1
|
Huang CG, Wu YC, Hsieh MJ, Lin YJ, Hsieh TH, Huang PW, Yang SL, Tsao KC, Shih SR, Lee LA. Impact of patient characteristics on innate immune responses and inflammasome activation in ex vivo human lung tissues infected with influenza A virus. Front Cell Infect Microbiol 2023; 13:1269329. [PMID: 37900310 PMCID: PMC10611511 DOI: 10.3389/fcimb.2023.1269329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Influenza A virus (IAV) infection poses a persistent global health challenge, necessitating a nuanced grasp of host immune responses for optimal interventions. While the interplay between aging, immunosenescence, and IAV is recognized as key in severe lower respiratory tract infections, the role of specific patient attributes in shaping innate immune reactions and inflammasome activity during IAV infection remains under-investigated. In this study, we utilized an ex vivo infection model of human lung tissues with H3N2 IAV to discern relationships among patient demographics, IAV nucleoprotein (NP) expression, toll-like receptor (TLR) profiles, PD-1/PD-L1 markers, and cytokine production. Methods Our cohort consisted of thirty adult patients who underwent video-assisted thoracoscopic surgery during 2018-2019. Post-surgical lung tissues were exposed to H3N2 IAV for ex vivo infections, and the ensuing immune responses were profiled using flow cytometry. Results We observed pronounced IAV activity within lung cells, as indicated by marked NP upregulation in both epithelial cells (P = 0.022) and macrophages (P = 0.003) in the IAV-exposed group relative to controls. Notably, interleukin-2 levels correlated with variations in TLR1 expression on epithelial cells and PD-L1 markers on macrophages. Age emerged as a modulating factor, dampening innate immune reactions, as evidenced by reduced interleukin-2 and interferon-γ concentrations (both adjusted P < 0.05). Intriguingly, a subset of participants with pronounced tumor necrosis factor-alpha post-mock infection (Cluster 1) showed attenuated cytokine responses in contrast to their counterparts in Cluster 2 and Cluster 3 (all adjusted P < 0.05). Individuals in Cluster 2, characterized by a low post-mock infection NP expression in macrophages, exhibited reduced variations in both NP and TLR1-3 expressions on these cells and a decreased variation in interleukin-2 secretion in comparison to their Cluster 3 counterparts, who were identified by their elevated NP macrophage expression (all adjusted P < 0.05). Conclusion Our work elucidates the multifaceted interplay of patient factors, innate immunity, and inflammasome responses in lung tissues subjected to ex vivo H3N2 IAV exposure, reflecting real-world lower respiratory tract infections. While these findings provide a foundation for tailored therapeutic strategies, supplementary studies are requisite for thorough validation and refinement.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Ju Hsieh
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Jhu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Tzu-Hsuan Hsieh
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Po-Wei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ang Lee
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| |
Collapse
|
2
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
3
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
4
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Immunosenescence Modulation by Vaccination. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121048 DOI: 10.1007/978-3-319-99375-1_71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A decline in immune function is a hallmark of aging that leads to complicated illness from a variety of infectious diseases, cancer and other immune-mediated disorders, and may limit the ability to appropriately respond to vaccination. How vaccines might alter the senescent immune response and what are the immune correlates of protection will be addressed from the perspective of (1) stimulating a previously primed response as in the case of vaccines for seasonal influenza and herpes zoster, (2) priming the response to novel antigens such as pandemic influenza or West Nile virus, (3) vaccination against bacterial pathogens such as pneumococcus and pertussis, (4) vaccines against bacterial toxins such as tetanus and Clostridium difficile, and (5) vaccine approaches to mitigate effects of cytomegalovirus on immune senescence. New or improved vaccines developed over recent years demonstrate the considerable opportunity to improve current vaccines and develop new vaccines as a preventive approach to a variety of diseases in older adults. Strategies for selecting appropriate immunologic targets for new vaccine development and evaluating how vaccines may alter the senescent immune response in terms of potential benefits and risks in the preclinical and clinical trial phases of vaccine development will be discussed.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Kim EY, Oldham WM. Innate T cells in the intensive care unit. Mol Immunol 2019; 105:213-223. [PMID: 30554082 PMCID: PMC6331274 DOI: 10.1016/j.molimm.2018.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022]
Abstract
Rapid onset of acute inflammation is a hallmark of critical illnesses that bring patients to the intensive care unit (ICU). In critical illness, innate T cells rapidly reach full activation and drive a robust acute inflammatory response. As "cellular adjuvants," innate T cells worsen inflammation and mortality in several common critical illnesses including sepsis, ischemia-reperfusion injury, stroke, and exacerbations of respiratory disease. Interestingly, innate T cell subsets can also promote a protective and anti-inflammatory response in sepsis, ischemia-reperfusion injury, and asthma. Therapies that target innate T cells have been validated in several models of critical illness. Here, we review the role of natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells in clinical and experimental critical illness.
Collapse
Affiliation(s)
- Edy Yong Kim
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States.
| | - William M Oldham
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, Boston, MA, 02115, United States; Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
7
|
van der Zwan A, van der Meer-Prins EMW, van Miert PPMC, van den Heuvel H, Anholts JDH, Roelen DL, Claas FHJ, Heidt S. Cross-Reactivity of Virus-Specific CD8+ T Cells Against Allogeneic HLA-C: Possible Implications for Pregnancy Outcome. Front Immunol 2018; 9:2880. [PMID: 30574149 PMCID: PMC6291497 DOI: 10.3389/fimmu.2018.02880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/23/2018] [Indexed: 01/22/2023] Open
Abstract
Heterologous immunity of virus-specific T cells poses a potential barrier to transplantation tolerance. Cross-reactivity to HLA-A and -B molecules has broadly been described, whereas responses to allo-HLA-C have remained ill defined. In contrast to the transplant setting, HLA-C is the only polymorphic HLA molecule expressed by extravillous trophoblasts at the maternal-fetal interface during pregnancy. Uncontrolled placental viral infections, accompanied by a pro-inflammatory milieu, can alter the activation status and stability of effector T cells. Potential cross-reactivity of maternal decidual virus-specific T cells to fetal allo-HLA-C may thereby have detrimental consequences for the success of pregnancy. To explore the presence of cross-reactivity to HLA-C and the other non-classical HLA antigens expressed by trophoblasts, HLA-A and -B-restricted CD8+ T cells specific for Epstein-Barr virus, Cytomegalovirus, Varicella-Zoster virus, and Influenza virus were tested against target cells expressing HLA-C, -E, and -G molecules. An HLA-B*08:01-restricted EBV-specific T cell clone displayed cross-reactivity against HLA-C*01:02. Furthermore, cross-reactivity of HLA-C-restricted virus-specific CD8+ T cells was observed for HCMV HLA-C*06:02/TRA CD8+ T cell lines and clones against HLA-C*03:02. Collectively, these results demonstrate that cross-reactivity against HLA-C can occur and thereby may affect pregnancy outcome.
