1
|
Du X, Yang X, Zhao J, Zhang J, Yu J, Ma L, Zhang W, Cen S, Ren X, He X. Design of novel broad-spectrum antiviral nucleoside analogues using natural bases ring-opening strategy. Drug Dev Res 2024; 85:e22237. [PMID: 39032059 DOI: 10.1002/ddr.22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
The global prevalence of RNA virus infections has presented significant challenges to public health in recent years, necessitating the expansion of its alternative therapeutic library. Due to its evolutional conservation, RNA-dependent RNA polymerase (RdRp) has emerged as a potential target for broad-spectrum antiviral nucleoside analogues. However, after over half a century of structural modification, exploring unclaimed chemical space using frequently-used structural substitution methods to design new nucleoside analogues is challenging. In this study, we explore the use of the "ring-opening" strategy to design new base mimics, thereby using these base mimics to design new nucleoside analogues with broad-spectrum antiviral activities. A total of 29 compounds were synthesized. Their activity against viral RdRp was initially screened using an influenza A virus RdRp high-throughput screening model. Then, the antiviral activity of 38a was verified against influenza virus strain A/PR/8/34 (H1N1), demonstrating a 50% inhibitory concentration (IC50) value of 9.95 μM, which was superior to that of ribavirin (the positive control, IC50 = 11.43 μM). Moreover, 38a also has inhibitory activity against coronavirus 229E with an IC50 of 30.82 μM. In addition, compounds 42 and 46f exhibit an 82% inhibition rate against vesicular stomatitis virus at a concentration of 20 μM and hardly induce cytotoxicity in host cells. This work demonstrates the feasibility of designing nucleoside analogues with "ring-opening" bases and suggests the "ring-opening" nucleosides may have greater polarity, and designing prodrugs is an important aspect of optimizing their antiviral activity. Future research should focus on enhancing the conformational restriction of open-loop bases to mimic Watson-Crick base pairing better and improve antiviral activity.
Collapse
Affiliation(s)
- Xingyi Du
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
| | - Xingxing Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jinyan Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiahui Yu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Weina Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xuhong Ren
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinhua He
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
2
|
Almuqrin AM, Alotaibi BA, Aldali JA, Alshalani A, AlSudais H, Aldali HJ. Assessing the impact of COVID-19 on acute leukemia patients: a comparative analysis of hematological and biochemical parameters. BMC Infect Dis 2024; 24:576. [PMID: 38862891 PMCID: PMC11167824 DOI: 10.1186/s12879-024-09485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The impact of COVID-19 infection on the blood system remains to be investigated, especially with those encountering hematological malignancies. It was found that a high proportion of cancer patients are at an elevated risk of encountering COVID-19 infection. Leukemic patients are often suppressed and immunocompromised, which would impact the pathology following COVID-19 infection. Therefore, this research aims to bring valuable insight into the mechanism by which COVID-19 infection influences the hematological and biochemical parameters of patients with acute leukemia. METHODS This retrospective investigation uses repeated measures to examine changes in hematological and biochemical parameters among patients with acute leukemia before and after COVID-19 infection at a major Saudi tertiary center. The investigation was conducted at the Ministry of National Guard-Health Affairs in Riyadh, Saudi Arabia, on 24 acute leukemia patients with COVID-19 between April 2020 and July 2023. The impact of COVID-19 on clinical parameters, comorbidities, and laboratory values was evaluated using data obtained from the electronic health records at four designated time intervals. The relative importance of comorbidities, testing preferences, and significant predictors of survival was ascertained. RESULTS The majority of leukemic COVID-19-infected patients, primarily detected through PCR tests, were diagnosed with acute lymphoblastic leukemia (70.8%). The hematological and biochemical parameters exhibited stability, except for a brief increase in ALT and a sustained rise in AST. These changes were not statistically significant, and parameters remained normal at all time points. Additionally, an increase in monocyte count was shown at time point-3, as well as platelet counts at time point 2. CONCLUSION While this study did not detect statistically significant effects of COVID-19 on biochemical and hematological parameters in acute leukemia patients, further investigation is needed to fully understand the potential adverse reactions and modifications following COVID-19 infection.
