1
|
Karnawat K, Parthasarathy R, Sakhrie M, Karthik H, Krishna KV, Balachander GM. Building in vitro models for mechanistic understanding of liver regeneration in chronic liver diseases. J Mater Chem B 2024; 12:7669-7691. [PMID: 38973693 DOI: 10.1039/d4tb00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The liver has excellent regeneration potential and attains complete functional recovery from partial hepatectomy. The regenerative mechanisms malfunction in chronic liver diseases (CLDs), which fuels disease progression. CLDs account for 2 million deaths per year worldwide. Pathophysiological studies with clinical correlation have shown evidence of deviation of normal regenerative mechanisms and its contribution to fueling fibrosis and disease progression. However, we lack realistic in vitro models that can allow experimental manipulation for mechanistic understanding of liver regeneration in CLDs and testing of candidate drugs. In this review, we aim to provide the framework for building appropriate organotypic models for dissecting regenerative responses in CLDs, with the focus on non-alcoholic steatohepatitis (NASH). By drawing parallels with development and hepatectomy, we explain the selection of critical components such as cells, signaling, and, substrate-driven biophysical cues to build an appropriate CLD model. We highlight the organoid-based organotypic models available for NASH disease modeling, including organ-on-a-chip and 3D bioprinted models. With the focus on bioprinting as a fabrication method, we prescribe building in vitro CLD models and testing schemes for exploring the regenerative responses in the bioprinted model.
Collapse
Affiliation(s)
- Khushi Karnawat
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Rithika Parthasarathy
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Mesevilhou Sakhrie
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Harikeshav Karthik
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Konatala Vibhuvan Krishna
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| |
Collapse
|
2
|
Gidwani SV, Brahmbhatt D, Zomback A, Bassie M, Martinez J, Zhuang J, Schulze J, McLellan JS, Mariani R, Alff P, Frasca D, Blomberg BB, Marshall CP, Yondola MA. Engineered dityrosine-bonding of the RSV prefusion F protein imparts stability and potency advantages. Nat Commun 2024; 15:2202. [PMID: 38485927 PMCID: PMC10940300 DOI: 10.1038/s41467-024-46295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.
Collapse
Affiliation(s)
- Sonal V Gidwani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Aaron Zomback
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Mamie Bassie
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | | | - Jian Zhuang
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - John Schulze
- Molecular Structure Facility, University of California, Davis, Davis, CA, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, College of Natural Sciences, Austin, TX, USA
| | - Roberto Mariani
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
- CUNY Kingsborough Community College, Brooklyn, NY, USA
| | - Peter Alff
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | | | - Mark A Yondola
- Calder Biosciences Inc., Brooklyn Army Terminal, Brooklyn, NY, USA.
| |
Collapse
|
3
|
Garcia Garcia C, Patkar SS, Wang B, Abouomar R, Kiick KL. Recombinant protein-based injectable materials for biomedical applications. Adv Drug Deliv Rev 2023; 193:114673. [PMID: 36574920 DOI: 10.1016/j.addr.2022.114673] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.
Collapse
Affiliation(s)
- Cristobal Garcia Garcia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ramadan Abouomar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19176, USA.
| |
Collapse
|
4
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
6
|
Liberato MS, Cavalcante NGS, Sindu PA, Rodrigues-Jesus MJ, Zelenovskii P, Carreira ACO, Baptista MS, Sogayar MC, Ferreira LCS, Catalani LH. Histidine-based hydrogels via singlet-oxygen photooxidation. SOFT MATTER 2021; 17:10926-10934. [PMID: 34811564 DOI: 10.1039/d1sm01023a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.
Collapse
Affiliation(s)
- Michelle S Liberato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Nayara G S Cavalcante
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - P Abinaya Sindu
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Mônica J Rodrigues-Jesus
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C O Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Mari C Sogayar
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Luís C S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Luiz H Catalani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
7
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
8
|
Alvisi N, Gutiérrez-Mejía FA, Lokker M, Lin YT, de Jong AM, van Delft F, de Vries R. Self-Assembly of Elastin-like Polypeptide Brushes on Silica Surfaces and Nanoparticles. Biomacromolecules 2021; 22:1966-1979. [PMID: 33871996 PMCID: PMC8154268 DOI: 10.1021/acs.biomac.1c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over the placement and activity of biomolecules on solid surfaces is a key challenge in bionanotechnology. While covalent approaches excel in performance, physical attachment approaches excel in ease of processing, which is equally important in many applications. We show how the precision of recombinant protein engineering can be harnessed to design and produce protein-based diblock polymers with a silica-binding and highly hydrophilic elastin-like domain that self-assembles on silica surfaces and nanoparticles to form stable polypeptide brushes that can be used as a scaffold for later biofunctionalization. From atomic force microscopy-based single-molecule force spectroscopy, we find that individual silica-binding peptides have high unbinding rates. Nevertheless, from quartz crystal microbalance measurements, we find that the self-assembled polypeptide brushes cannot easily be rinsed off. From atomic force microscopy imaging and bulk dynamic light scattering, we find that the binding to silica induces fibrillar self-assembly of the peptides. Hence, we conclude that the unexpected stability of these self-assembled polypeptide brushes is at least in part due to peptide-peptide interactions of the silica-binding blocks at the silica surface.
