1
|
Toniolo S, Attaallah B, Maio MR, Tabi YA, Slavkova E, Klar VS, Saleh Y, Idris MI, Turner V, Preul C, Srowig A, Butler C, Thompson S, Manohar SG, Finke K, Husain M. Performance and validation of a digital memory test across the Alzheimer's disease continuum. Brain Commun 2025; 7:fcaf024. [PMID: 39886066 PMCID: PMC11780857 DOI: 10.1093/braincomms/fcaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/14/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Digital cognitive testing using online platforms has emerged as a potentially transformative tool in clinical neuroscience. In theory, it could provide a powerful means of screening for and tracking cognitive performance in people at risk of developing conditions such as Alzheimer's disease. Here we investigate whether digital metrics derived from an in-person administered, tablet-based short-term memory task-the 'What was where?' Oxford Memory Task-were able to clinically stratify patients at different points within the Alzheimer's disease continuum and to track disease progression over time. Performance of these metrics compared to traditional neuropsychological pen-and-paper screening tests of cognition was also analysed. A total of 325 people participated in this study: 49 patients with subjective cognitive decline, 57 with mild cognitive impairment, 63 with Alzheimer's disease dementia and 156 elderly healthy controls. Most digital metrics were able to discriminate between healthy controls and patients with mild cognitive impairment and between mild cognitive impairment and Alzheimer's disease patients. Some, including Absolute Localization Error, also differed significantly between patients with subjective cognitive decline and mild cognitive impairment. Identification accuracy was the best predictor of hippocampal atrophy, performing as well as standard screening neuropsychological tests. A linear support vector model combining digital metrics achieved high accuracy and performed at par with standard testing in discriminating between elderly healthy controls and subjective cognitive decline (area under the curve 0.82) and between subjective cognitive decline and mild cognitive impairment (area under the curve 0.92), while performing worse in classifying between mild cognitive impairment and Alzheimer's disease patients (area under the curve 0.75). Memory imprecision was able to predict cognitive decline on standard cognitive tests over one year. Overall, these findings show how it might be possible to use a digital memory test in clinics and clinical trial contexts to stratify and track performance across the Alzheimer's disease continuum.
Collapse
Affiliation(s)
- Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Centre for Preventive Neurology, Queen Mary University of London, London E1 4NS, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Younes Adam Tabi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Elitsa Slavkova
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Verena Svenja Klar
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Mohamad Imran Idris
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vicky Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christoph Preul
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
| | - Annie Srowig
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
| | - Christopher Butler
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Neurology, Imperial College London, London W12 0NN, UK
| | - Sian Thompson
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Kathrin Finke
- Department of Neurology, Memory Center, Jena University Hospital, Jena 07747, Germany
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich 80802, Germany
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Cognitive Disorders Clinic, JR Hospital, Oxford OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
2
|
Chen L, Hou Y, Sun Y, Peng D. Association of obesity indicators with cognitive function among US adults aged 60 years and older: Results from NHANES. Brain Behav 2024; 14:e70006. [PMID: 39262162 PMCID: PMC11391027 DOI: 10.1002/brb3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Midlife obesity is a significant risk factor for Alzheimer's disease, but the effects of obesity on cognitive function, either detrimental or beneficial, are controversial among older individuals. This study aims to assess this associations of body mass index (BMI) or waist circumference (WC) with cognitive function among United States older individuals. METHODS A cross-sectional research study was conducted utilizing data from the 2011 to 2014 National Health and Nutrition Examination Survey (NHANES). Initially, the study compared differences in cognitive function among the normal weight, overweight, and obese groups. Subsequently, we examined the relationships between BMI or WC and cognitive function using multivariate linear regression. Finally, structural equation models were constructed to assess the relationships among body shape, lifestyle, and cognitive function pathways. RESULTS The study included 2254 individuals. Obese subjects had lower scores in the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) word list learning tasks (CERAD-WL) (χ2 = 7.804, p = .020) and digit symbol substitution test (χ2 = 8.869, p = .012). The regression analysis showed that WC was negatively connected with the CERAD-WL score after adjusting for confounding factors (β = -.029, p = .045). Moreover, WC had a mediating effect on the path from lifestyle to cognition (CERAD-WL). However, there was no difference in the CERAD delayed recall score and the animal fluency test between the obese and the other groups. CONCLUSIONS Obese older adults exhibited impaired cognitive abilities in terms of learning and working memory performance. The impact of lifestyle on cognition was mediated by obesity-related anthropometric indices. Sleep, physical activity, and diet influenced the degree of obesity, which subsequently determined cognitive function. Prioritizing weight management in elderly people is crucial for safeguarding cognitive function.
Collapse
Affiliation(s)
- Leian Chen
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Hou
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| | - Yu Sun
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Dantao Peng
- China‐Japan Friendship Hospital (Institute of Clinical Medical Sciences)Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
- Peking University China‐Japan Friendship School of Clinical MedicineBeijingChina
| |
Collapse
|
3
|
Esfahan SM, Nili MHHK, Hatami J, Sanayei M, Rezayat E. Aging decreases the precision of visual working memory. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:762-776. [PMID: 37767882 DOI: 10.1080/13825585.2023.2262105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVES As individuals age, cognitive abilities such as working memory (WM), decline. In the current study, we investigated the effect of age on WM, and elucidated sources of errors. METHOD A total of 102 healthy individuals, aged 18 to 71, participated in this research. We designed and administered a face-based visual WM task, collecting responses via a graded scale in a delayed match-to-sample reproduction task. RESULTS The error of participants increased significantly as they aged. Our analysis revealed a significant age-related rise in the standard deviation of error distribution. However, there was no significant change in uniform probability with age. CONCLUSION We found that WM performance declines through the lifespan. Investigating the sources of error, we found that the precision of WM decreased monotonously with age. The results also indicated that the probability of guessing the response as a measure of random response is not affected by age.