Collapse
Affiliation(s)
- Abdulaziz M Almuqrin
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Badi A Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Abdulrahman Alshalani
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamood AlSudais
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Hamzah J Aldali
- Cellular and Molecular Medicine, College of Biomedical Science, University of Bristol, Bristol, BS8 1QU, UK
| |
Collapse
|
3
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
4
|
Ghorai S, Shand H, Patra S, Panda K, Santiago MJ, Rahman MS, Chinnapaiyan S, Unwalla HJ. Nanomedicine for the Treatment of Viral Diseases: Smaller Solution to Bigger Problems. Pharmaceutics 2024; 16:407. [PMID: 38543301 PMCID: PMC10975899 DOI: 10.3390/pharmaceutics16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses. Moreover, the timeline to vaccine development and testing can be extensive, leading to a lapse in controlling the spread of viral infection during pandemics. Antiviral therapeutics can provide a temporary fix to tide over the time lag when vaccines are not available during the commencement of a disease outburst. At times, these medications can have negative side effects that outweigh the benefits, and they are not always effective against newly emerging virus strains. Several limitations with conventional antiviral therapies may be addressed by nanotechnology. By using nano delivery vehicles, for instance, the pharmacokinetic profile of antiviral medications can be significantly improved while decreasing systemic toxicity. The virucidal or virus-neutralizing qualities of other special nanomaterials can be exploited. This review focuses on the recent advancements in nanomedicine against RNA viruses, including nano-vaccines and nano-herbal therapeutics.
Collapse
Affiliation(s)
- Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Harshita Shand
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Soumendu Patra
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| |
Collapse
|
5
|
Panda M, Kundapur R, Kamble B. COVID-19 Vaccination Hesitancy among the General Population: A Gender-Based Review and Bibliometric Analysis. ARCHIVES OF RAZI INSTITUTE 2024; 79:33-40. [PMID: 39192962 PMCID: PMC11345477 DOI: 10.32592/ari.2024.79.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/16/2023] [Indexed: 08/29/2024]
Abstract
December 2019 was momentous since it experienced the trajectory of another novel pathogenic HCoV recognized as 2019-nCoV in Wuhan, China, which further unfurled to all countries on the entire globe at lightning speed. The Majority of COVID-19 vaccines are being manufactured using protein subunits, viral vectors, inactivated viruses, as well as DNA and mRNA vaccine platforms. This study aimed to conduct a gender-based review of COVID-19 vaccine hesitancy among the general population and bibliometric analysis. Various articles related to COVID-19 vaccine hesitancy, either based on their title, abstract, or keywords in the search strategy, were reviewed. For COVID-19 vaccine hesitancy, we used the definition of "Reluctance to receive safe and recommended available vaccines". Accordingly, 408 articles were included in the complete evaluation and the bibliometric analysis. Data Analysis was done using the Vos viewer Software. The strength of co-cited publications showed strong contributors from the American and Asian continents. The words with the maximum weightage based on their occurrences were female, health personnel, acceptance, social media, socio-economic factors, and ethnic groups, as covered in the red cluster. On the other hand, the Overlay Visualization on the right side, based on the total link strength of MeSH items, showed the largest clusters with items such as females, attitude to health, trust, cross-sectional studies, the acceptance of healthcare, rural population, public health, and parents, which were toward the center. The terms toward the periphery, which had less weightage, need more analysis. Greater perceived susceptibility, risk perception, benefits, and low levels of barriers and self-efficacy were the prime reasons for getting vaccinated, more specifically among females. In most instances, the female being the decision-maker of the family needs to be attended to first as she can further change the mindset of the entire family and carry the future forward.