Collapse
Affiliation(s)
- Nicolò Alvisi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Fabiola A Gutiérrez-Mejía
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Meike Lokker
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Yu-Ting Lin
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Arthur M de Jong
- Department of Applied Physics and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Floris van Delft
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
9
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
11
|
Han IK, Chung T, Han J, Kim YS. Nanocomposite hydrogel actuators hybridized with various dimensional nanomaterials for stimuli responsiveness enhancement. NANO CONVERGENCE 2019; 6:18. [PMID: 31179510 PMCID: PMC6556517 DOI: 10.1186/s40580-019-0188-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Hydrogel actuators, that convert external energy, such as pH, light, heat, magnetic field, and ion strength, into mechanical motion, have been utilized in sensors, artificial muscles, and soft robotics. For a practicality of the hydrogel actuators in a wide range of fields, an establishment of robust mechanical properties and rapid response are required. Several solutions have been proposed, for example, setting porous and anisotropy structures to hydrogels with nanocomposite materials to improve the response speed and deformation efficiency. In this review paper, we focused on hydrogel actuators including various nanocomposite by categorizing the dimensional aspects of additive materials. Moreover, we described the role of diverse additive materials in terms of the improvement of mechanical property and deformation efficiency of the hydrogel actuators. We assumed that this review will provide a beneficial guidance for strategies of developing nanocomposite hydrogel actuators and outlooks for the future research directions.
Collapse
Affiliation(s)
- Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
12
|
Mahesh B, Nanjundaswamy GS, Gowda DC, Siddaramaiah. Synthesis and evaluation of interaction parameters of synthetic elastin-derived polypentapeptide with poly(vinylpyrrolidone) in solution and solid phase. J Appl Polym Sci 2018. [DOI: 10.1002/app.46699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- B. Mahesh
- Department of Chemistry; JSS Academy of Technical Education; Bangalore 560 060 India
| | - G. S. Nanjundaswamy
- Department of Chemistry; JSS Academy of Technical Education; Bangalore 560 060 India
| | - D. Channe Gowda
- Department of Studies in Chemistry, Manasagangotri; University of Mysore; Mysore 570 006 India
| | - Siddaramaiah
- Department of Polymer Science and Technology; Sri Jayachamarajendra College of Engineering; Mysore 570 006 India
| |
Collapse
|
13
|
Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoevel S, Ghazanfari S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomater 2018; 79:60-82. [PMID: 30165203 DOI: 10.1016/j.actbio.2018.08.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds. The elasticity of scaffold materials can be attributed to either natural sources, when native elastin or recombinant techniques are used to provide natural polymers, or synthetic sources, when polymers are synthesized. While synthetic elastomers often lack the biocompatibility needed for tissue engineering applications, the production of natural materials in adequate amounts or with proper mechanical strength remains a challenge. However, combining natural and synthetic materials to create hybrid components could overcome these issues. This review explains the synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo. Furthermore, current methods, ranging from proteins and synthetic polymers to hybrid structures that are being investigated for providing elasticity to tissue engineering constructs, are comprehensively discussed. STATEMENT OF SIGNIFICANCE Tissue engineered scaffolds are being developed as treatment options for malfunctioning tissues throughout the body. It is essential that the scaffold is a close mimic of the native tissue with regards to both mechanical and biological functionalities. Therefore, the production of elastic scaffolds is of key importance to fabricate tissue engineered scaffolds of the elastic tissues such as heart valves and blood vessels. Combining naturally derived and synthetic materials to reach this goal proves to be an interesting area where a highly tunable material that unites mechanical and biological functionalities can be obtained.