Collapse
Affiliation(s)
- Anita van der Zwan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | | | - Paula P M C van Miert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Heleen van den Heuvel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Fleming EH, Ochoa EE, Nichols JE, O'Banion MK, Salkind AR, Roberts NJ. Reduced activation and proliferation of human lymphocytes exposed to respiratory syncytial virus compared to cells exposed to influenza virus. J Med Virol 2017; 90:26-33. [PMID: 28856681 DOI: 10.1002/jmv.24917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
Both respiratory syncytial virus (RSV) and influenza A virus (IAV) may infect human peripheral blood mononuclear leukocytes (PBMC) during the immune response to viral challenge as the cells are recruited to the respiratory tract. The current studies demonstrated differences in PBMC responses to the two viruses very early after exposure, including reduced fos protein and CD69 expression and IL-2 production by RSV-exposed T lymphocytes. Exposure to RSV resulted in reduced lymphocyte proliferation despite evidence of a virus-specific T lymphocyte frequency equivalent to that for influenza virus. Reduced RSV-induced proliferation was not due to apoptosis, which was itself reduced relative to that of influenza virus-exposed T lymphocytes. The data indicate that differential immune responses to RSV and influenza virus are determined early after exposure of human PBMC and support the concept that the anamnestic immune response that might prevent clinically evident reinfection is attenuated very soon after exposure to RSV. Thus, candidate RSV vaccines should be expected to reduce but not prevent clinical illness upon subsequent infection by RSV. Furthermore, effective therapeutic agents for RSV are likely to be needed, especially for high-risk populations, even after vaccine development.
Collapse
Affiliation(s)
- Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - M Kerry O'Banion
- Department of Neuroscience and Department of Neurology, University of Rochester School of Medicine, Rochester, New York
| | - Alan R Salkind
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
9
|
Comparison of different collection methods for reported adverse events following pandemic and seasonal influenza vaccination. Vaccine 2016; 34:3961-6. [PMID: 27349839 DOI: 10.1016/j.vaccine.2016.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND During the 2009/2010 season, information on adverse events after administration of seasonal and pandemic influenza vaccines was collected by different active surveys in the Netherlands. In the present paper, we compared data from a paper-based questionnaire with data from a web-based questionnaire with respect to outcomes and target population, in order to guide future influenza vaccine safety monitoring. METHODS The paper-based survey collected data from patients who attended primary care practices in the province of Utrecht for influenza vaccination. The web-based survey recruited participants from the general population all provinces of the Netherlands. To analyze the association between study approach and the reported local and systemic adverse events, a generalized estimation equation model was applied. We adjusted for age, gender, comorbidity, previous vaccination and socio-economic status score. RESULTS No significant differences were found between the two studies approaches in reporting local reactions (OR: 0.98, 95% CI 0.88-1.10) and systemic AEs (OR: 1.12, 95% CI 0.99-1.27). There were important differences in the age groups that responded. The elderly were more represented in the paper-based survey where participants were recruited via GPs (79%⩾60years) compared to 37% in the web-based survey where participants were recruited via internet. CONCLUSION The paper-based survey with recruitment of participants through GPs is more representative for the target group of influenza vaccination compared to the web-based survey with recruitment of participants via internet. A web-based approach with recruitment of participants via internet seems more suitable for situations where information about adverse events on a national level is desirable. We recommend to recruit participants for a web-based survey during mass vaccinations sessions by GPs to comply with the recommendations of the European Centre for Disease Prevention Control.
Collapse
|
10
|
Zhang Y, Wang Y, Zhang M, Liu L, Mbawuike IN. Restoration of Retarded Influenza Virus-specific Immunoglobulin Class Switch in Aged Mice. ACTA ACUST UNITED AC 2016; 7. [PMID: 27274907 PMCID: PMC4892186 DOI: 10.4172/2155-9899.1000403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective The declined immune response to infection causes significant higher morbidity and mortality in aging in spite of the coexisted hyperimmunoglobulinemia (HIG). This study is to reveal the cellular basis of HIG and mechanism of weakened HA-specific IgG response in aged mice and to test cell therapy in the treatment of age-related IgG antibody production deficiency with immunocyte adoptive transfer. Methods BALB/c mice was immunized with Influenza A/Taiwan vaccine and challenged with the same strain of virus. ELISA was used to assess the levels of total immunoglobulins and antigen specific antibody response. The flow cytometry and ELISPOT were used to evaluate the frequencies of total immunoglobulin- and specific antibody-producing and secreting B lymphocytes. In vitro expanded mononuclear cells, CD4+ T lymphocytes and CD20+ B lymphocytes from old and young mice were adoptively transferred into influenza virus-challenged aged mice, and HA-specific IgG responses were observed. Results It is found that old mice exhibited higher levels of total serum IgG, IgM and IgA, higher frequencies of IgG+, IgM+ and IgA+ cells, and greater antigen-specific IgM and IgA responses to influenza infection, in comparison to young mice. However, influenza antigen- specific IgG and its subclass responses in old mice were significantly lower. Conclusion The retarded specific IgG response could be attributed to an insufficiency of immunoglobulin class switch in aging. Correlation analysis indicated that HIG and deficient specific IgG production in aged mice could be independent to each other in their pathogenesis. Correction of deficient specific IgG production by adoptive transfer of in vitro expanded and unexpanded CD4+ cells from immunized young mice suggests the CD4+ cell dysfunction contributes to the insufficiency of immunoglobulin class switch in aged mice. The transfusion of in vitro expanded lymphocytes could be a potential effective therapy for the age-related immunodeficiency and could play a role in the infection prevention in aging.
Collapse
Affiliation(s)
- Yongxin Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Wang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA; Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica Zhang
- ZYX Biotech Company, 1452 Halsey Way, Suite 100, Carrollton, TX 75007, USA
| | - Lin Liu
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Innocent N Mbawuike
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Grant EJ, Quiñones-Parra SM, Clemens EB, Kedzierska K. Human influenza viruses and CD8(+) T cell responses. Curr Opin Virol 2016; 16:132-142. [PMID: 26974887 DOI: 10.1016/j.coviro.2016.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
12
|
Abstract
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted.
Collapse
|
13
|
Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity. mBio 2015; 6:e01024-15. [PMID: 26507227 PMCID: PMC4626850 DOI: 10.1128/mbio.01024-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8+ T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8+ T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative.
Collapse
|
14
|
Duan S, Meliopoulos VA, McClaren JL, Guo XZJ, Sanders CJ, Smallwood HS, Webby RJ, Schultz-Cherry SL, Doherty PC, Thomas PG. Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. PLoS Pathog 2015; 11:e1004642. [PMID: 25668410 PMCID: PMC4335497 DOI: 10.1371/journal.ppat.1004642] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/22/2014] [Indexed: 12/03/2022] Open
Abstract
The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. The emergence of human infections with a novel strain of avian-origin H7N9 virus in China raises a pandemic concern. The introduction of a new subtype in humans makes people at all ages susceptible due to the lack of population-wide neutralizing antibodies. However, cross-subtype protection from existing host immunity might provide important protection that can limit severe disease. Our study found that previous infection with non-H7N9 subtype viruses such as H9N2 viruses or H1N1 viruses could provide protection against lethal H7N9 challenge to varying degrees in mice. The virus-specific memory CD8+ T cells generated by the previous infection but targeting conserved or related portions of the internal proteins (epitopes) of the H7N9 viruses were selectively expanded and recruited at very early time points after H7N9 challenge, contributing to protective efficacy. The magnitude of the priming virus-generated memory CD8+ T cells was the best predictor of the protective efficacy of the heterosubtypic immunity against subsequent H7N9 challenge in these animals, when compared to the magnitude of the challenge response or the degree of epitope conservation between the priming and challenge strains. These results demonstrate the complexity of cross-reactive CD8+ T cell dynamics and suggest that significant protective immunity can be present even when few epitopes are conserved during heterosubtypic influenza infection.
