1
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
2
|
Kosiakova H, Berdyshev A, Horid'ko T, Meged O, Klimashevsky V, Matsokha R, Tkachenko O, Asmolkova V, Kvitnitskaya-Ryzhova T, Luhovskyi S, Klymenko P, Hula N. N-Stearoylethanolamine Exerts Cardioprotective Effects in Old Rats. Curr Aging Sci 2024; 17:144-155. [PMID: 38279735 DOI: 10.2174/0118746098275323231226073348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Aging is associated with the slowing down of metabolic processes, diminished physiological processes, changes in hormonal activity and increasing exposure to oxidative stress factors and chronic inflammation. The endocannabinoid system (ECS) is a major signaling network that plays a pro-homeostatic role in the central and peripheral organs of the human body. A class of minor lipids, N-acylethanolamines (NAEs), which do not activate cannabinoid receptors, except for anandamide, but can potentiate the action of endocannabinoids and have a wide spectrum of biological activity and significant adaptogenic potential, belongs to ECS. The results of different studies over the past decades have established the protective effect of NAE on many pathological conditions. OBJECTIVE This study aimed to investigate the cardioprotective effects of C18:0 NAE- N-stearoylethanolamine (NSE) in aged rats. In this study, we focused on investigating the effects of C18:0 NAE- N-stearoylethanolamine (NSE) on the intensity of oxidative/ nitrosative stress, antioxidant potential, lipoprotein profile and inflammation markers of blood plasma, phospholipid composition and age-related morphological changes of old rat heart tissues. METHODS The study was conducted on Sprague Dawley male laboratory rats. The three groups of rats were involved in the study design. The first group consisted of young rats aged 4 months (n=10). The second (n=10) and third (n=10) groups included old rats aged of 18 months. Rats from the third group were administered a per os aqueous suspension of NSE at a dose of 50 mg/kg of body weight daily for 10 days. All groups of rats were kept on a standard vivarium diet. The blood plasma, serum, and heart of rats were used for biochemical and histological analysis. RESULTS The cardioprotective effect of N-stearoylethanolamine in old rats was established, which was expressed in the normalization of the antioxidant system condition and the level of proinflammatory cytokines, positive modulation of blood plasma and lipoprotein profile, normalization of heart tissue lipid composition, and significant reduction in age-related myocardium morphological changes. CONCLUSION The revealed effects of N-stearoylethanolamine can become the basis for developing a new drug for use in complex therapy to improve the quality of life of older people.
Collapse
Affiliation(s)
- Halyna Kosiakova
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Andrii Berdyshev
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Tetyana Horid'ko
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Olena Meged
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Vitaliy Klimashevsky
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Roza Matsokha
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Oksana Tkachenko
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Valentina Asmolkova
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| | - Tetyana Kvitnitskaya-Ryzhova
- DF Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Vyshgorodska Str, 67, Kyiv, 04114, Ukraine
| | - Serhii Luhovskyi
- DF Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Vyshgorodska Str, 67, Kyiv, 04114, Ukraine
| | - Pavlo Klymenko
- DF Chebotarev Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, Vyshgorodska Str, 67, Kyiv, 04114, Ukraine
| | - Nadiya Hula
- OV Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovich Str, 9, Kyiv, 03160, Ukraine
| |
Collapse
|
3
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
4
|
Ten-Blanco M, Flores Á, Pereda-Pérez I, Piscitelli F, Izquierdo-Luengo C, Cristino L, Romero J, Hillard CJ, Maldonado R, Di Marzo V, Berrendero F. Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomed Pharmacother 2022; 149:112925. [PMID: 35477218 DOI: 10.1016/j.biopha.2022.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022] Open
Abstract
Anxiety and stress disorders are often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear are unknown. Here we investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. These results show that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism could be of relevance for the development of novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Inmaculada Pereda-Pérez
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Cristina Izquierdo-Luengo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Julián Romero
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Sciences, Hearth and Lung Research Institute (IUCPQ), Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center, Université Laval, Quebec City, Canada
| | - Fernando Berrendero
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain.
| |
Collapse
|
5
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|
6
|
Bisogno T, Lauritano A, Piscitelli F. The Endocannabinoid System: A Bridge between Alzheimer's Disease and Gut Microbiota. Life (Basel) 2021; 11:934. [PMID: 34575083 PMCID: PMC8470731 DOI: 10.3390/life11090934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Farmacologia Traslazionale, Consiglio Nazionale Delle Ricerche, Area Della Ricerca di Roma 2 Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
7
|
Cannabinoid-based therapy as a future for joint degeneration. Focus on the role of CB 2 receptor in the arthritis progression and pain: an updated review. Pharmacol Rep 2021; 73:681-699. [PMID: 34050525 PMCID: PMC8180479 DOI: 10.1007/s43440-021-00270-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Over the last several decades, the percentage of patients suffering from different forms of arthritis has increased due to the ageing population and the increasing risk of civilization diseases, e.g. obesity, which contributes to arthritis development. Osteoarthritis and rheumatoid arthritis are estimated to affect 50-60% of people over 65 years old and cause serious health and economic problems. Currently, therapeutic strategies are limited and focus mainly on pain attenuation and maintaining joint functionality. First-line therapies are nonsteroidal anti-inflammatory drugs; in more advanced stages, stronger analgesics, such as opioids, are required, and in the most severe cases, joint arthroplasty is the only option to ensure joint mobility. Cannabinoids, both endocannabinoids and synthetic cannabinoid receptor (CB) agonists, are novel therapeutic options for the treatment of arthritis-associated pain. CB1 receptors are mainly located in the nervous system; thus, CB1 agonists induce many side effects, which limit their therapeutic efficacy. On the other hand, CB2 receptors are mainly located in the periphery on immune cells, and CB2 modulators exert analgesic and anti-inflammatory effects in vitro and in vivo. In the current review, novel research on the cannabinoid-mediated analgesic effect on arthritis is presented, with particular emphasis on the role of the CB2 receptor in arthritis-related pain and the suppression of inflammation.