Collapse
Affiliation(s)
- Anna M J Coenen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Jules A W Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Stefan Jockenhoevel
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; Department of Biohybrid & Medical Textiles (BioTex), AME-Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Forckenbeckstraβe 55, 52072 Aachen, Germany
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
14
|
Siddamallappa NG, Basavaraju M, Dase Gowda CG. Elastin-based polymer: synthesis, characterization and examination of its miscibility characteristics with poly(vinyl alcohol) and electrospinning of the miscible blends. POLYM INT 2018. [DOI: 10.1002/pi.5669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mahesh Basavaraju
- Department of Chemistry; JSS Academy of Technical Education; Bengaluru India
| | | |
Collapse
|
15
|
Li NK, Roberts S, Quiroz FG, Chilkoti A, Yingling YG. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides. Biomacromolecules 2018; 19:2496-2505. [DOI: 10.1021/acs.biomac.8b00099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nan K. Li
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | - Felipe Garcia Quiroz
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Wang Z, Ma Y, Wang Y, Liu Y, Chen K, Wu Z, Yu S, Yuan Y, Liu C. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers. Acta Biomater 2018; 71:279-292. [PMID: 29549052 DOI: 10.1016/j.actbio.2018.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/15/2018] [Accepted: 03/05/2018] [Indexed: 12/29/2022]
Abstract
Poly (glycerol sebacate) (PGS), a tough elastomer, has been widely explored in tissue engineering due to the desirable mechanical properties and biocompatibility. However, the complex curing procedure (high temperature and vacuum) and limited hydrophilicity (∼90° of wetting angle) greatly impede its functionalities. To address these challenges, a urethane-based low-temperature setting, PEGylated PGS bioelastomer was developed with and without solvent. By simultaneously tailoring PEG and hexamethylene diisocyanate (HDI) contents, the elastomers X-P-mUs (X referred to the PEG content and m referred to HDI content) with a broad ranging mechanical properties and customized hydrophilicity were constructed. The X-P-mUs synthesized exhibited adjustable tensile Young's modulus, ultimate tensile strength and elongation at break in the range of 1.0 MPa-14.2 MPa, 0.3 MPa-7.6 MPa and 53.6%-272.8%, with the water contact angle varying from 28.6° to 71.5°, respectively. Accordingly, these elastomers showed favorable biocompatibility in vitro and mild host response in vivo. Furthermore, the potential applications of X-P-mU elastomers prepared with solvent-base and solvent-free techniques in biomedical fields were investigated. The results showed that these X-P-mU elastomers with high molding capacity at mild temperature could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity, demonstrating that the X-P-mU elastomers could be tailored as potential building blocks for diverse applications in biomedical research. STATEMENT OF SIGNIFICANCE Poly(glycerol sebacate) (PGS), a tough biodegradable elastomer, has received great attentions in biomedical field. But the complex curing procedure and limited hydrophilicity greatly hamper its functionality. Herein, a urethane-based low-temperature setting, PEGylated PGS (PEGS-U) bioelastomer with highly-customized mechanical properties, hydrophilicity and biodegradability was first explored. The synthesized PEGS-U showed favorable biocompatibility both in vitro and in vivo. Furthermore, the PEGS-U elastomer could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity. This versatile, user-tunable bioelastomers should be a promising biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yifan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - YanXiang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yutong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kai Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zihan Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuang Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
17
|
Yazawa K, Numata K, Norma-Rashid Y. Morphological and mechanical properties of flexible resilin joints on damselfly wings (Rhinocypha spp.). PLoS One 2018. [PMID: 29513694 PMCID: PMC5841740 DOI: 10.1371/journal.pone.0193147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
Collapse
Affiliation(s)
- Kenjiro Yazawa
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama, Japan
| | - Y Norma-Rashid
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Sci Rep 2017; 7:12047. [PMID: 28935902 PMCID: PMC5608913 DOI: 10.1038/s41598-017-12134-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 11/08/2022] Open
Abstract
Targeting protein-protein interaction (PPI) is rapidly becoming an attractive alternative for drug development. While drug development commonly involves inhibiting a PPI, in this study, we show that stabilizing PPI may also be therapeutically beneficial. Junctional proteins Neph1 and ZO-1 and their interaction is an important determinant of the structural integrity of slit diaphragm, which is a critical component of kidney's filtration system. Since injury induces loss of this interaction, we hypothesized that strengthening this interaction may protect kidney's filtration barrier and preserve kidney function. In this study, Neph1-ZO-1 structural complex was screened for the presence of small druggable pockets formed from contributions from both proteins. One such pocket was identified and screened using a small molecule library. Isodesmosine (ISD) a rare naturally occurring amino acid and a biomarker for pulmonary arterial hypertension was selected as the best candidate and to establish the proof of concept, its ability to enhance Neph1-CD and ZO-1 binding was tested. Results from biochemical binding analysis showed that ISD enhanced Neph1 and ZO-1 interaction under in vitro and in vivo conditions. Importantly, ISD treated podocytes were resistant to injury-induced loss of transepithelial permeability. Finally, mouse and zebrafish studies show that ISD protects from injury-induced renal damage.
