translation, and progeny virus production. The results reveal that uATGs play an important role in the viral life cycle and represent a new layer to regulate HBoV1 RNA processing, which could be a target for gene therapy.
Collapse
|
10
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
11
|
Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1). Virology 2018; 518:253-263. [PMID: 29549787 DOI: 10.1016/j.virol.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction.
Collapse
|
12
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
14
|
Thai KM, Dong QH, Nguyen TTL, Le DP, Le MT, Tran TD. Computational Approaches for the Discovery of Novel Hepatitis C Virus NS3/4A and NS5B Inhibitors. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonstructural 5B (NS5B) polymerase and Nonstructural 3/4A (NS3/4A) protease have proven to be promising targets for the development of anti-HCV (Hepatitis C Virus) agents. The NS5B polymerase is of paramount importance in HCV viral replication; therefore, employing NS5B inhibitors was considered an effective way for the treatment of HCV. Identifying inhibitors against NS3/4A serine protease represents another attractive approach applied in anti-HCV drug discovery, which is evidenced by its crucial role of in the biogenesis of the viral replication activity. In this chapter, many different computational approaches including Quantitative Structure-Activity Relationship (QSAR) and virtual screening in anti-HCV drug discovery were considered and discussed in detail. Virtual Screening (VS) techniques, including ligand-based and structure-based, and QSAR have been utilized for the discovery of NS5B inhibitors. Moreover, using various in silico protocols and workflows, a number of studies have been conducted with an aim of identifying potential NS3/4A blockage agents.
Collapse
Affiliation(s)
| | | | | | - Duy-Phong Le
- University of Medicine and Pharmacy at HCMC, Vietnam
| | - Minh-Tri Le
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | |
Collapse
|
15
|
Miyamura T, Lemon SM, Walker CM, Wakita T. The HCV Replicase Complex and Viral RNA Synthesis. HEPATITIS C VIRUS I 2016. [PMCID: PMC7122888 DOI: 10.1007/978-4-431-56098-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Replication of hepatitis C virus (HCV) is tightly linked to membrane alterations designated the membranous web, harboring the viral replicase complex. In this chapter we describe the morphology and 3D architecture of the HCV-induced replication organelles, mainly consisting of double membrane vesicles, which are generated by a concerted action of the nonstructural proteins NS3 to NS5B. Recent studies have furthermore identified a number of host cell proteins and lipids contributing to the biogenesis of the membranous web, which are discussed in this chapter. Viral RNA synthesis is tightly associated with these membrane alterations and mainly driven by the viral RNA dependent RNA polymerase NS5B. We summarize our current knowledge of the structure and function of NS5B, the role of cis-acting replication elements at the termini of the genome in regulating RNA synthesis and the contribution of additional viral and host factors to viral RNA synthesis, which is still ill defined.
Collapse
Affiliation(s)
- Tatsuo Miyamura
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| | - Stanley M. Lemon
- Departments of Medicine and Microbiology & Immunology , The University of North Carolina, Chapel Hill, North Carolina USA
| | - Christopher M. Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio USA
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Tokyo Japan
| |
Collapse
|
16
|
Chadha S, Sharma U, Chaudhary A, Prakash C, Gupta S, Venkatesh S. Molecular epidemiological analysis of three hepatitis C virus outbreaks in Jammu and Kashmir State, India. J Med Microbiol 2016; 65:804-813. [PMID: 27357565 DOI: 10.1099/jmm.0.000284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Outbreaks of hepatitis C virus (HCV) infection are associated with unsafe injection practices, intravenous drug abuse and other exposure to blood and body fluids. We report here three outbreaks of HCV infection from Jammu and Kashmir (J&K) State, India, which occurred over a period of 3 years and in which molecular epidemiological investigations identified a presumptive common source of infection, most likely a single healthcare venue. Representative blood samples collected from cases of hepatitis C were sent to the National Centre for Disease Control (NCDC) for molecular characterization. These samples were positive by HCV ELISA. Subsequently, specimens were also tested for the presence of HCV RNA by RT-PCR. Sequencing was carried out for all positive samples. A total of 812 cases were laboratory confirmed by HCV ELISA; a total of 115 samples were sent to the NCDC for RT-PCR, and 77 were positive. Subtype 3a of HCV was found in all samples from Anantnag (February 2013); and for subtype 3b, in all samples from Srinagar (May 2015). Subtypes 3a and 3g were identified from two samples from the Kulgam outbreak (July 2014). A detailed epidemiological investigation should be conducted whenever a cluster of HCV cases is revealed, as this potentially allows for the identification of larger outbreaks. Epidemiological investigations of outbreaks should be further supported by inclusion of molecular tests. Efforts to limit therapeutic injections to only those cases having strong medical/surgical indications and to restrict the use of non-sterile needles are essential to prevent transmission of HCV.
Collapse
Affiliation(s)
- Sanjim Chadha
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| | - Uma Sharma
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| | - Artee Chaudhary
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| | - Charu Prakash
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| | - Sunil Gupta
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| | - S Venkatesh
- Division of Biotechnology and Molecular Diagnostics, National Centre for Disease Control, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, 22-Sham Nath Marg, Delhi 110054, India
| |
Collapse
|
17
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
18
|
Khorosheva EM, Karymov MA, Selck DA, Ismagilov RF. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Res 2016; 44:e10. [PMID: 26358811 PMCID: PMC4737171 DOI: 10.1093/nar/gkv877] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
In this paper, we asked if it is possible to identify the best primers and reaction conditions based on improvements in reaction speed when optimizing isothermal reactions. We used digital single-molecule, real-time analyses of both speed and efficiency of isothermal amplification reactions, which revealed that improvements in the speed of isothermal amplification reactions did not always correlate with improvements in digital efficiency (the fraction of molecules that amplify) or with analytical sensitivity. However, we observed that the speeds of amplification for single-molecule (in a digital device) and multi-molecule (e.g. in a PCR well plate) formats always correlated for the same conditions. Also, digital efficiency correlated with the analytical sensitivity of the same reaction performed in a multi-molecule format. Our finding was supported experimentally with examples of primer design, the use or exclusion of loop primers in different combinations, and the use of different enzyme mixtures in one-step reverse-transcription loop-mediated amplification (RT-LAMP). Our results show that measuring the digital efficiency of amplification of single-template molecules allows quick, reliable comparisons of the analytical sensitivity of reactions under any two tested conditions, independent of the speeds of the isothermal amplification reactions.
