1
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
2
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
3
|
Bloyet LM, Schramm A, Lazert C, Raynal B, Hologne M, Walker O, Longhi S, Gerlier D. Regulation of measles virus gene expression by P protein coiled-coil properties. SCIENCE ADVANCES 2019; 5:eaaw3702. [PMID: 31086822 PMCID: PMC6506246 DOI: 10.1126/sciadv.aaw3702] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 05/18/2023]
Abstract
The polymerase of negative-stranded RNA viruses consists of the large protein (L) and the phosphoprotein (P), the latter serving both as a chaperon and a cofactor for L. We mapped within measles virus (MeV) P the regions responsible for binding and stabilizing L and showed that the coiled-coil multimerization domain (MD) of P is required for gene expression. MeV MD is kinked as a result of the presence of a stammer. Both restoration of the heptad regularity and displacement of the stammer strongly decrease or abrogate activity in a minigenome assay. By contrast, P activity is rather tolerant of substitutions within the stammer. Single substitutions at the "a" or "d" hydrophobic anchor positions with residues of variable hydrophobicity revealed that P functionality requires a narrow range of cohesiveness of its MD. Results collectively indicate that, beyond merely ensuring P oligomerization, the MD finely tunes viral gene expression through its cohesiveness.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Antoine Schramm
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Carine Lazert
- CIRI, International Center for Infectiology Research, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Bertrand Raynal
- Institut Pasteur, Plateforme de Biophysique Moléculaire, Paris, France
| | - Maggy Hologne
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon 1, Lyon France
| | - Olivier Walker
- Institut des Sciences Analytiques (ISA), Univ Lyon, CNRS, UMR5280, Université Claude Bernard Lyon 1, Lyon France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
4
|
Bloyet LM, Welsch J, Enchery F, Mathieu C, de Breyne S, Horvat B, Grigorov B, Gerlier D. HSP90 Chaperoning in Addition to Phosphoprotein Required for Folding but Not for Supporting Enzymatic Activities of Measles and Nipah Virus L Polymerases. J Virol 2016; 90:6642-6656. [PMID: 27170753 PMCID: PMC4944277 DOI: 10.1128/jvi.00602-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Nonsegmented negative-stranded RNA viruses, or members of the order Mononegavirales, share a conserved gene order and the use of elaborate transcription and replication machinery made up of at least four molecular partners. These partners have coevolved with the acquisition of the permanent encapsidation of the entire genome by the nucleoprotein (N) and the use of this N-RNA complex as a template for the viral polymerase composed of the phosphoprotein (P) and the large enzymatic protein (L). Not only is P required for polymerase function, but it also stabilizes the L protein through an unknown underlying molecular mechanism. By using NVP-AUY922 and/or 17-dimethylaminoethylamino-17-demethoxygeldanamycin as specific inhibitors of cellular heat shock protein 90 (HSP90), we found that efficient chaperoning of L by HSP90 requires P in the measles, Nipah, and vesicular stomatitis viruses. While the production of P remains unchanged in the presence of HSP90 inhibitors, the production of soluble and functional L requires both P and HSP90 activity. Measles virus P can bind the N terminus of L in the absence of HSP90 activity. Both HSP90 and P are required for the folding of L, as evidenced by a luciferase reporter insert fused within measles virus L. HSP90 acts as a true chaperon; its activity is transient and dispensable for the activity of measles and Nipah virus polymerases of virion origin. That the cellular chaperoning of a viral polymerase into a soluble functional enzyme requires the assistance of another viral protein constitutes a new paradigm that seems to be conserved within the Mononegavirales order. IMPORTANCE Viruses are obligate intracellular parasites that require a cellular environment for their replication. Some viruses particularly depend on the cellular chaperoning apparatus. We report here that for measles virus, successful chaperoning of the viral L polymerase mediated by heat shock protein 90 (HSP90) requires the presence of the viral phosphoprotein (P). Indeed, while P protein binds to the N terminus of L independently of HSP90 activity, both HSP90 and P are required to produce stable, soluble, folded, and functional L proteins. Once formed, the mature P+L complex no longer requires HSP90 to exert its polymerase functions. Such a new paradigm for the maturation of a viral polymerase appears to be conserved in several members of the Mononegavirales order, including the Nipah and vesicular stomatitis viruses.