Collapse
|
19
|
Schoonen L, Maas RJ, Nolte RJ, van Hest JC. Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Schoonen L, Maassen S, Nolte RJM, van Hest JCM. Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions. Biomacromolecules 2017. [PMID: 28631927 PMCID: PMC5686562 DOI: 10.1021/acs.biomac.7b00640] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Virus-like particles are very interesting
tools for application
in bionanotechnology, due to their monodisperse features and biocompatibility.
In particular, the cowpea chlorotic mottle virus (CCMV) capsid has
been studied extensively as it can be assembled and disassembled reversibly,
facilitating cargo encapsulation. CCMV is, however, only stable at
physiological conditions when its endogenous nucleic acid cargo is
present. To gain more flexibility in the type of cargo encapsulated
and to broaden the window of operation, it is interesting to improve
the stability of the empty virus-like particles. Here, a method is
described to utilize the CCMV capsid at close to physiological conditions
as a stable, enzyme-filled nanoreactor. As a proof-of-principle, the
encapsulation of T4 lysozyme (T4L) was chosen; this enzyme is a promising
antibiotic, but its clinical application is hampered by, for example,
its cationic character. It was shown that four T4L molecules can successfully
be encapsulated inside CCMV capsids, while remaining catalytically
active, which could thus improve the enzyme’s application potential.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University, Institute for Molecules and Materials , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sjors Maassen
- Radboud University, Institute for Molecules and Materials , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology , P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands.,Radboud University, Institute for Molecules and Materials , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
21
|
Mahesh B, Nanjundaswamy GS, Channe Gowda D, Siddaramaiah B. Synthesis of elastin-based polymer and evaluation of its intermolecular interactions with hydroxypropyl methylcellulose. J Appl Polym Sci 2017. [DOI: 10.1002/app.45283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B. Mahesh
- Department of Chemistry; JSS Academy of Technical Education; Bengaluru 560 060 Karnataka India
| | - G. S. Nanjundaswamy
- Department of Chemistry; JSS Academy of Technical Education; Bengaluru 560 060 Karnataka India
| | - D. Channe Gowda
- Department of Studies in Chemistry; Manasagangotri, University of Mysore; Mysuru 570 006 Karnataka India
| | - B. Siddaramaiah
- Department of Polymer Science and Technology; Sri Jayachamarajendra College of Engineering, JSS Science & Technology University; Mysuru 570 006 Karnataka India
| |
Collapse
|
22
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
23
|
Liu Y, Zhang L, Wei W. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Int J Nanomedicine 2017; 12:659-670. [PMID: 28176898 PMCID: PMC5261598 DOI: 10.2147/ijn.s124523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, People’s Republic of China
| | - Ling Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, People’s Republic of China
| | - Wei Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
24
|
Sutherland TD, Rapson TD, Huson MG, Church JS. Recombinant Structural Proteins and Their Use in Future Materials. Subcell Biochem 2017; 82:491-526. [PMID: 28101871 DOI: 10.1007/978-3-319-49674-0_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recombinant proteins are polymers that offer the materials engineer absolute control over chain length and composition: key attributes required for design of advanced polymeric materials. Through this control, these polymers can be encoded to contain information that enables them to respond as the environment changes. However, despite their promise, protein-based materials are under-represented in materials science. In this chapter we investigate why this is and describe recent efforts to address this. We discuss constraints limiting rational design of structural proteins for advanced materials; advantages and disadvantages of different recombinant expression platforms; and, methods to fabricate proteins into solid-state materials. Finally, we describe the silk proteins used in our laboratory as templates for information-containing polymers.