Collapse
|
8
|
Analgesic and Anticancer Activity of Benzoxazole Clubbed 2-Pyrrolidinones as Novel Inhibitors of Monoacylglycerol Lipase. Molecules 2021; 26:molecules26082389. [PMID: 33924091 PMCID: PMC8074287 DOI: 10.3390/molecules26082389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
Collapse
|
9
|
Crombie KM, Cisler JM, Hillard CJ, Koltyn KF. Aerobic exercise reduces anxiety and fear ratings to threat and increases circulating endocannabinoids in women with and without PTSD. Ment Health Phys Act 2021; 20:100366. [PMID: 34149867 PMCID: PMC8208522 DOI: 10.1016/j.mhpa.2020.100366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reductions in state anxiety have been reported following an acute bout of aerobic exercise. However, less is known regarding anxiety and fear ratings to specific threatening stimuli following an acute bout of aerobic exercise in women with PTSD. Moreover, the mechanisms responsible for the anxiolytic effects of exercise are not fully understood, although recent studies suggest a role for the endocannabinoid (eCB) system. Thus, this study utilized a randomized, counterbalanced approach to examine anxiety and fear ratings to predictable or unpredictable electric shock administration and circulating concentrations of eCBs and mood states immediately following moderate-intensity aerobic exercise (30 min on treadmill at 70-75% maximum heart rate) and a quiet rest control condition in women with and without a history of trauma, and in women with PTSD (N=42). Results revealed that anxiety and fear ratings to unpredictable and predictable threats were significantly (p<.05) lower following exercise compared to quiet rest, with correlational analyses indicating those with greater increases in circulating eCBs had greater reductions in anxiety and fear ratings to unpredictable and predictable threats following exercise. Also, there were significant (p<.05) reductions in fatigue, confusion, total mood disturbance, and increases in positive affect following exercise for the entire sample. Non-trauma controls and PTSD groups reported significant (p<.05) increases in vigor, with additional mood improvements following exercise for the PTSD group (i.e., decreases in state anxiety, negative affect, tension, anger, and depression). Results from this study suggest that aerobic exercise exerts psychological benefits in women with PTSD, potentially due to exercise-induced increases in circulating concentrations of eCBs.
Collapse
Affiliation(s)
- Kevin M. Crombie
- Department of Kinesiology at the University of Wisconsin-Madison, Madison, WI – USA
- Department of Psychiatry at the University of Wisconsin – Madison, Madison, WI – USA
| | - Josh M. Cisler
- Department of Psychiatry at the University of Wisconsin – Madison, Madison, WI – USA
| | - Cecilia J. Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology at the Medical College of Wisconsin, Milwaukee, WI – USA
| | - Kelli F. Koltyn
- Department of Kinesiology at the University of Wisconsin-Madison, Madison, WI – USA
| |
Collapse
|
10
|
Hamilton AJ, Payne AD, Mocerino M, Gunosewoyo H. Imaging Cannabinoid Receptors: A Brief Collection of Covalent and Fluorescent Probes for CB1 and CB2 Receptors. Aust J Chem 2021. [DOI: 10.1071/ch21007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been an expanding public interest towards the notion that modulation of the sophisticated endocannabinoid system can lead to various therapeutic benefits that are yet to be fully explored. In recent years, the drug discovery paradigm in this field has been largely based on the development of selective CB2 receptor agonists, avoiding the unwanted CB1 receptor-mediated psychoactive side effects. Mechanistically, target engagement studies are crucial for confirming the ligand–receptor interaction and the subsequent biological cascades that lead to the observed therapeutic effects. Concurrently, imaging techniques for visualisation of cannabinoid receptors are increasingly reported in the literature. Small molecule imaging tools ranging from phytocannabinoids such as tetrahydrocannabinol (THC) and cannabidiol (CBD) to the endocannabinoids as well as the purely synthetic cannabimimetics, have been explored to date with varying degrees of success. This Review will cover currently known photoactivatable, electrophilic, and fluorescent ligands for both the CB1 and CB2 receptors. Structural insights from techniques such as ligand-assisted protein structure (LAPS) and the discovery of novel allosteric modulators are significant additions for better understanding of the endocannabinoid system. There has also been a plethora of fluorescent conjugates that have been assessed for their binding to cannabinoid receptors as well as their potential for cellular imaging. More recently, bifunctional probes containing either fluorophores or electrophilic tags are becoming more prevalent in the literature. Collectively, these molecular tools are invaluable in demonstrating target engagement within the human endocannabinoid system.
Collapse
|
11
|
Seltzer ES, Watters AK, MacKenzie D, Granat LM, Zhang D. Cannabidiol (CBD) as a Promising Anti-Cancer Drug. Cancers (Basel) 2020; 12:E3203. [PMID: 33143283 PMCID: PMC7693730 DOI: 10.3390/cancers12113203] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022] Open
Abstract
Recently, cannabinoids, such as cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (THC), have been the subject of intensive research and heavy scrutiny. Cannabinoids encompass a wide array of organic molecules, including those that are physiologically produced in humans, synthesized in laboratories, and extracted primarily from the Cannabis sativa plant. These organic molecules share similarities in their chemical structures as well as in their protein binding profiles. However, pronounced differences do exist in their mechanisms of action and clinical applications, which will be briefly compared and contrasted in this review. The mechanism of action of CBD and its potential applications in cancer therapy will be the major focus of this review article.
Collapse
Affiliation(s)
- Emily S. Seltzer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Andrea K. Watters
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Danny MacKenzie
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| | - Lauren M. Granat
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (E.S.S.); (A.K.W.); (D.M.J.)
| |
Collapse
|
12
|
Ripamonte GC, Bernardes-Ribeiro M, Patrone LGA, Vicente MC, Bícego KC, Gargaglioni LH. Functional role for preoptic CB1 receptors in breathing and thermal control. Neurosci Lett 2020; 732:135021. [PMID: 32454147 DOI: 10.1016/j.neulet.2020.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
The anteroventral preoptic region (AVPO) of the hypothalamus is involved in both temperature and breathing regulation. This area densely express cannabinoid receptors type 1 (CB1) that modulate both excitatory and inhibitory synaptic transmission. However, it is still unknown if the endocannabinoid system located in the AVPO participates in breathing control and thermoregulation. Therefore, we tested the participation of CB1 in the AVPO in the modulation of ventilation and thermal control during normoxia and hypoxia. To this end, body temperature (Tb) of Wistar rats was monitored by datallogers and ventilation (VE) by whole body plethysmography before and after intra-AVPO microinjection of AM-251 (CB1 antagonist, 50 and 100 pmol) followed by 60 min of hypoxia exposure (7% O2). Intra-AVPO microinjection of the higher dose of AM-251 increased VE but did not change Tb under resting conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced anapyrexia and hyperventilation after vehicle microinjection. The higher dose of the cannabinoid antagonist increased the hypoxia-induced hyperventilation, in the same magnitude as observed under normoxic condition, whereas the drop in Tb elicited by hypoxia was attenuated. Therefore, the present results demonstrate that the endocannabinoid system acting on CB1 receptors in the AVPO exerts a tonic inhibitory modulation on breathing but seem not be involved in thermoregulation during resting conditions. In addition, activation of CB1 receptors in the AVPO stimulate thermal response during hypoxia, reducing energetically expensive responses, such as the hypoxic hyperventilation.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil.