Collapse
Affiliation(s)
- Susu Duan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Victoria A. Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jennifer L. McClaren
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xi-Zhi J. Guo
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Catherine J. Sanders
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Heather S. Smallwood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey L. Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter C. Doherty
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
McElhaney JE, Coler RN, Baldwin SL. Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults. Expert Rev Vaccines 2014; 12:759-66. [DOI: 10.1586/14760584.2013.811193] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Salk HM, Haralambieva IH, Ovsyannikova IG, Goergen KM, Poland GA. Granzyme B ELISPOT assay to measure influenza-specific cellular immunity. J Immunol Methods 2013; 398-399:44-50. [PMID: 24055591 DOI: 10.1016/j.jim.2013.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
Abstract
The immunogenicity and efficacy of influenza vaccination are markedly lower in the elderly. Granzyme B (GrzB), quantified in fresh cell lysates, has been suggested to be a marker of cytotoxic T lymphocyte (CTL) response and a predictor of influenza illness among vaccinated older individuals. We have developed an influenza-specific GrzB ELISPOT assay using cryopreserved PBMCs. This method was tested on 106 healthy older subjects (ages 50-74) at baseline (Day 0) and three additional time points post-vaccination (Day 3, Day 28, Day 75) with influenza A/H1N1-containing vaccine. No significant difference was seen in GrzB response between any of the time points, although influenza-specific GrzB response appears to be elevated at all post-vaccination time points. There was no correlation between GrzB response and hemagglutination inhibition (HAI) titers, indicating no relationship between the cytolytic activity and humoral antibody levels in this cohort. Additionally, a significant negative correlation between GrzB response and age was observed. These results reveal a reduction in influenza-specific GrzB response as one ages. In conclusion, we have developed and optimized an influenza-specific ELISPOT assay for use with frozen cells to quantify the CTL-specific serine protease GrzB, as a measure of cellular immunity after influenza vaccination.
Collapse
|
17
|
Kedzierska K, Valkenburg SA, Doherty PC, Davenport MP, Venturi V. Use it or lose it: establishment and persistence of T cell memory. Front Immunol 2012; 3:357. [PMID: 23230439 PMCID: PMC3515894 DOI: 10.3389/fimmu.2012.00357] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/08/2012] [Indexed: 01/06/2023] Open
Abstract
Pre-existing T cell memory provides substantial protection against viral, bacterial, and parasitic infections. The generation of protective T cell memory constitutes a primary goal for cell-mediated vaccines, thus understanding the mechanistic basis of memory development and maintenance are of major importance. The widely accepted idea that T cell memory pools are directly descended from the effector populations has been challenged by recent reports that provide evidence for the early establishment of T cell memory and suggest that the putative memory precursor T cells do not undergo full expansion to effector status. Moreover, it appears that once the memory T cells are established early in life, they can persist for the lifetime of an individual. This is in contrast to the reported waning of naïve T cell immunity with age. Thus, in the elderly, immune memory that was induced at an early age may be more robust than recently induced memory, despite the necessity for long persistence. The present review discusses the mechanisms underlying the early establishment of immunological memory and the subsequent persistence of memory T cell pools in animal models and humans.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
18
|
Valkenburg SA, Venturi V, Dang THY, Bird NL, Doherty PC, Turner SJ, Davenport MP, Kedzierska K. Early priming minimizes the age-related immune compromise of CD8⁺ T cell diversity and function. PLoS Pathog 2012; 8:e1002544. [PMID: 22383879 PMCID: PMC3285595 DOI: 10.1371/journal.ppat.1002544] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 01/07/2012] [Indexed: 01/02/2023] Open
Abstract
The elderly are particularly susceptible to influenza A virus infections, with increased occurrence, disease severity and reduced vaccine efficacy attributed to declining immunity. Experimentally, the age-dependent decline in influenza-specific CD8+ T cell responsiveness reflects both functional compromise and the emergence of ‘repertoire holes’ arising from the loss of low frequency clonotypes. In this study, we asked whether early priming limits the time-related attrition of immune competence. Though primary responses in aged mice were compromised, animals vaccinated at 6 weeks then challenged >20 months later had T-cell responses that were normal in magnitude. Both functional quality and the persistence of ‘preferred’ TCR clonotypes that expand in a characteristic immunodominance hierarchy were maintained following early priming. Similar to the early priming, vaccination at 22 months followed by challenge retained a response magnitude equivalent to young mice. However, late priming resulted in reduced TCRβ diversity in comparison with vaccination earlier in life. Thus, early priming was critical to maintaining individual and population-wide TCRβ diversity. In summary, early exposure leads to the long-term maintenance of memory T cells and thus preserves optimal, influenza-specific CD8+ T-cell responsiveness and protects against the age-related attrition of naïve T-cell precursors. Our study supports development of vaccines that prime CD8+ T-cells early in life to elicit the broadest possible spectrum of CD8+ T-cell memory and preserve the magnitude, functionality and TCR usage of responding populations. In addition, our study provides the most comprehensive analysis of the aged (primary, secondary primed-early and secondary primed-late) TCR repertoires published to date. The elderly population is particularly susceptible to novel infections, especially the annual, seasonal epidemics caused by influenza viruses. Established T cell immunity directed at conserved viral regions provides some protection against influenza infection and promotes more rapid recovery, thus leading to better clinical outcomes. We asked whether priming early in life limits the time-related attrition of immune competence. We found that although influenza-specific T cell responses are compromised in the aged mice, vaccination with influenza early (but not late) in life ‘locks’ optimal T-cell responsiveness, maintains functional quality, persistence of preferred clones and a characteristic T cell hierarchy. Overall, our study supports development of vaccines that prime T cells early in life to elicit the broadest possible spectrum of pre-existing T cell memory and preserve the magnitude, functionality and clonal usage of responding populations for life-long immunity against influenza viruses.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | - Vanessa Venturi
- Computational Biology Group St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Thurston H. Y. Dang
- Computational Biology Group St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Nicola L. Bird
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
- * E-mail:
| |
Collapse
|
19
|
Abstract
A clear understanding of immunity in individuals infected with influenza virus is critical for the design of effective vaccination and treatment strategies. Whereas myriad studies have teased apart innate and adaptive immune responses to influenza infection in murine models, much less is known about human immunity as a result of the ethical and technical constraints of human research. Still, these murine studies have provided important insights into the critical correlates of protection and pathogenicity in human infection and helped direct the human studies that have been conducted. Here, we examine and review the current literature on immunity in humans infected with influenza virus, noting evidence offered by select murine studies and suggesting directions in which future research is most warranted.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
20
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Lee JB, Oelke M, Ramachandra L, Canaday DH, Schneck JP. Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors. IMMUNITY & AGEING 2011; 8:6. [PMID: 21846352 PMCID: PMC3179433 DOI: 10.1186/1742-4933-8-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
Background While influenza vaccination results in protective antibodies against primary infections, clearance of infection is primarily mediated through CD8+ T cells. Studying the CD8+ T cell response to influenza epitopes is crucial in understanding the disease associated morbidity and mortality especially in at risk populations such as the elderly. We compared the CD8+ T cell response to immunodominant and subdominant influenza epitopes in HLA-A2+ control, adult donors, aged 21-42, and in geriatric donors, aged 65 and older. Results We used a novel artificial Antigen Presenting Cell (aAPC) based stimulation assay to reveal responses that could not be detected by enzyme-linked immunosorbent spot (ELISpot). 14 younger control donors and 12 geriatric donors were enrolled in this study. The mean number of influenza-specific subdominant epitopes per control donor detected by ELISpot was only 1.4 while the mean detected by aAPC assay was 3.3 (p = 0.0096). Using the aAPC assay, 92% of the control donors responded to at least one subdominant epitopes, while 71% of control donors responded to more than one subdominant influenza-specific response. 66% of geriatric donors lacked a subdominant influenza-specific response and 33% of geriatric donors responded to only 1 subdominant epitope. The difference in subdominant response between age groups is statistically significant (p = 0.0003). Conclusion Geriatric donors lacked the broad, multi-specific response to subdominant epitopes seen in the control donors. Thus, we conclude that aging leads to a decrease in the subdominant influenza-specific CTL responses which may contribute to the increased morbidity and mortality in older individuals.