Collapse
Affiliation(s)
- Eugenia M Khorosheva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Mikhail A Karymov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - David A Selck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Lozano G, Fernandez N, Martinez-Salas E. Modeling Three-Dimensional Structural Motifs of Viral IRES. J Mol Biol 2016; 428:767-776. [PMID: 26778619 DOI: 10.1016/j.jmb.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/23/2023]
Abstract
RNA virus genomes are reservoirs of a wide diversity of RNA structural elements. In particular, specific regions of the viral genome have evolved to adopt specialized three-dimensional (3D) structures, which can act in concert with host factors and/or viral proteins to recruit the translation machinery on viral RNA using a mechanism that is independent on the 5' end. This strategy relies on cis-acting RNA sequences designated as internal ribosome entry site (IRES) elements. IRES elements that are found in the genome of different groups of RNA viruses perform the same function despite differing in primary sequence and secondary RNA structure and host factor requirement to recruit the translation machinery internally. Evolutionarily conserved motifs tend to preserve sequences in each group of RNA viruses impacting on RNA structure and RNA-protein interactions important for IRES function. However, due to the lack of sequence homology among genetically distant IRES elements, accurate modeling of 3D IRES structure is currently a challenging task. In addition, as a universal RNA motif unique to IRES elements has not been found, a better understanding of viral IRES structural motifs could greatly assist in the detection of IRES-like motifs hidden in genome sequences. The focus of this review is to describe recent advances in modeling viral IRES tertiary structural motifs and also novel approaches to detect sequences potentially folding as IRES-like motifs.
Collapse
Affiliation(s)
- Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Noemi Fernandez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
20
|
Angulo J, Ulryck N, Deforges J, Chamond N, Lopez-Lastra M, Masquida B, Sargueil B. LOOP IIId of the HCV IRES is essential for the structural rearrangement of the 40S-HCV IRES complex. Nucleic Acids Res 2015; 44:1309-25. [PMID: 26626152 PMCID: PMC4756818 DOI: 10.1093/nar/gkv1325] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
As obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets. In this study, we monitored the 40S ribosomal subunit and the viral RNA structural rearrangement induced upon the formation of the binary complex. We further took advantage of an IRES viral mutant mRNA deficient for translation to identify the interactions necessary to promote translation. Using a combination of structure probing in solution and molecular modeling we establish a whole atom model which appears to be very similar to the one obtained recently by cryoEM. Our model brings new information on the complex, and most importantly reveals some structural rearrangement within the ribosome. This study suggests that the formation of a ‘kissing complex’ between the viral RNA and the 18S ribosomal RNA locks the 40S ribosomal subunit in a conformation proficient for translation.
Collapse
Affiliation(s)
- Jenniffer Angulo
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Nathalie Ulryck
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Jules Deforges
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Nathalie Chamond
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | - Marcelo Lopez-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Benoît Masquida
- UMR 7156 Génétique Moléculaire Génomique Microbiologie, CNRS - Université de Strasbourg, Strasbourg, France
| | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l'Observatoire, 75270 Paris Cedex 06, France
| |
Collapse
|
21
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Martínez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R. Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res 2015; 206:62-73. [PMID: 25617758 DOI: 10.1016/j.virusres.2015.01.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
Internal ribosome entry site (IRES) elements were discovered in picornaviruses. These elements are cis-acting RNA sequences that adopt diverse three-dimensional structures and recruit the translation machinery using a 5' end-independent mechanism assisted by a subset of translation initiation factors and various RNA binding proteins termed IRES transacting factors (ITAFs). Many of these factors suffer important modifications during infection including cleavage by picornavirus proteases, changes in the phosphorylation level and/or redistribution of the protein from the nuclear to the cytoplasm compartment. Picornavirus IRES are amongst the most potent elements described so far. However, given their large diversity and complexity, the mechanistic basis of its mode of action is not yet fully understood. This review is focused to describe recent advances on the studies of RNA structure and RNA-protein interactions modulating picornavirus IRES activity.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
23
|
García-Sacristán A, Moreno M, Ariza-Mateos A, López-Camacho E, Jáudenes RM, Vázquez L, Gómez J, Martín-Gago JÁ, Briones C. A magnesium-induced RNA conformational switch at the internal ribosome entry site of hepatitis C virus genome visualized by atomic force microscopy. Nucleic Acids Res 2014; 43:565-80. [PMID: 25510496 PMCID: PMC4288189 DOI: 10.1093/nar/gku1299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 5' untranslated region of hepatitis C virus (HCV) genomic RNA contains an internal ribosome entry site (IRES) element, composed of domains II-IV, which is required for cap-independent translation initiation. Little information on the 3D structure of the whole functional HCV IRES is still available. Here, we use atomic force microscopy to visualize the HCV IRES conformation in its natural sequence context, which includes the upstream domain I and the essential, downstream domains V and VI. The 574 nt-long molecule analyzed underwent an unexpected, Mg(2+)-induced switch between two alternative conformations: from 'open', elongated morphologies at 0-2 mM Mg(2+) concentration to a 'closed', comma-shaped conformation at 4-6 mM Mg(2+). This sharp transition, confirmed by gel-shift analysis and partial RNase T1 cleavage, was hindered by the microRNA miR-122. The comma-shaped IRES-574 molecules visualized at 4-6 mM Mg(2+) in the absence of miR-122 showed two arms. Our data support that the first arm would contain domain III, while the second one would be composed of domains (I-II)+(V-VI) thanks to a long-range RNA interaction between the I-II spacer and the basal region of domain VI. This reinforces the previously described structural continuity between the HCV IRES and its flanking domains I, V and VI.
