1
|
Choi MG, Hong SJ, Kim SM, Kim KH. A new genotype of decapod hepanhamaparvovirus 1 (DHPV) from cultured Penaeus vannamei in South Korea. DISEASES OF AQUATIC ORGANISMS 2023; 156:53-57. [PMID: 37970846 DOI: 10.3354/dao03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Decapod hepanhamaparvovirus 1 (DHPV), also known as hepatopancreatic parvovirus (HPV), has caused death in larvae or stunted growth in juveniles of cultured shrimp. To date, 4 genotypes (genotype I, II, III, and IV) have been reported from various shrimp species and various geographical regions. In the present study, we isolated 2 types of DHPV (GHPV-Goseong and DHPV-Geoje) from cultured Penaeus vannamei in Korea. Based on the capsid protein (VP) amino acid sequences, DHPV-Goseong was highly identical to previously reported DHPV genotype IV in Taiwan and Korea. Different from DHPV-Goseong, DHPV-Geoje showed approximately 63% similarity with DHPV genotype I, II, III and 84% similarity with DHPV genotype IV, suggesting an independent new genotype of DHPV (genotype V). Further research is needed to elucidate the origin and biological meanings of the present new genotype.
Collapse
Affiliation(s)
- Myoung Gwang Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Soon Joo Hong
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Seong Mok Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
2
|
Virus Diversity, Abundance, and Evolution in Three Different Bat Colonies in Switzerland. Viruses 2022; 14:v14091911. [PMID: 36146717 PMCID: PMC9505930 DOI: 10.3390/v14091911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bats are increasingly recognized as reservoirs for many different viruses that threaten public health, such as Hendravirus, Ebolavirus, Nipahvirus, and SARS- and MERS-coronavirus. To assess spillover risk, viromes of bats from different parts of the world have been investigated in the past. As opposed to most of these prior studies, which determined the bat virome at a single time point, the current work was performed to monitor changes over time. Specifically, fecal samples of three endemic Swiss bat colonies consisting of three different bat species were collected over three years and analyzed using next-generation sequencing. Furthermore, single nucleotide variants of selected DNA and RNA viruses were analyzed to investigate virus genome evolution. In total, sequences of 22 different virus families were found, of which 13 are known to infect vertebrates. Most interestingly, in a Vespertilio murinus colony, sequences from a MERS-related beta-coronavirus were consistently detected over three consecutive years, which allowed us to investigate viral genome evolution in a natural reservoir host.
Collapse
|
3
|
Advances in research on genetic relationships of waterfowl parvoviruses. J Vet Res 2021; 65:391-399. [PMID: 35111991 PMCID: PMC8775729 DOI: 10.2478/jvetres-2021-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Abstract
Derzsy’s disease and Muscovy duck parvovirus disease have become common diseases in waterfowl culture in the world and their potential to cause harm has risen. The causative agents are goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV), which can provoke similar clinical symptoms and high mortality and morbidity rates. In recent years, duck short beak and dwarfism syndrome has been prevalent in the Cherry Valley duck population in eastern China. It is characterised by the physical signs for which it is named. Although the mortality rate is low, it causes stunting and weight loss, which have caused serious economic losses to the waterfowl industry. The virus that causes this disease was named novel goose parvovirus (NGPV). This article summarises the latest research on the genetic relationships of the three parvoviruses, and reviews the aetiology, epidemiology, and necropsy characteristics in infected ducks, in order to facilitate further study.
Collapse
|
4
|
Kim SC, Jeong CG, Nazki S, Lee SI, Baek YC, Jung YJ, Kim WI. Evaluation of a multiplex PCR method for the detection of porcine parvovirus types 1 through 7 using various field samples. PLoS One 2021; 16:e0245699. [PMID: 33508002 PMCID: PMC7842984 DOI: 10.1371/journal.pone.0245699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine parvoviruses (PPVs) are small, nonenveloped DNA viruses that are widespread in the global pig population. PPV type 1 (PPV1) is a major causative agent of reproductive failure and has been recognized since the 1960s. In recent decades, novel PPVs have been identified and designated as PPVs 2 through 7 (PPV2~PPV7). Although the epidemiological impacts of these newly recognized parvoviruses on pigs are largely unknown, continuous surveillance of these PPVs is needed. The aim of this study was to develop an improved and efficient detection tool for these PPVs and to assess the developed method with field samples. Using 7 sets of newly designed primers, a multiplex polymerase chain reaction (mPCR) protocol was developed for the simultaneous detection of the seven genotypes of PPV (PPV1~PPV7). The sensitivity of the mPCR assay was analyzed, and the detection limit was determined to be 3×103 viral copies. The assay was highly specific in detecting one or more of the viruses in various combinations in specimens. The mPCR method was evaluated with 80 serum samples, 40 lung or lymph node samples and 40 intestine or fecal samples. When applied to these samples, the mPCR method could detect the 7 viruses simultaneously, providing rapid results regarding infection and coinfection status. In conclusion, the developed mPCR assay can be utilized as an effective and accurate diagnostic tool for rapid differential detection and epidemiological surveillance of various PPVs in numerous types of field samples.