Collapse
Affiliation(s)
- Shahrzad M Esfahan
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Psychology, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
| | - Mohammad-Hossein H K Nili
- School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Javad Hatami
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Psychology, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
| | - Mehdi Sanayei
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ehsan Rezayat
- Department of Psychology, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Penny W. Stochastic attractor models of visual working memory. PLoS One 2024; 19:e0301039. [PMID: 38568927 PMCID: PMC10990203 DOI: 10.1371/journal.pone.0301039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
This paper investigates models of working memory in which memory traces evolve according to stochastic attractor dynamics. These models have previously been shown to account for response-biases that are manifest across multiple trials of a visual working memory task. Here we adapt this approach by making the stable fixed points correspond to the multiple items to be remembered within a single-trial, in accordance with standard dynamical perspectives of memory, and find evidence that this multi-item model can provide a better account of behavioural data from continuous-report tasks. Additionally, the multi-item model proposes a simple mechanism by which swap-errors arise: memory traces diffuse away from their initial state and are captured by the attractors of other items. Swap-error curves reveal the evolution of this process as a continuous function of time throughout the maintenance interval and can be inferred from experimental data. Consistent with previous findings, we find that empirical memory performance is not well characterised by a purely-diffusive process but rather by a stochastic process that also embodies error-correcting dynamics.
Collapse
Affiliation(s)
- W. Penny
- School of Psychology, University East Anglia, Norwich, United Kingdom
| |
Collapse
|
5
|
Jia Y, Woltering S, Deutz NEP, Engelen MPKJ, Coyle KS, Maio MR, Husain M, Liu ZX. Working Memory Precision and Associative Binding in Mild Cognitive Impairment. Exp Aging Res 2024; 50:206-224. [PMID: 36755482 DOI: 10.1080/0361073x.2023.2172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
To better understand working memory (WM) deficits in Mild Cognitive Impairment (MCI), we examined information precision and associative binding in WM in 21 participants with MCI, compared to 16 healthy controls, using an item-location delayed reproduction task. WM, along with other executive functions (i.e. Trail Making Task (TMT) and Stroop task), were measured before and after a 2-h nap. The napping manipulation was intended as an exploratory element to this study exploring potential impacts of napping on executive functions.Compared to healthy participants, participants with MCI exhibited inferior performance not only in identifying encoded WM items but also on item-location associative binding and location precision even when only one item was involved. We also found changes on TMT and Stroop tasks in MCI, reflecting inferior attention and inhibitory control. Post-napping performance improved in most of these WM and other executive measures, both in MCI and their healthy peers.Our study shows that associative binding and WM precision can reliably differentiate MCIs from their healthy peers. Additionally, most measures showed no differential effect of group pre- and post-napping. These findings may contribute to better understanding cognitive deficits in MCI therefore improving the diagnosis of MCI.
Collapse
Affiliation(s)
- Yajun Jia
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
- School of Social Work, Columbia University, New York City, New York, USA
| | - Steven Woltering
- Department of Educational Psychology, Texas A&M University, College Station, Texas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Kimberly S Coyle
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Maria R Maio
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Dept of Clinical Neurosciences, Department of Experimental Psychology and Wellcome Trust Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
6
|
Shimizu T, Nayar SG, Swire M, Jiang Y, Grist M, Kaller M, Sampaio Baptista C, Bannerman DM, Johansen-Berg H, Ogasawara K, Tohyama K, Li H, Richardson WD. Oligodendrocyte dynamics dictate cognitive performance outcomes of working memory training in mice. Nat Commun 2023; 14:6499. [PMID: 37838794 PMCID: PMC10576739 DOI: 10.1038/s41467-023-42293-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Previous work has shown that motor skill learning stimulates and requires generation of myelinating oligodendrocytes (OLs) from their precursor cells (OLPs) in the brains of adult mice. In the present study we ask whether OL production is also required for non-motor learning and cognition, using T-maze and radial-arm-maze tasks that tax spatial working memory. We find that maze training stimulates OLP proliferation and OL production in the medial prefrontal cortex (mPFC), anterior corpus callosum (genu), dorsal thalamus and hippocampal formation of adult male mice; myelin sheath formation is also stimulated in the genu. Genetic blockade of OL differentiation and neo-myelination in Myrf conditional-knockout mice strongly impairs training-induced improvements in maze performance. We find a strong positive correlation between the performance of individual wild type mice and the scale of OLP proliferation and OL generation during training, but not with the number or intensity of c-Fos+ neurons in their mPFC, underscoring the important role played by OL lineage cells in cognitive processing.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stuart G Nayar
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yi Jiang
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew Grist
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Malte Kaller
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Cassandra Sampaio Baptista
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, G12 8QB, Glasgow, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3TA, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Katsutoshi Ogasawara
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Koujiro Tohyama
- Department of Physiology, Iwate Medical University, 1-1-1 Idaidori, Yahabacho, Shiwa-gun, Morioka, Iwate, 028-3694, Japan
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Roumpea G, Bon J, Marjanovič K, Pirtošek Z, Manouilidou C. Facilitated lexical processing accuracy and reaction times following repetitive Transcranial Magnetic Stimulation in dementia of the Alzheimer type: a case study. Neurocase 2023; 29:151-159. [PMID: 38700041 DOI: 10.1080/13554794.2024.2348222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
We investigated the potential effects of high-frequency (10 Hz) repetitive Transcranial Magnetic Stimulation (rTMS) of the bilateral Dorsolateral Prefrontal Cortex (DLPFC) (30-sessions; 2-sessions/day) on improving lexical processing in one participant with mild - Alzheimer's disease (hereafter dementia of the Alzheimer type-DAT). Increased accuracy and faster reaction times (RTs) were reported in a lexical-decision task (LDT) up to 2-months post-intervention. The current findings indicate that high-frequency stimulation of the DLPFC might be a potential therapeutic tool to improve lexical processing in mild-DAT.
