1
|
Zhang Y, Hua M, Ma X, Li W, Cao Y, Han X, Huang X, Zhang H. Dipeptidyl peptidase-4 marks distinct subtypes of human adipose stromal/stem cells with different hepatocyte differentiation and immunoregulatory properties. Stem Cell Res Ther 2024; 15:338. [PMID: 39343956 PMCID: PMC11441085 DOI: 10.1186/s13287-024-03950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Human adipose-derived stromal/stem cells (hASCs) play important roles in regenerative medicine and numerous inflammatory diseases. However, their cellular heterogeneity limits the effectiveness of treatment. Understanding the distinct subtypes of hASCs and their phenotypic implications will enable the selection of appropriate subpopulations for targeted approaches in regenerative medicine or inflammatory diseases. METHODS hASC subtypes expressing dipeptidyl peptidase-4 (DPP4) were identified via fluorescence-activated cell sorting (FACS) analysis. DPP4 expression was knocked down in DPP4+ hASCs via DPP4 siRNA. The capacity for proliferation, hepatocyte differentiation, inflammatory factor secretion and T-cell functionality regulation of hASCs from DPP4-, DPP4+, and control siRNA-treated DPP4+ hASCs and DPP4 siRNA-treated DPP4+ hASCs were assessed. RESULTS DPP4+ hASCs and control siRNA-treated DPP4+ hASCs presented a lower proliferative capacity but greater hepatocyte differentiation capacity than DPP4- hASCs and DPP4 siRNA-treated DPP4+ hASCs. Both DPP4+ hASCs and DPP4- hASCs secreted high levels of vascular endothelial growth factor-A (VEGF-A), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6), whereas the levels of other factors, including matrix metalloproteinase (MMP)-1, eotaxin-3, fractalkine (FKN, CX3CL1), growth-related oncogene-alpha (GRO-alpha, CXCL1), monokine induced by interferon-gamma (MIG), macrophage inflammatory protein (MIP)-1beta, and macrophage colony-stimulating factor (M-CSF), were significantly greater in the supernatants of DPP4+ hASCs than in those of DPP4- hASCs. Exposure to hASC subtypes and their conditioned media triggered changes in the secreted cytokine profiles of T cells from healthy donors. The percentage of functional T cells that secreted factors such as MIP-1beta and IL-8 increased when these cells were cocultured with DPP4+ hASCs. The percentage of polyfunctional CD8+ T cells that secreted multiple factors, such as IL-17A, tumour necrosis factor alpha (TNF-α) and TNF-β, decreased when these cells were cocultured with supernatants derived from DPP4+ hASCs. CONCLUSIONS DPP4 may regulate proliferation, hepatocyte differentiation, inflammatory cytokine secretion and T-cell functionality of hASCs. These data provide a key foundation for understanding the important role of hASC subpopulations in the regulation of T cells, which may be helpful for future immune activation studies and allow them to be customized for clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuqing Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Weihong Li
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yuqi Cao
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xueya Han
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China.
- Department of Cell Biology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Fan J, Liu S, Ye W, Zhang X, Shi W. miR-483-5p-Containing exosomes treatment ameliorated deep vein thrombosis‑induced inflammatory response. Eur J Pharm Biopharm 2024; 202:114384. [PMID: 38950718 DOI: 10.1016/j.ejpb.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Peripheral vascular condition, known as deep vein thrombosis (DVT), is a common ailment that may lead to deadly pulmonary embolism. Inflammation is closely connected to venous thrombosis, which results in blood stasis, leading to ischemia and hypoxia, as indicated by research. The objective of this research was to investigate the mechanism by which exosomes derived from adipose stem cells (ADSCs) prevent deep vein thrombosis. Our data showed that Exo-483 effectively reduced the thrombus weight in DVT rats by intravenous injection. Exo-483 decreased the expression of tissue factor (TF) protein, the influx of inflammatory cells into the thrombosed vein wall, and the levels of cytokines in the serum. Furthermore, Exo-483 suppressed the expression of Mitogen-activated protein kinase 1 (MAPK1) and decreased the expression of NLRP3 inflammasomes. In an oxygen-glucose deprivation (OGD) cell model, the tube-forming and migratory abilities of primary human umbilical vein endothelial cells (HUVEC) and EA.hy926 cells were suppressed by Exo-483 pretreatment.Exo-483 is also linked to regulating Dynamin-related protein 1 (DRP1) production downstream of MAPK1.By decreasing the mitochondrial localization and phosphorylation at the S616 site of DRP1, it diminishes the expression of NLRP3 inflammasomes. Moreover, according to Bioinformatics analysis, miR-483-5p was anticipated to target MAPK1. The research conducted by our team revealed that the miR-483-5p exosome derived from ADSCs exhibited anti-inflammatory properties through the modulation of downstream DRP1-NLRP3 expression by targeting MAPK1.The findings of this research propose that miR-483-5p may be regarded as an innovative treatment target for DVT.
Collapse
Affiliation(s)
- Jing Fan
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sikai Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenhai Ye
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiujin Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanyin Shi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
4
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
5
|
González-Sánchez GD, Granados-López AJ, López-Hernández Y, Robles MJG, López JA. miRNAs as Interconnectors between Obesity and Cancer. Noncoding RNA 2024; 10:24. [PMID: 38668382 PMCID: PMC11055034 DOI: 10.3390/ncrna10020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity and cancer are a concern of global interest. It is proven that obesity may trigger the development or progression of some types of cancer; however, the connection by non-coding RNAs has not been totally explored. In the present review, we discuss miRNAs and lncRNAs dysregulation involved in obesity and some cancers, shedding light on how these conditions may exacerbate one another through the dysregulation of ncRNAs. lncRNAs have been reported as regulating microRNAs. An in silico investigation of lncRNA and miRNA interplay is presented. Our investigation revealed 44 upregulated and 49 downregulated lncRNAs in obesity and cancer, respectively. miR-375, miR-494-3p, miR-1908, and miR-196 were found interacting with 1, 4, 4 and 4 lncRNAs, respectively, which are involved in PPARγ cell signaling regulation. Additionally, miR-130 was found to be downregulated in obesity and reported as modulating 5 lncRNAs controlling PPARγ cell signaling. Similarly, miR-128-3p and miR-143 were found to be downregulated in obesity and cancer, interacting with 5 and 4 lncRNAs, respectively, associated with MAPK cell signaling modulation. The delicate balance between miRNA and lncRNA expression emerges as a critical determinant in the development of obesity-associated cancers, presenting these molecules as promising biomarkers. However, additional and deeper studies are needed to reach solid conclusions about obesity and cancer connection by ncRNAs.