Collapse
Affiliation(s)
- Jessica B Lee
- Department of Pathology, Johns Hopkins University, 733 N Broadway BRB 632, Baltimore, MD, 21205, USA.
| | | | | | | | | |
Collapse
|
22
|
McElhaney JE. Influenza vaccine responses in older adults. Ageing Res Rev 2011; 10:379-88. [PMID: 21055484 DOI: 10.1016/j.arr.2010.10.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 12/21/2022]
Abstract
The most profound consequences of immune senescence with respect to public health are the increased susceptibility to influenza and loss of efficacy of the current split-virus influenza vaccines in older adults, which are otherwise very effective in younger populations. Influenza infection is associated with high rates of complicated illness including pneumonia, heart attacks and strokes in the 65+ population. Changes in both innate and adaptive immune function not only converge in the reduced response to vaccination and protection against influenza, but present significant challenges to new vaccine development. In older adults, the goal of vaccination is more realistically targeted to providing clinical protection against disease rather sterilizing immunity. Correlates of clinical protection may not be measured using standard techniques such as antibody titres to predict vaccine efficacy. Further, antibody responses to vaccination as a correlate of protection may fail to detect important changes in cellular immunity and enhanced vaccine-mediated protection against influenza illness in older people. This article will discuss the impact of influenza in older adults, immunologic targets for improved efficacy of the vaccines, and alternative correlates of clinical protection against influenza that are needed for more effective translation of novel vaccination strategies to improved protection against influenza in older adults.
Collapse
|
23
|
Naumov YN, Naumova EN, Yassai MB, Gorski J. Selective T cell expansion during aging of CD8 memory repertoires to influenza revealed by modeling. THE JOURNAL OF IMMUNOLOGY 2011; 186:6617-24. [PMID: 21515795 DOI: 10.4049/jimmunol.1100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aging of T cell memory is often considered in terms of senescence, a process viewed as decay and loss of memory T cells. How senescence would affect memory is a function of the initial structure of the memory repertoire and whether the clonotypes that make up the repertoire decay at random. We examine this issue using the T cell memory generated to the conserved influenza A epitope M1(58-66), which induces a strong, focused, but polyclonal CD8 T cell response in HLA-A2 individuals. We analyzed the CD8 T cell memory repertoires in eight healthy middle-aged and eight healthy older blood donors representing an average age difference of ∼ 27 y. Although the repertoires show broadly similar clonotype distributions, the number of observable clonotypes decreases significantly. This decrease disproportionally affects low-frequency clonotypes. Rank frequency analysis shows the same two-component clonotype distribution described earlier for these repertoires. The first component includes lower frequency clonotypes for which distribution can be described by a power law. The slope of this first component is significantly steeper in the older cohort. Generating a representative repertoire for each healthy cohort allowed agent-based modeling of the aging process. Interestingly, simple senescence of middle-aged repertoires is insufficient to describe the older clonotype distribution. Rather, a selective clonotype expansion must be included to achieve the best fit. We propose that responses to periodic virus exposure may drive such expansion, ensuring that the remaining clonotypes are optimized for continued protection.
Collapse
Affiliation(s)
- Yuri N Naumov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
24
|
Wang SF, Yao L, Liu SJ, Chong P, Liu WT, Chen YMA, Huang JC. Identifying conserved DR1501-restricted CD4(+) T-cell epitopes in avian H5N1 hemagglutinin proteins. Viral Immunol 2011; 23:585-93. [PMID: 21142444 DOI: 10.1089/vim.2010.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic avian influenza H5N1 viruses are capable of causing poultry epidemics and human mortality. Vaccines that induce protective neutralizing antibodies can prevent outbreaks and decrease the potential for influenza A pandemics. Identifying unique H5N1 virus-specific HLA class II-restricted epitopes is essential for monitoring cellular strain-specific immunity. Our results indicate that 80% of the 30 study participants who were inoculated with an H5N1 vaccine produced neutralizing antibodies. We used intracellular cytokine staining (ICS) to screen and identify six DR1501-restricted H5N1 virus epitopes: H5HA(148-162), H5HA(155-169), H5HA(253-267), H5HA(260-274), H5HA(267-281) and H5HA(309-323.) Tetramer staining results confirmed that two immunodominant epitopes were DR1501-restricted: H5HA(155-169) and H5HA(267-281). Both are located at the HA surface and are highly conserved in currently circulating H5N1 clades. These results suggest that a combination of ICS and tetramer staining can be used as a T-cell epitope-mapping platform, and the identified epitopes may serve as markers for monitoring vaccine efficacy.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Biotechnology and Laboratory Science in Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Scheible K, Zhang G, Baer J, Azadniv M, Lambert K, Pryhuber G, Treanor JJ, Topham DJ. CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine 2011; 29:2159-68. [PMID: 21211588 PMCID: PMC3061835 DOI: 10.1016/j.vaccine.2010.12.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 12/17/2022]
Abstract
A novel strain of H1N1 influenza A virus (pH1N1) emerged in 2009, causing a worldwide pandemic. Several studies suggest that this virus is antigenically more closely related to human influenza viruses that circulated prior to 1957 than viruses of more recent seasonal influenza varieties. The extent to which individuals who are naïve to the 2009 pH1N1 virus carry cross-reactive CD8+ T cells is not known, but a certain degree of reactivity would be expected since there is substantial conservation among the internal proteins of the virus. In the present study, we examined the production of multiple cytokines in response to virus from CD8+ T cells in healthy adult subjects, between 18 and 50 years of age (born post 1957), who had no evidence of exposure to the 2009 pH1N1 virus, and had blood collected prior to the emergence of the pandemic in April of 2009. Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with a panel of live viruses, and assayed by intracellular cytokine staining and flow cytometry. Although results were variable, most subjects exhibited cytokine positive CD8+ T cells in response to pH1N1. Cytokine producing cells were predominantly single positive (IL2, IFNγ, or TNFα); triple-cytokine producing cells were relatively rare. This result suggests that although many adults carry cross-reactive T cells against the emergent pandemic virus, these cells are in a functionally limited state, possibly because these subjects have not had recent exposure to either seasonal or pandemic influenza strains.