Collapse
Affiliation(s)
- Georgia Roumpea
- Faculty of Arts, Department of Comparative and General Linguistics, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Bon
- Department of Neurology, University Medical Centre, Ljubljana, Slovenia
- Centre for Clinical Psychiatry, University Psychiatric Clinic, Ljubljana, Slovenia
| | - Katarina Marjanovič
- Faculty of Arts, Department of Comparative and General Linguistics, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Christina Manouilidou
- Faculty of Arts, Department of Comparative and General Linguistics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Castner SA, Zhang L, Yang CR, Hao J, Cramer JW, Wang X, Bruns RF, Marston H, Svensson KA, Williams GV. Effects of DPTQ, a novel positive allosteric modulator of the dopamine D1 receptor, on spontaneous eye blink rate and spatial working memory in the nonhuman primate. Psychopharmacology (Berl) 2023; 240:1033-1048. [PMID: 36961560 PMCID: PMC10102062 DOI: 10.1007/s00213-022-06282-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/23/2022] [Indexed: 03/25/2023]
Abstract
RATIONALE Dopamine (DA) signaling through the D1 receptor has been shown to be integral to multiple aspects of cognition, including the core process of working memory. The discovery of positive allosteric modulators (PAMs) of the D1 receptor has enabled treatment modalities that may have alternative benefits to orthosteric D1 agonists arising from a synergism of action with functional D1 receptor signaling. OBJECTIVES To investigate this potential, we have studied the effects of the novel D1 PAM DPTQ on a spatial delayed response working memory task in the rhesus monkey. Initial studies indicated that DPTQ binds to primate D1R with high affinity and selectivity and elevates spontaneous eye blink rate in rhesus monkeys in a dose-dependent manner consistent with plasma ligand exposures and central D1activation. RESULTS Based on those results, DPTQ was tested at 2.5 mg/kg IM in the working memory task. No acute effect was observed 1 h after dosing, but performance was impaired 48 h later. Remarkably, this deficit was immediately followed by a significant enhancement in cognition over the next 3 days. In a second experiment in which DPTQ was administered on days 1 and 5, the early impairment was smaller and did not reach statistical significance, but statistically significant enhancement of performance was observed over the following week. Lower doses of 0.1 and 1.0 mg/kg were also capable of producing this protracted enhancement without inducing any transient impairment. CONCLUSIONS DPTQ exemplifies a class of D1PAMs that may be capable of providing long-term improvements in working memory.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Comparative Medicine, Yale University, 310 Cedar St, New Haven, CT, 06520, USA
| | - Linli Zhang
- ChemPartner, 99 Lian He North Road, Zhe Lin Town, Fengxian Area, Shanghai, China
| | - Charles R Yang
- ChemPartner, 99 Lian He North Road, Zhe Lin Town, Fengxian Area, Shanghai, China
| | - Junliang Hao
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Jeffrey W Cramer
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Xushan Wang
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Robert F Bruns
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Kjell A Svensson
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Graham V Williams
- Department of Comparative Medicine, Yale University, 310 Cedar St, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Bourbon-Teles J, Jorge L, Canário N, Martins R, Santana I, Castelo-Branco M. Associations between cortical β-amyloid burden, fornix microstructure and cognitive processing of faces, places, bodies and other visual objects in early Alzheimer's disease. Hippocampus 2023; 33:112-124. [PMID: 36578233 DOI: 10.1002/hipo.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Using two imaging modalities, that is, Pittsburgh compound B (PiB) positron emission tomography (PET) and diffusion tensor imaging (DTI) the present study tested associations between cortical amyloid-beta (Aβ) burden and fornix microstructural changes with cognitive deficits in early Alzheimer's disease (AD), namely deficits in working memory (1-back) processing of visual object categories (faces, places, objects, bodies and verbal material). Second, we examined cortical Aβ associations with fornix microstructure. Seventeen early AD patients and 17 healthy-matched controls were included. Constrained spherical deconvolution-based tractography was used to segment the fornix and a control tract the central branch of the superior longitudinal fasciculus (CB-SLF) previously implicated in working memory processes. Standard uptake value ratios (SUVR) of Aβ were extracted from 45 cortical/subcortical regions from the AAL atlas and subject to principal component analysis for data reduction. Patients exhibited (i) impairments in cognitive performance (ii) reductions in fornix fractional anisotropy (FA) and (iii) increases in a component that loaded highly on cortical Aβ. There were no group differences in CB-SLF FA and in a component loading highly on subcortical Aβ. Partial correlation analysis in the patient group showed (i) positive associations between fornix FA and performance for all the visual object categories and (ii) a negative association between the cortical Aβ component and performance for the object categories but not for the remaining classes of visual stimuli. A subsequent analysis showed a positive association between overall cognition (performance across distinct 1-back task conditions) with fornix FA but no association with cortical Aβ burden, in keeping with influential accounts on early onset AD. This indicates that the fornix degenerates early in AD and contributes to deficits in working memory processing of visual object categories; though it is also important to acknowledge the importance of prospective longitudinal studies with larger samples. Overall, the effect sizes of fornical degeneration on visual working memory appeared stronger than the ones related to amyloid burden.