Collapse
Affiliation(s)
- Ana García-Sacristán
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| | - Miguel Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Ascensión Ariza-Mateos
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - Elena López-Camacho
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Rosa M Jáudenes
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Jordi Gómez
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, Granada 18016, Spain
| | - José Ángel Martín-Gago
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid 28049, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid 28850, Spain Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Spain
| |
Collapse
|
24
|
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Although highly potent direct-acting antiviral drugs to treat chronic hepatitis C have been approved recently, owing to their high costs and limited availability and a large number of undiagnosed infections, the burden of disease is expected to rise in the next few years. In addition, HCV is an excellent paradigm for understanding the tight link between a pathogen and host cell pathways, most notably lipid metabolism. HCV extensively remodels intracellular membranes to establish its cytoplasmic replication factory and also usurps components of the intercellular lipid transport system for production of infectious virus particles. Here, we review the molecular mechanisms of viral replicase function, cellular pathways employed during HCV replication factory biogenesis, and viral, as well as cellular, determinants of progeny virus production.
Collapse
|
25
|
Khawaja A, Vopalensky V, Pospisek M. Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:211-24. [PMID: 25352252 PMCID: PMC4361049 DOI: 10.1002/wrna.1268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022]
Abstract
Translation initiation in the hepatitis C virus (HCV) occurs through a cap-independent mechanism that involves an internal ribosome entry site (IRES) capable of interacting with and utilizing the eukaryotic translational machinery. In this review, we focus on the structural configuration of the different HCV IRES domains and the impact of IRES primary sequence variations on secondary structure conservation and function. In some cases, multiple mutations, even those scattered across different domains, led to restoration of the translational activity of the HCV IRES, although the individual occurrences of these mutations were found to be deleterious. We propose that such observation may be attributed to probable long-range inter- and/or intra-domain functional interactions. The precise functioning of the HCV IRES requires the specific interaction of its domains with ribosomal subunits and a subset of eukaryotic translation initiation factors (eIFs). The structural conformation, sequence preservation and variability, and translational machinery association with the HCV IRES regions are also thoroughly discussed, along with other factors that can affect and influence the formation of translation initiation complexes. WIREs RNA 2015, 6:211–224. doi: 10.1002/wrna.1268
Collapse
Affiliation(s)
- Anas Khawaja
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | | | | |
Collapse
|
26
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
27
|
El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: an overview. World J Gastroenterol 2014; 20:7555-69. [PMID: 24976696 PMCID: PMC4069287 DOI: 10.3748/wjg.v20.i24.7555] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV is able to evade host defense mechanisms, including both innate and acquired immune responses, to establish persistent infection, which results in a broad spectrum of pathogenicity, such as lipid and glucose metabolism disorders and hepatocellular carcinoma development. The HCV genome is characterized by a high degree of genetic diversity, which can be associated with viral sensitivity or resistance (reflected by different virological responses) to interferon (IFN)-based therapy. In this regard, it is of importance to note that polymorphisms in certain HCV genomic regions have shown a close correlation with treatment outcome. In particular, among the HCV proteins, the core and nonstructural proteins (NS) 5A have been extensively studied for their correlation with responses to IFN-based treatment. This review aims to cover updated information on the impact of major HCV genetic factors, including HCV genotype, mutations in amino acids 70 and 91 of the core protein and sequence heterogeneity in the IFN sensitivity-determining region and IFN/ribavirin resistance-determining region of NS5A, on virological responses to IFN-based therapy.
Collapse
|
28
|
Measurement of the change in twist at a helical junction in RNA using the orientation dependence of FRET. Biophys J 2014; 105:2175-81. [PMID: 24209863 DOI: 10.1016/j.bpj.2013.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Indocarbocyanine fluorophores attached via the 5' terminus of double-stranded nucleic acids have a strong propensity to stack onto the terminal basepair. We previously demonstrated that the efficiency of fluorescence resonance energy transfer between cyanine 3 and 5 terminally attached to duplex species exhibits a pronounced modulation with helix length. This results from a systematic variation in the orientation parameter κ(2) as the relative rotation of the fluorophore transition moments changes due to the helical geometry. Analysis of such profiles provides a rich source of orientational information. In this work, we applied this methodology to the structure of a three-way helical junction that plays an important role in the hepatitis C virus internal ribosome entry site. By comparing matched pairs of duplex and junction species, we were able to measure the change in rotation at the junction. The data reveal a 29.5° overwinding and a small axial extension. This shows the power of this approach for measuring orientational information in biologically important RNA junctions.