Collapse
Affiliation(s)
- Grecia Denisse González-Sánchez
- Doctorate in Biosciences, University Center of Los Altos, University of Guadalajara, Tepatitlán de Morelos C.P. 47620, Mexico;
| | - Angelica Judith Granados-López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Yamilé López-Hernández
- Laboratory of Proteomics and Metabolomics, Cátedras-CONACYT, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| | - Mayra Judith García Robles
- Biotechnology Department of the Polytechnic, University of Zacatecas, Fresnillo, Zacatecas C.P. 99059, Mexico
| | - Jesús Adrián López
- Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Autonomous University of Zacatecas “Francisco García Salinas”, Zacatecas C.P. 98066, Mexico;
| |
Collapse
|
6
|
Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in Stem Cell Therapy for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2023; 12:626-643. [PMID: 35176896 PMCID: PMC10468561 DOI: 10.1089/wound.2021.0104] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/22/2022] [Indexed: 12/20/2022] Open
Abstract
Significance: The global burden of diabetic wounds, particularly diabetic foot ulcers, continues to have large economic and social impact throughout the world. Current strategies are not sufficient to overcome this burden of disease. Finding newer, more advanced regenerative cell and tissue-based strategies to reduce morbidity remains paramount. Recent Advances: Recent advances in stem cell therapies are discussed. We also highlight the practical issues of translating these advancing technologies into the clinical setting. Critical Issues: We discuss the use of somatic and induced pluripotent stem cells and the stromal vascular fraction, as well as innovations, including the use of 3D bioprinting of skin. We also explore related issues of using regenerative techniques in clinical practice, including the current regulatory landscape and translatability of in vivo research. Future Directions: Advances in stem cell manipulation showcase the best therapeutic resources available to enhance mechanisms of wound healing such as angiogenesis, cell proliferation, and collagen synthesis; potential methods include changing the scaffold microenvironment, including relative oxygen tension, and the use of gene modification and nanotechnology. Secretome engineering, particularly the use of extracellular vesicles, may be another potential cell-derived therapeutic that may enable use of cell-free translational therapy.
Collapse
Affiliation(s)
- Jasmine Ho
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dominic Yue
- Plastic Surgery Unit, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Henry C. Hsia
- Division of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and The Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int J Mol Sci 2023; 24:ijms24043888. [PMID: 36835295 PMCID: PMC9962639 DOI: 10.3390/ijms24043888] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.
Collapse
|
8
|
Guo R, Zhuang H, Chen X, Ben Y, Fan M, Wang Y, Zheng P. Tissue engineering in growth plate cartilage regeneration: Mechanisms to therapeutic strategies. J Tissue Eng 2023; 14:20417314231187956. [PMID: 37483459 PMCID: PMC10359656 DOI: 10.1177/20417314231187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The repair of growth plate injuries is a highly complex process that involves precise spatiotemporal regulation of multiple cell types. While significant progress has been made in understanding the pathological mechanisms underlying growth plate injuries, effectively regulating this process to regenerate the injured growth plate cartilage remains a challenge. Tissue engineering technology has emerged as a promising therapeutic approach for achieving tissue regeneration through the use of functional biological materials, seed cells and biological factors, and it is now widely applied to the regeneration of bone and cartilage. However, due to the unique structure and function of growth plate cartilage, distinct strategies are required for effective regeneration. Thus, this review provides an overview of current research on the application of tissue engineering to promote growth plate regeneration. It aims to elucidates the underlying mechanisms by which tissue engineering promotes growth plate regeneration and to provide novel insights and therapeutic strategies for future research on the regeneration of growth plate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Zhang Y, Lv P, Li Y, Zhang Y, Cheng C, Hao H, Yue H. Inflammatory Cytokine Interleukin-6 (IL-6) Promotes the Proangiogenic Ability of Adipose Stem Cells from Obese Subjects via the IL-6 Signaling Pathway. Curr Stem Cell Res Ther 2023; 18:93-104. [PMID: 36883256 DOI: 10.2174/1574888x17666220429103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of obesity, as well as obesity-induced chronic inflammatory diseases, is increasing worldwide. Chronic inflammation is related to the complex process of angiogenesis, and we found that adipose-derived stem cells from obese subjects (obADSCs) had proangiogenic features, including higher expression levels of interleukin-6 (IL-6), Notch ligands and receptors, and proangiogenic cytokines, than those from control subjects. We hypothesized that IL-6 and Notch signaling pathways are essential for regulating the proangiogenic characteristics of obADSCs. OBJECTIVE This study aimed to investigate whether the inflammatory cytokine interleukin 6 (IL-6) promotes the proangiogenic capacity of adipose stem cells in obese subjects via the IL-6 signaling pathway. METHODS We compared the phenotype analysis as well as cell doubling time, proliferation, migration, differentiation, and proangiogenic properties of ADSCs in vitro. Moreover, we used small interfering RNAs to inhibit the gene and protein expression of IL-6. RESULTS We found that ADSCs isolated from control individuals (chADSCs) and obADSCs had similar phenotypes and growth characteristics, and chADSCs had a stronger differentiation ability than obADSCs. However, obADSCs were more potent in promoting EA.hy926 cell migration and tube formation than chADSCs in vitro. We confirmed that IL-6 siRNA significantly reduced the transcriptional level of IL-6 in obADSCs, thereby reducing the expression of vascular endothelial growth factor (VEGF)- A, VEGF receptor 2, transforming growth factor β, and Notch ligands and receptors in obADSCs. CONCLUSION The finding suggests that inflammatory cytokine interleukin-6 (IL-6) promotes the proangiogenic ability of obADSCs via the IL-6 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Pengju Lv