Collapse
Affiliation(s)
- M Panda
- Department of Community Medicine and Family medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - R Kundapur
- Department of Community Medicine and Family medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - B Kamble
- Department of Community Medicine and Family medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| |
Collapse
|
6
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
7
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
8
|
Pal A, Tripathi SK, Rani P, Rastogi M, Das S. p53 and RNA viruses: The tug of war. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1826. [PMID: 37985142 DOI: 10.1002/wrna.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Meghana Rastogi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India, Kalyani, West Bengal, India
| |
Collapse
|
9
|
Mokhria RK, Bhardwaj JK, Sanghi AK. History, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment of COVID-19: A review. World J Meta-Anal 2023; 11:266-276. [DOI: 10.13105/wjma.v11.i6.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In December, 2019, pneumonia triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced in Wuhan, China. An acute respiratory illness named coronavirus disease 2019 (COVID-19) is caused by a new coronavirus designated as SARS-CoV-2. COVID-19 has surfaced as a major pandemic in the 21st century as yet. The entire world has been affected by this virus. World Health Organization proclaimed COVID-19 pandemic as a public health emergency of international concern on January 30, 2020. SARS-CoV-2 shares the same genome as coronavirus seen in bats. Therefore, bats might be its natural host of this virus. It primarily disseminates by means of the respiratory passage. Evidence revealed human-to-human transmission. Fever, cough, tiredness, and gastrointestinal illness are the manifestations in COVID-19-infected persons. Senior citizens are more vulnerable to infections which can lead to dangerous consequences. Various treatment strategies including antiviral therapies are accessible for the handling of this disease. In this review, we organized the most recent findings on COVID-19 history, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Rajesh Kumar Mokhria
- Department of School Education, Government Model Sanskriti Senior Secondary School, Chulkana, Panipat, 132101, Haryana, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Ashwani Kumar Sanghi
- School of Allied and Health Sciences, MVN University, Palwal 121102, Haryana, India
| |
Collapse
|
10
|
Zhang D, Ji L, Chen X, He Y, Sun Y, Ji L, Zhang T, Shen Q, Wang X, Wang Y, Yang S, Zhang W, Zhou C. SARS-CoV-2 Nsp15 suppresses type I interferon production by inhibiting IRF3 phosphorylation and nuclear translocation. iScience 2023; 26:107705. [PMID: 37680466 PMCID: PMC10480782 DOI: 10.1016/j.isci.2023.107705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes 2019 coronavirus disease (COVID-19), poses a significant threat to global public health security. Like other coronaviruses, SARS-CoV-2 has developed various strategies to inhibit the production of interferon (IFN). Here, we have discovered that SARS-CoV-2 Nsp15 obviously reduces the expression of IFN-β and IFN-stimulated genes (ISG56, CXCL10), and also inhibits IRF3 phosphorylation and nuclear translocation by antagonizing the RLR-mediated antiviral signaling pathway. Mechanically, we found that the poly-U-specific endonuclease domain (EndoU) of Nsp15 directly associates with the kinase domain (KD) of TBK1 to interfere TBK1 interacting with IRF3 and the flowing TBK1-mediated IRF3 phosphorylation. Furthermore, Nsp15 also prevented nuclear translocation of phosphorylated IRF3 via binding to the nuclear import adaptor karyopherin α1 (KPNA1) and promoting it autophagy-dependent degradation. These findings collectively reveal a novel mechanism by which Nsp15 antagonizes host's innate immune response.
Collapse
Affiliation(s)
- Dianqi Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214221, China
| | - Likai Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force, Yangzhou, Jiangsu 225003, China
| | - Yumin He
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Medical Research Center, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu 225001, China
| | - Yijie Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tiancheng Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Quan Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochun Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shixing Yang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
11
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
12
|
Alam BF, Almojaibel AA, Aziz Ansari K, Haroon M, Noreen S, Tauqir S, Almas K, Farooqi FA, Ali S. General public awareness, knowledge and attitude toward COVID-19 infection and prevention: a cross-sectional study from Pakistan. F1000Res 2023; 10:946. [PMID: 37359251 PMCID: PMC10285421 DOI: 10.12688/f1000research.52692.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Background: The aim of this study is to evaluate the knowledge, perceptions, and attitude of the public in Pakistan (using social media) towards COVID-19. Methods: A cross-sectional study was conducted amongst 1120 individuals nationwide. A self-developed, pre-tested questionnaire was used that comprised of sections covering demographic characteristics, medical history, hygiene awareness, COVID-19-related knowledge, and learning attitude. Descriptive statistics were used for frequencies, percentages, averages and standard deviations. Inferential statistics were done using the Student's t-test and ANOVA. Results: The average age of participants was 31 years (range 18-60 years). In total 56 individuals (5%) had completed primary or secondary school education; 448 (40%) were employed (working from home) and 60% were jobless due to the COVID-19 crisis. Almost all the study subjects (1030 (92%)) were washing their hands multiple times a day. A total of 83% had awareness regarding quarantine time, 82% used face masks whenever they left their homes, 98% were aware of the origin of the disease, and 70% had knowledge regarding the most common symptoms of COVID-19. Conclusion: It can be concluded from the current study that female participants had higher level of education, and more awareness regarding the coronavirus. The majority of the participants followed proper hand washing regimes and washed their faces. Further knowledge and awareness should be promoted.