| |
Collapse
|
13
|
Altamimi ASA, Bawa S, Athar F, Hassan MQ, Riadi Y, Afzal O. Pyrrolidin-2-one linked benzofused heterocycles as novel small molecule monoacylglycerol lipase inhibitors and antinociceptive agents. Chem Biol Drug Des 2020; 96:1418-1432. [PMID: 32575154 DOI: 10.1111/cbdd.13751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Eighteen pyrrolidin-2-one linked benzothiazole, and benzimidazole derivatives (10-27) were designed and synthesized. The structure of the compounds was confirmed by elemental and spectral (IR, 1 H-NMR and MS) data analysis. All the compounds were screened by human monoacylglycerol lipase (hMAGL) inhibition assay. Three benzimidazole compounds, 22 (4-Cl phenyl), 23 (3-Cl,4-F phenyl) and 25 (4-methoxy phenyl) were found to be the most potent, having an IC50 value of 8.6, 8.0 and 9.4 nm, respectively. Among them, the halogen-substituted phenyl derivatives, compound 22 (4-Cl phenyl) and compound 23 (3-Cl,4-F phenyl), showed micromolar potency against fatty acid amide hydrolase (FAAH), having an IC50 value of 35 and 24 µm, respectively. Benzimidazole derivative having 4-methoxyphenyl substitution (compound 25) was found to be a selective MAGL inhibitor (IC50 = 9.4 nm), with an IC50 value above 50 µm against FAAH. In the formalin-induced nociception test, compound 25 showed a dose-dependent reduction of pain response in both acute and late phases. At 30 mg/kg dose, it significantly reduced the pain response and showed greater potency than the reference drug gabapentin (GBP).
Collapse
Affiliation(s)
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Quamrul Hassan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| |
Collapse
|
14
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Cassano T, Villani R, Pace L, Carbone A, Bukke VN, Orkisz S, Avolio C, Serviddio G. From Cannabis sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases. Front Pharmacol 2020; 11:124. [PMID: 32210795 PMCID: PMC7069528 DOI: 10.3389/fphar.2020.00124] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis sativa, commonly known as marijuana, contains a pool of secondary plant metabolites with therapeutic effects. Besides Δ9-tetrahydrocannabinol that is the principal psychoactive constituent of Cannabis, cannabidiol (CBD) is the most abundant nonpsychoactive phytocannabinoid and may represent a prototype for anti-inflammatory drug development for human pathologies where both the inflammation and oxidative stress (OS) play an important role to their etiology and progression. To this regard, Alzheimer's disease (AD), Parkinson's disease (PD), the most common neurodegenerative disorders, are characterized by extensive oxidative damage to different biological substrates that can cause cell death by different pathways. Most cases of neurodegenerative diseases have a complex etiology with a variety of factors contributing to the progression of the neurodegenerative processes; therefore, promising treatment strategies should simultaneously target multiple substrates in order to stop and/or slow down the neurodegeneration. In this context, CBD, which interacts with the eCB system, but has also cannabinoid receptor-independent mechanism, might be a good candidate as a prototype for anti-oxidant drug development for the major neurodegenerative disorders, such as PD and AD. This review summarizes the multiple molecular pathways that underlie the positive effects of CBD, which may have a considerable impact on the progression of the major neurodegenerative disorders.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Carbone
- Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, Rzeszów, Poland
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
16
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
17
|
Franco V, Perucca E. Pharmacological and Therapeutic Properties of Cannabidiol for Epilepsy. Drugs 2019; 79:1435-1454. [DOI: 10.1007/s40265-019-01171-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Crombie KM, Leitzelar BN, Brellenthin AG, Hillard CJ, Koltyn KF. Loss of exercise- and stress-induced increases in circulating 2-arachidonoylglycerol concentrations in adults with chronic PTSD. Biol Psychol 2019; 145:1-7. [DOI: 10.1016/j.biopsycho.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
|
19
|
Kisková T, Mungenast F, Suváková M, Jäger W, Thalhammer T. Future Aspects for Cannabinoids in Breast Cancer Therapy. Int J Mol Sci 2019; 20:ijms20071673. [PMID: 30987191 PMCID: PMC6479799 DOI: 10.3390/ijms20071673] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Cannabinoids (CBs) from Cannabis sativa provide relief for tumor-associated symptoms (including nausea, anorexia, and neuropathic pain) in the palliative treatment of cancer patients. Additionally, they may decelerate tumor progression in breast cancer patients. Indeed, the psychoactive delta-9-tetrahydrocannabinol (THC), non-psychoactive cannabidiol (CBD) and other CBs inhibited disease progression in breast cancer models. The effects of CBs on signaling pathways in cancer cells are conferred via G-protein coupled CB-receptors (CB-Rs), CB1-R and CB2-R, but also via other receptors, and in a receptor-independent way. THC is a partial agonist for CB1-R and CB2-R; CBD is an inverse agonist for both. In breast cancer, CB1-R expression is moderate, but CB2-R expression is high, which is related to tumor aggressiveness. CBs block cell cycle progression and cell growth and induce cancer cell apoptosis by inhibiting constitutive active pro-oncogenic signaling pathways, such as the extracellular-signal-regulated kinase pathway. They reduce angiogenesis and tumor metastasis in animal breast cancer models. CBs are not only active against estrogen receptor-positive, but also against estrogen-resistant breast cancer cells. In human epidermal growth factor receptor 2-positive and triple-negative breast cancer cells, blocking protein kinase B- and cyclooxygenase-2 signaling via CB2-R prevents tumor progression and metastasis. Furthermore, selective estrogen receptor modulators (SERMs), including tamoxifen, bind to CB-Rs; this process may contribute to the growth inhibitory effect of SERMs in cancer cells lacking the estrogen receptor. In summary, CBs are already administered to breast cancer patients at advanced stages of the disease, but they might also be effective at earlier stages to decelerate tumor progression.
Collapse
Affiliation(s)
- Terézia Kisková
- Institute of Biology and Ecology, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 04154 Košice, Slovakia.
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Mária Suváková
- Institute of Chemistry, Faculty of Sciences, University of Pavol Jozef Šafárik in Košice, Šrobárova 2, 04154 Košice, Slovakia.
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Aerobic Fitness Level Moderates the Association Between Cannabis Use and Executive Functioning and Psychomotor Speed Following Abstinence in Adolescents and Young Adults. J Int Neuropsychol Soc 2019; 25:134-145. [PMID: 30474579 PMCID: PMC6374167 DOI: 10.1017/s1355617718000966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The high rate of cannabis (CAN) use in emerging adults is concerning given prior research suggesting neurocognitive deficits associated with CAN use in youth. Regular CAN use downregulates endocannabinoid activity, while aerobic exercise upregulates cannabinoid receptor 1 activity and releases endocannabinoids. Here we investigate the influence of regular CAN use on neuropsychological performance, and whether aerobic fitness moderates these effects. METHODS Seventy-nine young adults (37 CAN users) aged 16-26 participated. Groups were balanced for aerobic fitness level. Exclusion criteria included: left-handedness, past-year independent Axis-I disorders, major medical/neurologic disorders, prenatal issues, or prenatal alcohol/illicit drug exposure. After 3 weeks of abstinence, participants completed a neuropsychological battery and a maximal oxygen consumption test (VO2 max). Multiple regressions tested whether past-year CAN use, VO2 max, and CAN*VO2 max interaction predicted neuropsychological performance, controlling for past-year alcohol use, cotinine, gender, and depression symptoms. RESULTS Increased CAN use was associated with decreased performance on working memory and psychomotor tasks. High aerobic fitness level was related to better performance on visual memory, verbal fluency, and sequencing ability. CAN*VO2 max predicted performance of psychomotor speed, visual memory, and sequencing ability. CONCLUSIONS Following monitored abstinence, increased CAN use was associated with poorer performance in working memory and psychomotor speed. Higher aerobic fitness level moderated the impact of CAN on visual memory, executive function and psychomotor speed, as more aerobically fit CAN users demonstrated better performance relative to low-fit users. Therefore, aerobic fitness may present an affordable and efficacious method to improve cognitive functioning in CAN users. (JINS, 2019, 25, 134-145).