Collapse
Affiliation(s)
- José Bourbon-Teles
- HEI-Lab, Lusófona University, Lisbon, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Glimepiride Prevents 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Induced Dopamine Neurons Degeneration Through Attenuation of Glia Activation and Oxidative Stress in Mice. Neurotox Res 2023; 41:212-223. [PMID: 36705862 DOI: 10.1007/s12640-023-00637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023]
Abstract
It is well established that there is a link between type 2 diabetes mellitus and Parkinson's disease (PD) evidenced in faster progression and more severe phenotype in patients living with diabetes suggestive of shared cellular pathways; hence, antidiabetic drugs could be a possible treatment options for disease modification. This study evaluated the effect of glimepiride (GMP), a third generation sulphonylurea, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice. Sixty mice were divided randomly into six individual groups of 10 mice each and dose orally as follows: group 1: vehicle (10 ml/kg, p.o.); group 2: MPTP (20 mg/kg, i.p. × 4 at 2-h interval); groups 3-5: GMP (1, 2, or 4 mg/kg, p.o.) + MPTP (20 mg/kg, i.p. × 4 at 2-h interval); and group 6: GMP (4 mg/kg, p.o.). Effect of glimepiride on motor activities were appraised with the use of open-field test and rotarod performance while non-motor activity was evaluated using force swim test (FST; depression) and Y-maze test (working memory). MPTP induced significant decrease in latency to fall on rotarod, distance covered/rearing in open field, mean speed and climbing in FST, and percentage alternation behavior in Y-maze suggestive of motor and non-motor dysfunction. However, MPTP-induced motor and non-motor dysfunction were ameliorated with glimepiride post-treatment. In addition, MPTP-induced increase in oxidative stress parameters and cholinergic neurotransmission was attenuated by glimepiride. In addition, MPTP-induced nigral dopamine neuron loss (decrease in tyrosine hydroxylase-positive neuron (TH)) and neuroinflammation (activation of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (iba-1)) were ameliorated by GMP administration. This study showed that glimepiride ameliorates MPTP-induced PD motor and non-motor deficits through enhancement of antioxidant defense signaling and attenuation of neuroinflammatory markers. Thus, this could be useful as a disease-modifying therapy in the management of PD.
Collapse
|
11
|
Ertas A, Yigitkan S, Orhan IE. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)-From Ethnopharmacology to Clinical Evidence. Pharmaceuticals (Basel) 2023; 16:171. [PMID: 37259321 PMCID: PMC9966473 DOI: 10.3390/ph16020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 08/31/2023] Open
Abstract
Ethnopharmacology has been an important starting point in medical and pharmaceutical sciences for discovering drug candidates from natural sources. In this regard, the genus Salvia L., commonly known as sage, is one of the best-known medicinal and aromatic plants of the Lamiaceae family; it has been recorded as being used for memory enhancement in European folk medicine. Despite the various uses of sage in folk medicines, the records that have pointed out sage's memory-enhancing properties have paved the way for the aforementioned effect to be proven on scientific grounds. There are many preclinical studies and excellent reviews referring to the favorable effect of different species of sage against the cognitive dysfunction that is related to Alzheimer's disease (AD). Hence, the current review discusses clinical studies that provide evidence for the effect of Salvia species on cognitive dysfunction. Clinical studies have shown that some Salvia species, i.e., hydroalcoholic extracts and essential oils of S. officinalis L. and S. lavandulaefolia leaves in particular, have been the most prominently effective species in patients with mild to moderate AD, and these species have shown positive effects on the memory of young and healthy people. However, the numbers of subjects in the studies were small, and standardized extracts were not used for the most part. Our review points out to the need for longer-term clinical studies with higher numbers of subjects being administered standardized sage preparations.
Collapse
Affiliation(s)
- Abdulselam Ertas
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Serkan Yigitkan
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| |
Collapse
|
12
|
Li J, Li N, Wei J, Feng C, Chen Y, Chen T, Ai Z, Zhu X, Ji W, Li T. Genetically engineered mesenchymal stem cells with dopamine synthesis for Parkinson's disease in animal models. NPJ Parkinsons Dis 2022; 8:175. [PMID: 36550118 PMCID: PMC9780305 DOI: 10.1038/s41531-022-00440-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Although striatal delivery of three critical genes for dopamine synthesis by viruses is a potential clinical approach for treating Parkinson's disease (PD), the approach makes it difficult to finely control dopamine secretion amounts and brings safety concerns. Here, we generate genetically engineered mesenchymal stem cells encoding three critical genes for dopamine synthesis (DOPA-MSCs). DOPA-MSCs retain their MSC identity and stable ability to secrete dopamine during passaging. Following transplantation, DOPA-MSCs reinstate striatal dopamine levels and correct motor function in PD rats. Importantly, after grafting into the caudate and putamen, DOPA-MSCs provide homotopic reconstruction of midbrain dopamine pathways by restoring striatal dopamine levels, and safely and long-term (up to 51 months) correct motor disorders and nonmotor deficits in acute and chronic PD rhesus monkey models of PD even with advanced PD symptoms. The long-term benefits and safety results support the idea that the development of dopamine-synthesized engineered cell transplantation is an important strategy for treating PD.