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, 10031, USA
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.,People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
10
|
Cao C, Zhang L, Liu F, Shen J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J Inflamm Res 2022; 15:5235-5246. [PMID: 36120184 PMCID: PMC9473549 DOI: 10.2147/jir.s372046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fuli Liu
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Linkova DD, Rubtsova YP, Egorikhina MN. Cryostorage of Mesenchymal Stem Cells and Biomedical Cell-Based Products. Cells 2022; 11:cells11172691. [PMID: 36078098 PMCID: PMC9454587 DOI: 10.3390/cells11172691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) manifest vast opportunities for clinical use due both to their ability for self-renewal and for effecting paracrine therapeutic benefits. At the same time, difficulties with non-recurrent generation of large numbers of cells due to the necessity for long-term MSC expansion ex vivo, or the requirement for repeated sampling of biological material from a patient significantly limits the current use of MSCs in clinical practice. One solution to these problems entails the creation of a biobank using cell cryopreservation technology. This review is aimed at analyzing and classifying literature data related to the development of protocols for the cryopreservation of various types of MSCs and tissue-engineered structures. The materials in the review show that the existing techniques and protocols for MSC cryopreservation are very diverse, which significantly complicates standardization of the entire process. Here, the selection of cryoprotectors and of cryoprotective media shows the greatest variability. Currently, it is the cryopreservation of cell suspensions that has been studied most extensively, whereas there are very few studies in the literature on the freezing of intact tissues or of tissue-engineered structures. However, even now it is possible to develop general recommendations to optimize the cryopreservation process, making it less traumatic for cells.
Collapse
|
12
|
Lau CS, Chua J, Pena EM, Lim J, Saigo L, Goh BT. A Porcine Model Using Adipose Stem Cell-Loaded Scaffolds for Alveolar Ridge Augmentation. Tissue Eng Part C Methods 2022; 28:228-237. [PMID: 35442100 DOI: 10.1089/ten.tec.2022.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tooth loss greatly affects a person's quality of life and many turn to dental implants to replace lost teeth. The success of a dental implant depends on the amount of alveolar bone supporting the implant, and thus, bone augmentation is often necessary to preserve or build up bone volume in the alveolar ridge. Bone can be augmented with autogenous bone, allografts, or xenografts, but the limitations of such natural bone grafts prompt researchers to develop synthetic scaffolds supplemented with cells and/or bioactive agents as alternative bone grafts. The translation of these combination scaffolds from the laboratory to the clinic requires reliable experimental models that can simulate the clinical conditions in human patients. In this article, we describe the use of a porcine alveolar defect model as a platform to evaluate the efficacy of a novel combination of a three-dimensional-printed polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold and adipose-derived mesenchymal stem cells (AD-MSCs) in lateral alveolar augmentation. The surgical protocol for the defect creation and regenerative surgery, as well as analytical methods to determine the extent of tissue regeneration, are described and discussed.
Collapse
Affiliation(s)
- Chau Sang Lau
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorder Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Edgar Macabe Pena
- SingHealth Experimental Medicine Centre and National Large Animal Research Facility, Singapore Health Services Pte Ltd., Singapore, Singapore
| | - Jing Lim
- Osteopore International Pte Ltd., Singapore, Singapore
| | - Leonardo Saigo
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore, Singapore
| | - Bee Tin Goh
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore.,Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Yang X, Dong J, Hao Y, Qi Y, Liang J, Yan L, Wang W. Naringin Alleviates H 2O 2-Inhibited Osteogenic Differentiation of Human Adipose-Derived Stromal Cells via Wnt/ β-Catenin Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3126094. [PMID: 35529937 PMCID: PMC9076301 DOI: 10.1155/2022/3126094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is an age-related systemic bone disease that places a heavy burden on patients and society. In this study, we aimed to investigate the effects of naringin (NAR) on the osteogenic differentiation of human adipose-derived stromal cells (ADSCs). The results demonstrated that NAR pretreatment effectively abated H2O2-induced cell death and ROS accumulation in ADSCs undergoing osteogenic differentiation (ADSCs-OD). In addition, we also observed that the impaired extracellular matrix mineralization and ALP activity in H2O2-stimulated ADSCs-OD were notably rescued by NAR pretreatment. Moreover, the effects of H2O2 exposure on Wnt/β-catenin signaling in ADSCs-OD were largely reversed by NAR pretreatment. Collectively, our findings indicated that NAR could protect ADSCs-OD against H2O2-inhibited osteogenic differentiation.