Collapse
Affiliation(s)
- Beenish Fatima Alam
- Department of Oral Biology, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Abdullah A. Almojaibel
- Respiratory Care Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Aziz Ansari
- Respiratory Care Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Haroon
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Sara Noreen
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Saman Tauqir
- Department of Physiology, Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faraz A. Farooqi
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Alam BF, Almojaibel AA, Aziz Ansari K, Haroon M, Noreen S, Tauqir S, Almas K, Farooqi FA, Ali S. General public awareness, knowledge and attitude toward COVID-19 infection and prevention: a cross-sectional study from Pakistan. F1000Res 2023; 10:946. [PMID: 37359251 PMCID: PMC10285421 DOI: 10.12688/f1000research.52692.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 11/17/2023] Open
Abstract
Background: The aim of this study is to evaluate the knowledge, perceptions, and attitude of the public in Pakistan (using social media) towards COVID-19. Methods: A cross-sectional study was conducted amongst 1120 individuals nationwide. A self-developed, pre-tested questionnaire was used that comprised of sections covering demographic characteristics, medical history, hygiene awareness, COVID-19-related knowledge, and learning attitude. Descriptive statistics were used for frequencies, percentages, averages and standard deviations. Inferential statistics were done using the Student's t-test and ANOVA. Results: The average age of participants was 31 years (range 18-60 years). In total 56 individuals (5%) had completed primary or secondary school education; 448 (40%) were employed (working from home) and 60% were jobless due to the COVID-19 crisis. Almost all the study subjects (1030 (92%)) were washing their hands multiple times a day. A total of 83% had awareness regarding quarantine time, 82% used face masks whenever they left their homes, 98% were aware of the origin of the disease, and 70% had knowledge regarding the most common symptoms of COVID-19. Conclusion: It can be concluded from the current study that female participants had higher level of education, and more awareness regarding the coronavirus. The majority of the participants followed proper hand washing regimes and washed their faces. Further knowledge and awareness should be promoted.
Collapse
Affiliation(s)
- Beenish Fatima Alam
- Department of Oral Biology, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Abdullah A. Almojaibel
- Respiratory Care Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khalid Aziz Ansari
- Respiratory Care Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Haroon
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Sara Noreen
- Department of Medicine, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Saman Tauqir
- Department of Physiology, Kabir Medical College, Gandhara University, Peshawar, Pakistan
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faraz A. Farooqi
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Prasetiya FS, Destiarani W, Nuwarda RF, Rohmatulloh FG, Natalia W, Novianti MT, Ramdani T, Agung MUK, Arsad S, Sari LA, Pitriani P, Suryanti S, Gumilar G, Mouget JL, Yusuf M. The nanomolar affinity of C-phycocyanin from virtual screening of microalgal bioactive as potential ACE2 inhibitor for COVID-19 therapy. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102533. [PMID: 36624782 PMCID: PMC9814374 DOI: 10.1016/j.jksus.2022.102533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 05/28/2023]
Abstract