Collapse
Affiliation(s)
- Jun Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Nan Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Jingkuan Wei
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Chun Feng
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Yanying Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tingwei Chen
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Zongyong Ai
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Xiaoqing Zhu
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Weizhi Ji
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| | - Tianqing Li
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, Yunnan China ,grid.218292.20000 0000 8571 108XYunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, Yunnan China
| |
Collapse
|
13
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Henderson VW, Poston KL, Menon V. Dopaminergic medication normalizes aberrant cognitive control circuit signalling in Parkinson's disease. Brain 2022; 145:4042-4055. [PMID: 35357463 PMCID: PMC10200291 DOI: 10.1093/brain/awac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 08/21/2023] Open
Abstract
Dopaminergic medication is widely used to alleviate motor symptoms of Parkinson's disease, but these medications also impact cognition with significant variability across patients. It is hypothesized that dopaminergic medication impacts cognition and working memory in Parkinson's disease by modulating frontoparietal-basal ganglia cognitive control circuits, but little is known about the underlying causal signalling mechanisms and their relation to individual differences in response to dopaminergic medication. Here we use a novel state-space computational model with ultra-fast (490 ms resolution) functional MRI to investigate dynamic causal signalling in frontoparietal-basal ganglia circuits associated with working memory in 44 Parkinson's disease patients ON and OFF dopaminergic medication, as well as matched 36 healthy controls. Our analysis revealed aberrant causal signalling in frontoparietal-basal ganglia circuits in Parkinson's disease patients OFF medication. Importantly, aberrant signalling was normalized by dopaminergic medication and a novel quantitative distance measure predicted individual differences in cognitive change associated with medication in Parkinson's disease patients. These findings were specific to causal signalling measures, as no such effects were detected with conventional non-causal connectivity measures. Our analysis also identified a specific frontoparietal causal signalling pathway from right middle frontal gyrus to right posterior parietal cortex that is impaired in Parkinson's disease. Unlike in healthy controls, the strength of causal interactions in this pathway did not increase with working memory load and the strength of load-dependent causal weights was not related to individual differences in working memory task performance in Parkinson's disease patients OFF medication. However, dopaminergic medication in Parkinson's disease patients reinstated the relation with working memory performance. Our findings provide new insights into aberrant causal brain circuit dynamics during working memory and identify mechanisms by which dopaminergic medication normalizes cognitive control circuits.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen L Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Bernaud VE, Bulen HL, Peña VL, Koebele SV, Northup-Smith SN, Manzo AA, Valenzuela Sanchez M, Opachich Z, Ruhland AM, Bimonte-Nelson HA. Task-dependent learning and memory deficits in the TgF344-AD rat model of Alzheimer's disease: three key timepoints through middle-age in females. Sci Rep 2022; 12:14596. [PMID: 36028737 PMCID: PMC9418316 DOI: 10.1038/s41598-022-18415-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The TgF344 rat model of Alzheimer's disease (AD) provides a comprehensive neuropathology presentation, with age-dependent development of tau tangles, amyloid-beta (A[Formula: see text]) plaques, neuronal loss, and increased gliosis. The behavioral trajectory of this model, particularly relating to spatial learning and memory, has yet to be fully characterized. The current experiment evaluated spatial working and reference memory performance, as well as several physiological markers of health, at 3 key age points in female TgF344-AD rats: 6-months, 9-months, and 12-months. At 6 months of age, indications of working and reference memory impairments were observed in transgenic (Tg) rats on the water radial-arm maze, a complex task that requires working and reference memory simultaneously; at 12 months old, Tg impairments were observed for two working memory measures on this task. Notably, no impairments were observed at the 9-month timepoint on this maze. For the Morris maze, a measure of spatial reference memory, Tg rats demonstrated significant impairment relative to wildtype (WT) controls at all 3 age-points. Frontal cortex, entorhinal cortex, and dorsal hippocampus were evaluated for A[Formula: see text]1-42 expression via western blot in Tg rats only. Analyses of A[Formula: see text]1-42 expression revealed age-dependent increases in all 3 regions critical to spatial learning and memory. Measures of physiological health, including heart, uterine, and body weights, revealed unique age-specific outcomes for female Tg rats, with the 9-month timepoint identified as critical for further research within the trajectory of AD-like behavior, physiology, and pathology.
Collapse
Affiliation(s)
- Victoria E Bernaud
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Haidyn L Bulen
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Veronica L Peña
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Stephanie V Koebele
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Steven N Northup-Smith
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Alma A Manzo
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Maria Valenzuela Sanchez
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Zorana Opachich
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Ashley M Ruhland
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Heather A Bimonte-Nelson
- Behavioral Neuroscience and Comparative Psychology Division, Department of Psychology, Arizona Alzheimer's Consortium, Arizona State University, 950 S. McAllister Ave., PO Box 871104, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA.
| |
Collapse
|
15
|
Cid REC, Loewenstein DA. Salient Cognitive Paradigms to Assess Preclinical Alzheimer's Disease. Neurotherapeutics 2022; 19:89-98. [PMID: 35246818 PMCID: PMC9130422 DOI: 10.1007/s13311-022-01192-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the growing emphasis to identify early biological markers that can detect the progressive accumulation of brain pathology in the complex pathophysiologic cascade that occurs in Alzheimer's disease (AD), we continue to employ the same neuropsychological paradigms that were developed to detect dementia or frank cognitive impairment. It has become increasingly clear that we cannot expect to measure clinically meaningful change in relationship to these emerging preclinical biomarkers using these traditional cognitive assessment paradigms, nor will we advance the efforts to identify the earliest cognitive changes that emerge in AD. Over the last decade, a few novel promising cognitive assessment paradigms have emerged that have shown promise in identifying subtle cognitive deficits in AD which aids in early detection and monitoring of meaningful cognitive change over time. Some of these cognitive assessment paradigms are reviewed here, including semantic interference, semantic intrusion errors, memory binding, and binding of face and name associations. These paradigms may be useful for AD clinical trials focused on secondary prevention if there is sufficient rigor to suggest that they correlate with AD biomarkers, having robust sensitivity, specificity, and predictive utility among culturally and linguistically diverse populations at-risk for AD.