Collapse
Affiliation(s)
- Xufang Yang
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jianjiang Dong
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yankun Hao
- Department of Medical Function, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yucheng Qi
- Basic Medical College, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jun Liang
- Stem Cell Institute, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Wenting Wang
- Department of Physiology, Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
14
|
Habib SA, Kamal MM, El-Maraghy SA, Senousy MA. Exendin-4 enhances osteogenic differentiation of adipose tissue mesenchymal stem cells through the receptor activator of nuclear factor-kappa B and osteoprotegerin signaling pathway. J Cell Biochem 2022; 123:906-920. [PMID: 35338509 DOI: 10.1002/jcb.30236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The capability of mesenchymal stem cells (MSCs) to repair bone damage and defects has long been investigated. The receptor activator of nuclear factor-kappa B (RANK), its ligand (RANKL) and the decoy receptor osteoprotegerin (OPG) axis is crucial to keep the equilibrium between osteoblastic and osteoclastic activity. Exendin-4 utilization increased bone formation and enhanced bone integrity. This study aimed to investigate the mentioned axis and determine the effect of exendin-4 upon adipose mesenchymal stem cells (Ad-MSCs) osteogenic differentiation. Ad-MSCs were isolated from rat epididymal fat, followed by characterization and then differentiation into osteocytes both in the presence or absence of exendin-4. Osteogenic differentiation was evaluated by alizarin red staining and the expression of osteogenic markers; using reverse transcriptase-quantitative polymerase chain reaction, western blotting and enzyme-linked immunoassay. MSCs derived from rat epididymal fat were isolated and characterized, along with their differentiation into osteocytes. The differentiated cells were alizarin red-stained, showing increased staining intensity upon addition of exendin-4. Moreover, the addition of exendin-4 elevated the messenger RNA expression levels of osteogenic markers; runt-related transcription factor-2 (RUNX-2), osteocalcin, and forkhead box protein O-1 while reducing the expression of the adipogenic marker peroxisome-proliferator-activated receptor-gamma. Exendin-4 addition elevated OPG levels in the supernatant of osteogenic differentiated cells. Moreover, exendin-4 elevated the protein levels of glucagon-like peptide-1 receptor and RUNX-2, while decreasing both RANK and RANKL. In conclusion, osteogenic differentiation of Ad-MSCs is associated with increased osteoblastic rather than osteoclastic activity. The findings of this study suggest that exendin-4 can enhance Ad-MSCs osteogenic differentiation partially through the RANK/RANKL/OPG axis.
Collapse
Affiliation(s)
- Sarah A Habib
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Kamal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Macías-Sánchez MDM, Morata-Tarifa C, Cuende N, Cardesa-Gil A, Cuesta-Casas MÁ, Pascual-Cascon MJ, Pascual A, Martín-Calvo C, Jurado M, Perez-Simón JA, Espigado I, Garzón López S, Carmona Sánchez G, Mata-Alcázar-Caballero R, Sánchez-Pernaute R. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:343-355. [PMID: 35348788 PMCID: PMC9052408 DOI: 10.1093/stcltm/szac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022] Open
Abstract
Graft versus host disease (GVHD) is a severe complication after allogenic hematopoietic cell transplantation (HSCT). Several clinical trials have reported the use of mesenchymal stromal cells (MSCs) for the treatment of GVHD. In March 2008, the Andalusian Health Care System launched a compassionate use program to treat steroid-resistant GVHD with MSC. Clinical-grade MSC were obtained under GMP conditions. MSC therapy was administered intravenously in four separate doses of 1 × 106 cells/kg. Sixty-two patients, 45 males (7 children) and 17 females (2 children), received the treatment. Patients had a median age of 39 years (range: 7–66) at the time of the allogenic HSCT. The overall response was achieved in 58.7% of patients with acute (a)GVHD. Two years’ survival for aGVHD responders was 51.85%. The overall response for patients with chronic (c)GVHD was 65.50% and the 2-year survival rate for responders was 70%. Age at the time of HSCT was the only predictor found to be inversely correlated with survival in aGVHD. Regarding safety, four adverse events were reported, all recovered without sequelae. Thus, analysis of this compassionate use experience shows MSC to be an effective and safe therapeutic option for treating refractory GVHD, resulting in a significant proportion of patients responding to the therapy.
Collapse
Affiliation(s)
- María del Mar Macías-Sánchez
- Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía, Spain
- Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Cynthia Morata-Tarifa
- Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía, Spain
| | - Natividad Cuende
- Coordinación Autonómica de Trasplantes de Andalucía. Servicio Andaluz de Salud, Sevilla, Spain
| | - Ana Cardesa-Gil
- Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía, Spain
| | | | | | - Antonia Pascual
- Departamento de Hematología y Hemoterapia, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Carmen Martín-Calvo
- Departamento de Hematología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Manuel Jurado
- Departamento de Hematología, Hospital Virgen de las Nieves, Granada, Spain
| | - José Antonio Perez-Simón
- Departamento de Hematología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Investigación Biomédica de Sevilla (IBIS)/CSIC, Sevilla, Spain
| | - Ildefonso Espigado
- Departamento de Hematología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Instituto de Investigación Biomédica de Sevilla (IBIS)/CSIC, Sevilla, Spain
- Universidad de Sevilla, Sevilla, Spain
- Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Gloria Carmona Sánchez
- Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía, Spain
| | - Rosario Mata-Alcázar-Caballero
- Corresponding author: Rosario Mata Alcázar-Caballero, c/ Américo Vespucio 15 Edif. S2, 41092 Seville, Spain. Tel: +34 955 89 01 24; Fax: +34 955 267 002;
| | - Rosario Sánchez-Pernaute
- Red Andaluza de Diseño y Traslación de Terapias Avanzadas, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía, Spain
| |
Collapse
|
16
|
Chen T, Yang T, Zhang W, Shao J. The therapeutic potential of mesenchymal stem cells in treating osteoporosis. Biol Res 2021; 54:42. [PMID: 34930472 PMCID: PMC8686520 DOI: 10.1186/s40659-021-00366-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis (OP), a common systemic metabolic bone disease, is characterized by low bone mass, increasing bone fragility and a high risk of fracture. At present, the clinical treatment of OP mainly involves anti-bone resorption drugs and anabolic agents for bone, but their long-term use can cause serious side effects. The development of stem cell therapy and regenerative medicine has provided a new approach to the clinical treatment of various diseases, even with a hope for cure. Recently, the therapeutic advantages of the therapy have been shown for a variety of orthopedic diseases. However, these stem cell-based researches are currently limited to animal models; the uncertainty regarding the post-transplantation fate of stem cells and their safety in recipients has largely restricted the development of human clinical trials. Nevertheless, the feasibility of mesenchymal stem cells to treat osteoporotic mice has drawn a growing amount of intriguing attention from clinicians to its potential of applying the stem cell-based therapy as a new therapeutic approach to OP in the future clinic. In the current review, therefore, we explored the potential use of mesenchymal stem cells in human OP treatment.