The global pandemic of COVID-19 caused by SARS-CoV-2 has caused more than 400 million infections with more than 5.7 million deaths worldwide, and the number of validated therapies from natural products for treating coronavirus infections needs to be increased. Therefore, the virtual screening of bioactive compounds from natural products based on computational methods could be an interesting strategy. Among many sources of bioactive natural products, compounds from marine organisms, particularly microalgae and cyanobacteria, can be potential antiviral agents. The present study investigates bioactive antiviral compounds from microalgae and cyanobacteria as a potential inhibitor of SARS-CoV-2 by targeting Angiotensin-Converting Enzyme II (ACE2) using integrated in silico and in vitro approaches. Our in silico analysis demonstrates that C-Phycocyanin (CPC) can potentially inhibit the binding of ACE2 receptor and SARS-CoV-2 with the docking score of -9.7 kcal mol-1. This score is relatively more favorable than the native ligand on ACE2 receptor. Molecular dynamics simulation also reveals the stability interaction between both CPC and ACE2 receptor with a root mean square deviation (RMSD) value of 1.5 Å. Additionally, our in vitro analysis using the surface plasmon resonance (SPR) method shows that CPC has a high affinity for ACE2 with a binding affinity range from 5 to 125 µM, with KD 3.37 nM. This study could serve as a reference to design microalgae- or cyanobacteria-based antiviral drugs for prophylaxis in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Fiddy S Prasetiya
- Research Center for Biosystematics and Evolution, Research Organization for Life Sciences and Environment, National Research and Innovation Agency Republic of Indonesia (BRIN), Jalan Raya Bogor Km 46, Cibinong, West Java 16911, Indonesia
- Marine Science Department, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, 45363 Jatinangor, Indonesia
| | - Wanda Destiarani
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
| | - Rina F Nuwarda
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, 45363 Jatinangor, Indonesia
| | - Fauzian G Rohmatulloh
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
- Study Programme of Master Biotechnology, Faculty of Postgraduate School, Universitas Padjadjaran, Jl. Dipatiukur No. 35, Bandung, Indonesia
| | - Wiwin Natalia
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
| | - Mia T Novianti
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
| | - Taufik Ramdani
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
| | - Mochamad U K Agung
- Marine Science Department, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, 45363 Jatinangor, Indonesia
| | - Sulastri Arsad
- Aquatic Resources Management Study Program, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran, 65145 Malang, Indonesia
| | - Luthfiana A Sari
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Unair Jl. Mulyosari, 60113 Surabaya, Indonesia
| | - Pipit Pitriani
- Department of Coaching Education, Faculty of Sports and Health Education, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 299, 40154 Bandung, Indonesia
| | - Suryanti Suryanti
- Department of Aquatic Resources, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. H. Soedarto, S.H., 50275 Semarang, Indonesia
| | - Gilang Gumilar
- Welding and Fabrication Engineering Technology Department, Institut Teknologi Sains Bandung, Central Cikarang, 17530 Bekasi, Indonesia
| | - Jean-Luc Mouget
- BiOSSE Laboratory, Faculty of Science & Technology, Le Mans Université, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Muhammad Yusuf
- Research Center for Biotechnology and Bioinformatics Universitas Padjadjaran, Jl. Singaperbangsa No. 2, 40132 Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, 45363 Jatinangor, Indonesia
| |
Collapse
|
15
|
Li Q, Shah T, Wang B, Qu L, Wang R, Hou Y, Baloch Z, Xia X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 2023; 12:1081370. [PMID: 36683695 PMCID: PMC9853062 DOI: 10.3389/fcimb.2022.1081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.