Collapse
|
29
|
Gao M, Duan H, Liu J, Zhang H, Wang X, Zhu M, Guo J, Zhao Z, Meng L, Peng Y. The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins. Antiviral Res 2014; 106:80-5. [PMID: 24680956 DOI: 10.1016/j.antiviral.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/16/2014] [Accepted: 03/19/2014] [Indexed: 12/17/2022]
Abstract
The activation of ERK and p38 signal cascade in host cells has been demonstrated to be essential for picornavirus enterovirus 71 (EV71) replication and up-regulation of virus-induced cyclooxygenase-2 (COX-2)/prostaglandins E2 (PGE2) expression. The aim of this study was to examine the effects of sorafenib, a clinically approved anti-cancer multi-targeted kinase inhibitor, on the propagation and pathogenesis of EV71, with a view to its possible mechanism and potential use in the design of therapy regimes for Hand foot and mouth disease (HFMD) patients with life threatening neurological complications. In this study, non-toxic concentrations of sorafenib were shown to inhibit the yield of infectious progeny EV71 (clinical BC08 strain) by about 90% in three different cell types. A similar inhibitory effect of sorafenib was observed on the synthesis of both viral genomic RNA and the VP1 protein. Interestingly, sorafenib exerted obvious inhibition of the EV71 internal ribosomal entry site (IRES)-mediated translation, the first step in picornavirus replication, by linking it to a firefly luciferase reporter gene. Sorafenib was also able to prevent both EV71-induced CPE and the activation of ERK and p38, which contributes to up-regulation COX-2/PGE2 expression induced by the virus. Overall, this study shows that sorafenib strongly inhibits EV71 replication at least in part by regulating viral IRES-dependent translation of viral proteins, indicating a novel potential strategy for the treatment of HFMD patients with severe neurological complications. To our knowledge, this is the first report that investigates the mechanism by which sorafenib inhibits EV71 replication.
Collapse
Affiliation(s)
- Meng Gao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Hao Duan
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jing Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Hao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xin Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Meng Zhu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jitao Guo
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Zhenlong Zhao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao SAR 999078, People's Republic of China
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China.
| |
Collapse
|
30
|
Inhibition of hepatitis C virus in chimeric mice by short synthetic hairpin RNAs: sequence analysis of surviving virus shows added selective pressure of combination therapy. J Virol 2014; 88:4647-56. [PMID: 24478422 DOI: 10.1128/jvi.00105-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63-66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.
Collapse
|
31
|
Stewart H, Walter C, Jones D, Lyons S, Simmonds P, Harris M. The non-primate hepacivirus 5' untranslated region possesses internal ribosomal entry site activity. J Gen Virol 2013; 94:2657-2663. [PMID: 24026670 PMCID: PMC3836496 DOI: 10.1099/vir.0.055764-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/09/2013] [Indexed: 12/29/2022] Open
Abstract
The 5' untranslated region (5'UTR) of the recently described non-primate hepacivirus (NPHV) contains a region with sequence homology to the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) and GB virus B (GBV-B). Here, we demonstrated internal translation initiation by the NPHV 5'UTR in a bicistronic vector. An RNA stem-loop upstream of the NPHV IRES was structurally distinct from corresponding regions in HCV and GBV-B, and was not required for IRES function. Insertion of the NPHV stem-loop into the corresponding region of the HCV 5'UTR within the HCV subgenomic replicon significantly impaired RNA replication, indicating that long-range interactions between the 5'UTR and cis-acting downstream elements within the NPHV genome are not interchangeable with those of HCV. Despite similarities in IRES structure and function between hepaciviruses, replication elements in the NPHV 5'UTR appear functionally distinct from those of HCV.
Collapse
Affiliation(s)
- Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Cheryl Walter
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Dale Jones
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sinead Lyons
- Infection and Immunity Division, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Peter Simmonds
- Infection and Immunity Division, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
32
|
Dibrov SM, Parsons J, Carnevali M, Zhou S, Rynearson KD, Ding K, Garcia Sega E, Brunn ND, Boerneke MA, Castaldi MP, Hermann T. Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site. J Med Chem 2013; 57:1694-707. [PMID: 24138284 DOI: 10.1021/jm401312n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The internal ribosome entry site (IRES) in the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome initiates translation of the viral polyprotein precursor. The unique structure and high sequence conservation of the 5' UTR render the IRES RNA a potential target for the development of selective viral translation inhibitors. Here, we provide an overview of approaches to block HCV IRES function by nucleic acid, peptide, and small molecule ligands. Emphasis will be given to the IRES subdomain IIa, which currently is the most advanced target for small molecule inhibitors of HCV translation. The subdomain IIa behaves as an RNA conformational switch. Selective ligands act as translation inhibitors by locking the conformation of the RNA switch. We review synthetic procedures for inhibitors as well as structural and functional studies of the subdomain IIa target and its ligand complexes.
Collapse
Affiliation(s)
- Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Souii A, Gharbi J, Ben M'hadheb-Gharbi M. Impaired binding of standard initiation factors eIF3b, eIF4G and eIF4B to domain V of the live-attenuated coxsackievirus B3 Sabin3-like IRES--alternatives for 5'UTR-related cardiovirulence mechanisms. Diagn Pathol 2013; 8:161. [PMID: 24063684 PMCID: PMC3853319 DOI: 10.1186/1746-1596-8-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 01/28/2023] Open
Abstract
Abstract Internal ribosome entry site (IRES) elements fold into highly organized conserved secondary and probably tertiary structures that guide the ribosome to an internal site of the RNA at the IRES 3′end. The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. In each poliovirus Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence and translation attenuation. Here we are extrapolating poliovirus findings to a genomic related virus named coxsackievirus B3 CVB3); a causative agent of viral myocarditis. We have previously reported that Sabin3-like mutation (U473 → C) introduced in the domain V sequence of the CVB3 IRES led to a defective mutant with a serious reduction in translation efficiency and ribosomal initiation complex assembly, besides an impaired RNA-protein binding pattern. With the aim to identify proteins interacting with both CVB3 wild-type and Sabin3-like domain V RNAs and to assess the effect of the Sabin3-like mutation on these potential interactions, we have used a proteomic approach. This procedure allowed the identification of three RNA-binding proteins interacting with the domain V: eIF4G (p220), eIF3b (p116) and eIF4B (p80). Moreover, we report that this single-nucleotide exchange impairs the interaction pattern and the binding affinity of these standard translation initiation factors within the IRES domain V of the mutant strain. Taken together, these data indicate how this decisive Sabin3-like mutation mediates viral translation attenuation; playing a key role in the understanding of the cardiovirulence attenuation within this construct. Hence, these data provide further evidence for the crucial role of RNA structure for the IRES activity, and reinforce the idea of a distribution of function between the different IRES structural domains. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6160165131045880.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Avenue Tahar Hadded, BP 74, Monastir 5000, Tunisia.