Collapse
Affiliation(s)
- Rosie E Curiel Cid
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1695 NW 9th Avenue, Florida, Miami, 33136, USA.
| | - David A Loewenstein
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1695 NW 9th Avenue, Florida, Miami, 33136, USA
| |
Collapse
|
16
|
Novotný JS, Gonzalez‐Rivas JP, Medina‐Inojosa JR, Lopez‐Jimenez F, Geda YE, Stokin GB. Investigating cognition in midlife. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12234. [PMID: 35005209 PMCID: PMC8719351 DOI: 10.1002/trc2.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022]
Abstract
We here posit that measurements of midlife cognition can be instructive in understanding cognitive disorders. Even though molecular events signal possible onset of cognitive disorders decades prior to their clinical diagnoses, cognition and its possible early changes in midlife remain poorly understood. We characterize midlife cognition in a cognitively healthy population-based sample using the Cogstate Brief Battery and test for associations with cardiovascular, adiposity-related, lifestyle-associated, and psychosocial variables. Learning and working memory showed significant variability and vulnerability to psychosocial influences in midlife. Furthermore, midlife aging significantly and progressively increased prevalence of suboptimal cognitive performance. Our findings suggest that physiological changes in cognition, measured with simple tests suitable for use in everyday clinical setting, may signal already in midlife the first clinical manifestations of the presymptomatic biologically defined cognitive disorders. This pilot study calls for longitudinal studies investigating midlife cognition to identify clinical correlates of biologically defined cognitive disorders.
Collapse
Affiliation(s)
- Jan S. Novotný
- Translational Aging and Neuroscience Program, Centre for Translational Medicine, International Clinical Research CentreSt. Anne's University HospitalBrnoCzech Republic
| | - Juan P. Gonzalez‐Rivas
- Kardiovize Study, International Clinical Research CentreSt. Anne's University HospitalBrnoCzech Republic
- Department of Global Health and PopulationHarvard TH Chan School of Public HealthHarvard UniversityBostonMassachusettsUSA
| | - Jose R. Medina‐Inojosa
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Francisco Lopez‐Jimenez
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Yonas E. Geda
- Division of Alzheimer's Disease and Memory Disorders ProgramDepartment of NeurologyBarrow Neurological InstitutePhoenixArizonaUSA
| | - Gorazd B. Stokin
- Translational Aging and Neuroscience Program, Centre for Translational Medicine, International Clinical Research CentreSt. Anne's University HospitalBrnoCzech Republic
- Translational Aging and Neuroscience ProgramMayo ClinicRochesterMinnesotaUSA
- Division of NeurologyUniversity Medical CentreLjubljanaSlovenia
| |
Collapse
|
17
|
Byeon H. Development of a Predictive Model for Mild Cognitive Impairment in Parkinson’s Disease with Normal Cognition Using Kernel-Based C5.0 Machine Learning Blending: Preliminary Research. THE 2ND INTERNATIONAL ELECTRONIC CONFERENCE ON APPLIED SCIENCES 2021:18. [DOI: 10.3390/asec2021-11147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Haewon Byeon
- Department of Medical Big Data, College of AI Convergence, Inje University, Gimhae 50834, Korea
| |
Collapse
|
18
|
Flores Vazquez JF, Rubiño J, Contreras López JJ, Siquier A, Cruz Contreras C, Sosa-Ortiz AL, Enriquez Geppert S, Andrés P. Worse associative memory recall in healthy older adults compared to young ones, a face-name study in Spain and Mexico. J Clin Exp Neuropsychol 2021; 43:558-567. [PMID: 34538200 DOI: 10.1080/13803395.2021.1962252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The Face Name Associative Memory Exam (FNAME) is sensitive to associative memory changes early in the Alzheimer's disease spectrum, but little is known about how healthy aging affects FNAME performance. We aimed to assess aging effects on an extended version of the test, which captures further associative memory abilities beyond the recall and recognition domains measured in the original version. METHOD We adapted FNAME versions in Spain and Mexico, adding new subtests (Spontaneous Name Recall, Face-Name Matching). We compared the performance of 21 young adults (YA) and 27 older adults (OA) in Spain, and 34 YA and 36 OA in Mexico. Recall was analyzed using a mixed-model ANOVA including subtest scores as dependent variables, age group as a fixed-factor independent variable, and recall subtest as a three-level repeated-measure independent variable. The rest of the associative memory domains were analyzed through t-tests comparing the performance of YA and OA. RESULTS In Spain, we found significant effects for age group and recall subtest, with large effect sizes. The recognition subtests (Face Recognition, Name Recognition) displayed ceiling effects in both groups. The new subtests displayed medium-to-large effect sizes when comparing age groups. In Mexico, these results were replicated, additionally controlling for education. In both studies, recall performance improved after repeated exposures and it was sustained after 30 minutes in YA and OA. CONCLUSIONS We document, in two different countries, a clear aging pattern on the extended FNAME: regardless of education, OA remember fewer stimuli than YA through recall subtests. The new subtests provide evidence on associative memory changes in aging beyond recall.