Collapse
|
21
|
Oxidative Stress and the Microbiota-Gut-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2406594. [PMID: 30622664 PMCID: PMC6304899 DOI: 10.1155/2018/2406594] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The gut-brain axis is increasingly recognized as an important pathway of communication and of physiological regulation, and gut microbiota seems to play a significant role in this mutual relationship. Oxidative stress is one of the most important pathogenic mechanisms for both neurodegenerative diseases, such as Alzheimer's or Parkinson's, and acute conditions, such as stroke or traumatic brain injury. A peculiar microbiota type might increase brain inflammation and reactive oxygen species levels and might favor abnormal aggregation of proteins. Reversely, brain lesions of various etiologies result in alteration of gut properties and microbiota. These recent hypotheses could open a door for new therapeutic approaches in various neurological diseases.
Collapse
|
22
|
Jee Kim M, Tanioka M, Woo Um S, Hong SK, Hwan Lee B. Analgesic effects of FAAH inhibitor in the insular cortex of nerve-injured rats. Mol Pain 2018; 14:1744806918814345. [PMID: 30380982 PMCID: PMC6247483 DOI: 10.1177/1744806918814345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/10/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
The insular cortex is an important region of brain involved in the processing of pain and emotion. Recent studies indicate that lesions in the insular cortex induce pain asymbolia and reverse neuropathic pain. Endogenous cannabinoids (endocannabinoids), which have been shown to attenuate pain, are simultaneously degraded by fatty acid amide hydrolase (FAAH) that halts the mechanisms of action. Selective inhibitor URB597 suppresses FAAH activity by conserving endocannabinoids, which reduces pain. The present study examined the analgesic effects of URB597 treatment in the insular cortex of an animal model of neuropathic pain. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to nerve injury and cannula implantation. On postoperative day 14, rodents received microinjection of URB597 into the insular cortex. In order to verify the analgesic mechanisms of URB597, cannabinoid 1 receptor (CB1R) antagonist AM251, peroxisome proliferator-activated receptor alpha (PPAR alpha) antagonist GW6471, and transient receptor potential vanilloid 1 (TRPV1) antagonist Iodoresiniferatoxin (I-RTX) were microinjected 15 min prior to URB597 injection. Changes in mechanical allodynia were measured using the von-Frey test. Expressions of CB1R, N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and TRPV1 significantly increased in the neuropathic pain group compared to the sham-operated control group. Mechanical threshold and expression of NAPE-PLD significantly increased in groups treated with 2 nM and 4 nM URB597 compared with the vehicle-injected group. Blockages of CB1R and PPAR alpha diminished the analgesic effects of URB597. Inhibition of TRPV1 did not effectively reduce the effects of URB597 but attenuated expression of NAPE-PLD compared with the URB597-injected group. In addition, optical imaging demonstrated that neuronal activity of the insular cortex was reduced following URB597 treatment. Our results suggest that microinjection of FAAH inhibitor into the insular cortex causes analgesic effects by decreasing neural excitability and increasing signals related to the endogenous cannabinoid pathway in the insular cortex.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motomasa Tanioka
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Woo Um
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Karp Hong
- Division of Bio and Health Sciences, Mokwon University, Daejeon, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Alarcón-Yaquetto DE, Caballero L, Gonzales GF. Association Between Plasma N-Acylethanolamides and High Hemoglobin Concentration in Southern Peruvian Highlanders. High Alt Med Biol 2017; 18:322-329. [DOI: 10.1089/ham.2016.0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dulce E. Alarcón-Yaquetto
- Department of Biological and Physiological Sciences, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lidia Caballero
- Research Circle of Plants with Effects on Health, Universidad Peruana Cayetano Heredia, Lima, Peru
- Universidad Nacional del Altiplano, Puno, Peru
| | - Gustavo F. Gonzales
- Department of Biological and Physiological Sciences, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Circle of Plants with Effects on Health, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones en Altura, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
24
|
Pascual AC, Gaveglio VL, Giusto NM, Pasquaré SJ. 2-Arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. Neuroscience 2017; 362:168-180. [PMID: 28844762 DOI: 10.1016/j.neuroscience.2017.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aβ) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aβ oligomers or fibrils. These Aβ conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aβ1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aβ1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aβ1-40 oligomers or fibrils. These results show a differential effect of Aβ1-40 peptide on 2-AG metabolism depending on its conformation.
Collapse
Affiliation(s)
- Ana C Pascual
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Virginia L Gaveglio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Susana J Pasquaré
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB, UNS-CONICET), Edificio E1, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
25
|
Ho JM, Bergeon Burns CM, Rendon NM, Rosvall KA, Bradshaw HB, Ketterson ED, Demas GE. Lipid signaling and fat storage in the dark-eyed junco. Gen Comp Endocrinol 2017; 247:166-173. [PMID: 28161439 PMCID: PMC5410188 DOI: 10.1016/j.ygcen.2017.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/13/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
Seasonal hyperphagia and fattening promote survivorship in migratory and wintering birds, but reduced adiposity may be more advantageous during the breeding season. Factors such as photoperiod, temperature, and food predictability are known environmental determinants of fat storage, but the underlying neuroendocrine mechanisms are less clear. Endocannabinoids and other lipid signaling molecules regulate multiple aspects of energy balance including appetite and lipid metabolism. However, these functions have been established primarily in mammals; thus the role of lipid signals in avian fat storage remains largely undefined. Here we examined relationships between endocannabinoid signaling and individual variation in fat storage in captive white-winged juncos (Junco hyemalis aikeni) following a transition to long-day photoperiods. We report that levels of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), in furcular and abdominal fat depots correlate negatively with fat mass. Hindbrain mRNA expression of CB1 endocannabinoid receptors also correlates negatively with levels of fat, demonstrating that fatter animals experience less central and peripheral endocannabinoid signaling when in breeding condition. Concentrations of the anorexigenic lipid, oleoylethanolamide (OEA), also inversely relate to adiposity. These findings demonstrate unique and significant relationships between adiposity and lipid signaling molecules in the brain and periphery, thereby suggesting a potential role for lipid signals in mediating adaptive levels of fat storage.