Collapse
Affiliation(s)
- Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
- The Pirbright Institute, Pirbright, United Kingdom
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
- Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Ye-Chan Baek
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Yong-Jin Jung
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Korea
- * E-mail:
| |
Collapse
|
5
|
Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J, Moriones E, Grande-Pérez A. Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. FRONTIERS IN PLANT SCIENCE 2018; 9:932. [PMID: 30013589 PMCID: PMC6036239 DOI: 10.3389/fpls.2018.00932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
Geminiviruses (family Geminiviridae) possess single-stranded circular DNA genomes that are replicated by cellular polymerases in plant host cell nuclei. In their hosts, geminivirus populations behave as ensembles of mutant and recombinant genomes, known as viral quasispecies. This favors the emergence of new geminiviruses with altered host range, facilitating new or more severe diseases or overcoming resistance traits. In warm and temperate areas several whitefly-transmitted geminiviruses of the genus Begomovirus cause the tomato yellow leaf curl disease (TYLCD) with significant economic consequences. TYLCD is frequently controlled in commercial tomatoes by using the dominant Ty-1 resistance gene. Over a 45 day period we have studied the diversification of three begomoviruses causing TYLCD: tomato yellow leaf curl virus (TYLCV), tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl Malaga virus (TYLCMaV, a natural recombinant between TYLCV and TYLCSV). Viral quasispecies resulting from inoculation of geminivirus infectious clones were examined in plants of susceptible tomato (ty-1/ty-1), heterozygous resistant tomato (Ty-1/ty-1), common bean, and the wild reservoir Solanum nigrum. Differences in virus fitness across hosts were observed while viral consensus sequences remained invariant. However, the complexity and heterogeneity of the quasispecies were high, especially in common bean and the wild host. Interestingly, the presence or absence of the Ty-1 allele in tomato did not lead to differences in begomovirus mutant spectra. However, the fitness decrease of TYLCSV and TYLCV in tomato at 45 dpi might be related to an increase in CP (Coat protein) mutation frequency. In Solanum nigrum the recombinant TYLCMaV, which showed lower fitness than TYLCSV, at 45 dpi actively explored Rep (Replication associated protein) ORF but not the overlapping C4. Our results underline the importance of begomovirus mutant spectra during infections. This is especially relevant in the wild reservoir of the viruses, which has the potential to maintain highly diverse mutant spectra without modifying their consensus sequences.
Collapse
Affiliation(s)
- Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Diego M. Tomás
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
6
|
Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017; 9:v9120393. [PMID: 29261104 PMCID: PMC5744167 DOI: 10.3390/v9120393] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023] Open
Abstract
Porcine parvovirus (PPV) is among the most important infectious agents causing infertility in pigs. Until recently, it was thought that the virus had low genetic variance, and that prevention of its harmful effect on pig fertility could be well-controlled by vaccination. However, at the beginning of the third millennium, field observations raised concerns about the effectiveness of the available vaccines against newly emerging strains. Subsequent investigations radically changed our view on the evolution and immunology of PPV, revealing that the virus is much more diverse than it was earlier anticipated, and that some of the “new” highly virulent isolates cannot be neutralized effectively by antisera raised against “old” PPV vaccine strains. These findings revitalized PPV research that led to significant advancements in the understanding of early and late viral processes during PPV infection. Our review summarizes the recent results of PPV research and aims to give a comprehensive update on the present understanding of PPV biology.
Collapse
Affiliation(s)
- István Mészáros
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| | | | - Peter Tijssen
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC H7V 1B7, Canada.
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 1143 Budapest, Hungary.
| |
Collapse
|
7
|
Fan W, Sun Z, Shen T, Xu D, Huang K, Zhou J, Song S, Yan L. Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus. Front Microbiol 2017; 8:421. [PMID: 28352261 PMCID: PMC5349109 DOI: 10.3389/fmicb.2017.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/28/2023] Open
Abstract
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Collapse
Affiliation(s)
- Wentao Fan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zhaoyu Sun
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Tongtong Shen
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Danning Xu
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Liping Yan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
8
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
9
|
Stamenković GG, Ćirković VS, Šiljić MM, Blagojević JV, Knežević AM, Joksić ID, Stanojević MP. Substitution rate and natural selection in parvovirus B19. Sci Rep 2016; 6:35759. [PMID: 27775080 PMCID: PMC5075947 DOI: 10.1038/srep35759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to estimate substitution rate and imprints of natural selection on parvovirus B19 genotype 1. Studied datasets included 137 near complete coding B19 genomes (positions 665 to 4851) for phylogenetic and substitution rate analysis and 146 and 214 partial genomes for selection analyses in open reading frames ORF1 and ORF2, respectively, collected 1973–2012 and including 9 newly sequenced isolates from Serbia. Phylogenetic clustering assigned majority of studied isolates to G1A. Nucleotide substitution rate for total coding DNA was 1.03 (0.6–1.27) x 10−4 substitutions/site/year, with higher values for analyzed genome partitions. In spite of the highest evolutionary rate, VP2 codons were found to be under purifying selection with rare episodic positive selection, whereas codons under diversifying selection were found in the unique part of VP1, known to contain B19 immune epitopes important in persistent infection. Analyses of overlapping gene regions identified nucleotide positions under opposite selective pressure in different ORFs, suggesting complex evolutionary mechanisms of nucleotide changes in B19 viral genomes.