Collapse
Affiliation(s)
- Tianning Chen
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui-Autonomous Region, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai, 200135, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai, 200135, China.
| |
Collapse
|
17
|
Brock CK, Hebert KL, Artiles M, Wright MK, Cheng T, Windsor GO, Nguyen K, Alzoubi MS, Collins-Burow BM, Martin EC, Lau FH, Bunnell BA, Burow ME. A Role for Adipocytes and Adipose Stem Cells in the Breast Tumor Microenvironment and Regenerative Medicine. Front Physiol 2021; 12:751239. [PMID: 34912237 PMCID: PMC8667576 DOI: 10.3389/fphys.2021.751239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity rates are climbing, representing a confounding and contributing factor to many disease states, including cancer. With respect to breast cancer, obesity plays a prominent role in the etiology of this disease, with certain subtypes such as triple-negative breast cancer having a strong correlation between obesity and poor outcomes. Therefore, it is critical to examine the obesity-related alterations to the normal stroma and the tumor microenvironment (TME). Adipocytes and adipose stem cells (ASCs) are major components of breast tissue stroma that have essential functions in both physiological and pathological states, including energy storage and metabolic homeostasis, physical support of breast epithelial cells, and directing inflammatory and wound healing responses through secreted factors. However, these processes can become dysregulated in both metabolic disorders, such as obesity and also in the context of breast cancer. Given the well-established obesity-neoplasia axis, it is critical to understand how interactions between different cell types in the tumor microenvironment, including adipocytes and ASCs, govern carcinogenesis, tumorigenesis, and ultimately metastasis. ASCs and adipocytes have multifactorial roles in cancer progression; however, due to the plastic nature of these cells, they also have a role in regenerative medicine, making them promising tools for tissue engineering. At the physiological level, the interactions between obesity and breast cancer have been examined; here, we will delineate the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment. We will define the current state of understanding of how adipocytes and ASCs contribute to tumor progression through their role in the tumor microenvironment and how this is altered in the context of obesity. We will also introduce recent developments in utilizing adipocytes and ASCs in novel approaches to breast reconstruction and regenerative medicine.
Collapse
Affiliation(s)
- Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Katherine L Hebert
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Maria Artiles
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Maryl K Wright
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Thomas Cheng
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gabrielle O Windsor
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Madlin S Alzoubi
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Frank H Lau
- Section of Plastic & Reconstructive Surgery, Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
18
|
Sharma S, Muthu S, Jeyaraman M, Ranjan R, Jha SK. Translational products of adipose tissue-derived mesenchymal stem cells: Bench to bedside applications. World J Stem Cells 2021; 13:1360-1381. [PMID: 34786149 PMCID: PMC8567449 DOI: 10.4252/wjsc.v13.i10.1360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
With developments in the field of tissue engineering and regenerative medicine, the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians. Among all the available biological tissues, research and exploration of adipose tissue have become more robust. Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential. The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth, proliferation, and differentiation. Adipose tissue, apart from being the powerhouse of energy storage, also functions as the largest endocrine organ, with the release of various adipokines. The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues. The results of adipose-derived stem-cell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis, fat graft integration, and survival within the recipient tissue and promote the regeneration of tissue are promising. Adipose tissue gives rise to various by-products upon processing. This article highlights the significance and the usage of various adipose tissue by-products, their individual characteristics, and their clinical applications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
| | - Sathish Muthu
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu 624304, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
19
|
Paradise CR, De La Vega RE, Galvan ML, Carrasco ME, Thaler R, van Wijnen AJ, Dudakovic A. Brd4 Inactivation Increases Adenoviral Delivery of BMP2 for Paracrine Stimulation of Osteogenic Differentiation as a Gene Therapeutic Concept to Enhance Bone Healing. JBMR Plus 2021; 5:e10520. [PMID: 34693189 PMCID: PMC8520065 DOI: 10.1002/jbm4.10520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Bromodomain (BRD) proteins are histone code interpreters that recognize acetylated lysines and link the dynamic state of chromatin with the transcriptional machinery. Here, we demonstrate that ablation of the Brd4 gene in primary mouse bone marrow–derived mesenchymal stem cells via a conditional Brd4fl/fl allele suppresses osteogenic lineage commitment. Remarkably, loss of Brd4 function also enhances expression of genes in engineered adenoviral vectors, including Cre recombinase and green fluorescent protein (GFP). Similarly, vector‐based expression of BMP2 mRNA and protein levels are enhanced upon Brd4 depletion in cells transduced with an adenoviral vector that expresses BMP2 (Ad‐BMP2). Importantly, Brd4 depletion in MC3T3‐E1 and human adipose‐derived mesenchymal stem cells (AMSCs) transduced with Ad‐BMP2 enhances osteogenic differentiation of naïve MC3T3‐E1 cells via paracrine mechanisms based on transwell and conditioned medium studies. Our studies indicate that Brd4 depletion enhances adenoviral transgene expression in mammalian cells, which can be leveraged as a therapeutic strategy to improve viral vector‐based gene therapies. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher R Paradise
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Center for Regenerative Medicine Mayo Clinic Rochester MN USA
| | - Rodolfo E De La Vega
- Musculosketal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center Mayo Clinic Rochester MN USA.,Department cBITE, MERLN Institute for Technology-Inspired Regenerative Medicine Maastricht University Maastricht The Netherlands.,Department IBE, MERLN Institute for Technology-Inspired Regenerative Medicine Maastricht University Maastricht The Netherlands