Collapse
Affiliation(s)
- Louis-Marie Bloyet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Jérémy Welsch
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - François Enchery
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Sylvain de Breyne
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| | - Boyan Grigorov
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Cancer Research Center of Lyon (CRCL), INSERM, U1052, Université Claude Bernard Lyon 1, Lyon, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- INSERM, U1111, Lyon, France
- CNRS, UMR5308, Lyon, France
- Université Claude Bernard Lyon 1; Centre International de Recherche en Infectiologie, Lyon, France
- ENS Lyon, Lyon, France
- Laboratoire d'Excellence Ecofect, Lyon, France
| |
Collapse
|
5
|
Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014; 88:10851-63. [PMID: 25008930 DOI: 10.1128/jvi.00664-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template.
Collapse
|
6
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
7
|
Shu Y, Habchi J, Costanzo S, Padilla A, Brunel J, Gerlier D, Oglesbee M, Longhi S. Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J Biol Chem 2012; 287:11951-67. [PMID: 22318731 DOI: 10.1074/jbc.m111.333088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (N(TAIL)). XD binding induces N(TAIL) α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced N(TAIL) folding, XD-N(TAIL) binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced N(TAIL) α-helical folding were created within Box-2 of Edmonston MeV N(TAIL). Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-N(TAIL) binding affinity or reduction/loss of XD-induced N(TAIL) alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Virus-driven conditional expression of an interferon antagonist as a tool to circumvent host restriction. Proc Natl Acad Sci U S A 2011; 108:17239-40. [DOI: 10.1073/pnas.1114431108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Grigorov B, Rabilloud J, Lawrence P, Gerlier D. Rapid titration of measles and other viruses: optimization with determination of replication cycle length. PLoS One 2011; 6:e24135. [PMID: 21915289 PMCID: PMC3168471 DOI: 10.1371/journal.pone.0024135] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 08/02/2011] [Indexed: 02/01/2023] Open
Abstract
Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry.
Collapse
Affiliation(s)
- Boyan Grigorov
- INSERM, U758, Ecole Normale Supérieure de Lyon, Lyon, France, Université de Lyon, Lyon, France.
| | | | | | | |
Collapse
|
10
|
Expression of the Sendai (murine parainfluenza) virus C protein alleviates restriction of measles virus growth in mouse cells. Proc Natl Acad Sci U S A 2011; 108:15384-9. [PMID: 21896767 DOI: 10.1073/pnas.1107382108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/β signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line much more efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.
Collapse
|
11
|
O'Donnell LA, Rall GF. Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin. J Neuroimmune Pharmacol 2010; 5:443-55. [PMID: 20419352 DOI: 10.1007/s11481-010-9200-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 03/05/2010] [Indexed: 11/24/2022]
Abstract
While measles virus (MV) continues to have a significant impact on human health, causing 150,000-200,000 deaths worldwide each year, the number of fatalities that can be attributed to MV-triggered central nervous system (CNS) diseases are on the order of a few hundred individuals annually (World Health Organization 2009). Despite this modest impact, substantial effort has been expended to understand the basis of measles-triggered neuropathogenesis. What can be gained by studying such a rare condition? Simply stated, the wealth of studies in this field have revealed core principles that are relevant to multiple neurotropic pathogens, and that inform the broader field of viral pathogenesis. In recent years, the emergence of powerful in vitro systems, novel animal models, and reverse genetics has enabled insights into the basis of MV persistence, the complexity of MV interactions with neurons and the immune system, and the role of immune and CNS development in virus-triggered disease. In this review, we highlight some key advances, link relevant measles-based studies to the broader disciplines of neurovirology and viral pathogenesis, and propose future areas of study for the field of measles-mediated neurological disease.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Program in Immune Cell Development and Host Defense, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
12
|
Abstract
Because viruses are obligate parasites, numerous partnerships between measles virus and cellular molecules can be expected. At the entry level, measles virus uses at least two cellular receptors, CD150 and a yet to be identified epithelial receptor to which the virus H protein binds. This dual receptor strategy illuminates the natural infection and inter-human propagation of this lymphotropic virus. The attenuated vaccine strains use CD46 as an additional receptor, which results in a tropism alteration. Surprisingly, the intracellular viral and cellular protein partnership leading to optimal virus life cycle remains mostly a black box, while the interactions between viral proteins that sustain the RNA-dependant RNA polymerase activity (i.e., transcription and replication), the particle assembly and the polarised virus budding are documented. Hsp72 is the only cellular protein that is known to regulate the virus transcription and replication through its interaction with the viral N protein. The viral P protein is phosphorylated by the casein kinase II with undetermined functional consequences. The cellular partnership that controls the intracellular trafficking of viral components, the assembly and/or the budding of measles virus, remains unknown. The virus to cell innate immunity war is better documented. The 5' triphosphate-ended virus leader transcript is recognised by RIG-I, a cellular helicase, and induces the interferon response. Measles virus V protein binds to the MDAS helicase and prevents the MDA5-mediated activation of interferon. By interacting with STAT1 and Jak1, the viral P and V proteins prevent the type I interferon receptor (IFNAR) signalling. The virus N protein interacts with eIF3-p40 to inhibit the translation of cellular mRNA. The H protein binds to TLR2, which then transduces an activation signal and CD150 expression in monocytes. The P protein activates the expression of the ubiquitin modifier A20, thus blocking the TLR4-mediated signalling. Few other partnerships between measles virus components and cellular proteins have been postulated or demonstrated, and they need further investigations to understand their physiopathological outcome.