| | | | | |
Collapse
|
35
|
Hobl B, Hock B, Schneck S, Fischer R, Mack M. Bacteriophage T7 RNA polymerase-based expression in Pichia pastoris. Protein Expr Purif 2013; 92:100-4. [PMID: 24056257 DOI: 10.1016/j.pep.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022]
Abstract
A novel Pichia pastoris expression vector (pEZT7) for the production of recombinant proteins employing prokaryotic bacteriophage T7 RNA polymerase (T7 RNAP) (EC 2.7.7.6) and the corresponding promoter pT7 was constructed. The gene for T7 RNAP was stably introduced into the P. pastoris chromosome 2 under control of the (endogenous) constitutive P. pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter (pGAP). The gene product T7 RNAP was engineered to contain a nuclear localization signal, which directed recombinant T7 RNAP to the P. pastoris nucleus. To promote translation of uncapped T7 RNAP derived transcripts, the internal ribosomal entry site from hepatitis C virus (HCV-IRES) was inserted directly upstream of the multiple cloning site of pEZT7. A P. pastoris autonomous replicating sequence (PARS1) was integrated into pEZT7 enabling propagation and recovery of plasmids from P. pastoris. Rapid amplification of 5' complementary DNA ends (5' RACE) experiments employing the test plasmid pEZT7-EGFP revealed that transcripts indeed initiated at pT7. HCV-IRES mediated translation of the latter mRNAs, however, was not observed. Surprisingly, HCV-IRES and the reverse complement of PARS1 (PARS1rc) were both found to display significant promoter activity as shown by 5' RACE.
Collapse
Affiliation(s)
- Birgit Hobl
- Institut für Technische Mikrobiologie, Hochschule Mannheim, 68163 Mannheim, Germany
| | | | | | | | | |
Collapse
|
36
|
Romero-López C, Barroso-Deljesus A, García-Sacristán A, Briones C, Berzal-Herranz A. End-to-end crosstalk within the hepatitis C virus genome mediates the conformational switch of the 3'X-tail region. Nucleic Acids Res 2013; 42:567-82. [PMID: 24049069 PMCID: PMC3874160 DOI: 10.1093/nar/gkt841] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) RNA genome contains multiple structurally conserved domains that make long-distance RNA-RNA contacts important in the establishment of viral infection. Microarray antisense oligonucleotide assays, improved dimethyl sulfate probing methods and 2' acylation chemistry (selective 2'-hydroxyl acylation and primer extension, SHAPE) showed the folding of the genomic RNA 3' end to be regulated by the internal ribosome entry site (IRES) element via direct RNA-RNA interactions. The essential cis-acting replicating element (CRE) and the 3'X-tail region adopted different 3D conformations in the presence and absence of the genomic RNA 5' terminus. Further, the structural transition in the 3'X-tail from the replication-competent conformer (consisting of three stem-loops) to the dimerizable form (with two stem-loops), was found to depend on the presence of both the IRES and the CRE elements. Complex interplay between the IRES, the CRE and the 3'X-tail region would therefore appear to occur. The preservation of this RNA-RNA interacting network, and the maintenance of the proper balance between different contacts, may play a crucial role in the switch between different steps of the HCV cycle.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | | | | | | | | |
Collapse
|
37
|
Abstract
Genome replication is a crucial step in the life cycle of any virus. HCV is a positive strand RNA virus and requires a set of nonstructural proteins (NS3, 4A, 4B, 5A, and 5B) as well as cis-acting replication elements at the genome termini for amplification of the viral RNA. All nonstructural proteins are tightly associated with membranes derived from the endoplasmic reticulum and induce vesicular membrane alterations designated the membranous web, harboring the viral replication sites. The viral RNA-dependent RNA polymerase NS5B is the key enzyme of RNA synthesis. Structural, biochemical, and reverse genetic studies have revealed important insights into the mode of action of NS5B and the mechanism governing RNA replication. Although a comprehensive understanding of the regulation of RNA synthesis is still missing, a number of important viral and host determinants have been defined. This chapter summarizes our current knowledge on the role of viral and host cell proteins as well as cis-acting replication elements involved in the biogenesis of the membranous web and in viral RNA synthesis.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
38
|
Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol 2013; 19:17-25. [PMID: 23593605 PMCID: PMC3622851 DOI: 10.3350/cmh.2013.19.1.17] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive sense, single-stranded RNA virus in the Flaviviridae family. It causes acute hepatitis with a high propensity for chronic infection. Chronic HCV infection can progress to severe liver disease including cirrhosis and hepatocellular carcinoma. In the last decade, our basic understanding of HCV virology and life cycle has advanced greatly with the development of HCV cell culture and replication systems. Our ability to treat HCV infection has also been improved with the combined use of interferon, ribavirin and small molecule inhibitors of the virally encoded NS3/4A protease, although better therapeutic options are needed with greater antiviral efficacy and less toxicity. In this article, we review various aspects of HCV life cycle including viral attachment, entry, fusion, viral RNA translation, posttranslational processing, HCV replication, viral assembly and release. Each of these steps provides potential targets for novel antiviral therapeutics to cure HCV infection and prevent the adverse consequences of progressive liver disease.