Collapse
Affiliation(s)
- Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,The First Affiliated Hospital & Clinical Medical College, Dali University, Dali, Yunnan, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,*Correspondence: Xueshan Xia,
| |
Collapse
|
16
|
Chen TH, Tsai MJ, Chang CS, Xu L, Fu YS, Weng CF. The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion. J Infect Public Health 2023; 16:42-54. [PMID: 36470006 PMCID: PMC9675089 DOI: 10.1016/j.jiph.2022.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The novel coronavirus disease-2019 (COVID-19) that emerged in China, is an extremely contagious and pathogenic viral infection caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that has sparked a global pandemic. The few and limited availability of approved therapeutic agents or vaccines is of great concern. Urgently, Remdesivir, Nirmatrelvir, Molnupiravir, and some phytochemicals including polyphenol, flavonoid, alkaloid, and triterpenoid are applied to develop as repurposing drugs against the SARS-CoV-2 invasion. METHODS This study was conducted to perform molecular docking and absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis of the potential phytocompounds and repurposing drugs against three targets of SARS-CoV-2 proteins (RNA dependent RNA polymerase, RdRp, Endoribonclease, S-protein of ACE2-RBD). RESULTS The docking data illustrated Arachidonic acid, Rutin, Quercetin, and Curcumin were highly bound with coronavirus polyprotein replicase and Ebolavirus envelope protein. Furthermore, anti- Ebolavirus molecule Remedesivir, anti-HIV molecule Chloroquine, and Darunavir were repurposed with coronavirus polyprotein replicase as well as Ebolavirus envelope protein. The strongest binding interaction of each targets are Rutin with RdRp, Endoribonclease with Amentoflavone, and ACE2-RBD with Epigallocatechin gallate. CONCLUSIONS Taken altogether, these results shed a light on that phytocompounds have a therapeutic potential for the treatment of anti-SARS-CoV-2 may base on multi-target effects or cocktail formulation for blocking viral infection through invasion/activation, transcription/reproduction, and posttranslational cleavage to battle COVID-19 pandemic.
Collapse
Affiliation(s)
- Ting-Hsu Chen
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei 11217, Taiwan
| | - Chun-Sheng Chang
- Department of biotechnology and food technology, Southern Taiwan University of Science and Technology, Yungkang City 701, Taiwan
| | - Linxi Xu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Yaw-Syan Fu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Corresponding author
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China,Corresponding author
| |
Collapse
|
17
|
Zhao F, Zai X, Zhang Z, Xu J, Chen W. Challenges and developments in universal vaccine design against SARS-CoV-2 variants. NPJ Vaccines 2022; 7:167. [PMID: 36535982 PMCID: PMC9761649 DOI: 10.1038/s41541-022-00597-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had become a global concern because of its unexpectedly high pathogenicity and transmissibility. SARS-CoV-2 variants that reduce the immune protection elicited from previous vaccination or natural infection raise challenges in controlling the spread of the pandemic. The development of universal vaccines against these variants seems to be a practical solution to alleviate the physical and economic effects caused by this disease, but it is hard to achieve. In this review, we describe the high mutation rate of RNA viruses and dynamic molecular structures of SARS-CoV-2 variants in several major neutralizing epitopes, trying to answer the question of why universal vaccines are difficult to design. Understanding the biological basis of immune evasion is crucial for combating these obstacles. We then summarize several advancements worthy of further study, including heterologous prime-boost regimens, construction of chimeric immunogens, design of protein nanoparticle antigens, and utilization of conserved neutralizing epitopes. The fact that some immunogens can induce cross-reactive immune responses against heterologous coronaviruses provides hints for universal vaccine development. We hope this review can provide inspiration to current universal vaccine studies.
Collapse
Affiliation(s)
- Fangxin Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
| | - Zhiling Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China.
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, 10071, China.
| |
Collapse
|
18
|
Highly pathogenic coronaviruses and the kidney. Biomed Pharmacother 2022; 156:113807. [PMID: 36242850 PMCID: PMC9550661 DOI: 10.1016/j.biopha.2022.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.