| | - M Lizeth Galvan
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA
| | | | - Roman Thaler
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Center for Regenerative Medicine Mayo Clinic Rochester MN USA.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery Mayo Clinic Rochester MN USA.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN USA
| |
Collapse
|
20
|
The Identification of HSA-MIR-17-5P Existence in the Exosome of Adipose-Derived Stem Cells and Adipocytes. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) have ability to down-regulate gene expressions. hsa-miR-17-5p, has been confirmed as an oncogene or tumor suppressor. However, the existence on human adipose-derived stem cells (ADSCs) or adipocytes, is still unclear. Many researchers emphasizing the role of hsa-miR-17-5p on cellular senescence, aging and cancer, but not specific on the expression in the exosome of human ADSCs and adipocytes. The primary ADSCs were derived from subcutaneous adipose tissue of pregnant woman during elective cesarean operation, then processed by combining conventional and enzymatic methods. Adipocytes were differentiated by using the StemPro Adipogenesis Differentiation kit® and Oil Red-O staining. Exosomes were isolated using Exosome Purification and RNA Isolation kit® and were characterized by scanning electron microscope. The markers, CD34 and CD44, were identified and analyzed by using FACS analysis. Subsequently, microRNA was extracted and observed for hsa-miR-17-5p expression. This study showed that ADSCs and adipocytes were proved to express CD34+ and CD44+. The hsa-miR-17-5p were also detected in both the exosome of ADSCs and adipocytes. Although the source of the ADSCs was from pregnant woman, the characteristic was similar with the ones from non-pregnant woman. Our study also supports the questionable existence of CD34 in ADSCs. Having confirmed the characteristics, we proved that the exosomes of ADSCs and adipocytes expressed similar hsa-miR-17-5p despite they are from phenotypically different cell types and may have distinct roles. However, further research steps should be done in the future to verify the role of hsa-miR-17-5p towards senescent cell and ADSC differentiation.
Collapse
|
21
|
Al-Ghadban S, Bunnell BA. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology (Bethesda) 2021; 35:125-133. [PMID: 32027561 DOI: 10.1152/physiol.00021.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can self-renew and differentiate along multiple cell lineages. ASCs are also potently anti-inflammatory due to their inherent ability to regulate the immune system by secreting anti-inflammatory cytokines and growth factors that play a crucial role in the pathology of many diseases, including multiple sclerosis, diabetes mellitus, Crohn's, SLE, and graft-versus-host disease. The immunomodulatory effects and mechanisms of action of ASCs on pathological conditions are reviewed here.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
22
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
23
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
24
|
Capin L, Abbassi N, Lachat M, Calteau M, Barratier C, Mojallal A, Bourgeois S, Auxenfans C. Encapsulation of Adipose-Derived Mesenchymal Stem Cells in Calcium Alginate Maintains Clonogenicity and Enhances their Secretory Profile. Int J Mol Sci 2020; 21:E6316. [PMID: 32878250 PMCID: PMC7504546 DOI: 10.3390/ijms21176316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are well known for their secretory potential, which confers them useful properties in cell therapy. Nevertheless, this therapeutic potential is reduced after transplantation due to their short survival in the human body and their migration property. This study proposes a method to protect cells during and after injection by encapsulation in microparticles of calcium alginate. Besides, the consequences of encapsulation on ASC proliferation, pluripotential, and secretome were studied. Spherical particles with a mean diameter of 500 µm could be obtained in a reproducible manner with a viability of 70% after 16 days in vitro. Moreover, encapsulation did not alter the proliferative properties of ASCs upon return to culture nor their differentiation potential in adipocytes, chondrocytes, and osteocytes. Concerning their secretome, encapsulated ASCs consistently produced greater amounts of interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) compared to monolayer cultures. Encapsulation therefore appears to enrich the secretome with transforming growth factor β1 (TGF-β1) and macrophage inflammatory protein-1β (MIP-1β) not detectable in monolayer cultures. Alginate microparticles seem sufficiently porous to allow diffusion of the cytokines of interest. With all these cytokines playing an important role in wound healing, it appears relevant to investigate the impact of using encapsulated ASCs on the wound healing process.
Collapse
Affiliation(s)
- Lucille Capin
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Nacira Abbassi
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Maëlle Lachat
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Marie Calteau
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| | - Cynthia Barratier
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Ali Mojallal
- Service de chirurgie plastique, reconstructrice et esthétique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 69004 Lyon, France;
- Univ Lyon, Université Claude Bernard-Lyon 1, 8 avenue Rockefeller, 69008 Lyon, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, F-69100 Villeurbanne, France; (C.B.); (S.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Céline Auxenfans
- Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d’Arsonval, 69003 Lyon, France; (N.A.); (M.L.); (M.C.)
| |
Collapse
|
25
|
Effect of Systemic Adipose-derived Stem Cell Therapy on Functional Nerve Regeneration in a Rodent Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2953. [PMID: 32802651 PMCID: PMC7413771 DOI: 10.1097/gox.0000000000002953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Regardless of etiology, peripheral nerve injuries (PNI) result in disruption/loss of neuromuscular junctions, target muscle denervation, and poor sensorimotor outcomes with associated pain and disability. Adipose-derived stem cells (ASCs) have shown promise in neuroregeneration. However, there is a paucity of objective assessments reflective of functional neuroregeneration in experimental PNI. Here, we use a multimodal, static, and dynamic approach to evaluate functional outcomes after ASC therapy in a rodent PNI model.