Collapse
|
25
|
Schoonen L, Nolte RJM, van Hest JCM. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic. NANOSCALE 2016; 8:14467-14472. [PMID: 27407020 DOI: 10.1039/c6nr04181g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | |
Collapse
|
26
|
Bandiera A. Elastin-like polypeptides: the power of design for smart cell encapsulation. Expert Opin Drug Deliv 2016; 14:37-48. [PMID: 27414195 DOI: 10.1080/17425247.2016.1206072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.
Collapse
|
27
|
van Eldijk MB, Schoonen L, Cornelissen JJLM, Nolte RJM, van Hest JCM. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2476-2483. [PMID: 27151830 DOI: 10.1002/smll.201503889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Protein cages are an interesting class of biomaterials with potential applications in bionanotechnology. Therefore, substantial effort is spent on the development of capsule-forming designer polypeptides with a tailor-made assembly profile. The expanded assembly profile of a triblock copolypeptide consisting of a metal ion chelating hexahistidine-tag, a stimulus-responsive elastin-like polypeptide block, and a pH-responsive morphology-controlling viral capsid protein is presented. The self-assembly of this multi-responsive protein-based block copolymer is triggered by the addition of divalent metal ions. This assembly process yields monodisperse nanocapsules with a 20 nm diameter composed of 60 polypeptides. The well-defined nanoparticles are the result of the emergent properties of all the blocks of the polypeptide. These results demonstrate the feasibility of hexahistidine-tags to function as supramolecular cross-linkers. Furthermore, their potential for the metal ion-mediated encapsulation of hexahistidine-tagged proteins is shown.
Collapse
Affiliation(s)
- Mark B van Eldijk
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Rodríguez-Cabello JC, Arias FJ, Rodrigo MA, Girotti A. Elastin-like polypeptides in drug delivery. Adv Drug Deliv Rev 2016; 97:85-100. [PMID: 26705126 DOI: 10.1016/j.addr.2015.12.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
The use of recombinant elastin-like materials, or elastin-like recombinamers (ELRs), in drug-delivery applications is reviewed in this work. Although ELRs were initially used in similar ways to other, more conventional kinds of polymeric carriers, their unique properties soon gave rise to systems of unparalleled functionality and efficiency, with the stimuli responsiveness of ELRs and their ability to self-assemble readily allowing the creation of advanced systems. However, their recombinant nature is likely the most important factor that has driven the current breakthrough properties of ELR-based delivery systems. Recombinant technology allows an unprecedented degree of complexity in macromolecular design and synthesis. In addition, recombinant materials easily incorporate any functional domain present in natural proteins. Therefore, ELR-based delivery systems can exhibit complex interactions with both their drug load and the tissues and cells towards which this load is directed. Selected examples, ranging from highly functional nanocarriers to macrodepots, will be presented.
Collapse
|
29
|
Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, Yamaoka T, Kiick KL. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 2016; 5:266-75. [PMID: 26632334 PMCID: PMC4754112 DOI: 10.1002/adhm.201500411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Indexed: 12/22/2022]
Abstract
The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric A Levenson
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Kristi L Kiick
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
30
|
McGann CL, Akins RE, Kiick KL. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure. Biomacromolecules 2016; 17:128-40. [PMID: 26646060 PMCID: PMC4850080 DOI: 10.1021/acs.biomac.5b01255] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds.
Collapse
Affiliation(s)
- Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Robert E. Akins
- Nemours – Alfred I. duPont Hospital for Children, Department of Biomedical Research, Wilmington, DE 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19711, United States
| |
Collapse
|
31
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Schoonen L, Pille J, Borrmann A, Nolte RJM, van Hest JCM. Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading. Bioconjug Chem 2015; 26:2429-34. [PMID: 26505648 DOI: 10.1021/acs.bioconjchem.5b00485] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy is described for the modification of CCMV for loading of cargoes inside the viral capsid. Sortase A, an enzyme which is present in Gram-positive bacteria, was used to attach cargo to the glycine-tagged N-termini of several CCMV variants. We show that small molecules and proteins bearing a C-terminal LPETG-motif can be attached in this way. This method allows for the site-specific, covalent, and orthogonal modification of CCMV capsids in a mild fashion, leading to high encapsulation efficiencies. This strategy can easily be expanded to other types of cargoes, labeled with an LPETG-tag without altering protein function.