Collapse
Affiliation(s)
- Gorana G Stamenković
- Department of Genetic Research, Institute for biological research "Siniša Stanković", University of Belgrade, 142 Despot Stephan Blvd, 11060 Belgrade, R Serbia
| | - Valentina S Ćirković
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, 1/1 Dr Subotića St, 11000 Belgrade, R Serbia
| | - Marina M Šiljić
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, 1/1 Dr Subotića St, 11000 Belgrade, R Serbia
| | - Jelena V Blagojević
- Department of Genetic Research, Institute for biological research "Siniša Stanković", University of Belgrade, 142 Despot Stephan Blvd, 11060 Belgrade, R Serbia
| | - Aleksandra M Knežević
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, 1/1 Dr Subotića St, 11000 Belgrade, R Serbia
| | - Ivana D Joksić
- Clinic of Obstetrics and Gynecology "Narodni front", 62 Kraljice Natalije St, 11000 Belgrade, R Serbia
| | - Maja P Stanojević
- Institute for Microbiology and Immunology, School of Medicine, University of Belgrade, 1/1 Dr Subotića St, 11000 Belgrade, R Serbia
| |
Collapse
|
10
|
Yamauchi Y, Greber UF. Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic 2016; 17:569-92. [PMID: 26875443 PMCID: PMC7169695 DOI: 10.1111/tra.12387] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
Viruses are spherical or complex shaped carriers of proteins, nucleic acids and sometimes lipids and sugars. They are metastable and poised for structural changes. These features allow viruses to communicate with host cells during entry, and to release the viral genome, a process known as uncoating. Studies have shown that hundreds of host factors directly or indirectly support this process. The cell provides molecules that promote stepwise virus uncoating, and direct the virus to the site of replication. It acts akin to a snooker player who delivers accurate and timely shots (cues) to the ball (virus) to score. The viruses, on the other hand, trick (snooker) the host, hijack its homeostasis systems, and dampen innate immune responses directed against danger signals. In this review, we discuss how cellular cues, facilitators, and built‐in viral mechanisms promote uncoating. Cues come from receptors, enzymes and chemicals that act directly on the virus particle to alter its structure, trafficking and infectivity. Facilitators are defined as host factors that are involved in processes which indirectly enhance entry or uncoating. Unraveling the mechanisms of virus uncoating will continue to enhance understanding of cell functions, and help counteracting infections with chemicals and vaccines.
Collapse
Affiliation(s)
- Yohei Yamauchi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
11
|
Ni J, Qiao C, Han X, Han T, Kang W, Zi Z, Cao Z, Zhai X, Cai X. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol J 2014; 11:203. [PMID: 25442288 PMCID: PMC4265361 DOI: 10.1186/s12985-014-0203-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
Background Parvoviruses are classified into two subfamilies based on their host range: the Parvovirinae, which infect vertebrates, and the Densovirinae, which mainly infect insects and other arthropods. In recent years, a number of novel parvoviruses belonging to the subfamily Parvovirinae have been identified from various animal species and humans, including human parvovirus 4 (PARV4), porcine hokovirus, ovine partetravirus, porcine parvovirus 4 (PPV4), and porcine parvovirus 5 (PPV5). Methods Using sequence-independent single primer amplification (SISPA), a novel parvovirus within the subfamily Parvovirinae that was distinct from any known parvoviruses was identified and five full-length genome sequences were determined and analyzed. Results A novel porcine parvovirus, provisionally named PPV6, was initially identified from aborted pig fetuses in China. Retrospective studies revealed the prevalence of PPV6 in aborted pig fetuses and piglets(50% and 75%, respectively) was apparently higher than that in finishing pigs and sows (15.6% and 3.8% respectively). Furthermore, the prevalence of PPV6 in finishing pig was similar in affected and unaffected farms (i.e. 16.7% vs. 13.6%-21.7%). This finding indicates that animal age, perhaps due to increased innate immune resistance, strongly influences the level of PPV6 viremia. Complete genome sequencing and multiple alignments have shown that the nearly full-length genome sequences were approximately 6,100 nucleotides in length and shared 20.5%–42.6% DNA sequence identity with other members of the Parvovirinae subfamily. Phylogenetic analysis showed that PPV6 was significantly distinct from other known parvoviruses and was most closely related to PPV4. Conclusion Our findings and review of published parvovirus sequences suggested that a novel porcine parvovirus is currently circulating in China and might be classified into the novel genus Copiparvovirus within the subfamily Parvovirinae. However, the clinical manifestations of PPV6 are still unknown in that the prevalence of PPV6 was similar between healthy pigs and sick pigs in a retrospective epidemiological study. The identification of PPV6 within the subfamily Parvovirinae provides further insight into the viral and genetic diversity of parvoviruses.
Collapse
Affiliation(s)
- Jianqiang Ni
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Caixia Qiao
- Beijing Entry-Exit Inspection and Quarantine Bureau, No.6 Tianshuiyuan Street, Chaoyang District, Beijing, 100026, the People's Republic of China.
| | - Xue Han
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Tao Han
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Wenhua Kang
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Zhanchao Zi
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Zhen Cao
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Xinyan Zhai
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| | - Xuepeng Cai
- China Animal Disease Control Center Veterinary Diagnostic Center, Tianguidastreet 17, Beijing, 102600, the People's Republic of China.
| |
Collapse
|
12
|
Pérez R, Calleros L, Marandino A, Sarute N, Iraola G, Grecco S, Blanc H, Vignuzzi M, Isakov O, Shomron N, Carrau L, Hernández M, Francia L, Sosa K, Tomás G, Panzera Y. Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain. PLoS One 2014; 9:e111779. [PMID: 25365348 PMCID: PMC4218814 DOI: 10.1371/journal.pone.0111779] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/30/2014] [Indexed: 11/28/2022] Open
Abstract
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.