Collapse
Affiliation(s)
- Jacqueline M Ho
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Christine M Bergeon Burns
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Nikki M Rendon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Heather B Bradshaw
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
26
|
CB 1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal. Biol Psychiatry 2017; 81:625-634. [PMID: 27737762 DOI: 10.1016/j.biopsych.2016.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. METHODS We investigated in mice the role of CB1 cannabinoid receptors (CB1Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. RESULTS Memory impairment during nicotine withdrawal was blocked by the CB1R antagonist rimonabant or the genetic deletion of CB1R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB1R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB1R conditional knockout mice and after subchronic treatment with rimonabant. CONCLUSIONS These findings underline the interest of CB1R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk.
Collapse
|
27
|
Dócs K, Mészár Z, Gonda S, Kiss-Szikszai A, Holló K, Antal M, Hegyi Z. The Ratio of 2-AG to Its Isomer 1-AG as an Intrinsic Fine Tuning Mechanism of CB1 Receptor Activation. Front Cell Neurosci 2017; 11:39. [PMID: 28265242 PMCID: PMC5316530 DOI: 10.3389/fncel.2017.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid ‘2-AG’ is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers. To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro. We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+ transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration – mimicking the process of isomerization over time – attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients. Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses. In addition, our results suggest that 1-AG may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms.
Collapse
Affiliation(s)
- Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Sciences, University of Debrecen Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, Faculty of Sciences, University of Debrecen Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
28
|
Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016; 2016:5831315. [PMID: 27597805 PMCID: PMC4997072 DOI: 10.1155/2016/5831315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.
Collapse
|
29
|
Abdel-Salam O. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids. ASIAN PAC J TROP MED 2016; 9:413-9. [PMID: 27261847 DOI: 10.1016/j.apjtm.2016.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 11/26/2022] Open
Abstract
Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.
Collapse
Affiliation(s)
- Omar Abdel-Salam
- Department of Toxicology and Narcotics, Medical Division, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt.
| |
Collapse
|
30
|
Adamson Barnes NS, Mitchell VA, Kazantzis NP, Vaughan CW. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br J Pharmacol 2015; 173:77-87. [PMID: 26398331 DOI: 10.1111/bph.13337] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/18/2015] [Accepted: 09/15/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations. EXPERIMENTAL APPROACH C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application. KEY RESULTS JZL195 and the cannabinoid receptor agonist WIN55212 produced dose-dependent reductions in CCI-induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti-allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195-induced anti-allodynia was maintained during repeated treatment. CONCLUSIONS AND IMPLICATIONS These findings suggest that JZL195 has greater anti-allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists.
Collapse
Affiliation(s)
- Nicholas S Adamson Barnes
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - Vanessa A Mitchell
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - Nicholas P Kazantzis
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
31
|
Lemieux A, al'Absi M. Stress psychobiology in the context of addiction medicine: from drugs of abuse to behavioral addictions. PROGRESS IN BRAIN RESEARCH 2015; 223:43-62. [PMID: 26806770 DOI: 10.1016/bs.pbr.2015.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this chapter, we briefly review the basic biology of psychological stress and the stress response. We propose that psychological stress and the neurobiology of the stress response play in substance use initiation, maintenance, and relapse. The proposed mechanisms for this include, on the one hand, the complex interactions between biological mediators of the stress response and the dopaminergic reward system and, on the other hand, mediators of the stress response and other systems crucial in moderating key addiction-related behaviors such as endogenous opioids, the sympathetic-adrenal-medullary system, and endocannabinoids. Exciting new avenues of study including genomics, sex as a moderator of the stress response, and behavioral addictions (gambling, hypersexuality, dysfunctional internet use, and food as an addictive substance) are also briefly presented within the context of stress as a moderator of the addictive process.
Collapse
Affiliation(s)
| | - Mustafa al'Absi
- University of Minnesota School of Medicine, Duluth, MN, USA.
| |
Collapse
|
32
|
Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility. J Assist Reprod Genet 2015; 32:1575-88. [PMID: 26277482 DOI: 10.1007/s10815-015-0553-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Marijuana has the highest consumption rate among all of the illicit drugs used in the USA, and its popularity as both a recreational and medicinal drug is increasing especially among men of reproductive age. Male factor infertility is on the increase, and the exposure to the cannabinoid compounds released by marijuana could be a contributing cause. The endocannabinoid system (ECS) is deeply involved in the complex regulation of male reproduction through the endogenous release of endocannabinoids and binding to cannabinoid receptors. Disturbing the delicate balance of the ECS due to marijuana use can negatively impact reproductive potential. Various in vivo and in vitro studies have reported on the empirical role that marijuana plays in disrupting the hypothalamus-pituitary-gonadal axis, spermatogenesis, and sperm function such as motility, capacitation, and the acrosome reaction. In this review, we highlight the latest evidence regarding the effect of marijuana use on male fertility and also provide a detailed insight into the ECS and its significance in the male reproductive system.
Collapse
|
33
|
Toczek M, Schlicker E, Grzęda E, Malinowska B. Enhanced function of inhibitory presynaptic cannabinoid CB1 receptors on sympathetic nerves of DOCA-salt hypertensive rats. Life Sci 2015; 138:78-85. [PMID: 25921770 DOI: 10.1016/j.lfs.2015.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
AIMS This study was performed to examine whether hypertension affects the sympathetic transmission to resistance vessels of pithed rats via inhibitory presynaptic cannabinoid CB1 receptors and whether endocannabinoids are involved in this response. MATERIALS AND METHODS We compared uninephrectomised rats rendered hypertensive by high salt diet and deoxycorticosterone acetate (DOCA) injections with normotensive animals (uninephrectomy only). Experiments were performed on vagotomised and pithed animals. Increases in diastolic blood pressure (DBP) were induced four times (S1-S4) by electrical stimulation or phenylephrine injection. KEY FINDINGS Electrical stimulation (0.75Hz, 1ms, 50V, 5 impulses) of the preganglionic sympathetic nerve fibres innervating the blood vessels more strongly increased DBP in normotensive than in DOCA-salt rats. Phenylephrine (0.01μmol/kg) induced similar increases in DBP in both groups. The cannabinoid receptor agonist CP55940 (0.01-1μmol/kg) did not modify the rises in DBP induced by phenylephrine. However, it inhibited the electrically stimulated increases in DBP, more strongly in DOCA-salt than in normotensive animals (maximally by 50 and 30%, respectively). The effect of CP55940 was attenuated by the CB1 antagonist AM251 (3μmol/kg). AM251 enhanced the neurogenic vasopressor response during S4 by itself in hypertensive rats only. URB597 (3μmol/kg), which inhibits degradation of the endocannabinoid anandamide, did not modify the electrically stimulated increases in DBP. SIGNIFICANCE The function of inhibitory presynaptic CB1 receptors on sympathetic nerves is enhanced in DOCA-salt hypertensive rats. Thus, the CB1 receptor-mediated inhibition of noradrenaline release from the sympathetic nerve fibres innervating the resistance vessels might play a protective role in hypertension.