Collapse
|
19
|
Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, Fu Z, Wang L, Hu G, Ma Q, Sheng S, Wang J, Hu X, Shao S. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol 2022; 13:1033674. [PMID: 36506506 PMCID: PMC9727200 DOI: 10.3389/fphar.2022.1033674] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects both people and animals and may cause significant respiratory problems, including lung illness: Corona Virus Disease 2019 (COVID-19). Swabs taken from the throat and nose of people who have the illness or are suspected of having it have shown this pathogenic virus. When SARS-CoV-2 infects the upper and lower respiratory tracts, it may induce moderate to severe respiratory symptoms, as well as the release of pro-inflammatory cytokines including interleukin 6 (IL-6). COVID-19-induced reduction of IL-6 in an inflammatory state may have a hitherto undiscovered therapeutic impact. Many inflammatory disorders, including viral infections, has been found to be regulated by IL-6. In individuals with COVID-19, one of the primary inflammatory agents that causes inflammatory storm is IL-6. It promotes the inflammatory response of virus infection, including the virus infection caused by SARS-CoV-2, and provides a new diagnostic and therapeutic strategy. In this review article, we highlighted the functions of IL-6 in the coronavirus, especially in COVID-19, showing that IL-6 activation plays an important function in the progression of coronavirus and is a rational therapeutic goal for inflammation aimed at coronavirus.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guozheng Tang
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China
| | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lizhi Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Liuning Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Guangzhi Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qing Ma
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Xinyang Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Song Shao
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China,*Correspondence: Song Shao,
| |
Collapse
|
20
|
Henke W, Waisner H, Arachchige SP, Kalamvoki M, Stephens E. The envelope proteins from SARS-CoV-2 and SARS-CoV potently reduce the infectivity of human immunodeficiency virus type 1 (HIV-1). Retrovirology 2022; 19:25. [PMID: 36403071 PMCID: PMC9675205 DOI: 10.1186/s12977-022-00611-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Viroporins are virally encoded ion channels involved in virus assembly and release. Human immunodeficiency virus type 1 (HIV-1) and influenza A virus encode for viroporins. The human coronavirus SARS-CoV-2 encodes for at least two viroporins, a small 75 amino acid transmembrane protein known as the envelope (E) protein and a larger 275 amino acid protein known as Orf3a. Here, we compared the replication of HIV-1 in the presence of four different β-coronavirus E proteins. RESULTS We observed that the SARS-CoV-2 and SARS-CoV E proteins reduced the release of infectious HIV-1 yields by approximately 100-fold while MERS-CoV or HCoV-OC43 E proteins restricted HIV-1 infectivity to a lesser extent. Mechanistically, neither reverse transcription nor mRNA synthesis was involved in the restriction. We also show that all four E proteins caused phosphorylation of eIF2-α at similar levels and that lipidation of LC3-I could not account for the differences in restriction. However, the level of caspase 3 activity in transfected cells correlated with HIV-1 restriction in cells. Finally, we show that unlike the Vpu protein of HIV-1, the four E proteins did not significantly down-regulate bone marrow stromal cell antigen 2 (BST-2). CONCLUSIONS The results of this study indicate that while viroporins from homologous viruses can enhance virus release, we show that a viroporin from a heterologous virus can suppress HIV-1 protein synthesis and release of infectious virus.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Hope Waisner
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Sachith Polpitiya Arachchige
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| | - Edward Stephens
- Department of Microbiology, Molecular Genetics and ImmunologyUniversity of Kansas Medical Center, 2000 Hixon Hall 3901 Rainbow Blvd, Kansas, KS 66160 USA
| |
Collapse
|
21
|
Pelisek J, Reutersberg B, Greber UF, Zimmermann A. Vascular dysfunction in COVID-19 patients: update on SARS-CoV-2 infection of endothelial cells and the role of long non-coding RNAs. Clin Sci (Lond) 2022; 136:1571-1590. [PMID: 36367091 PMCID: PMC9652506 DOI: 10.1042/cs20220235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023]
Abstract
Although COVID-19 is primarily a respiratory disease, it may affect also the cardiovascular system. COVID-19 patients with cardiovascular disorder (CVD) develop a more severe disease course with a significantly higher mortality rate than non-CVD patients. A common denominator of CVD is the dysfunction of endothelial cells (ECs), increased vascular permeability, endothelial-to-mesenchymal transition, coagulation, and inflammation. It has been assumed that clinical complications in COVID-19 patients suffering from CVD are caused by SARS-CoV-2 infection of ECs through the angiotensin-converting enzyme 2 (ACE2) receptor and the cellular transmembrane protease serine 2 (TMPRSS2) and the consequent dysfunction of the infected vascular cells. Meanwhile, other factors associated with SARS-CoV-2 entry into the host cells have been described, including disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), the C-type lectin CD209L or heparan sulfate proteoglycans (HSPG). Here, we discuss the current data about the putative entry of SARS-CoV-2 into endothelial and smooth muscle cells. Furthermore, we highlight the potential role of long non-coding RNAs (lncRNAs) affecting vascular permeability in CVD, a process that might exacerbate disease in COVID-19 patients.