Collapse
Affiliation(s)
- Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Lucía Calleros
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Sarute
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sofia Grecco
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis Unit, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lucía Carrau
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lourdes Francia
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Katia Sosa
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Hybrid DNA virus in Chinese patients with seronegative hepatitis discovered by deep sequencing. Proc Natl Acad Sci U S A 2013; 110:10264-9. [PMID: 23716702 DOI: 10.1073/pnas.1303744110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seronegative hepatitis--non-A, non-B, non-C, non-D, non-E hepatitis--is poorly characterized but strongly associated with serious complications. We collected 92 sera specimens from patients with non-A-E hepatitis in Chongqing, China between 1999 and 2007. Ten sera pools were screened by Solexa deep sequencing. We discovered a 3,780-bp contig present in all 10 pools that yielded BLASTx E scores of 7e-05-0.008 against parvoviruses. The complete sequence of the in silico-assembled 3,780-bp contig was confirmed by gene amplification of overlapping regions over almost the entire genome, and the virus was provisionally designated NIH-CQV. Further analysis revealed that the contig was composed of two major ORFs. By protein BLAST, ORF1 and ORF2 were most homologous to the replication-associated protein of bat circovirus and the capsid protein of porcine parvovirus, respectively. Phylogenetic analysis indicated that NIH-CQV is located at the interface of Parvoviridae and Circoviridae. Prevalence of NIH-CQV in patients was determined by quantitative PCR. Sixty-three of 90 patient samples (70%) were positive, but all those from 45 healthy controls were negative. Average virus titer in the patient specimens was 1.05 e4 copies/µL. Specific antibodies against NIH-CQV were sought by immunoblotting. Eighty-four percent of patients were positive for IgG, and 31% were positive for IgM; in contrast, 78% of healthy controls were positive for IgG, but all were negative for IgM. Although more work is needed to determine the etiologic role of NIH-CQV in human disease, our data indicate that a parvovirus-like virus is highly prevalent in a cohort of patients with non-A-E hepatitis.
Collapse
|
14
|
Farid AH. Aleutian mink disease virus in furbearing mammals in Nova Scotia, Canada. Acta Vet Scand 2013; 55:10. [PMID: 23394546 PMCID: PMC3602201 DOI: 10.1186/1751-0147-55-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 02/03/2013] [Indexed: 11/13/2022] Open
Abstract
Background Aleutian mink disease virus (AMDV) is widespread among ranched and free-ranging American mink in Canada, but there is no information on its prevalence in other wild animal species. This paper describes the prevalence of AMDV of 12 furbearing species in Nova Scotia (NS), Canada. Methods Samples were collected from carcasses of 462 wild animals of 12 furbearing species, trapped in 10 NS counties between November 2009 and February 2011. Viral DNA was tested by PCR using two primer pairs, and anti-viral antibodies were tested by counterimmunoelectrophoresis (CIEP) on spleen homogenates. Results Positive PCR or CIEP samples were detected in 56 of 60 (93.3%) American mink, 43 of 61 (70.5%) short-tailed weasels, 2 of 8 (25.0%) striped skunks, 2 of 11 (18.2%) North American river otters, 9 of 85 (10.6%) raccoons, and 2 of 20 (10.0%) bobcats. Samples from six fishers, 24 coyotes, 25 red foxes, 58 beavers, 45 red-squirrels and 59 muskrats were negative. Antibodies to AMDV were detected by CIEP in 16 of 56 (28.6%) mink and one of the 8 skunks (12.5%). Thirteen of the mink were positive for PCR and CIEP, but three mink and one skunk were CIEP positive and PCR negative. Positive CIEP or PCR animals were present in all nine counties from which mink or weasel samples were collected. Conclusions The presence of AMDV in so many species across the province has important epidemiological ramifications and could pose a serious health problem for the captive mink, as well as for susceptible wildlife. The mechanism of virus transmission between wildlife and captive mink and the effects of AMDV exposure on the viability of the susceptible species deserve further investigation.
Collapse
|
15
|
Leal É, Villanova FE, Lin W, Hu F, Liu Q, Liu Y, Cui S. Interclade recombination in porcine parvovirus strains. J Gen Virol 2012; 93:2692-2704. [DOI: 10.1099/vir.0.045765-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
A detailed analysis of the Ns1/Vp1Vp2 genome region of the porcine parvovirus (PPV) strains isolated from vaccinated animals was performed. We found many inconsistencies in the phylogenetic trees of these viral isolates, such as low statistical support and strains with long branches in the phylogenetic trees. Thus, we used distance-based and phylogenetic methods to distinguish de facto recombinants from spurious recombination signals. We found a mosaic virus in which the Ns1 gene was acquired from one PPV clade and the Vp1Vp2 gene was acquired from a distinct phylogenetic clade. We also described the interclade mosaic structure of the Vp1Vp2 gene of a reference strain. If recombination is an adaptive mechanism over the course of PPV evolution, we would likely observe increasing numbers of chimeric strains over time. However, when the PPV sequences isolated from 1964 to 2011 were analysed, only two chimeric strains were detected. Thus, PPV recombination is an independent event, resulting from close contact between animals housed in high-density conditions.