Collapse
Affiliation(s)
- Chang Wook Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyong-Mi Chang
- GI/Hepatology Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses 2012. [PMID: 23202462 PMCID: PMC3497050 DOI: 10.3390/v4102233] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome multiplication requires the concerted action of the viral RNA, host factors and viral proteins. Recent studies have provided information about the requirement of specific viral RNA motifs that play an active role in the viral life cycle. RNA regulatory motifs controlling translation and replication of the viral RNA are mostly found at the 5' and 3' untranslated regions (UTRs). In particular, viral protein synthesis is under the control of the internal ribosome entry site (IRES) element, a complex RNA structure located at the 5'UTR that recruits the ribosomal subunits to the initiator codon. Accordingly, interfering with this RNA structural motif causes the abrogation of the viral cycle. In addition, RNA translation initiation is modulated by cellular factors, including miRNAs and RNA-binding proteins. Interestingly, a RNA structural motif located at the 3'end controls viral replication and establishes long-range RNA-RNA interactions with the 5'UTR, generating functional bridges between both ends on the viral genome. In this article, we review recent advances on virus-host interaction and translation control modulating viral gene expression in infected cells.
Collapse
Affiliation(s)
- David Piñeiro
- Centro de Biología Molecular Severo Ochoa, Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|
40
|
Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob Agents Chemother 2012; 56:5365-73. [PMID: 22869572 DOI: 10.1128/aac.01256-12] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in the treatment of hepatitis C, the quest for pan-genotype, effective, and well-tolerated inhibitors continues. To facilitate these efforts, it is desirable to have in vitro replication systems for all major HCV genotypes. However, cell culture replication systems exist for only genotypes 1a, 1b, and 2a. In this study, we generated G418-selectable subgenomic replicons for prototype strains of genotypes 3a (S52) and 4a (ED43). Production of G418-resistant colonies by S52 and ED43 in Huh-7.5 cells required the amino acid substitutions S2210I and R2882G, respectively, cell culture adaptive mutations originally reported for genotype 1b replicons. RNA replication was confirmed by quantitative reverse transcription-PCR and detection of viral protein. Sequencing of multiple independent replicon clones revealed the presence of additional nonsynonymous mutations. Interestingly, all potentially adaptive mutations mapped to the NS3 protein. These mutations, when introduced back into original constructs, substantially increased colony formation efficiency. To make these replicons useful for high-throughput screening and evaluation of antiviral compounds, they were modified to express a chimeric fusion protein of firefly luciferase and neomycin phosphotransferase to yield stable replicon-expressing cells. Using these constructs, the inhibitory effects of beta interferon (IFN-β), an NS3 protease inhibitor, and an NS5B nucleoside polymerase inhibitor were readily detected by monitoring luciferase activity. In conclusion, we have established functional replicons for HCV genotypes 3a and 4a, important new additions to the armamentarium required to develop inhibitors with a pan-genotype activity.
Collapse
|
41
|
Li M, Man N, Qiu H, Cai S, He X, He X, Lu X. Detection of an internal translation activity in the 5' region of Bombyx mori infectious flacherie virus. Appl Microbiol Biotechnol 2012; 95:697-705. [PMID: 22476262 DOI: 10.1007/s00253-012-3996-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The 5' untranslated region plays an important role in positive-sense single-stranded RNA virus translation initiation, as it contains an internal ribosome entry site (IRES) that mediates cap-independent translation and is applied to simultaneously express several proteins. Infectious flacherie virus (IFV) is a positive-sense single-stranded RNA virus; however, the IRES function is still not proved. To investigate whether the sequences of IFV contain IRES activity, a series of bicistronic reporter (DsRed and enhanced green fluorescent protein) recombinant baculoviruses were constructed to infect the insect cells and silkworm using the Bombyx mori baculovirus expression system. Results showed that the upstream 311, 323, 383, 551, and 599 nt have IRES activity except for the 155-nt region in BmN cells. More importantly, the tetraloop structure containing region between 551 and 599 nt appeared to be responsible for the enhanced IRES activity in different insect cell lines and silkworm. These results indicated that the IRES activity is not species specific and tissue specific. Therefore, our findings may provide the basis for the simultaneous expression of two or various different genes under the same promoter in baculovirus expression system.
Collapse
Affiliation(s)
- Mingqian Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics 2012; 2012:391546. [PMID: 22536116 PMCID: PMC3321441 DOI: 10.1155/2012/391546] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m(7)G(5')ppp(5')N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5'UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.
Collapse
|
43
|
Use of illumina deep sequencing technology to differentiate hepatitis C virus variants. J Clin Microbiol 2012; 50:857-66. [PMID: 22205816 DOI: 10.1128/jcm.05715-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand enveloped RNA virus that shows diverse viral populations even in one individual. Though Sanger sequencing has been used to determine viral sequences, deep sequencing technologies are much faster and can perform large-scale sequencing. We demonstrate the successful use of Illumina deep sequencing technology and subsequent analyses to determine the genetic variants and amino acid substitutions in both treatment-naïve (patient 1) and treatment-experienced (patient 7) isolates from HCV-infected patients. As a result, almost the full nucleotide sequence of HCV was detectable for patients 1 and 7. The reads were mapped to the HCV reference sequence. The coverage was 99.8% and the average depth was 69.5× for patient 7, with values of 99.4% (coverage) and 51.1× (average depth) for patient 1. In patient 7, amino acid (aa) 70 in the core region showed arginine, with methionine at aa 91, by Sanger sequencing. Major variants showed the same amino acid sequence, but minor variants were detectable in 18% (6/34 sequences) of sequences, with replacement of methionine by leucine at aa 91. In NS3, 8 amino acid positions showed mixed variants (T72T/I, K213K/R, G237G/S, P264P/S/A, S297S/A, A358A/T, S457S/C, and I615I/M) in patient 7. In patient 1, 3 amino acid positions showed mixed variants (L14L/F/V, S61S/A, and I586T/I). In conclusion, deep sequencing technologies are powerful tools for obtaining more profound insight into the dynamics of variants in the HCV quasispecies in human serum.