Collapse
|
26
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
27
|
Abstract
The lack of clear regulations for the use of veterinary stem cells has triggered the commercialization of unproven experimental therapies for companion animal diseases. Adult stem cells have complex biological characteristics that are directly related to the therapeutic application, but several questions remain to be answered. In order to regulate the use of these cells, well-conducted, controlled scientific studies that generate high-quality data should be performed, in order to assess the efficacy and safety of the intended treatment. This paper discusses the scientific challenges of mesenchymal stem cell therapy in veterinary regenerative medicine, and reviews published trials of adipose-tissue-derived stem cells in companion animal diseases that spontaneously occur.
Collapse
|
28
|
Sabol RA, Villela VA, Denys A, Freeman BT, Hartono AB, Wise RM, Harrison MAA, Sandler MB, Hossain F, Miele L, Bunnell BA. Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling. Int J Mol Sci 2020; 21:ijms21082722. [PMID: 32326381 PMCID: PMC7216284 DOI: 10.3390/ijms21082722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell’s (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.
Collapse
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Vidal A. Villela
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Alexandra Denys
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Benjamin T. Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA;
| | - Alifiani B. Hartono
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Rachel M. Wise
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Mark A. A. Harrison
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Maxwell B. Sandler
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Fokhrul Hossain
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Lucio Miele
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
- Department of Pharmacology, Tulane University, New Orleans, LA 70112, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
- Correspondence: ; Tel.: +1-504-988-7071
| |
Collapse
|
29
|
Zhao C, Chen JY, Peng WM, Yuan B, Bi Q, Xu YJ. Exosomes from adipose‑derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR‑145 and miR‑221. Mol Med Rep 2020; 21:1881-1889. [PMID: 32319611 PMCID: PMC7057766 DOI: 10.3892/mmr.2020.10982] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent joint disorders globally. Patients suffering from OA are often obese and adiposity is linked to chronic inflammation. In the present study, the potential of using exosomes isolated from adipose‑derived stem cells (ADSCs) as a therapeutic tool for reducing chronic inflammation and promoting chondrogenesis was investigated using patient‑derived primary cells. First, it was tested whether patient‑derived ADSCs could differentiate into chondrogenic and osteogenic lineages. The ADSCs were then used as a source of exosomes. It was found that exosomes isolated from ADSCs, when co‑cultured with activated synovial fibroblasts, downregulated the expression of pro‑inflammatory markers interleukin (IL)‑6, NF‑κB and tumor necrosis factor‑α, while they upregulated the expression of the anti‑inflammatory cytokine IL‑10; without exosomes, the opposite observations were made. In addition, inflammation‑inflicted oxidative stress was induced in vitro by stimulating chondrocytes with H2O2. Treatment with exosomes protected articular chondrocytes from H2O2‑induced apoptosis. Furthermore, exosome treatment promoted chondrogenesis in periosteal cells and increased chondrogenic markers, including Collagen type II and β‑catenin; inhibition of Wnt/β‑catenin, using the antagonist ICG‑001, prevented exosome‑induced chondrogenesis. Periosteal cells treated with exosomes exhibited higher levels of microRNA (miR)‑145 and miR‑221. The upregulation of miR‑145 and miR‑221 was associated with the enhanced proliferation of periosteal cells and chondrogenic potential, respectively. The present study provided evidence in support for the use of patient‑derived exosomes, produced from ADSCs, for potential chondrogenic regeneration and subsequent amelioration of osteoarthritis.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell‑Based Applied Technology, Hangzhou, Zhejiang 310052, P.R. China
| | - Wen-Ming Peng
- Department of Orthopedics, Tonglu TCM Hospital, Hangzhou, Zhejiang 311500, P.R. China
| | - Bo Yuan
- Research and Development Department, Zhejiang Healthfuture Institute for Cell‑Based Applied Technology, Hangzhou, Zhejiang 310052, P.R. China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
30
|
Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int 2019; 2019:8502370. [PMID: 31827536 PMCID: PMC6885831 DOI: 10.1155/2019/8502370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023] Open
Abstract
Nerve injury is a critical problem in the clinic. Nerve injury causes serious clinic issues including pain and dysfunctions for patients. The disconnection between damaged neural fibers and muscles will result in muscle atrophy in a few weeks if no treatment is applied. Moreover, scientists have discovered that nerve injury can affect the osteogenic differentiation of skeletal stem cells (SSCs) and the fracture repairing. In plastic surgery, muscle atrophy and bone fracture after nerve injury have plagued clinicians for many years. How to promote neural regeneration is the core issue of research in the recent years. Without obvious effects of traditional neurosurgical treatments, research on stem cells in the past 10 years has provided a new therapeutic strategy for us to address this problem. Adipose stem cells (ASCs) are a kind of mesenchymal stem cells that have differentiation potential in adipose tissue. In the recent years, ASCs have become the focus of regenerative medicine. They play a pivotal role in tissue regeneration engineering. As a type of stem cell, ASCs are becoming popular for neuroregenerative medicine due to their advantages and characteristics. In the various diseases of the nervous system, ASCs are gradually applied to treat the related diseases. This review article focuses on the mechanism and clinical application of ASCs in nerve regeneration as well as the related research on ASCs over the past decades.
Collapse
|
31
|
Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells 2019; 8:cells8101288. [PMID: 31640218 PMCID: PMC6830091 DOI: 10.3390/cells8101288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are considered to be a useful tool for regenerative medicine, owing to their capabilities in differentiation, self-renewal, and immunomodulation. These cells have become a focus in the clinical setting due to their abundance and easy isolation. However, ASCs from different depots are not well characterized. Here, we analyzed the functional similarities and differences of subcutaneous and visceral ASCs. Subcutaneous ASCs have an extraordinarily directed mode of motility and a highly dynamic focal adhesion turnover, even though they share similar surface markers, whereas visceral ASCs move in an undirected random pattern with more stable focal adhesions. Visceral ASCs have a higher potential to differentiate into adipogenic and osteogenic cells when compared to subcutaneous ASCs. In line with these observations, visceral ASCs demonstrate a more active sonic hedgehog pathway that is linked to a high expression of cilia/differentiation related genes. Moreover, visceral ASCs secrete higher levels of inflammatory cytokines interleukin-6, interleukin-8, and tumor necrosis factor α relative to subcutaneous ASCs. These findings highlight, that both ASC subpopulations share multiple cellular features, but significantly differ in their functions. The functional diversity of ASCs depends on their origin, cellular context and surrounding microenvironment within adipose tissues. The data provide important insight into the biology of ASCs, which might be useful in choosing the adequate ASC subpopulation for regenerative therapies.