Collapse
|
13
|
Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S. Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol 2007; 88:1243-1250. [PMID: 17374768 DOI: 10.1099/vir.0.82578-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Assembly and release of particles comprise a late step in virus-host cell interactions. Though it may share major biological properties with its orthologues in related viruses, trafficking and oligomerization of the matrix (M) protein of Measles virus (MV) and its relative contribution to assembly and budding of particles from particular host cells have not been addressed in more detail. Plasmid-driven expression of authentic and mutant M proteins revealed that the amino acid at position 89, an important adaptation determinant for growth of attenuated strains in Vero cells, influences the electrophoretic mobility but not the intracellular distribution of M proteins, nor their ability to oligomerize or migrate as a doublet band in SDS-PAGE. M proteins were found to co-float with detergent-resistant membrane fractions (DRM) and this was enhanced upon co-expression of the F protein. In contrast to their DRM association, the ability of M proteins to promote release of virus-like particles (VLPs) was not affected by the presence of F proteins, which on their own also efficiently promoted VLP production. Thus, DRM recruitment of MV F and M proteins and their ability to drive particle formation are not correlated.
Collapse
Affiliation(s)
- Christine Pohl
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| | - W Paul Duprex
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Georg Krohne
- Department for Electron Microscopy, University Wuerzburg, Biocenter, D-97078 Wuerzburg, Germany
| | - Bertus K Rima
- Centre for Cancer Research and Cell Biology, School of Biomedical Sciences, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, D-97078 Wuerzburg, Germany
| |
Collapse
|
14
|
Abstract
Measles virus (MV) is a member of the genus Morbillivirus in the family Paramyxoviridae. Clinical isolates of MV use signaling lymphocyte activating molecule (SLAM) as a cellular receptor. SLAM is mainly expressed on immune cells such as immature thymocytes, activated lymphocytes and mature dendritic cells. This distribution of SLAM can account for the lymphotropism of MV. On the other hand, laboratory strains of MV use CD46 as an alternative receptor, through amino acid change(s) in the receptor binding hemagglutinin protein. Recently, several reports imply the existence of the cellular receptor(s) other than SLAM and CD46. In this review, we discuss the receptor usage of MV and its adaptation to cultured cells.
Collapse
Affiliation(s)
- Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Japan.