Collapse
|
44
|
Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc Natl Acad Sci U S A 2011; 108:20473-8. [PMID: 22135459 DOI: 10.1073/pnas.1116821108] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein fate in higher eukaryotes is controlled by three complexes that share conserved architectural elements: the proteasome, COP9 signalosome, and eukaryotic translation initiation factor 3 (eIF3). Here we reconstitute the 13-subunit human eIF3 in Escherichia coli, revealing its structural core to be the eight subunits with conserved orthologues in the proteasome lid complex and COP9 signalosome. This structural core in eIF3 binds to the small (40S) ribosomal subunit, to translation initiation factors involved in mRNA cap-dependent initiation, and to the hepatitis C viral (HCV) internal ribosome entry site (IRES) RNA. Addition of the remaining eIF3 subunits enables reconstituted eIF3 to assemble intact initiation complexes with the HCV IRES. Negative-stain EM reconstructions of reconstituted eIF3 further reveal how the approximately 400 kDa molecular mass structural core organizes the highly flexible 800 kDa molecular mass eIF3 complex, and mediates translation initiation.
Collapse
|
45
|
Li YP, Ramirez S, Gottwein JM, Bukh J. Non-genotype-specific role of the hepatitis C virus 5' untranslated region in virus production and in inhibition by interferon. Virology 2011; 421:222-34. [PMID: 22029937 DOI: 10.1016/j.virol.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/15/2011] [Accepted: 10/03/2011] [Indexed: 12/18/2022]
Abstract
The 5' untranslated region (5'UTR) of hepatitis C virus (HCV) is structured into four domains (I-IV) with numerous genotype-specific nucleotides. It is unknown whether the polymorphisms confer genotype-specific functions to the 5'UTR. Using viable JFH1-based Core-NS2 recombinants, we developed and characterized HCV genotypes 1-7 recombinants with highly diverse 5'UTRs (genotypes 1a and 3a), 2a recombinants (J6/JFH1) with 5'UTR of genotypes 1-6 or with heterotypic chimeric (1a/3a and 3a/1a) 5'UTR domains I, II or III, and 1a recombinants with 5'UTR domain I of genotypes 1-6. All were fully functional in Huh7.5 cells; therefore, the 5'UTR apparently functions in a non-genotype-specific manner in HCV production in vitro. However, adenine at the 5'-terminus was required. We demonstrated that J6/JFH1 with 5'UTR of genotypes 1-6 responded similarly to interferon-α2b. This study provides novel insight into the role of the 5'UTR in the HCV life cycle and facilitates HCV basic research and testing of 5'UTR-targeting antivirals.
Collapse
Affiliation(s)
- Yi-Ping Li
- Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | |
Collapse
|
46
|
Yao L, Dong H, Zhu H, Nelson D, Liu C, Lambiase L, Li X. Identification of the IFITM3 gene as an inhibitor of hepatitis C viral translation in a stable STAT1 cell line. J Viral Hepat 2011; 18:e523-9. [PMID: 21914072 PMCID: PMC3736357 DOI: 10.1111/j.1365-2893.2011.01452.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the functions of signal transducers and activators of transcription 1 (STAT1)-induced anti-hepatitis C viral (HCV) effects, a stable Huh7.5 cell line (Huh7.5-STAT1ER) was established that constitutively expresses a fusion protein (STAT1ER) of STAT1 and the mouse oestrogen receptor (ER), which forms STAT1ER homodimers after 4-hydroxytamoxifen (4-HT) treatment. This inducible and cytokine/receptor-independent STAT1 activation system allowed us to investigate the anti-HCV effects of STAT1ER activation after inducing IFN-stimulated gene (ISG) expression. The anti-HCV effects of dimerized STAT1ER fusion protein were determined by real-time PCR in a time-dependent fashion post-HCV (JFH-1) infection. HCV (JFH-1) RNA decreased 48% at 72 h after 4-HT treatment. To distinguish the inhibitory effects of STAT1ER activation on HCV RNA replication or HCV internal ribosomal entry site (IRES)-mediated translation, a dicistronic pRL-HL construct was used in the studies. Both cellular (Cap-dependent) and HCV IRES-mediated (Cap-independent) translation were decreased by 63% and 57% at 72 h post-STAT1ER activation in the STAT1ER cell line. In our previous studies, interferon-induced transmembrane protein 3 [(IFITM3) (1-8U)] was found to inhibit HCV RNA replication. Subsequently, elevated expression of the 1-8U gene was confirmed by Western blotting in the Huh7.5-STAT1ER cell line. To further investigate the 1-8U function with both in vivo and in vitro studies, the 1-8U gene was found to suppress cellular and HCV IRES-mediated translation.
Collapse
Affiliation(s)
- L. Yao
- Division of Gastroenterology, Department of Medicine, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL
| | - H. Dong
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - H. Zhu
- Department of Molecular Medicine, College of Biology Hunan University, Changsha, Hunan Province, China
| | - D. Nelson
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - C. Liu
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L. Lambiase
- Division of Gastroenterology, Department of Medicine, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - X. Li
- Division of Gastroenterology, Department of Medicine, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL
| |
Collapse
|
47
|
Shi G, Yagyu F, Shimizu Y, Shimizu K, Oshima M, Iwamoto A, Gao B, Liu W, Gao GF, Kitamura Y. Flow cytometric assay using two fluorescent proteins for the function of the internal ribosome entry site of hepatitis C virus. Cytometry A 2011; 79:653-60. [PMID: 21710641 DOI: 10.1002/cyto.a.21094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 04/04/2011] [Accepted: 05/17/2011] [Indexed: 12/17/2022]
Abstract
The initiation of translation in hepatitis C virus (HCV) occurs at the internal ribosome entry site (IRES) located at the 5'-end of its genomic RNA. To study the function of HCV IRES, we constructed a reporter plasmid that generates a bicistronic mRNA encoding two fluorescent proteins: cap-dependent DsRed2 and IRES-dependent Azami Green (AG). We introduced the plasmid into Huh7.5.1 and HEK293 cells and measured the relative IRES activity from the ratio of AG's signal to DsRed2's in individual cells using flow cytometry. To compare our method and a conventional biochemical method, we constructed a structurally similar reporter in which Renilla and Firefly luciferases replace DsRed2 and AG, respectively. With these systems, we found that the IRES A164G substitution decreased its activity, that interferon alpha affected the IRES activity in a cell type-specific manner, and that a synthetic micro-RNA targeting IRES was able to suppress the gene expression. In conclusion, the two methods were comparable in sensitivity in the studies of IRES mutations and host cell types. We discussed the significance of our findings and potential advantage of the cytometric assay: application to the molecular study of the HCV translation and to screening anti-IRES drugs.