Collapse
|
32
|
Bi H, Li H, Zhang C, Mao Y, Nie F, Xing Y, Sha W, Wang X, Irwin DM, Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther 2019; 10:302. [PMID: 31623669 PMCID: PMC6798485 DOI: 10.1186/s13287-019-1415-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A refractory wound is a typical complication of diabetes and is a common outcome after surgery. Current approaches have difficulty in improving wound healing. Recently, non-expanded stromal vascular fraction (SVF), which is derived from mature fat, has opened up new directions for the treatment of refractory wound healing. The aim of the current study is to systematically investigate the impact of SVF on wound healing, including the rate and characteristics of wound healing, ability of fibroblasts to migrate, and blood transport reconstruction, with a special emphasis on their precise molecular mechanisms. METHODS SVF was isolated by digestion, followed by filtration and centrifugation, and then validated by immunocytochemistry, a MTS proliferation assay and multilineage potential analysis. A wound model was generated by creating 6-mm-diameter wounds, which include a full skin defect, on the backs of streptozocin-induced hyperglycemic mice. SVF or human adipose-derived stem cell (hADSC) suspensions were subcutaneously injected, and the wounds were characterized over a 9-day period by photography and measurements. A scratch test was used to determine whether changes in the migratory ability of fibroblasts occurred after co-culture with hADSCs. Angiogenesis was observed with human umbilical vein endothelial cells. mRNA from fibroblasts, endotheliocyte, and skin tissue were sequenced by high-throughput RNAseq, and differentially expressed genes, and pathways, potentially regulated by SVF or hADSCs were bioinformatically analyzed. RESULTS Our data show that hADSCs have multiple characteristics of MSC. SVF and hADSCs significantly improved wound healing in hyperglycemic mice. hADSCs improve the migratory ability of fibroblasts and capillary structure formation in HUVECs. SVF promotes wound healing by focusing on angiogenesis and matrix remodeling. CONCLUSIONS Both SVF and hADSCs improve the function of fibroblast and endothelial cells, regulate gene expression, and promote skin healing. Various mechanisms likely are involved, including migration of fibroblasts, tubulogenesis of endothelial cells through regulation of cell adhesion, and cytokine pathways.
Collapse
Affiliation(s)
- Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Hui Li
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Chen Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Fangfei Nie
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191 China
| | - Ying Xing
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Wuga Sha
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - Xi Wang
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S1A8 Canada
| | - Huanran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing, 100191 China
| |
Collapse
|
33
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
34
|
Sabol RA, Giacomelli P, Beighley A, Bunnell BA. Adipose Stem Cells and Cancer: Concise Review. Stem Cells 2019; 37:1261-1266. [DOI: 10.1002/stem.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Paulina Giacomelli
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Adam Beighley
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
- Department of Pharmacology; Tulane University; New Orleans Louisiana USA
- Division of Regenerative Medicine; Tulane National Primate Research Center; Covington Louisiana USA
| |
Collapse
|
35
|
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, Veronesi E, Horwitz EM, Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl Med 2019; 8:1135-1148. [PMID: 31313507 PMCID: PMC6811694 DOI: 10.1002/sctm.19-0044] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC‐tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage‐restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. stem cells translational medicine2019;8:1135–1148
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia, USA
| | - Alba Murgia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Anna Valeria Samarelli
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Elena Veronesi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia, USA
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Medolla, Modena, Italy.,Technopole of Mirandola TPM, Mirandola, Modena, Italy
| |
Collapse
|
36
|
Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH, Thi Nga V. Adipose Tissue Stem Cells for Therapy: An Update on the Progress of Isolation, Culture, Storage, and Clinical Application. J Clin Med 2019; 8:E917. [PMID: 31247996 PMCID: PMC6678927 DOI: 10.3390/jcm8070917] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue stem cells (ASCs), known as multipotent stem cells, are most commonly used in the clinical applications in recent years. Adipose tissues (AT) have the advantage in the harvesting, isolation, and expansion of ASCs, especially an abundant amount of stem cells compared to bone marrow. ASCs can be found in stromal vascular fractions (SVF) which are easily obtained from the dissociation of adipose tissue. Both SVFs and culture-expanded ASCs exhibit the stem cell characteristics such as differentiation into multiple cell types, regeneration, and immune regulators. Therefore, SVFs and ASCs have been researched to evaluate the safety and benefits for human use. In fact, the number of clinical trials on ASCs is going to increase by years; however, most trials are in phase I and II, and lack phase III and IV. This systemic review highlights and updates the process of the harvesting, characteristics, isolation, culture, storage, and application of ASCs, as well as provides further directions on the therapeutic use of ASCs.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam
| | - Le Bui Minh
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh St., Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Pham Gia Anh
- Oncology Department, Viet Duc Hospital, Hanoi 100000, Vietnam
| | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam.
| |
Collapse
|
37
|
Abtahi S, Asadipour M, Ghaderi A. The Legacy of Mesenchymal Stem Cells in Vindicating the Clonal Evolution Model of Cancer. Asian Pac J Cancer Prev 2018; 19:2029-2030. [PMID: 30261714 PMCID: PMC6171386 DOI: 10.22034/apjcp.2018.19.8.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|