| | | |
Collapse
|
15
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Chen M, Cortay JC, Logan IR, Sapountzi V, Robson CN, Gerlier D. Inhibition of ubiquitination and stabilization of human ubiquitin E3 ligase PIRH2 by measles virus phosphoprotein. J Virol 2005; 79:11824-36. [PMID: 16140759 PMCID: PMC1212616 DOI: 10.1128/jvi.79.18.11824-11836.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a C-terminal domain (PCT) of the measles virus (MV) phosphoprotein (P protein) as bait in a yeast two-hybrid screen, a cDNA identical to the recently described human p53-induced-RING-H2 (hPIRH2) cDNA was isolated. A glutathione S-transferase-hPIRH2 fusion protein expressed in bacteria was able to pull down P protein when mixed with an extract from P-expressing HeLa cells in vitro, and myc-tagged hPIRH2 could be reciprocally co-immunoprecipitated with MV P protein from human cells. Additionally, immunoprecipitation experiments demonstrated that hPIRH2-myc, MV P, and nucleocapsid (N) proteins form a ternary complex. The hPIRH2 binding site was mapped to the C-terminal X domain region of the P protein by using a yeast two-hybrid assay. The PCT binding site was mapped on hPIRH2 by using a novel yeast two-hybrid tagged PCR approach and by co-immunoprecipitation of hPIRH2 cysteine mutants and mouse/human PIRH2 chimeras. The hPIRH2 C terminus could mediate the interaction with MV P which was favored by the RING-H2 motif. When coexpressed with an enhanced green fluorescent protein-tagged hPIRH2 protein, MV P alone or in a complex with MV N was able to redistribute hPIRH2 to outside the nucleus, within intracellular aggregates. Finally, MV P efficiently stabilized hPIRH2-myc expression and prevented its ubiquitination in vivo but had no effect on the stability or ubiquitination of an alternative ubiquitin E3 ligase, Mdm2. Thus, MV P protein is the first protein from a pathogen that is able to specifically interact with and stabilize the ubiquitin E3 ligase hPIRH2 by preventing its ubiquitination.
Collapse
Affiliation(s)
- Mingzhou Chen
- Immunité & Infections Virales, CNRS--Univ-Lyon 1 UMR 5537, IFR Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Despite the extensive media exposure that viruses such as West Nile, Norwalk, and Ebola have received lately, and the emerging threat that old pathogens may reappear as new agents of terrorism, measles virus (MV) persists as one of the leading causes of death by infectious agents worldwide, approaching the annual mortality rate of human immunodeficiency virus (HIV)-1. For most MV victims, fatality is indirect: Virus-induced transient immunosuppression predisposes the individual to opportunistic infections that, left untreated, can result in mortality. In rare cases, MV may also cause progressive neurodegenerative disease. During the past five years (1998-2002), development of animal models and the application of reverse genetics and immunological assays have collectively contributed to major progress in our understanding of MV biology and pathogenesis. Nevertheless, questions and controversies remain that are the basis for future research. In this review, major advances and current debates are discussed, including MV receptor usage, the cellular basis of immunosuppression, the suspected role of MV in "nonviral" diseases such as multiple sclerosis and Paget's disease, and the controversy surrounding MV vaccine safety.
Collapse
Affiliation(s)
- Glenn F Rall
- Division of Basic Science, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
18
|
Chazal N, Gerlier D. Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 2003; 67:226-37, table of contents. [PMID: 12794191 PMCID: PMC156468 DOI: 10.1128/mmbr.67.2.226-237.2003] [Citation(s) in RCA: 372] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As intracellular parasites, viruses rely heavily on the use of numerous cellular machineries for completion of their replication cycle. The recent discovery of the heterogeneous distribution of the various lipids within cell membranes has led to the proposal that sphingolipids and cholesterol tend to segregate in microdomains called membrane rafts. The involvement of membrane rafts in biosynthetic traffic, signal transduction, and endocytosis has suggested that viruses may also take advantage of rafts for completion of some steps of their replication cycle, such as entry into their cell host, assembly, and budding. In this review, we have attempted to delineate all the reliable data sustaining this hypothesis and to build some models of how rafts are used as platforms for assembly of some viruses. Indeed, if in many cases a formal proof of raft involvement in a virus replication cycle is still lacking, one can reasonably suggest that, owing to their ability to specifically attract some proteins, lipid microdomains provide a particular milieu suitable for increasing the efficiency of many protein-protein interactions which are crucial for virus infection and growth.