Collapse
Affiliation(s)
- Kristin Scheible
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gang Zhang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jane Baer
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mitra Azadniv
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kris Lambert
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gloria Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John J. Treanor
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J. Topham
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology; University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
26
|
Humoral and cell-mediated immune responses of old horses following recombinant canarypox virus vaccination and subsequent challenge infection. Vet Immunol Immunopathol 2011; 139:128-40. [DOI: 10.1016/j.vetimm.2010.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/20/2010] [Accepted: 09/28/2010] [Indexed: 01/21/2023]
|
27
|
Influenza Vaccines: What Do We Want and How Can We Get It? CROSSROADS BETWEEN INNATE AND ADAPTIVE IMMUNITY III 2011; 780:161-74. [DOI: 10.1007/978-1-4419-5632-3_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
Werler MM. Hypothesis: could Epstein-Barr virus play a role in the development of gastroschisis? ACTA ACUST UNITED AC 2010; 88:71-5. [PMID: 19937602 DOI: 10.1002/bdra.20640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The strong inverse association between maternal age and risk of gastroschisis in offspring has spurred many investigators to hypothesize that behaviors among younger females are the cause. Examples include cigarette smoking, illicit drugs, genitourinary infections, and sexually transmitted diseases, each of which has been reported to be associated with gastroschisis. Although these exposures are more common in young women, recent studies have shown that cigarette smoking, genitourinary infections, and sexually transmitted diseases are most strongly associated with gastroschisis in older women. There is both anecdotal and published evidence showing that gastroschisis sometimes (but not always) occurs in clusters, raising the possibility that an infectious agent might be involved in its pathogenesis. RESULTS One such agent whose epidemiologic characteristics parallel those of gastroschisis is Epstein-Barr virus (EBV). Primary EBV infection in early childhood has been decreasing over time, leaving a greater proportion of adolescents at risk, as reflected by increased rates of infectious mononucleosis over time. During the childbearing years, risk of primary EBV infection decreases dramatically, as does risk of gastroschisis. The stronger risks of gastroschisis associated with cigarette smoking, genitourinary infections, and sexually transmitted diseases in older women might be explained by EBV reactivation resulting from multiple challenges to immune response such as pregnancy, age, toxic exposures, and genitourinary and sexually transmitted infections. CONCLUSION EBV and other herpes viruses should be added to the research agenda for gastroschisis.
Collapse
Affiliation(s)
- Martha M Werler
- Slone Epidemiology Center at Boston University, Boston, Massachusetts 02215, USA.
| |
Collapse
|
29
|
Standardization and validation of assays determining cellular immune responses against influenza. Vaccine 2010; 28:3416-22. [DOI: 10.1016/j.vaccine.2010.02.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 11/21/2022]
|
30
|
Herzog C, Hartmann K, Künzi V, Kürsteiner O, Mischler R, Lazar H, Glück R. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine 2009; 27:4381-7. [PMID: 19450630 DOI: 10.1016/j.vaccine.2009.05.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/23/2009] [Accepted: 05/10/2009] [Indexed: 11/17/2022]
Abstract
Since the introduction to the Swiss market in 1997, Crucell (former Berna Biotech Ltd.), has sold over 41 million doses worldwide of the virosomal adjuvanted influenza vaccine, Inflexal V. Since 1992, 29 company sponsored clinical studies investigating the efficacy and safety of Inflexal V have been completed in which 3920 subjects participated. During its decade on the market, Inflexal V has shown an excellent tolerability profile due to its biocompatibility and purity. The vaccine contains no thiomersal or formaldehyde and its purity is reflected in the low ovalbumin content. By mimicking natural infection, the vaccine is highly efficacious. Inflexal V is the only adjuvanted influenza vaccine licensed for all age groups and shows a good immunogenicity in both healthy and immunocompromised elderly, adults and children. This review presents and discusses the experience with Inflexal V during the past decade.
Collapse
|
31
|
Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009; 87:300-8. [PMID: 19308073 DOI: 10.1038/icb.2009.16] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our approach to vaccination against influenza is unique. For no other pathogen do we construct and produce a new vaccine every year in the face of uncertainty about the strains that will be circulating when it is used. The huge global cooperative effort that underpins this process reflects our awareness of the need to control this major pathogen. Moreover, the threat of devastation by a pandemic due to a newly emerging viral subtype has triggered an intense effort to improve and accelerate the production of vaccines for use if a pandemic arises. However, type A influenza viruses responsible for seasonal epidemics and those with the potential to cause a pandemic share amino acid sequences that form the targets of cytotoxic T lymphocytes (CTL). CTL activated by currently circulating viruses, therefore, offer a possible means to limit the impact of infection with future variant seasonal strains and even new subtypes. This review examines how cross-protective CTL can be exploited to improve influenza vaccination and issues that need to be considered when attempting to induce this type of immunity. We discuss the role of CTL responses in viral control and review the current knowledge relating to specificity and longevity of memory CD8(+) T cells, how vaccine antigen can be loaded into antigen-presenting cells to prime these responses and factors influencing the class of response induced. Application of these principles to the next generation of influenza vaccines should lead to much greater control of infection.
Collapse
|
32
|
Safdar A, Decker WK, Li S, Xing D, Robinson SN, Yang H, Steiner D, Rodriguez G, Shpall EJ, Bollard C. De novo T-lymphocyte responses against baculovirus-derived recombinant influenzavirus hemagglutinin generated by a naive umbilical cord blood model of dendritic cell vaccination. Vaccine 2009; 27:1479-84. [PMID: 19185049 DOI: 10.1016/j.vaccine.2009.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 12/09/2022]
Abstract
Cancer patients and recipients of hematopoietic stem cell transplantation exhibit a negligible response to influenza vaccine. Toward the goal of addressing this issue, we developed an in vitro model of dendritic cell (DC) immunotherapy utilizing DCs generated from naïve umbilical cord blood (UCB). UCB DCs were loaded with purified rHA protein and used to stimulate autologous T-lymphocytes. Upon recall with HA-loaded autologous DC, a 4-10-fold increase in the number of IFN-gamma producing T-lymphocytes was observed in comparison to T-cells stimulated with control DCs. Antigen-specific T-cell functionality was determined by (51)Cr lytic assay. Using a peptide library of predicted HA binding epitopes, we mapped an HA-specific, DR15-restricted CD4 T-cell epitope and observed tetramer positive cells. This model demonstrates that HA-specific immune responses might possibly be generated in a de novo fashion and suggests that dendritic cell immunotherapy for the prevention of influenza in populations of immunosuppressed individuals could be feasible.
Collapse
Affiliation(s)
- Amar Safdar
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Immunosenescence Modulation by Vaccination. HANDBOOK ON IMMUNOSENESCENCE 2009. [PMCID: PMC7120001 DOI: 10.1007/978-1-4020-9063-9_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A decline in immune function is a hallmark of aging that leads to complicated illness from a variety of infectious diseases, cancer and other immune-mediated disorders, and may limit the ability to appropriately respond to vaccination. How vaccines might alter the senescent immune response and what are the immune correlates of protection will be addressed from the perspective of 1) stimulating a previously primed response as in the case of vaccines for seasonal influenza and herpes zoster, 2) priming the response to novel antigens such as pandemic influenza or other viruses, 3) vaccination against bacterial pathogens such as pneumococcus, and 4) altering the immune response to an endogenous protein as in the case of a vaccine against Alzheimer’s disease. In spite of the often limited efficacy of vaccines for older adults, influenza vaccination remains the only cost-saving medical intervention in this population. Thus, considerable opportunity exists to improve current vaccines and develop new vaccines as a preventive approach to a variety of diseases in older adults. Strategies for selecting appropriate immunologic targets for new vaccine development and evaluating how vaccines may alter the senescent immune response in terms of potential benefits and risks in the preclinical and clinical trial phases of vaccine development will be discussed.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Department of Medicine, Immunology Graduate Programme, Faculty of Medicine, University of Sherbrooke, 1036 Rue Belvedere, J1H 4C4 Sherbrooke, Quebec Canada
| | - Claudio Franceschi
- Department of Experimental Pathalogy, CIG Interdepartmental Center “L. Galvani” University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Katsuiku Hirokawa
- Institute for Health and Life Sciences, 4-6-22 Kohinato, Bunkyo-ku, Tokyo, 112-0006 Japan
| | - Graham Pawelec
- ZMF - Zentrum Med. Forschung Abt. Transplant./ Immunologie, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany
| |
Collapse
|
34
|
McElhaney JE. Influenza vaccination in the elderly: seeking new correlates of protection and improved vaccines. ACTA ACUST UNITED AC 2008; 4:603-613. [PMID: 20011611 DOI: 10.2217/1745509x.4.6.603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza is foremost among all infectious diseases for an age-related increase in risk for serious complications and death. Determining the benefit of current influenza vaccines is largely limited to epidemiologic studies, since placebo-controlled trials of influenza vaccines are no longer considered ethical in the older adult population. Vaccine effectiveness is calculated from the relative reduction in influenza outcomes in individuals who elect to be vaccinated compared with those who do not, the assumptions for which are diverse and have led to considerable controversy as to the exact benefit of influenza vaccination in older adults. In spite of this controversy, there is no doubt that new influenza vaccine technologies are needed to improve protection and reverse the trend of rising hospitalization and death rates related to influenza in older adults despite widespread influenza vaccination programs. This article will review the challenges to new vaccine development, explore the potential correlates of protection against influenza, and describe how new vaccine technologies may improve protection against complicated influenza illness in the older adult population.