Collapse
Affiliation(s)
- Guoli Shi
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Poly(C)-binding protein 2 interacts with sequences required for viral replication in the hepatitis C virus (HCV) 5' untranslated region and directs HCV RNA replication through circularizing the viral genome. J Virol 2011; 85:7954-64. [PMID: 21632751 DOI: 10.1128/jvi.00339-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sequences in the 5' untranslated region (5'UTR) of hepatitis C virus (HCV) RNA is important for modulating both translation and RNA replication. The translation of the HCV genome depends on an internal ribosome entry site (IRES) located within the 341-nucleotide 5'UTR, while RNA replication requires a smaller region. A question arises whether the replication and translation functions require different regions of the 5'UTR and different sets of RNA-binding proteins. Here, we showed that the 5'-most 157 nucleotides of HCV RNA is the minimum 5'UTR for RNA replication, and it partially overlaps with the IRES. Stem-loops 1 and 2 of the 5'UTR are essential for RNA replication, whereas stem-loop 1 is not required for translation. We also found that poly(C)-binding protein 2 (PCBP2) bound to the replication region of the 5'UTR and associated with detergent-resistant membrane fractions, which are the sites of the HCV replication complex. The knockdown of PCBP2 by short hairpin RNA decreased the amounts of HCV RNA and nonstructural proteins. Antibody-mediated blocking of PCBP2 reduced HCV RNA replication in vitro, indicating that PCBP2 is directly involved in HCV RNA replication. Furthermore, PCBP2 knockdown reduced IRES-dependent translation preferentially from a dual reporter plasmid, suggesting that PCBP2 also regulated IRES activity. These findings indicate that PCBP2 participates in both HCV RNA replication and translation. Moreover, PCBP2 interacts with HCV 5'- and 3'UTR RNA fragments to form an RNA-protein complex and induces the circularization of HCV RNA, as revealed by electron microscopy. This study thus demonstrates the mechanism of the participation of PCBP2 in HCV translation and replication and provides physical evidence for HCV RNA circularization through 5'- and 3'UTR interaction.
Collapse
|
49
|
Ouellet J, Melcher S, Iqbal A, Ding Y, Lilley DMJ. Structure of the three-way helical junction of the hepatitis C virus IRES element. RNA (NEW YORK, N.Y.) 2010; 16:1597-1609. [PMID: 20581129 PMCID: PMC2905758 DOI: 10.1261/rna.2158410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
The hepatitis C virus internal ribosome entry site (IRES) element contains a three-way junction that is important in the overall RNA conformation, and for its role in the internal initiation of translation. The junction also illustrates some important conformational principles in the folding of three-way helical junctions. It is formally a 3HS(4) junction, with the possibility of two alternative stacking conformers. However, in principle, the junction can also undergo two steps of branch migration that would form 2HS(1)HS(3) and 2HS(2)HS(2) junctions. Comparative gel electrophoresis and ensemble fluorescence resonance energy transfer (FRET) studies show that the junction is induced to fold by the presence of Mg(2+) ions in low micromolar concentrations, and suggest that the structure adopted is based on coaxial stacking of the two helices that do not terminate in a hairpin loop (i.e., helix IIId). Single-molecule FRET studies confirm this conclusion, and indicate that there is no minor conformer present based on an alternative choice of helical stacking partners. Moreover, analysis of single-molecule FRET data at an 8-msec resolution failed to reveal evidence for structural transitions. It seems probable that this junction adopts a single conformation as a unique and stable fold.
Collapse
Affiliation(s)
- Jonathan Ouellet
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J Gen Virol 2010; 91:2238-48. [PMID: 20505011 DOI: 10.1099/vir.0.022210-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Host cell factors are critical to all stages of the hepatitis C virus (HCV) life cycle. While many cellular proteins that regulate HCV genome synthesis have been identified, the mechanisms engaged in this process are incompletely understood. To identify novel cellular proteins involved in HCV RNA replication, we screened a library of small interfering RNAs (siRNAs) targeting 299 cellular factors, which principally function in RNA interactions. For the screen, a robust system was established using two cell lines (derived from Huh-7 and U2OS cells) that replicated tricistronic subgenomic replicons (SGRs). We found that the U2OS cell line gave lower levels of intracellular HCV RNA replication compared with Huh-7 cells and was more readily transfected by siRNAs. Consequently, increased gene silencing and greater effects on HCV replication were observed in the U2OS cell line. Thus, U2OS cells provided a suitable and more sensitive alternative to Huh-7 cells for siRNA studies on HCV RNA replication. From the screen, several cellular proteins that enhanced and suppressed HCV RNA replication were identified. One of the genes found to downregulate viral RNA synthesis, ISG15, is expressed in response to alpha interferon and may therefore partly contribute to the clearance of virus from infected individuals. A second gene that inhibited HCV RNA levels was the 5'-3' exoRNase XRN1, which suggested a role for cellular RNA degradation pathways in modulating the abundance of viral genomes. Therefore, this study provides an important framework for future detailed analyses of these and other cellular proteins.
Collapse
|