Collapse
Affiliation(s)
- Juan Francisco Flores Vazquez
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands.,Department of Biomedical Sciences of Cells & Systems, Section of Cognitive Neuropsychiatry, University of Groningen, Groningen, The Netherlands.,Dementia Laboratory, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - José Rubiño
- Department of Psychology and Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
| | | | - Antonia Siquier
- Department of Psychology and Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
| | - Cecilia Cruz Contreras
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands.,Dementia Laboratory, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Ana Luisa Sosa-Ortiz
- Dementia Laboratory, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Stefanie Enriquez Geppert
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands.,Department of Biomedical Sciences of Cells & Systems, Section of Cognitive Neuropsychiatry, University of Groningen, Groningen, The Netherlands
| | - Pilar Andrés
- Department of Psychology and Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
| |
Collapse
|
19
|
Lee ES, Youn H, Hyung WSW, Suh S, Han CE, Eo JS, Jeong HG. The effects of cerebral amyloidopathy on regional glucose metabolism in older adults with depression and mild cognitive impairment while performing memory tasks. Eur J Neurosci 2021; 54:6663-6672. [PMID: 34528336 DOI: 10.1111/ejn.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Co-occurring depression and mild cognitive impairment (MCI) in older adults are important because they have a high risk of conversion to dementia. In the present study, task-related F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) was used to analyse older adults with concomitant depression and MCI. We recruited 20 older adults with simultaneous depression and MCI and 10 older adults with normal cognition (NC). The Verbal Paired Associates test and digit span test were used for the task-related FDG-PET. The 20 older adults with depression and MCI were classified into two groups based on the F-18 florbetaben PET results: depressed MCI patients with (LLD-MCI-A[+]; n = 11) and without amyloid accumulation (LLD-MCI-A[-]; n = 9). Reduced regional cerebral glucose metabolism (rCMglc) in the left superior frontal region was observed in the LLD-MCI-A(-) group compared with the NC group. Analyses of the NC and LLD-MCI-A(+) groups showed significantly decreased rCMglc in the right inferior parietal and left middle frontal regions in the LLD-MCI-A(+) group. rCMglc in the left precuneus was lower in the LLD-MCI-A(+) group than in the LLD-MCI-A(-) group. Significant correlations between the rCMglc in the right inferior parietal/left precuneus regions and memory task scores were observed based on correlation analyses of NC and LLD-MCI-A(+) groups. The findings in the present study indicate the presence of amyloid accumulation influences glucose metabolism in depressed elderly subjects with MCI while performing cognitive tasks. Task-related FDG-PET examinations may help differentiate MCI associated with depression from comorbid depression in patients with prodromal Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | | | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Seoul, South Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea.,Korea University Research Institute of Mental Health, Seoul, South Korea
| |
Collapse
|
20
|
Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain 2021; 144:2243-2256. [PMID: 33725122 PMCID: PMC8418349 DOI: 10.1093/brain/awab111] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/09/2023] Open
Abstract
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
21
|
Funayama M, Takata T, Nakagawa Y, Sunagawa K, Nakajima A, Kawashima H, Mimura M. Visuospatial working memory dysfunction from tapping span test as a diagnostic tool for patients with mild posterior cortical atrophy. Sci Rep 2021; 11:10580. [PMID: 34012020 PMCID: PMC8134425 DOI: 10.1038/s41598-021-90159-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Posterior cortical atrophy is a rare degenerative condition with prominent visuospatial dysfunction which commonly occurs between ages 50 and 65. A diagnosis of mild posterior cortical atrophy sometimes challenging and can be delayed because there are currently no established neuropsychological examination methods that can easily be used in clinical settings. In this study, we examined whether the tapping span test is a potential diagnostic tool for posterior cortical atrophy and what impairment the tapping span test is indicative of in this condition. Eight patients with mild posterior cortical atrophy were recruited. Age- and severity-matched individuals with amnesic Alzheimer's disease (n = 9) were also recruited as a control group. The participants were subjected to the tapping span test and several visuospatial working memory tests. The results of the tapping span and visuospatial working memory tests were worse for the posterior cortical atrophy group when compared with the control group. The results from the tapping span tests were strongly correlated with those from the visuospatial working memory tests. The tapping span test is a simple and potentially useful diagnostic tool for patients with mild posterior cortical atrophy, as it reflects visuospatial working memory function.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, 284-1, Yobe, Ashikaga-City, Tochigi, 3260843, Japan. .,Department of Rehabilitation, Edogawa Hospital, Tokyo, 1330052, Japan.
| | - Taketo Takata
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, 284-1, Yobe, Ashikaga-City, Tochigi, 3260843, Japan
| | | | - Kosaku Sunagawa
- Faculty of Rehabilitation, Kansai Medical University, Osaka, 5820026, Japan
| | - Asuka Nakajima
- Department of Rehabilitation, Ashikaga Red Cross Hospital, Tochigi, 3260843, Japan
| | - Hiroaki Kawashima
- Department of Rehabilitation, Ashikaga Red Cross Hospital, Tochigi, 3260843, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 1608582, Japan
| |
Collapse
|
22
|
Manga A, Madurka P, Vakli P, Kirwan CB, Vidnyánszky Z. Investigation of the relationship between visual feature binding in short- and long-term memory in healthy aging. Learn Mem 2021; 28:109-113. [PMID: 33723030 PMCID: PMC7970738 DOI: 10.1101/lm.052548.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/16/2021] [Indexed: 11/24/2022]
Abstract
Binding visual features into coherent object representations is essential both in short- and long-term memory. However, the relationship between feature binding processes at different memory delays remains unexplored. Here, we addressed this question by using the Mnemonic Similarity Task and a delayed-estimation working memory task on a large sample of older adults. The results revealed that higher propensity to misbind object features in working memory is associated with lower lure discrimination performance in the mnemonic similarity task, suggesting that shared feature binding processes underlie the formation of coherent short- and long-term visual object memory representations.