Collapse
Affiliation(s)
- Janet E McElhaney
- Department of Medicine, University of British Columbia, Vancouver, Canada and, Center for Immunotherapy of Cancer & Infectious Diseases, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1601, USA, Tel.: +1 604 806 9153, ,
| |
Collapse
|
35
|
Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1042-53. [PMID: 18448618 DOI: 10.1128/cvi.00397-07] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly sensitive gamma interferon (IFN-gamma) enzyme-linked immunosorbent spot (ELISPOT) assay permits the investigation of the role of cell-mediated immunity (CMI) in the protection of young children against influenza. Preliminary studies of young children confirmed that the IFN-gamma ELISPOT assay was a more sensitive measure of influenza memory immune responses than serum antibody and that among seronegative children aged 6 to <36 months, an intranasal dose of 10(7) fluorescent focus units (FFU) of a live attenuated influenza virus vaccine (CAIV-T) elicited substantial CMI responses. A commercial inactivated influenza virus vaccine elicited CMI responses only in children with some previous exposure to related influenza viruses as determined by detectable antibody levels prevaccination. The role of CMI in actual protection against community-acquired, culture-confirmed clinical influenza by CAIV-T was investigated in a large randomized, double-blind, placebo-controlled dose-ranging efficacy trial with 2,172 children aged 6 to <36 months in the Philippines and Thailand. The estimated protection curve indicated that the majority of infants and young children with >or=100 spot-forming cells/10(6) peripheral blood mononuclear cells were protected against clinical influenza, establishing a possible target level of CMI for future influenza vaccine development. The ELISPOT assay for IFN-gamma is a sensitive and reproducible measure of CMI and memory immune responses and contributes to establishing requirements for the future development of vaccines against influenza, especially those used for children.
Collapse
|
36
|
Wack A, Baudner BC, Hilbert AK, Manini I, Nuti S, Tavarini S, Scheffczik H, Ugozzoli M, Singh M, Kazzaz J, Montomoli E, Del Giudice G, Rappuoli R, O’Hagan DT. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 2008; 26:552-61. [DOI: 10.1016/j.vaccine.2007.11.054] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 10/24/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
37
|
de Waal L, Süzer Y, Wyatt LS, Sintnicolaas K, Sutter G, Moss B, Osterhaus ADME, de Swart RL. T Cell Responses to Respiratory Syncytial Virus Fusion and Attachment Proteins in Human Peripheral Blood Mononuclear Cells. Viral Immunol 2006; 19:669-78. [PMID: 17201662 DOI: 10.1089/vim.2006.19.669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The cellular immune response to respiratory syncytial virus (RSV) is considered important in both protection and immunopathogenesis. We have studied the HLA class I- and class II-restricted T cell responses to RSV fusion (F) and attachment (G) proteins in peripheral blood mononuclear cells (PBMCs) obtained from healthy young adults. PBMCs were stimulated with autologous cells infected with recombinant modified vaccinia virus Ankara (rMVA) expressing RSV F (rMVA-F) or G (rMVA-G). In rMVA-F-stimulated bulk cultures F-specific CD4(+) and CD8(+) T cell responses were demonstrated, whereas in rMVA-G-stimulated cultures only G-specific CD4(+) T cell responses were detected. Using a set of overlapping peptides spanning the F protein, a number of the F-specific T cell responses could be mapped to different antigenic regions, whereas for the G protein only CD4(+) T cell responses recognizing the central conserved domain could be detected. These results suggest that the RSV glycoprotein-specific T cell response is directed to a number of different epitopes. Further studies must be performed to confirm the apparent inability of the RSV G protein to induce CD8(+) T cell responses. The rMVA-based in vitro stimulation protocol will be useful to define protein-specific T cell responses in different viral systems.
Collapse
Affiliation(s)
- Leon de Waal
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y, Kleppinger A, Ewen C, Kane KP, Bleackley RC. T cell responses are better correlates of vaccine protection in the elderly. THE JOURNAL OF IMMUNOLOGY 2006; 176:6333-9. [PMID: 16670345 DOI: 10.4049/jimmunol.176.10.6333] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is commonly held that increased risk of influenza in the elderly is due to a decline in the Ab response to influenza vaccination. This study prospectively evaluated the relationship between the development of influenza illness, and serum Ab titers and ex vivo cellular immune responses to influenza vaccination in community dwelling older adults including those with congestive heart failure (CHF). Adults age 60 years and older (90 subjects), and 10 healthy young adult controls received the 2003-04 trivalent inactivated influenza vaccine. Laboratory diagnosed influenza (LDI) was documented in 9 of 90 older adults. Pre- and postvaccination Ab titers did not distinguish between subjects who would subsequently develop influenza illness (LDI subjects) and those who would not (non-LDI subjects). In contrast, PBMC restimulated ex vivo with live influenza virus preparations showed statistically significant differences between LDI and non-LDI subjects. The mean IFN-gamma:IL-10 ratio in influenza A/H3N2-stimulated PBMC was 10-fold lower in LDI vs non-LDI subjects. Pre-and postvaccination granzyme B levels were significantly lower in CHF subjects with LDI compared with subjects without LDI. In non-CHF subjects with LDI, granzyme B levels increased to high levels at the time of influenza infection. In conclusion, measures of the ex vivo cellular immune response to influenza are correlated with protection against influenza while serum Ab responses may be limited as a sole measure of vaccine efficacy in older people. Ex vivo measures of the cell-mediated immune response should be incorporated into evaluation of new vaccines for older adults.