Collapse
Affiliation(s)
- Lise Schoonen
- Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan Pille
- Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Annika Borrmann
- Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roeland J M Nolte
- Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University , Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
33
|
Azam A, Li C, Metcalf KJ, Tullman-Ercek D. Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins. Biotechnol Bioeng 2015; 113:2313-20. [PMID: 25993982 DOI: 10.1002/bit.25656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 12/29/2022]
Abstract
Biopolymer-forming proteins are integral in the development of customizable biomaterials, but recombinant expression of these proteins is challenging. In particular, biopolymer-forming proteins have repetitive, glycine-rich domains and, like many heterologously expressed proteins, are prone to incomplete translation, aggregation, and proteolytic degradation in the production host. This necessitates tailored purification processes to isolate each full-length protein of interest from the truncated forms as well as other contaminating proteins; owing to the repetitive nature of these proteins, the truncated polypeptides can have very similar chemistry to the full-length form and are difficult to separate from the full-length protein. We hypothesized that bacterial expression and secretion would be a promising alternative option for biomaterials-forming proteins, simplifying isolation of the full-length target protein. By using a selective secretion system, truncated forms of the protein are not secreted and thus are not found in the culture harvest. We show that a synthetically upregulated type III secretion system leads to a general increase in secretion titer for each protein that we tested. Moreover, we observe a substantial enhancement in the homogeneity of full-length forms of pro-resilin, tropo-elastin crosslinking domains, and silk proteins produced in this manner, as compared with proteins purified from the cytosol. Secretion via the type III apparatus limits co-purification of truncated forms of the target protein and increases protein purity without extensive purification steps. Demonstrating the utility of such a system, we introduce several modifications to resilin-based peptides and use an un-optimized, single-column process to purify these proteins. The resulting materials are of sufficiently high quantity and yield for the production of antimicrobial hydrogels with highly reproducible rheological properties. The ease of this process and its applicability to an array of engineered biomaterial-forming peptides lend support for the application of bacterial expression and secretion for other proteins that are traditionally difficult to express and isolate from the bacterial cytoplasm. Biotechnol. Bioeng. 2016;113: 2313-2320. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anum Azam
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California
| | - Cheng Li
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California
| | - Kevin J Metcalf
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California, 94720
| | - Danielle Tullman-Ercek
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California. .,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California, 94720.
| |
Collapse
|
34
|
Carter NA, Grove TZ. Repeat-Proteins Films Exhibit Hierarchical Anisotropic Mechanical Properties. Biomacromolecules 2015; 16:706-14. [DOI: 10.1021/bm501578j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nathan A. Carter
- Department of Chemistry (0212), Virginia Tech, 2107 Hahn Hall
South, Blacksburg, Virginia 24060, United States
| | - Tijana Zarkovic Grove
- Department of Chemistry (0212), Virginia Tech, 2107 Hahn Hall
South, Blacksburg, Virginia 24060, United States
| |
Collapse
|
35
|
|
36
|
Smits FCM, Buddingh BC, van Eldijk MB, van Hest JCM. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci 2014; 15:36-51. [PMID: 25407963 DOI: 10.1002/mabi.201400419] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/17/2014] [Indexed: 11/06/2022]
Abstract
Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.
Collapse
Affiliation(s)
- Ferdinanda C M Smits
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
37
|
van Eldijk MB, Smits FCM, Vermue N, Debets MF, Schoffelen S, van Hest JCM. Synthesis and Self-Assembly of Well-Defined Elastin-Like Polypeptide–Poly(ethylene glycol) Conjugates. Biomacromolecules 2014; 15:2751-9. [DOI: 10.1021/bm5006195] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark B. van Eldijk
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
- Dutch
Polymer Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Ferdinanda C. M. Smits
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Niek Vermue
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Marjoke F. Debets
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Sanne Schoffelen
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. M. van Hest
- Radboud University Nijmegen, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
38
|
Thermodynamic investigation of Z33-antibody interaction leads to selective purification of human antibodies. J Biotechnol 2014; 179:32-41. [DOI: 10.1016/j.jbiotec.2014.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
|
39
|
Kowalczyk T, Hnatuszko-Konka K, Gerszberg A, Kononowicz AK. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J Microbiol Biotechnol 2014; 30:2141-52. [PMID: 24699809 PMCID: PMC4072924 DOI: 10.1007/s11274-014-1649-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val-Pro-Gly-Xaa-Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland,
| | | | | | | |
Collapse
|
40
|
Whittaker J, Balu R, Choudhury NR, Dutta NK. Biomimetic protein-based elastomeric hydrogels for biomedical applications. POLYM INT 2014. [DOI: 10.1002/pi.4670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jasmin Whittaker
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Rajkamal Balu
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Namita R. Choudhury