Collapse
Affiliation(s)
- Élcio Leal
- Federal University of Pará, Belém, Brazil
| | | | - Wencheng Lin
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Feng Hu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Qinfang Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| | - Yebing Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Shangjin Cui
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of CAAS, Heilongjiang, PR China
| |
Collapse
|
16
|
An in-frame deletion in the NS protein-coding sequence of parvovirus H-1PV efficiently stimulates export and infectivity of progeny virions. J Virol 2012; 86:7554-64. [PMID: 22553326 DOI: 10.1128/jvi.00212-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An in-frame, 114-nucleotide-long deletion that affects the NS-coding sequence was created in the infectious molecular clone of the standard parvovirus H-1PV, thereby generating Del H-1PV. The plasmid was transfected and further propagated in permissive human cell lines in order to analyze the effects of the deletion on virus fitness. Our results show key benefits of this deletion, as Del H-1PV proved to exhibit (i) higher infectivity (lower particle-to-infectivity ratio) in vitro and (ii) enhanced tumor growth suppression in vivo compared to wild-type H-1PV. This increased infectivity correlated with an accelerated egress of Del H-1PV progeny virions in producer cells and with an overall stimulation of the viral life cycle in subsequently infected cells. Indeed, virus adsorption and internalization were significantly improved with Del H-1PV, which may account for the earlier appearance of viral DNA replicative forms that was observed with Del H-1PV than wild-type H-1PV. We hypothesize that the internal deletion within the NS2 and/or NS1 protein expressed by Del H-1PV results in the stimulation of some step(s) of the viral life cycle, in particular, a maturation step(s), leading to more efficient nuclear export of infectious viral particles and increased fitness of the virus produced.
Collapse
|
17
|
Abstract
RNA viruses, such as human immunodeficiency virus, hepatitis C virus, influenza virus, and poliovirus replicate with very high mutation rates and exhibit very high genetic diversity. The extremely high genetic diversity of RNA virus populations originates that they replicate as complex mutant spectra known as viral quasispecies. The quasispecies dynamics of RNA viruses are closely related to viral pathogenesis and disease, and antiviral treatment strategies. Over the past several decades, the quasispecies concept has been expanded to provide an adequate framework to explain complex behavior of RNA virus populations. Recently, the quasispecies concept has been used to study other complex biological systems, such as tumor cells, bacteria, and prions. Here, we focus on some questions regarding viral and theoretical quasispecies concepts, as well as more practical aspects connected to pathogenesis and resistance to antiviral treatments. A better knowledge of virus diversification and evolution may be critical in preventing and treating the spread of pathogenic viruses.
Collapse
|
18
|
Streck AF, Bonatto SL, Homeier T, Souza CK, Gonçalves KR, Gava D, Canal CW, Truyen U. High rate of viral evolution in the capsid protein of porcine parvovirus. J Gen Virol 2011; 92:2628-2636. [DOI: 10.1099/vir.0.033662-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, it has been shown that some parvoviruses exhibit high substitution rates, close to those of RNA viruses. In order to monitor and determine new mutations in porcine parvovirus (PPV), recent PPV field isolates from Austria, Brazil, Germany and Switzerland were sequenced and analysed. These samples, together with sequences retrieved from GenBank, were included in three datasets, consisting of the complete NS1 and VP1 genes and a partial VP1 gene. For each dataset, the nucleotide substitution rate and the molecular clock were determined. Analysis of the PPV field isolates revealed that a recently described amino acid substitution, S436T, appeared to be common in the VP2 protein in the Austrian, Brazilian and German virus populations. Furthermore, new amino acid substitutions were identified, located mainly in the viral capsid loops. By inferring the evolutionary dynamics of the PPV sequences, nucleotide substitution rates of approximately 10−5 substitutions per site per year for the non-structural protein gene and 10−4 substitutions per site per year for the capsid protein gene (for both viral protein datasets) were found. The latter rate is similar to those commonly found in RNA viruses. An association of the phylogenetic tree with the molecular clock analysis revealed that the mutations on which the divergence for both capsid proteins was based occurred in the past 30 years. Based on these findings, it was concluded that PPV variants are continuously evolving and that vaccines, which are based mainly on strains isolated about 30 years ago, should perhaps be updated.