Collapse
Affiliation(s)
- Nathalie Chazal
- Immunologie-Virologie, EA 3038, Université Paul Sabatier, 31062 Toulouse, France.
| | | |
Collapse
|
19
|
Vincent S, Tigaud I, Schneider H, Buchholz CJ, Yanagi Y, Gerlier D. Restriction of measles virus RNA synthesis by a mouse host cell line: trans-complementation by polymerase components or a human cellular factor(s). J Virol 2002; 76:6121-30. [PMID: 12021345 PMCID: PMC136230 DOI: 10.1128/jvi.76.12.6121-6130.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse epithelial MODE-K cell line expressing human CD46 or CD150 cellular receptors was found to be nonpermissive for measles virus (MV) replication. The virus binding and membrane fusion steps were unimpaired, but only very limited amounts of virus protein and RNA synthesized were detected after the infection. In a minigenome chloramphenicol acetyltransferase assay, MODE-K cells were as able as the permissive HeLa cells in supporting MV polymerase activity. The restriction phenotype of MODE-K cells could be alleviated by providing, in trans, either N-P-L or N-P functional protein complexes but not by P-L complexes or individual N, P, and L proteins. Several human x mouse (HeLa x MODE-K) somatic hybrid clones expressing human CD46 were isolated and found to be either nonpermissive or permissive according to their human chromosomal contents. The MV-restricted phenotype exhibited by the MODE-K cell line suggests that a cellular factor(s) can control MV transcription, possibly by stabilizing the incoming virus polymerase templates.
Collapse
Affiliation(s)
- Séverine Vincent
- Immunité & Infections Virales, CNRS-UCBL UMR 5537, IFR62, Faculté de Médecine Lyon RTH Laennec, 69372 Lyon Cedex 08, France
| | | | | | | | | | | |
Collapse
|
20
|
Evlashev A, Valentin H, Rivailler P, Azocar O, Rabourdin-Combe C, Horvat B. Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes. J Gen Virol 2001; 82:2125-2129. [PMID: 11514721 DOI: 10.1099/0022-1317-82-9-2125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of measles virus (MV) pathogenesis requires the development of an adequate small animal model of MV infection. In this study, permissivity to MV infection was compared in human and transgenic murine T lymphocytes, expressing different levels of the human MV receptor, CD46. Whereas MV binding and entry correlated with CD46 expression, higher levels of MV replication were always observed in human T lymphocytes. This suggests the existence of intracellular factors, acting posterior to virus entry, that could limit MV replication in murine lymphocytes and should be considered when creating new animal models of MV infection.
Collapse
Affiliation(s)
- Alexey Evlashev
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| | - Hélène Valentin
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| | - Pierre Rivailler
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| | - Olga Azocar
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| | - Chantal Rabourdin-Combe
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| | - Branka Horvat
- INSERM U503, Immunobiologie Fondamentale et Clinique1 and INSERM U404, Immunité et Vaccination, CERVI2, 21 Av. Tony Garnier, 69365 Lyon, France
| |
Collapse
|
21
|
Roscic-Mrkic B, Schwendener RA, Odermatt B, Zuniga A, Pavlovic J, Billeter MA, Cattaneo R. Roles of macrophages in measles virus infection of genetically modified mice. J Virol 2001; 75:3343-51. [PMID: 11238860 PMCID: PMC114127 DOI: 10.1128/jvi.75.7.3343-3351.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the mechanisms of virus dissemination in acute measles is cursory, but cells of the monocyte/macrophage (MM) lineage appear to be early targets. We characterized the dissemination of the Edmonston B vaccine strain of measles virus (MV-Ed) in peripheral blood mononuclear cells (PBMC) of two mouse strains expressing the human MV-Ed receptor CD46 with human-like tissue specificity and efficiency. In one strain the alpha/beta interferon receptor is defective, allowing for efficient MV-Ed systemic spread. In both mouse strains the PBMC most efficiently infected were F4/80-positive MMs, regardless of the inoculation route used. Circulating B lymphocytes and CD4-positive T lymphocytes were infected at lower levels, but no infected CD8-positive T lymphocytes were detected. To elucidate the roles of MMs in infection, we depleted these cells by clodronate liposome treatment in vivo. MV-Ed infection of splenic MM-depleted mice caused strong activation and infection of splenic dendritic cells (DC), followed by enhanced virus replication in the spleen. Similarly, depletion of lung macrophages resulted in strong activation and infection of lung DC. Thus, in MV infections of genetically modified mice, blood monocytes and tissue macrophages provide functions beneficial for both the virus and the host: they support virus replication early after infection, but they also contribute to protecting other immune cells from infection. Human MM may have similar roles in acute measles.
Collapse
Affiliation(s)
- B Roscic-Mrkic
- Molecular Biology Institute, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- M Manchester
- Division of Virology, Department of Neuropharmacology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|