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| | - Naba K. Dutta
- Ian Wark Research Institute, Mawson Lakes Campus; University of South Australia; Mawson Lakes Adelaide SA 5095 Australia
| |
Collapse
|
41
|
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:85-123. [PMID: 24741694 PMCID: PMC3925010 DOI: 10.1002/adma.201303233] [Citation(s) in RCA: 851] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Tamayol
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jorge Alfredo Uquillas
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohsen Akbari
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Luiz E. Bertassoni
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chaenyung Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet R. Dokmeci
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, Biomedical Engineering Building 3.110B, The University of Texas at Austin, 1 University Station, C0800, Austin, Texas, 78712–1062, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
42
|
Almeida LR, Martins AR, Fernandes EM, Oliveira MB, Mano JF, Correlo VM, Pashkuleva I, Marques AP, Ribeiro AS, Durães NF, Silva CJ, Bonifácio G, Sousa RA, Oliveira AL, Reis RL. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability. Acta Biomater 2013; 9:8167-81. [PMID: 23727248 DOI: 10.1016/j.actbio.2013.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/29/2023]
Abstract
This work proposes biodegradable textile-based structures for tissue engineering applications. We describe the use of two polymers, polybutylene succinate (PBS) proposed as a viable multifilamentand silk fibroin (SF), to produce fibre-based finely tuned porous architectures by weft knitting. PBS is here proposed as a viable extruded multifilament fibre to be processed by a textile-based technology. A comparative study was undertaken using a SF fibre with a similar linear density. The knitted constructs obtained are described in terms of their morphology, mechanical properties, swelling capability, degradation behaviour and cytotoxicity. The weft knitting technology used offers superior control over the scaffold design (e.g. size, shape, porosity and fibre alignment), manufacturing and reproducibility. The presented fibres allow the processing of a very reproducible intra-architectural scaffold geometry which is fully interconnected, thus providing a high surface area for cell attachment and tissue in-growth. The two types of polymer fibre allow the generation of constructs with distinct characteristics in terms of the surface physico-chemistry, mechanical performance and degradation capability, which has an impact on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity screening showed that both materials can support cell adhesion and proliferation. These results constitute a first validation of the two biotextiles as viable matrices for tissue engineering prior to the development of more complex systems. Given the processing efficacy and versatility of the knitting technology and the interesting structural and surface properties of the proposed polymer fibres it is foreseen that the developed systems could be attractive for the functional engineering of tissues such as skin, ligament, bone or cartilage.
Collapse
Affiliation(s)
- Lília R Almeida
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Resilin, an insect structural protein, exhibits rubber-like elasticity characterized by low stiffness, high extensibility, efficient energy storage, and exceptional resilience and fatigue lifetime. The outstanding mechanical properties of natural resilin have motivated recent research in the engineering of resilin-like polypeptide-based biomaterials, with a wide range of applications including use as bio-rubbers, nanosprings, elements in biosensors, and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States; Biomedical Engineering, University of Delaware, Newark, 19716, United States; Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | | |
Collapse
|
44
|
Annabi N, Mithieux SM, Camci-Unal G, Dokmeci MR, Weiss AS, Khademhosseini A. Elastomeric Recombinant Protein-based Biomaterials. Biochem Eng J 2013; 77:110-118. [PMID: 23935392 DOI: 10.1016/j.bej.2013.05.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Elastomeric protein-based biomaterials, produced from elastin derivatives, are widely investigated as promising tissue engineering scaffolds due to their remarkable properties including substantial extensibility, long-term stability, self-assembly, high resilience upon stretching, low energy loss, and excellent biological activity. These elastomers are processed from different sources of soluble elastin such as animal-derived soluble elastin, recombinant human tropoelastin, and elastin-like polypeptides into various forms including three dimensional (3D) porous hydrogels, elastomeric films, and fibrous electrospun scaffolds. Elastin-based biomaterials have shown great potential for the engineering of elastic tissues such as skin, lung and vasculature. In this review, the synthesis and properties of various elastin-based elastomers with their applications in tissue engineering are described.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wang E, Desai MS, Lee SW. Light-controlled graphene-elastin composite hydrogel actuators. NANO LETTERS 2013; 13:2826-30. [PMID: 23647361 PMCID: PMC3737518 DOI: 10.1021/nl401088b] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogels actuators (HAs) that can reversibly respond to stimuli have applications in diverse fields. However, faster response rates and improved control over actuation timing and location are required to fulfill their potential. To address these criteria, we synthesized near-infrared light-driven HAs by interfacing genetically engineered elastin-like polypeptides with reduced-graphene oxide sheets. The resulting nanocomposites exhibited rapid and tunable motions controlled by light position, intensity, and path, including finger-like flexing and crawling. This work demonstrates the ability of rationally designed proteins to be combined with synthetic nanoparticles for the creation of macroscale functional materials.