Collapse
Affiliation(s)
- André Felipe Streck
- Institute for Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Sandro Luis Bonatto
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica, Av. Ipiranga 6681, Prédio12, bloco C, sala 172, 90619-900 Porto Alegre, Brazil
| | - Timo Homeier
- Institute for Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Carine Kunzler Souza
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Prédio 42.602, CEP 91540-000, Porto Alegre, Brazil
| | - Karla Rathje Gonçalves
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Prédio 42.602, CEP 91540-000, Porto Alegre, Brazil
| | - Danielle Gava
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Prédio 42.602, CEP 91540-000, Porto Alegre, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Prédio 42.602, CEP 91540-000, Porto Alegre, Brazil
| | - Uwe Truyen
- Institute for Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Cheng WX, Li JS, Huang CP, Yao DP, Liu N, Cui SX, Jin Y, Duan ZJ. Identification and nearly full-length genome characterization of novel porcine bocaviruses. PLoS One 2010; 5:e13583. [PMID: 21049037 PMCID: PMC2963602 DOI: 10.1371/journal.pone.0013583] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/14/2010] [Indexed: 01/18/2023] Open
Abstract
The genus bocavirus includes bovine parvovirus (BPV), minute virus of canines (MVC), and a group of human bocaviruses (HBoV1-4). Using sequence-independent single primer amplification (SISPA), a novel bocavirus group was discovered with high prevalence (12.59%) in piglet stool samples. Two nearly full-length genome sequences were obtained, which were approximately 5,100 nucleotides in length. Multiple alignments revealed that they share 28.7–56.8% DNA sequence identity with other members of Parvovirinae. Phylogenetic analyses indicated their closest neighbors were members of the genus bocavirus. The new viruses had a putative non-structural NP1 protein, which was unique to bocaviruses. They were provisionally named porcine bocavirus 1 and 2 (PBoV1, PBoV2). PBoV1 and PBoV2 shared 94.2% nucleotide identity in NS1 gene sequence, suggesting that they represented two different bocavirus species. Two additional samples (6V, 7V) were amplified for 2,407 bp and 2,434 bp products, respectively, including a partial NP1 gene and the complete VP1 gene; Phylogenetic analysis indicated that 6Vand 7V grouped with PBoV1 and PBoV2 in the genus of bocavirus, but were in the separate clusters. Like other parvoviruses, PBoV1, PBoV2, 6Vand 7V also contained a putative secretory phospholipase A2 (sPLA2) motif in the VP1 unique region, with a conserved HDXXY motif in the catalytic center. The conserved motif YXGXF of the Ca2+-binding loop of sPLA2 identified in human bocavirus was also found in porcine bocavirus, which differs from the YXGXG motif carried by most other parvoviruses. The observation of PBoV and potentially other new bocavirus genus members may aid in molecular and functional characterization of the genus bocavirus.
Collapse
Affiliation(s)
- Wei-xia Cheng
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Jin-song Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Can-ping Huang
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dong-ping Yao
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Na Liu
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shu-xian Cui
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yu Jin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, People's Republic of China
- Medical School of Nanjing University, Nanjing, People's Republic of China
- * E-mail: (YJ); (Z-jD)
| | - Zhao-jun Duan
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
- * E-mail: (YJ); (Z-jD)
| |
Collapse
|
20
|
Abstract
Nanoviruses are multipartite single-stranded DNA (ssDNA) plant viruses that cause important diseases of leguminous crops and banana. Little has been known about the variability and molecular evolution of these viruses. Here we report on the variability of faba bean necrotic stunt virus (FBNSV), a nanovirus from Ethiopia. We found mutation frequencies of 7.52 x 10(-4) substitutions per nucleotide in a field population of the virus and 5.07 x 10(-4) substitutions per nucleotide in a laboratory-maintained population derived thereof. Based on virus propagation for a period of more than 2 years, we determined a nucleotide substitution rate of 1.78 x 10(-3) substitutions per nucleotide per year. This high molecular evolution rate places FBNSV, as a representative of the family Nanoviridae, among the fastest-evolving ssDNA viruses infecting plants or vertebrates.
Collapse
|
21
|
Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 2010; 16:1416-28. [PMID: 19727141 PMCID: PMC2795093 DOI: 10.1038/gt.2009.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vectors based on the adeno-associated virus are attractive and versatile vehicles for in vivo gene transfer. The virus capsid is the primary interface with the cell that defines many pharmacological, immunological and molecular properties. Determinants of these interactions are often restricted to a limited number of capsid amino acids. In this study, a portfolio of novel AAV vectors was developed following a structure-function analysis of naturally occurring AAV capsid isolates. Singletons, which are particular residues on the AAV capsid that were variable in otherwise conserved amino acid positions were found to impact on vector's ability to be manufactured or to transduce. Data for those residues that mapped to monomer-monomer interface regions on the particle structure suggested a role in particle assembly. The change of singleton residues to the conserved amino acid resulted in the rescue of many isolates that were defective upon initial isolation. This led to the development of an AAV vector portfolio that encompasses 6 different clades and 3 other distinct AAV niches. Evaluation of the in vivo gene transfer efficiency of this portfolio following intravenous and intramuscular administration highlighted a clade-specific tropism. These studies further the design and selection of AAV capsids for gene therapy applications.
Collapse
|
22
|
Abstract
DNA-tumor viruses comprise enveloped and non-enveloped agents that cause malignancies in a large variety of cell types and tissues by interfering with cell cycle control and immortalization. Those DNA-tumor viruses that replicate in the nucleus use cellular mechanisms to transport their genome and newly synthesized viral proteins into the nucleus. This requires cytoplasmic transport and nuclear import of their genome. Agents that employ this strategy include adenoviruses, hepadnaviruses, herpesviruses, and likely also papillomaviruses, and polyomaviruses, but not poxviruses which replicate in the cytoplasm. Here, we discuss how DNA-tumor viruses enter cells, take advantage of cytoplasmic transport, and import their DNA genome through the nuclear pore complex into the nucleus. Remarkably, nuclear import of incoming genomes does not necessarily follow the same pathways used by the structural proteins of the viruses during the replication and assembly phases of the viral life cycle. Understanding the mechanisms of DNA nuclear import can identify new pathways of cell regulation and anti-viral therapies.