Collapse
Affiliation(s)
- Marek Toczek
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz Str. 2A, 15-222 Białystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Emilia Grzęda
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz Str. 2A, 15-222 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicz Str. 2A, 15-222 Białystok, Poland.
| |
Collapse
|
34
|
Al Kury LT, Voitychuk OI, Yang KHS, Thayyullathil FT, Doroshenko P, Ramez AM, Shuba YM, Galadari S, Howarth FC, Oz M. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. Br J Pharmacol 2015; 171:3485-98. [PMID: 24758718 DOI: 10.1111/bph.12734] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/17/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) exerts negative inotropic and antiarrhythmic effects in ventricular myocytes. EXPERIMENTAL APPROACH Whole-cell patch-clamp technique and radioligand-binding methods were used to analyse the effects of anandamide in rat ventricular myocytes. KEY RESULTS In the presence of 1-10 μM AEA, suppression of both Na(+) and L-type Ca(2+) channels was observed. Inhibition of Na(+) channels was voltage and Pertussis toxin (PTX) - independent. Radioligand-binding studies indicated that specific binding of [(3) H] batrachotoxin (BTX) to ventricular muscle membranes was also inhibited significantly by 10 μM metAEA, a non-metabolized AEA analogue, with a marked decrease in Bmax values but no change in Kd . Further studies on L-type Ca(2+) channels indicated that AEA potently inhibited these channels (IC50 0.1 μM) in a voltage- and PTX-independent manner. AEA inhibited maximal amplitudes without affecting the kinetics of Ba(2+) currents. MetAEA also inhibited Na(+) and L-type Ca(2+) currents. Radioligand studies indicated that specific binding of [(3) H]isradipine, was inhibited significantly by metAEA. (10 μM), changing Bmax but not Kd . CONCLUSION AND IMPLICATIONS Results indicate that AEA inhibited the function of voltage-dependent Na(+) and L-type Ca(2+) channels in rat ventricular myocytes, independent of CB1 and CB2 receptor activation.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, UAE University, Al Ain, UAE
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Manna JD, Wepy JA, Hsu KL, Chang JW, Cravatt BF, Marnett LJ. Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. J Biol Chem 2014; 289:33741-53. [PMID: 25301951 DOI: 10.1074/jbc.m114.582353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol, by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity: PGE2-G > PGF2α-G > PGD2-G; LYPLA2 hydrolyzed 1- but not 2-arachidonoylglycerol or arachidonoylethanolamide. Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease.
Collapse
Affiliation(s)
- Joseph D Manna
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - James A Wepy
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Ku-Lung Hsu
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jae Won Chang
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Benjamin F Cravatt
- the Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Lawrence J Marnett
- From the A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
36
|
Sido JM, Nagarkatti PS, Nagarkatti M. Role of Endocannabinoid Activation of Peripheral CB1 Receptors in the Regulation of Autoimmune Disease. Int Rev Immunol 2014; 34:403-14. [PMID: 24911431 DOI: 10.3109/08830185.2014.921165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The impact of the endogenous cannabinoids (AEA, 2-AG, PEA, and virodamine) on the immune cell expressed cannabinoid receptors (CB1, CB2, TRPV-1, and GPR55) and consequent regulation of immune function is an exciting area of research with potential implications in the prevention and treatment of inflammatory and autoimmune diseases. Despite significant advances in understanding the mechanisms through which cannabinoids regulate immune functions, not much is known about the role of endocannabinoids in the pathogenesis or prevention of autoimmune diseases. Inasmuch as CB2 expression on immune cells and its role has been widely reported, the importance of CB1 in immunological disorders has often been overlooked especially because it is not highly expressed on naive immune cells. Therefore, the current review aims at delineating the effect of endocannabinoids on CB1 receptors in T cell driven autoimmune diseases. This review will also highlight some autoimmune diseases in which there is evidence indicating a role for endocannabinoids in the regulation of autoimmune pathogenesis. Overall, based on the evidence presented using the endocannabinoids, specifically AEA, we propose that the peripheral CB1 receptor is involved in the regulation and amelioration of inflammation associated with autoimmune diseases.
Collapse
Affiliation(s)
- Jessica Margaret Sido
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Prakash S Nagarkatti
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| | - Mitzi Nagarkatti
- a Department of Pathology, Microbiology, & Immunology , University of South Carolina School of Medicine , Columbia , SC , USA
| |
Collapse
|
37
|
O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:621-8. [DOI: 10.1007/s00210-014-0991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023]
|
38
|
Al Kury LT, Yang KHS, Thayyullathil FT, Rajesh M, Ali RM, Shuba YM, Howarth FC, Galadari S, Oz M. Effects of endogenous cannabinoid anandamide on cardiac Na⁺/Ca²⁺ exchanger. Cell Calcium 2014; 55:231-7. [PMID: 24674601 DOI: 10.1016/j.ceca.2014.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 10/25/2022]
Abstract
Endocannabinoid anandamide (N-arachidonoyl ethanolamide; AEA) has been shown to cause negative inotropic and antiarrhythmic effects in ventricular myocytes. In this study, using whole-cell patch clamp technique, we have investigated the effects of AEA on cardiac Na(+)/Ca(2+) exchanger (NCX1)-mediated currents. AEA suppressed NCX1 with an IC50 value of 4.7 μM. Both inward and outward components of exchanger currents were suppressed by AEA equally. AEA inhibition was mimicked by the metabolically stable analogue, methanandamide (metAEA, 10 μM) while it was not influenced by inhibition of fatty acid amide hydrolase with 1 μM URB597 incubation. The effect of AEA, was not altered in the presence of cannabinoid receptor 1 and 2 antagonists AM251 (1 μM) and AM630 (1 μM), respectively. In addition, inhibition by AEA remained unchanged after pertussis toxin (PTX, 2 μg/ml) treatment or following the inclusion of GDP-β-S (1 mM) in pipette solution. Currents mediated by NCX1 expressed in HEK-293 cells were also inhibited by 10 μM AEA a partially reversible manner. Confocal microscopy images indicated that the intensity of YFP-NCX1 expression on cell surface was not altered by AEA. Collectively, the results indicate that AEA directly inhibits the function of NCX1 in rat ventricular myocytes and in HEK-293 cells expressing NCX1.