Collapse
Affiliation(s)
- Janet E McElhaney
- Center for Immunotherapy of Cancer and Infectious Diseases, MC1601, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1601, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, Wilschut J. The virosome concept for influenza vaccines. Vaccine 2005; 23 Suppl 1:S26-38. [PMID: 16026906 DOI: 10.1016/j.vaccine.2005.04.026] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is a need for more efficacious inactivated influenza vaccines, since current formulations show suboptimal immunogenicity in at-risk populations, like the elderly. More effective vaccines are also urgently needed for an improved influenza pandemic preparedness. In this context, there is considerable interest in virosomes. Virosomes are virus-like particles, consisting of reconstituted influenza virus envelopes, lacking the genetic material of the native virus. Virosomes are produced from influenza virus through a detergent solubilization and removal procedure. Properly reconstituted virosomes retain the cell binding and membrane fusion properties of the native virus, mediated by the viral envelope glycoprotein haemagglutinin. These functional characteristics of virosomes form the basis for their enhanced immunogenicity. First, the repetitive arrangement of haemagglutinin molecules on the virosomal surface mediates a cooperative interaction of the antigen with Ig receptors on B lymphocytes, stimulating strong antibody responses. In addition, virosomes interact efficiently with antigen-presenting cells, such as dendritic cells, resulting in activation of T lymphocytes. In a murine model system, virosomes, as compared to conventional subunit vaccine, which consists of isolated influenza envelope glycoproteins, induce a more balanced T helper 1 versus T helper 2 response, virosomes in particular eliciting stronger T helper 1 responses than subunit vaccine. Also, as a result of fusion of the virosomes with the endosomal membrane, part of the virosomal antigen gains access to the major histocompatibility class I presentation pathway, thus priming cytotoxic T lymphocyte activity. Finally, virosomes represent an excellent platform for inclusion of lipophilic adjuvants for further stimulation of vaccine immunogenicity. By virtue of these characteristics, virosomes represent a promising novel class of inactivated influenza vaccines, which not only induce high virus-neutralizing antibody titres, but also prime the cellular arm of the immune system.
Collapse
Affiliation(s)
- Anke Huckriede
- University Medical Center Groningen, Department of Medical Microbiology, Molecular Virology Section, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Boon ACM, de Mutsert G, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Functional profile of human influenza virus-specific cytotoxic T lymphocyte activity is influenced by interleukin-2 concentration and epitope specificity. Clin Exp Immunol 2005; 142:45-52. [PMID: 16178855 PMCID: PMC1809493 DOI: 10.1111/j.1365-2249.2005.02880.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2005] [Indexed: 12/17/2022] Open
Abstract
The ability of influenza A virus-specific cytotoxic T lymphocytes (CTL) to degranulate and produce cytokines upon antigenic restimulation was studied in four HLA-A*0101 and HLA-A*0201 positive subjects. Peripheral blood mononuclear cells of these subjects were stimulated with influenza A virus in the presence of high or low interleukin (IL)-2 concentrations. CD8(+) T cell populations specific for the HLA-A*0101 restricted epitope NP(44-52) and the HLA-A*0201 restricted epitope M1(58-66) were identified by positive staining with tetramers of peptide major histocompatibility complexes (MHC) (NP-Tm and M1-Tm, respectively). Within these populations, the proportion of cells mobilizing CD107a, or expressing interferon (IFN)-gamma and tumour necrosis factor-(TNF)-alpha upon short-term peptide restimulation was determined by flow cytometry. Independent of IL-2 concentrations, large subject-dependent differences in the mobilization of CD107a and expression of IFN-gamma and TNF-alpha by both NP- and M1-specific T cells were observed. In two of the four subjects, the functional profile of NP-Tm(+) and M1-Tm(+) cells differed considerably. Overall, no difference in the proportion of NP-Tm(+) or M1-Tm(+) cells expressing CD107a was observed. The proportion of M1-Tm(+) cells that produced IFN-gamma (P < 0.05) was larger than for NP-Tm(+) cells, independent of IL-2 concentration. When cultured under IL-2(hi) concentrations higher TNF-alpha expression was also observed in M1-Tm(+) cells (P < 0.05). The IL-2 concentration during expansion of virus-specific cells had a profound effect on the functionality of both M1-Tm(+) and NP-Tm(+) cells.
Collapse
Affiliation(s)
- A C M Boon
- Department of Virology and WHO National Influenza Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
41
|
Berkhoff EGM, de Wit E, Geelhoed-Mieras MM, Boon ACM, Symons J, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 2005; 79:11239-46. [PMID: 16103176 PMCID: PMC1193597 DOI: 10.1128/jvi.79.17.11239-11246.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.
Collapse
Affiliation(s)
- E G M Berkhoff
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Influenza is a serious illness and probably the single most important cause of excess disability and mortality during the winter months. In spite of limited efficacy in older adults, influenza vaccination is nevertheless a cost-saving medical intervention since it does reduce hospitalisation and death rates due to pneumonia, exacerbations of heart failure and, surprisingly, heart attacks and strokes. Yet hospitalisation and death rates for acute respiratory illnesses continue to rise in spite of widespread vaccination programs. As a person ages, the immune response to antigenic stimulation with the influenza virus shifts toward T helper type 2 cytokine production. This is associated with a relative reduction in cytotoxic T-cell activity and a reduced capacity to destroy infected host cells and clear the virus from infected lung tissue. Breakthrough strategies to improve the current influenza vaccines are required to avoid a crisis in health care. A targeted approach will develop vaccines that can reverse these age-related changes in T-cell responses, particularly the functions of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Janet E McElhaney
- Center for Immunotherapy of Cancer and Infectious Diseases and UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA.
| |
Collapse
|
43
|
de Bruijn IA, Nauta J, Cramer WCM, Gerez L, Palache AM. Clinical experience with inactivated, virosomal influenza vaccine. Vaccine 2005; 23 Suppl 1:S39-49. [PMID: 16005120 DOI: 10.1016/j.vaccine.2005.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Current available influenza vaccines are safe and effective in preventing influenza. Nevertheless, there is a need for influenza vaccines with improved efficacy in the elderly. This need is underscored by both the observation that influenza has a major clinical and economic impact in the elderly and the fact that currently available vaccines are generally less effective in elderly than in younger subjects. Several approaches are currently being pursued in order to improve the efficacy of influenza vaccines in elderly individuals and others who have impaired immune responses to conventional influenza vaccines. A novel antigen-presenting strategy to overcome impaired immune responses is the use of virosomes. Previously, data on safety and reactogenicity have been published regarding the use of virosomal influenza vaccines. Data from three recent clinical trials are presented here. The first of these was a comparative study of a virosomal vaccine and a conventional subunit vaccine in "at-risk" adults with underlying chronic illness. The virosomal vaccine demonstrated comparable tolerability to the subunit vaccine, with about 98% of patients reporting tolerability to be good or very good. The vast majority of adverse events reported were mild to moderate in severity. With both vaccine types, mean HI titres decreased with age for both the A-H1N1 and B influenza virus strains, but for the A-H3N2 strain (the most virulent of the three strains), mean HI titres did not decrease with age, suggesting a better response with the virosomal vaccine when compared to the subunit vaccine. All three studies explored the long-term persistence of antibodies after vaccination with virosomal influenza vaccines. Immunogenicity declined over time but remained high at 4, 6 and 12 months post-vaccination compared to baseline, indicating that adequate seroprotection is achievable for the duration of the influenza season. Virosomal vaccines may induce better immunity in elderly subjects and may be more effective in reducing morbidity and mortality in this age group.