Collapse
Affiliation(s)
- Eddie Wang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Malav S. Desai
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| |
Collapse
|
46
|
Raychoudhury R, Sen R, Cai Y, Sun Y, Lietze VU, Boucias DG, Scharf ME. Comparative metatranscriptomic signatures of wood and paper feeding in the gut of the termite Reticulitermes flavipes (Isoptera: Rhinotermitidae). INSECT MOLECULAR BIOLOGY 2013; 22:155-71. [PMID: 23294456 DOI: 10.1111/imb.12011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Termites are highly eusocial insects that thrive on recalcitrant materials like wood and soil and thus play important roles in global carbon recycling and also in damaging wooden structures. Termites, such as Reticulitermes flavipes (Rhinotermitidae), owe their success to their ability to extract nutrients from lignocellulose (a major component of wood) with the help of gut-dwelling symbionts. With the aim to gain new insights into this enzymatic process we provided R. flavipes with a complex lignocellulose (wood) or pure cellulose (paper) diet and followed the resulting differential gene expression on a custom oligonucleotide-microarray platform. We identified a set of expressed sequence tags (ESTs) with differential abundance between the two diet treatments and demonstrated the source (host/symbiont) of these genes, providing novel information on termite nutritional symbiosis. Our results reveal: (1) the majority of responsive wood- and paper-abundant ESTs are from host and symbionts, respectively; (2) distinct pathways are associated with lignocellulose and cellulose feeding in both host and symbionts; and (3) sets of diet-responsive ESTs encode putative digestive and wood-related detoxification enzymes. Thus, this study illuminates the dynamics of termite nutritional symbiosis and reveals a pool of genes as potential targets for termite control and functional studies of termite-symbiont interactions.
Collapse
Affiliation(s)
- R Raychoudhury
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Miao M, Sitarz E, Bellingham CM, Won E, Muiznieks LD, Keeley FW. Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers. Biopolymers 2013; 99:392-407. [DOI: 10.1002/bip.22192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Ming Miao
- Molecular Structure and Function Program; Research Institute; The Hospital for Sick Children; 555 University Avenue; Toronto; ON; M5G1X8; Canada
| | - Eva Sitarz
- Molecular Structure and Function Program; Research Institute; The Hospital for Sick Children; 555 University Avenue; Toronto; ON; M5G1X8; Canada
| | - Catherine M. Bellingham
- Molecular Structure and Function Program; Research Institute; The Hospital for Sick Children; 555 University Avenue; Toronto; ON; M5G1X8; Canada
| | - Emily Won
- Molecular Structure and Function Program; Research Institute; The Hospital for Sick Children; 555 University Avenue; Toronto; ON; M5G1X8; Canada
| | - Lisa D. Muiznieks
- Molecular Structure and Function Program; Research Institute; The Hospital for Sick Children; 555 University Avenue; Toronto; ON; M5G1X8; Canada
| | | |
Collapse
|
48
|
van Eldijk MB, Wang JCY, Minten IJ, Li C, Zlotnick A, Nolte RJM, Cornelissen JJLM, van Hest JCM. Designing two self-assembly mechanisms into one viral capsid protein. J Am Chem Soc 2012; 134:18506-9. [PMID: 23101937 DOI: 10.1021/ja308132z] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ELP-CP, a structural fusion protein of the thermally responsive elastin-like polypeptide (ELP) and a viral capsid protein (CP), was designed, and its assembly properties were investigated. Interestingly, this protein-based block copolymer could be self-assembled via two mechanisms into two different, well-defined nanocapsules: (1) pH-induced assembly yielded 28 nm virus-like particles, and (2) ELP-induced assembly yielded 18 nm virus-like particles. The latter were a result of the emergent properties of the fusion protein. This work shows the feasibility of creating a self-assembly system with new properties by combining two structural protein elements.
Collapse
Affiliation(s)
- Mark B van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grove TZ, Regan L. New materials from proteins and peptides. Curr Opin Struct Biol 2012; 22:451-6. [DOI: 10.1016/j.sbi.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 12/14/2022]
|