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Faisal T Thayyullathil
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Mohanraj Rajesh
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Ramez M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv 24, Ukraine
| | - Frank Christopher Howarth
- Department of Physiology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
39
|
Al Kury LT, Voitychuk OI, Ali RM, Galadari S, Yang KHS, Howarth FC, Shuba YM, Oz M. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. Cell Calcium 2014; 55:104-18. [PMID: 24472666 DOI: 10.1016/j.ceca.2013.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 12/26/2013] [Indexed: 02/08/2023]
Abstract
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca2+ signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1 μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca2+ transients. However, the amplitudes of caffeine-evoked Ca2+ transients and the rate of recovery of electrically evoked Ca2+ transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca2+ -uptake and Ca2+ -ATPase activity in a biphasic manner. [3H]-ryanodine binding and passive Ca2+ release from SR vesicles were not altered by 10 μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 μg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3 μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3 μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Arachidonic Acids/pharmacology
- Caffeine/pharmacology
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/drug effects
- Endocannabinoids/pharmacology
- Fura-2/chemistry
- Heart Ventricles/cytology
- In Vitro Techniques
- Indoles/pharmacology
- Male
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Pertussis Toxin/toxicity
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Lina T Al Kury
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Oleg I Voitychuk
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Ramiz M Ali
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sehamuddin Galadari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Engineering, Chapman University, One University Drive, Orange, CA 92866, USA
| | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology and International Center of Molecular Physiology, National Academy of Sciences of Ukraine, Kyiv-24, Ukraine
| | - Murat Oz
- Laboratory of Functional Lipidomics, Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Panagis G, Mackey B, Vlachou S. Cannabinoid Regulation of Brain Reward Processing with an Emphasis on the Role of CB1 Receptors: A Step Back into the Future. Front Psychiatry 2014; 5:92. [PMID: 25132823 PMCID: PMC4117180 DOI: 10.3389/fpsyt.2014.00092] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/16/2014] [Indexed: 01/17/2023] Open
Abstract
Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine, and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioral experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure, and the reinstatement of drug-seeking behavior procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain-reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1) receptor agonists, antagonists, and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction-related disorders.
Collapse
Affiliation(s)
- George Panagis
- Laboratory of Behavioral Neuroscience, Department of Psychology, School of Social Sciences, University of Crete , Rethymno , Greece
| | - Brian Mackey
- Laboratory of Behavioural Neuroscience, School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University , Dublin , Ireland
| | - Styliani Vlachou
- Laboratory of Behavioural Neuroscience, School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University , Dublin , Ireland
| |
Collapse
|
41
|
Anderson WB, Gould MJ, Torres RD, Mitchell VA, Vaughan CW. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model. Neuropharmacology 2013; 81:224-30. [PMID: 24384256 DOI: 10.1016/j.neuropharm.2013.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
The analgesic efficacy of cannabinoids in chronic pain models is limited by side-effects. It has been proposed that this might be overcome by using agents which indirectly activate the endocannabinoid system. We examined the analgesic and side-effect profile of the dual FAAH/MAGL inhibitor JZL195 in an inflammatory pain model. The effect of systemic injections of a range of doses of JZL195 and the pan-cannabinoid receptor agonist WIN55212 were performed 1 day following intraplantar injection of CFA in C57BL/6 mice. JZL195 and WIN55212 both reduced mechanical allodynia and thermal hyperalgesia, and produced catalepsy and sedation in a dose dependent manner. Unlike WIN55212, JZL195 reduced allodynia at doses below those at which side-effects were observed. The effects of JZL195 and WIN55212 were abolished by co-application with the CB1 antagonist AM251. The CB2 antagonist also reduced the JZL195 anti-allodynia, and reversed the WIN55212 anti-allodynia. The reduction in allodynia produced by JZL195 was greater than that produced individually by the FAAH and MAGL inhibitors, URB597 and JZL184. These findings suggest that JZL195 reduces inflammation induced allodynia at doses below those which produce side-effects, and displays greater efficacy that FAAH or MAGL inhibitors. Thus, dual FAAH/MAGL inhibition has the potential to alleviate inflammatory pain with reduced cannabinoid-like side-effects.
Collapse
Affiliation(s)
- Wayne B Anderson
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| | - Michael J Gould
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Romeo D Torres
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Vanessa A Mitchell
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
42
|
Trezza V, Campolongo P. The endocannabinoid system as a possible target to treat both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Front Behav Neurosci 2013; 7:100. [PMID: 23950739 PMCID: PMC3739026 DOI: 10.3389/fnbeh.2013.00100] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder of significant prevalence and morbidity, whose pathogenesis relies on paradoxical changes of emotional memory processing. An ideal treatment would be a drug able to block the pathological over-consolidation and continuous retrieval of the traumatic event, while enhancing its extinction and reducing the anxiety symptoms. While the latter benefit from antidepressant medications, no drug is available to control the cognitive symptomatology. Endocannabinoids regulate affective states and participate in memory consolidation, retrieval, and extinction. Clinical findings showing a relationship between Cannabis use and PTSD, as well as changes in endocannabinoid activity in PTSD patients, further suggest the existence of a link between endocannabinoids and maladaptive brain changes after trauma exposure. Along these lines, we suggest that endocannabinoid degradation inhibitors may be an ideal therapeutic approach to simultaneously treat the emotional and cognitive features of PTSD, avoiding the unwanted psychotropic effects of compounds directly binding cannabinoid receptors.
Collapse
Affiliation(s)
- Viviana Trezza
- Department of Sciences, Section of Biomedical Sciences and Technologies, University "Roma Tre," Rome, Italy
| | | |
Collapse
|
43
|
Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal. Neuroscience 2013; 248:637-54. [PMID: 23624062 DOI: 10.1016/j.neuroscience.2013.04.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. Research over the past decade has shed light on the influence of endocannabinoids (ECs) on the opioid system. Evidence from both animal and clinical studies point toward an interaction between these two systems, and suggest that targeting the EC system may provide novel interventions for managing opiate dependence and withdrawal. This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal.
Collapse
|
44
|
Pascual AC, Gaveglio VL, Giusto NM, Pasquaré SJ. Aging modifies the enzymatic activities involved in 2-arachidonoylglycerol metabolism. Biofactors 2013; 39:209-20. [PMID: 23281018 DOI: 10.1002/biof.1055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/08/2012] [Indexed: 12/17/2022]
Abstract
One of the principal monoacylglycerol (MAG) species in animal tissues is 2-arachidonoylglycerol (2-AG), and the diacylglycerol lipase (DAGL) pathway is the most important 2-AG biosynthetic pathway proposed to date. Lysophosphatidate phosphatase (LPAase) activity is part of another 2-AG-forming pathway in which monoacylglycerol lipase (MAGL) is the major degrading enzyme. The purpose of this study was to analyze the manner in which DAGL, LPAase, and MAGL enzymes are modified in the central nervous system (CNS) during aging. To this end, diacylglycerols (DAGs) and MAGs of different composition were used as substrates of DAGL and MAGL, respectively. All enzymatic activities were evaluated in membrane and soluble fractions as well as in synaptic terminals from the cerebral cortex (CC) of adult and aged rats. Results related to 2-AG metabolism show that aging: (a) decreases DAGL-α expression in the membrane fraction whereas in synaptosomes it increases DAGL-β and decreases MAGL expression; (b) decreases LPAase activity in both membrane and soluble fractions; (c) decreases DAGL and stimulates LPAase activities in CC synaptic terminals; (d) stimulates membrane-associated MAGL-coupled DAGL activity; and (e) stimulates MAGL activity in CC synaptosomes. Our results also reveal that during aging the net balance between the enzymatic activities involved in 2-AG synthesis and breakdown is low availability of 2-AG in CC membrane fractions and synaptic terminals. Taken together, our results lead us to conclude that these enzymes play crucial roles in the regulation of 2-AG tissue levels during aging.