Collapse
Affiliation(s)
- Urs F Greber
- Institute of Zoology, University of Zürich, Switzerland
| | | |
Collapse
|
23
|
Harkins GW, Delport W, Duffy S, Wood N, Monjane AL, Owor BE, Donaldson L, Saumtally S, Triton G, Briddon RW, Shepherd DN, Rybicki EP, Martin DP, Varsani A. Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol J 2009; 6:104. [PMID: 19607673 PMCID: PMC2719613 DOI: 10.1186/1743-422x-6-104] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/16/2009] [Indexed: 02/06/2023] Open
Abstract
Background Despite the demonstration that geminiviruses, like many other single stranded DNA viruses, are evolving at rates similar to those of RNA viruses, a recent study has suggested that grass-infecting species in the genus Mastrevirus may have co-diverged with their hosts over millions of years. This "co-divergence hypothesis" requires that long-term mastrevirus substitution rates be at least 100,000-fold lower than their basal mutation rates and 10,000-fold lower than their observable short-term substitution rates. The credibility of this hypothesis, therefore, hinges on the testable claim that negative selection during mastrevirus evolution is so potent that it effectively purges 99.999% of all mutations that occur. Results We have conducted long-term evolution experiments lasting between 6 and 32 years, where we have determined substitution rates of between 2 and 3 × 10-4 substitutions/site/year for the mastreviruses Maize streak virus (MSV) and Sugarcane streak Réunion virus (SSRV). We further show that mutation biases are similar for different geminivirus genera, suggesting that mutational processes that drive high basal mutation rates are conserved across the family. Rather than displaying signs of extremely severe negative selection as implied by the co-divergence hypothesis, our evolution experiments indicate that MSV and SSRV are predominantly evolving under neutral genetic drift. Conclusion The absence of strong negative selection signals within our evolution experiments and the uniformly high geminivirus substitution rates that we and others have reported suggest that mastreviruses cannot have co-diverged with their hosts.
Collapse
Affiliation(s)
- Gordon W Harkins
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simple tests for rapid detection of canine parvovirus antigen and canine parvovirus-specific antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:127-31. [PMID: 18987166 DOI: 10.1128/cvi.00304-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Canine parvovirus (CPV) is the number one viral cause of enteritis, morbidity, and mortality in 8-week-old young puppies. We have developed twin assays (slide agglutination test [SAT] for CPV antigen and slide inhibition test [SIT] for CPV antibody) that are sensitive, specific, cost-effective, generic for all genotypes of CPV, and provide instant results for CPV antigen detection in feces and antibody quantification in serum. We found these assays to be useful for routine applications in kennels with large numbers of puppies at risk. The results of these assays are available in 1 min and do not require any special instrumentation. SAT-SIT technology will find applications in rapid screening of samples for other hemagglutinating emerging viruses of animals and humans (influenza virus and severe acute respiratory syndrome coronavirus).
Collapse
|
25
|
van der Walt E, Martin DP, Varsani A, Polston JE, Rybicki EP. Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias. Virol J 2008; 5:104. [PMID: 18816368 PMCID: PMC2572610 DOI: 10.1186/1743-422x-5-104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/24/2008] [Indexed: 12/18/2022] Open
Abstract
Background Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ~10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules.
Collapse
Affiliation(s)
- Eric van der Walt
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
26
|
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295:L240-63. [PMID: 18487356 DOI: 10.1152/ajplung.90203.2008] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Collapse
Affiliation(s)
- Christopher S Rogers
- Department of Internal Medicine, Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Detection of a novel circovirus in mute swans (Cygnus olor) by using nested broad-spectrum PCR. Virus Res 2008; 132:208-12. [DOI: 10.1016/j.virusres.2007.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 11/24/2022]
|
28
|
Evolution to pathogenicity of the parvovirus minute virus of mice in immunodeficient mice involves genetic heterogeneity at the capsid domain that determines tropism. J Virol 2007; 82:1195-203. [PMID: 18045943 DOI: 10.1128/jvi.01692-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role that evolutionary dynamics plays in diseases caused by mammalian DNA viruses. To address this issue in a natural host model, we compared the pathogenesis and genetics of the attenuated fibrotropic and the virulent lymphohematotropic strains of the parvovirus minute virus of mice (MVM), and of two invasive fibrotropic MVM (MVMp) variants carrying the I362S or K368R change in the VP2 major capsid protein, in the infection of severe combined immunodeficient (SCID) mice. By 14 to 18 weeks after oronasal inoculation, the I362S and K368R viruses caused lethal leukopenia characterized by tissue damage and inclusion bodies in hemopoietic organs, a pattern of disease found by 7 weeks postinfection with the lymphohematotropic MVM (MVMi) strain. The MVMp populations emerging in leukopenic mice showed consensus sequence changes in the MVMi genotype at residues G321E and A551V of VP2 in the I362S virus infections or A551V and V575A changes in the K368R virus infections, as well as a high level of genetic heterogeneity within a capsid domain at the twofold depression where these residues lay. Amino acids forming this capsid domain are important MVM tropism determinants, as exemplified by the switch in MVMi host range toward mouse fibroblasts conferred by coordinated changes of some of these residues and by the essential character of glutamate at residue 321 for maintaining MVMi tropism toward primary hemopoietic precursors. The few viruses within the spectrum of mutants from mice that maintained the respective parental 321G and 575V residues were infectious in a plaque assay, whereas the viruses with the main consensus sequences exhibited low levels of fitness in culture. Consistent with this finding, a recombinant MVMp virus carrying the consensus sequence mutations arising in the K368R virus background in mice failed to initiate infection in cell lines of different tissue origins, even though it caused rapid-course lethal leukopenia in SCID mice. The parental consensus genotype prevailed during leukopenia development, but plaque-forming viruses with the reversion of the 575A residue to valine emerged in affected organs. The disease caused by the DNA virus in mice, therefore, involves the generation of heterogeneous viral populations that may cooperatively interact for the hemopoietic syndrome. The evolutionary changes delineate a sector of the surface of the capsid that determines tropism and that surrounds the sialic acid receptor binding domain.