Collapse
Affiliation(s)
- Annamária Manga
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Petra Madurka
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Pál Vakli
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - C Brock Kirwan
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, Utah 84602, USA
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
23
|
Veldsman M, Nobis L, Alfaro-Almagro F, Manohar S, Husain M. The human hippocampus and its subfield volumes across age, sex and APOE e4 status. Brain Commun 2020; 3:fcaa219. [PMID: 33615215 PMCID: PMC7884607 DOI: 10.1093/braincomms/fcaa219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Female sex, age and carriage of the apolipoprotein E e4 allele are the greatest risk factors for sporadic Alzheimer's disease. The hippocampus has a selective vulnerability to atrophy in ageing that may be accelerated in Alzheimer's disease, including in those with increased genetic risk of the disease, years before onset. Within the hippocampal complex, subfields represent cytoarchitectonic and connectivity based divisions. Variation in global hippocampal and subfield volume associated with sex, age and apolipoprotein E e4 status has the potential to provide a sensitive biomarker of future vulnerability to Alzheimer's disease. Here, we examined non-linear age, sex and apolipoprotein E effects, and their interactions, on hippocampal and subfield volumes across several decades spanning mid-life to old age in 36 653 healthy ageing individuals. FMRIB Software Library derived estimates of total hippocampal volume and Freesurfer derived estimates hippocampal subfield volume were estimated. A model-free, sliding-window approach was implemented that does not assume a linear relationship between age and subfield volume. The annualized percentage of subfield volume change was calculated to investigate associations with age, sex and apolipoprotein E e4 homozygosity. Hippocampal volume showed a marked reduction in apolipoprotein E e4/e4 female carriers after age 65. Volume was lower in homozygous e4 individuals in specific subfields including the presubiculum, subiculum head, cornu ammonis 1 body, cornu ammonis 3 head and cornu ammonis 4. Nearby brain structures in medial temporal and subcortical regions did not show the same age, sex and apolipoprotein E interactions, suggesting selective vulnerability of the hippocampus and its subfields. The findings demonstrate that in healthy ageing, two factors-female sex and apolipoprotein E e4 status-confer selective vulnerability of specific hippocampal subfields to volume loss.
Collapse
Affiliation(s)
- Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lisa Nobis
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
| |
Collapse
|
24
|
Zokaei N, Sillence A, Kienast A, Drew D, Plant O, Slavkova E, Manohar SG, Husain M. Different patterns of short-term memory deficit in Alzheimer's disease, Parkinson's disease and subjective cognitive impairment. Cortex 2020; 132:41-50. [PMID: 32919108 PMCID: PMC7651994 DOI: 10.1016/j.cortex.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
It has recently been proposed that short-term memory (STM) binding deficits might be an important feature of Alzheimer's disease (AD), providing a potential avenue for earlier detection of this disorder. By contrast, work in Parkinson's disease (PD), using different tasks, has suggested that the STM impairment in this condition is characterised by increased random guessing, possibly due to fluctuating attention. In the present study, to establish whether a misbinding impairment is present in sporadic late-onset AD (LOAD) and increased guessing is a feature of PD, we compared the performance of these patient groups to two control populations: healthy age-matched controls and individuals with subjective cognitive impairment (SCI) with comparable recruitment history as patients. All participants performed a sensitive task of STM that required high resolution retention of object-location bindings. This paradigm also enabled us to explore the underlying sources of error contributing to impaired STM in patients with LOAD and PD using computational modelling of response error. Patients with LOAD performed significantly worse than other groups on this task. Importantly their impaired memory was associated with increased misbinding errors. This was in contrast to patients with PD who made significantly more guessing responses. These findings therefore provide additional support for the presence of two doubly dissociable signatures of STM deficit in AD and PD, with binding impairment in AD and increased random guessing characterising the STM deficit in PD. The task used to measure memory precision here provides an easy-to-administer assessment of STM that is sensitive to the different types of deficit in AD and PD and hence has the potential to inform clinical practice.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK.
| | - Annie Sillence
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Annika Kienast
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Oxford, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Ellie Slavkova
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK
| | - Sanjay G Manohar
- Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK; Oxford NIHR Biomedical Research Centre, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
25
|
Li Q, Xiao H, Shao Y, Chang X, Zhang Y, Zhou Z. Paraquat increases Interleukin-1β in hippocampal dentate gyrus to impair hippocampal neurogenesis in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110733. [PMID: 32450442 DOI: 10.1016/j.ecoenv.2020.110733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridium dichloride, PQ), a non-selective and efficient herbicide, causes neuroinflammation, neurodegeneration and memory dysfunction. However, adverse effects of PQ on the neuroimmune interactions have rarely been investigated. Female adult C57/BL6 mice were divided into 3 groups and treated with PQ (intraperitoneal injection, 1 mg/kg or 5 mg/kg) or the vehicle (an equivalent volume of 0.9% saline) every two days, at day 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, for a total of 14 doses. We evaluated blood-brain barrier (BBB) integrity and PQ concentrations during the course of PQ exposure and tested interleukin-1β (IL-1β) concentrations in dentate gyrus (DG) after 28 days PQ exposure. In addition, memory function, neural stem cells (NSCs) proliferation, neurogenesis and microglia polarization were analyzed after PQ exposure. Furthermore, mice were intraperitoneal injections of anti-IL-1β during 5 mg/kg PQ exposure to test the rule of IL-1β. Blood-brain barrier (BBB) permeability and PQ concentrations increased gradually during PQ exposure (n = 6). Moreover, memory function, NSCs proliferation and neurogenesis were impaired after 5 mg/kg PQ exposure (n = 6). Further analyses revealed that 'classically' activated (M1) microglia and IL-1β concentrations in DG were increased after 5 mg/kg PQ treatment (n = 6). Moreover, we found that neutralization of IL-1β partly restored PQ-induced NSCs impairments and memory dysfunction (n = 6). In conclusion, our results revealed that PQ induced NSCs impairments and memory dysfunction in adult mice, which was related to the release of IL-1β by M1-polarized microglia in DG. These findings may help understand the neurotoxic effect of PQ.
Collapse
Affiliation(s)
- Qian Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hongxi Xiao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yiming Shao
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Pavisic IM, Suarez-Gonzalez A, Pertzov Y. Translating Visual Short-Term Memory Binding Tasks to Clinical Practice: From Theory to Practice. Front Neurol 2020; 11:458. [PMID: 32587567 PMCID: PMC7297911 DOI: 10.3389/fneur.2020.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ivanna M Pavisic
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom.,UK Dementia Research Institute at University College London, UCL, London, United Kingdom
| | - Aida Suarez-Gonzalez
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|