Collapse
Affiliation(s)
- Ana C Pascual
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
45
|
Michler T, Storr M, Kramer J, Ochs S, Malo A, Reu S, Göke B, Schäfer C. Activation of cannabinoid receptor 2 reduces inflammation in acute experimental pancreatitis via intra-acinar activation of p38 and MK2-dependent mechanisms. Am J Physiol Gastrointest Liver Physiol 2013; 304:G181-92. [PMID: 23139224 DOI: 10.1152/ajpgi.00133.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The endocannabinoid system has been shown to mediate beneficial effects on gastrointestinal inflammation via cannabinoid receptors 1 (CB(1)) and 2 (CB(2)). These receptors have also been reported to activate the MAP kinases p38 and c-Jun NH(2)-terminal kinase (JNK), which are involved in early acinar events leading to acute pancreatitis and induction of proinflammatory cytokines. Our aim was to examine the role of cannabinoid receptor activation in an experimental model of acute pancreatitis and the potential involvement of MAP kinases. Cerulein pancreatitis was induced in wild-type, CB(1)-/-, and MK2-/- mice pretreated with selective cannabinoid receptor agonists or antagonists. Severity of pancreatitis was determined by serum amylase and IL-6 levels, intracellular activation of pancreatic trypsinogen, lung myeloperoxidase activity, pancreatic edema, and histological examinations. Pancreatic lysates were investigated by Western blotting using phospho-specific antibodies against p38 and JNK. Quantitative PCR data, Western blotting experiments, and immunohistochemistry clearly show that CB(1) and CB(2) are expressed in mouse pancreatic acini. During acute pancreatitis, an upregulation especially of CB(2) on apoptotic cells occurred. The unselective CB(1)/CB(2) agonist HU210 ameliorated pancreatitis in wild-type and CB(1)-/- mice, indicating that this effect is mediated by CB(2). Furthermore, blockade of CB(2), not CB(1), with selective antagonists engraved pathology. Stimulation with a selective CB(2) agonist attenuated acute pancreatitis and an increased activation of p38 was observed in the acini. With use of MK2-/- mice, it could be demonstrated that this attenuation is dependent on MK2. Hence, using the MK2-/- mouse model we reveal a novel CB(2)-activated and MAP kinase-dependent pathway that modulates cytokine expression and reduces pancreatic injury and affiliated complications.
Collapse
Affiliation(s)
- Thomas Michler
- Department of Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alén F, Ramírez-López MT, Gómez de Heras R, Rodríguez de Fonseca F, Orio L. Cannabinoid Receptors and Cholecystokinin in Feeding Inhibition. ANOREXIA 2013; 92:165-96. [DOI: 10.1016/b978-0-12-410473-0.00007-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Abstract
Stress plays an important role in psychiatric disorders, and preclinical evidence indicates that the central endocannabinoid system modulates endocrine and neuronal responses to stress. This study aimed to investigate the effect of acute stress on circulating concentrations of endocannabinoids (eCBs) in healthy humans. A total of 71 adults participated in two sessions in which they were exposed to either a standardized psychosocial stress procedure (Trier Social Stress Test) or a control task. Blood samples for eCB and cortisol assays and cardiovascular and subjective measures were obtained before and at regular intervals after the tasks. Serum concentrations of the eCBs, N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), as well as of the N-acylethanolamides (NAEs), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA), and of the O-acylglycerol, 2-oleoylglycerol (2-OG), were determined. Compared with the control condition, stress increased serum concentrations of AEA and the other NAEs immediately after the stress period. Increases in PEA were positively correlated with increases in serum cortisol after stress. Furthermore, anxiety ratings at baseline were negatively correlated with baseline concentrations of AEA. The sex and menstrual cycle status of the subject affected the NAE responses to stress. Interestingly, subjects of Asian and African-American races exhibited different patterns of stress responses compared with the Caucasian subjects. These results indicate that stress increases circulating NAEs in healthy human volunteers. This finding supports a protective role for eCBs in anxiety. Further research is needed to elucidate the function of these lipid mediators, and to determine the mechanisms that regulate their appearance in the circulation.
Collapse
|
48
|
Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012; 287:34660-82. [PMID: 22879589 DOI: 10.1074/jbc.m112.373241] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research TransCure, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
49
|
Malinowska B, Baranowska-Kuczko M, Schlicker E. Triphasic blood pressure responses to cannabinoids: do we understand the mechanism? Br J Pharmacol 2012; 165:2073-88. [PMID: 22022923 DOI: 10.1111/j.1476-5381.2011.01747.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cannabinoids comprise three major classes of substances, including compounds derived from the cannabis plant (e.g. Δ(9) -tetrahydrocannabinol and the chemically related substances CP55940 and HU210), endogenously formed (e.g. anandamide) and synthetic compounds (e.g. WIN55212-2). Beyond their psychotropic effects, cannabinoids have complex effects on blood pressure, including biphasic changes of Δ(9) -tetrahydrocannabinol and WIN55212-2 and an even triphasic effect of anandamide. The differing pattern of blood pressure changes displayed by the three types of compounds is not really surprising since, although they share an agonistic effect at cannabinoid CB(1) and CB(2) receptors, some compounds have additional effects. In particular, anandamide is known for its pleiotropic effects, and there is overwhelming evidence that anandamide influences blood pressure via (i) CB(1) receptors, (ii) TRPV1 receptors, (iii) endothelial cannabinoid receptors and (iv) degradation products. This review is dedicated to the description of the effects of externally added cannabinoids on cardiovascular parameters in vivo. First, the cardiovascular effects of cannabinoids in anaesthetized animals will be highlighted since most data have been generated in experiments of that type. The text will follow the three phases of anandamide on blood pressure, and we will check to which extent cardiovascular changes elicited by other cannabinoids show overlap with those effects or differ. The second part will be dedicated to the cardiovascular effects of the cannabinoids in conscious animals. In the third part, cardiovascular effects in humans will be discussed, and similarities and differences with respect to the data from animals will be examined.
Collapse
Affiliation(s)
- Barbara Malinowska
- Zakład Fizjologii i Patofizjologii Doświadczalnej, Uniwersytet Medyczny w Białymstoku, ul. Mickiewicza 2A, Białystok, Poland
| | | | | |
Collapse
|
50
|
Van Bockstaele EJ. Cannabinoid receptor signaling and modulation of monoamines: implications for psychiatric and neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:1-3. [PMID: 22251566 PMCID: PMC4707950 DOI: 10.1016/j.pnpbp.2012.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 12/14/2022]
|