Collapse
Affiliation(s)
- I A de Bruijn
- Clinical Development Influenza Vaccines, Solvay Pharmaceuticals BV, PO Box 900, 1380 DA, Weesp, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
van Baarle D, Tsegaye A, Miedema F, Akbar A. Significance of senescence for virus-specific memory T cell responses: rapid ageing during chronic stimulation of the immune system. Immunol Lett 2005; 97:19-29. [PMID: 15626472 DOI: 10.1016/j.imlet.2004.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/01/2004] [Accepted: 10/01/2004] [Indexed: 12/31/2022]
Abstract
There is a generalized age-related decline in immune responses which leads to increased susceptibility of elderly to infection and, possibly, to autoimmune disease and cancer. This is associated with phenotypic changes of CD8+ T lymphocytes that include the loss of costimulatory molecules CD28 and CD27, which are important for proliferation and cell survival of CD8+ T cells. Loss of these molecules is associated with less ability to respond to recurrent infection. Functional changes within T cells during ageing include a reduction in the number of naive T cells and a progressively limited T cell repertoire. Furthermore, persistent life-long antigenic stress upon the memory pool leads to telomere erosion and concomittant loss of proliferative capacity, a phenomenon known as replicative senesence. In this review, we discuss that replicative senescence, or clonal exhaustion, may also occur in relatively young individuals, as evidenced from HIV-infected individuals and healthy Ethiopians. We discuss data suggesting that T cell defects may arise in individuals because of chronic antigen activation leading to rapid ageing of the memory CD8+ T cell pool.
Collapse
Affiliation(s)
- Debbie van Baarle
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Hunzeker J, Padgett DA, Sheridan PA, Dhabhar FS, Sheridan JF. Modulation of natural killer cell activity by restraint stress during an influenza A/PR8 infection in mice. Brain Behav Immun 2004; 18:526-35. [PMID: 15331123 DOI: 10.1016/j.bbi.2003.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Revised: 12/11/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022] Open
Abstract
These experiments were designed to examine the influences of restraint stress (RST) on natural killer (NK) activity and to determine its consequences on influenza A/PR8 (A/PR8) viral replication in mice. The data showed that RST delayed the recruitment of NK1.1+ cells into the lung parenchyma during infection. Quantification of MIP-1alpha and MCP-1 gene expression by real-time PCR revealed that RST suppressed the chemokines responsible for NK cell recruitment into the infected tissue. Additionally, RST suppressed the expression of several macrophage-derived cytokines involved in the effector response of NK cells. IL-15, which is the main cytokine involved in NK cell development and homeostasis, and IL-12, which is important for NK cytotoxicity, were both suppressed. As the NK cell response is an important innate response to control viral replication, we hypothesized that the RST-mediated reduction in NK cell numbers and function would enable viral replication to continue unchecked. In fact, there was enhanced viral replication in the lungs of RST animals. Interestingly, expression of the anti-viral type I interferons (IFN-alpha and IFN-beta) was elevated presumably in response to the elevated viral load in the stressed mice. Together, these data show that RST suppressed expression of the cytokine genes involved in the recruitment and activation of NK cells during an experimental influenza viral infections. The consequence of this effect was diminished NK cell function and enhanced viral replication.
Collapse
Affiliation(s)
- John Hunzeker
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43218, USA.
| | | | | | | | | |
Collapse
|
46
|
Kang I, Hong MS, Nolasco H, Park SH, Dan JM, Choi JY, Craft J. Age-associated change in the frequency of memory CD4+ T cells impairs long term CD4+ T cell responses to influenza vaccine. THE JOURNAL OF IMMUNOLOGY 2004; 173:673-81. [PMID: 15210831 DOI: 10.4049/jimmunol.173.1.673] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the relationship of memory CD4+ T cells with the evolution of influenza virus-specific CD4+ T cell responses in healthy young and elderly people. Elderly individuals had a similar frequency of CD69+CD4+ T cells producing IFN-gamma and TNF-alpha at 1 wk, but a lower frequency of these CD4+ T cells at 3 mo after influenza vaccination. Although the elderly had a higher frequency of central memory (CM; CCR7+CD45RA-) CD4+ T cells, they had a significantly lower frequency of effector memory (EM; CCR7-CD45RA-) CD4+ T cells, and the frequency of the latter memory CD4+ T cells positively correlated with the frequency of influenza virus-specific CD69+CD4+ T cells producing IFN-gamma at 3 mo. These findings indicate that the elderly have an altered balance of memory CD4+ T cells, which potentially affects long term CD4+ T cell responses to the influenza vaccine. Compared with the young, the elderly had decreased serum IL-7 levels that positively correlated with the frequency of EM cells, which suggests a relation between IL-7 and decreased EM cells. Thus, although the healthy elderly mount a level of CD4+ T cell responses after vaccination comparable to that observed in younger individuals, they fail to maintain or expand these responses. This failure probably stems from the alteration in the frequency of CM and EM CD4+ T cells in the elderly that is related to alteration in IL-7 levels. These findings raise an important clinical question about whether the vaccination strategy in the elderly should be modified to improve cellular immune responses.
Collapse
Affiliation(s)
- Insoo Kang
- Section of Rheumatology, Yale University School of Medicine, PO Box 208031, 300 Cedar Street, Anlyan Center for Medical Research and Education, Rm. 541C, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Boon ACM, De Mutsert G, Fouchier RAM, Sintnicolaas K, Osterhaus ADME, Rimmelzwaan GF. Preferential HLA usage in the influenza virus-specific CTL response. THE JOURNAL OF IMMUNOLOGY 2004; 172:4435-43. [PMID: 15034059 DOI: 10.4049/jimmunol.172.7.4435] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.
Collapse
Affiliation(s)
- Adrianus C M Boon
- Department of Virology and World Health Organization National Influenza Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Berkhoff EGM, Boon ACM, Nieuwkoop NJ, Fouchier RAM, Sintnicolaas K, Osterhaus ADME, Rimmelzwaan GF. A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J Virol 2004; 78:5216-22. [PMID: 15113903 PMCID: PMC400375 DOI: 10.1128/jvi.78.10.5216-5222.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/16/2004] [Indexed: 01/14/2023] Open
Abstract
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in or adjacent to CTL epitopes. Recently, an amino acid substitution (R384G) in an HLA-B*2705-restricted CTL epitope in the influenza A virus nucleoprotein (nucleoprotein containing residues 383 to 391 [NP(383-391)]; SRYWAIRTR, where R is the residue that was mutated) was associated with escape from CTL-mediated immunity. The effect of this mutation on the in vitro influenza A virus-specific CTL response was studied. To this end, two influenza A viruses, one with and one without the NP(383-391) epitope, were constructed by reverse genetics and designated influenza viruses A/NL/94-384R and A/NL/94-384G, respectively. The absence of the HLA-B*2705-restricted CTL epitope in influenza virus A/NL/94-384G was confirmed by using (51)Cr release assays with a T-cell clone specific for the NP(383-391) epitope. In addition, peripheral blood mononuclear cells (PBMC) stimulated with influenza virus A/NL/94-384G failed to recognize HLA-B*2705-positive target cells pulsed with the original NP(383-391) peptide. The proportion of virus-specific CD8+ gamma interferon (IFN-gamma)-positive T cells in in vitro-stimulated PBMC was determined by intracellular IFN-gamma staining after restimulation with virus-infected autologous B-lymphoblastoid cell lines and C1R cell lines expressing only HLA-B*2705. The proportion of virus-specific CD8+ T cells was lower in PBMC stimulated in vitro with influenza virus A/NL/94-384G obtained from several HLA-B*2705-positive donors than in PBMC stimulated with influenza virus A/NL/94-384R. This finding indicated that amino acid variations in CTL epitopes can affect the virus-specific CTL response and that the NP(383-391) epitope is the most important HLA-B*2705-restricted epitope in the nucleoprotein of influenza A viruses.
Collapse
Affiliation(s)
- E G M Berkhoff
- Institute of Virology, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|