Collapse
|
29
|
Arguello-Astorga G, Ascencio-Ibáñez JT, Dallas MB, Orozco BM, Hanley-Bowdoin L. High-frequency reversion of geminivirus replication protein mutants during infection. J Virol 2007; 81:11005-15. [PMID: 17670823 PMCID: PMC2045516 DOI: 10.1128/jvi.00925-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The geminivirus replication protein AL1 interacts with retinoblastoma-related protein (RBR), a key regulator of the plant division cell cycle, to induce conditions permissive for viral DNA replication. Previous studies of tomato golden mosaic virus (TGMV) AL1 showed that amino acid L148 in the conserved helix 4 motif is critical for RBR binding. In this work, we examined the effect of an L148V mutation on TGMV replication in tobacco cells and during infection of Nicotiana benthamiana plants. The L148V mutant replicated 100 times less efficiently than wild-type TGMV in protoplasts but produced severe symptoms that were delayed compared to those of wild-type infection in plants. Analysis of progeny viruses revealed that the L148V mutation reverted at 100% frequency in planta to methionine, leucine, isoleucine, or a second-site mutation depending on the valine codon in the initial DNA sequence. Similar results were seen with another geminivirus, cabbage leaf curl virus (CaLCuV), carrying an L145A mutation in the equivalent residue. Valine was the predominant amino acid recovered from N. benthamiana plants inoculated with the CaLCuV L145A mutant, while threonine was the major residue in Arabidopsis thaliana plants. Together, these data demonstrated that there is strong selection for reversion of the TGMV L148V and CaLCuV L145A mutations but that the nature of the selected revertants is influenced by both the viral background and host components. These data also suggested that high mutation rates contribute to the rapid evolution of geminivirus genomes in plants.
Collapse
Affiliation(s)
- Gerardo Arguello-Astorga
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | | | |
Collapse
|
30
|
Kaufmann B, López-Bueno A, Mateu MG, Chipman PR, Nelson CDS, Parrish CR, Almendral JM, Rossmann MG. Minute virus of mice, a parvovirus, in complex with the Fab fragment of a neutralizing monoclonal antibody. J Virol 2007; 81:9851-8. [PMID: 17626084 PMCID: PMC2045413 DOI: 10.1128/jvi.00775-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of virus-like particles of the lymphotropic, immunosuppressive strain of minute virus of mice (MVMi) in complex with the neutralizing Fab fragment of the mouse monoclonal antibody (MAb) B7 was determined by cryo-electron microscopy to 7-A resolution. The Fab molecule recognizes a conformational epitope at the vertex of a three-fold protrusion on the viral surface, thereby simultaneously engaging three symmetry-related viral proteins in binding. The location of the epitope close to the three-fold axis is consistent with the previous analysis of MVMi mutants able to escape from the B7 antibody. The binding site close to the symmetry axes sterically forbids the binding of more than one Fab molecule per spike. MAb as well as the Fab molecules inhibits the binding of the minute virus of mice (MVM) to permissive cells but can also neutralize MVM postattachment. This finding suggests that the interaction of B7 with three symmetry-related viral subunits at each spike hinders structural transitions in the viral capsid essential during viral entry.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Domingo E, Gomez J. Quasispecies and its impact on viral hepatitis. Virus Res 2007; 127:131-50. [PMID: 17349710 PMCID: PMC7125676 DOI: 10.1016/j.virusres.2007.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 02/03/2007] [Indexed: 12/17/2022]
Abstract
Quasispecies dynamics mediates adaptability of RNA viruses through a number of mechanisms reviewed in the present article, with emphasis on the medical implications for the hepatitis viruses. We discuss replicative and non-replicative molecular mechanisms of genome variation, modulating effects of mutant spectra, and several modes of viral evolution that can affect viral pathogenesis. Relevant evolutionary events include the generation of minority virus variants with altered functional properties, and alterations of mutant spectrum complexity that can affect disease progression or response to treatment. The widespread occurrence of resistance to antiviral drugs encourages new strategies to control hepatic viral disease such as combination therapies and lethal mutagenesis. In particular, ribavirin may be exerting in some cases its antiviral activity with participation of its mutagenic action. Despite many unanswered questions, here we document that quasispecies dynamics has provided an interpretation of the adaptability of the hepatitis viruses, with features conceptually similar to those observed with other RNA viruses, a reflection of the common underlying Darwinian principles.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|