Collapse
Affiliation(s)
- Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zürich, Zürich, Switzerland
| | | | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
22
|
Panati K, Timmana LV, Reddy AT V, Reddy Saddala R, Ramireddy Narala V. Virology and Molecular Pathogenesis of Coronavirus Disease 2019: An Update. Eurasian J Med 2022; 54:299-304. [PMID: 35971283 PMCID: PMC9797742 DOI: 10.5152/eurasianjmed.2022.21133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The pandemic coronavirus disease 2019 outbreak's causative agent was identified as severe acute respiratory syndrome coronavirus 2. It is a positive-sense single-stranded RNA virus with a ~30 kb size genome that belongs to the Nidovirales. Molecular analysis revealed that severe acute respiratory syndrome coronavirus 2 is a variant of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus with some sequence similarity. The confirmed cases and death toll are high in severe acute respiratory syndrome coronavirus 2 compared to severe acute respiratory syndrome coronavirus and the estimated R0 is >1. The data on pathological findings on severe acute respiratory syndrome coronavirus 2 are scarce and present treatment management is based on symptoms that are similar to severe acute respiratory syndrome coronavirus. In this review, we have discussed the transmission, viral replication, and cytokine storm and highlighted the recent pathological findings of coronavirus disease 2019. The reported severe acute respiratory syndrome coronavirus 2 pathological findings were similar to that of severe acute respiratory syndrome coronavirus. Though these findings help notify the clinical course of the disease, it warrants further in vivo and ex vivo studies with larger samples obtained from the coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, A.P, India
| | - Lokesh V Timmana
- Department of Zoology, Yogi Vemana University, Kadapa, A.P, India
| | | | | | | |
Collapse
|
23
|
Parmar M, Thumar R, Sheth J, Patel D. Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Struct Chem 2022; 33:2243-2260. [PMID: 36160688 PMCID: PMC9485025 DOI: 10.1007/s11224-022-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 10/26/2022]
Abstract
Millions of lives have been infected since the SARS-CoV-2 outbreak in 2019. The high human-to-human transmission rate has warranted a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging concern variants is B1.1.529 (Omicron), which carries ~ 30 mutations in the Spike protein (S) of SARS-CoV-2 and is predicted to evade antibody recognition even from vaccinated people. We used a structure-based approach and an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity was used for designing and predicting vaccine construct features and structure models. In addition, the MESV construct In silico cloning in the pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. Therefore, the proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02027-6.
Collapse
Affiliation(s)
- Meet Parmar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Ritik Thumar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Jigar Sheth
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Dhaval Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, 382355 Gujarat India
| |
Collapse
|
24
|
Kumar A, Rathi E, Kini SG. Computational design of a broad-spectrum multi-epitope vaccine candidate against seven strains of human coronaviruses. 3 Biotech 2022; 12:240. [PMID: 36003896 PMCID: PMC9395775 DOI: 10.1007/s13205-022-03286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Spike (S) proteins are an attractive target as it mediates the binding of the SARS-CoV-2 to the host through ACE-2 receptors. We hypothesize that the screening of the S protein sequences of all the seven known HCoVs would result in the identification of potential multi-epitope vaccine candidates capable of conferring immunity against various HCoVs. In the present study, several machine learning-based in-silico tools were employed to design a broad-spectrum multi-epitope vaccine candidate targeting the S protein of seven known strains of human coronaviruses. Herein, multiple B-cell epitopes and T-cell epitopes (CTL and HTL) were predicted from the S protein sequences of all seven known HCoVs. Post-prediction they were linked together with an adjuvant to construct a potential broad-spectrum vaccine candidate. Secondary and tertiary structures were predicted and validated, and the refined 3D-model was docked with an immune receptor. The vaccine candidate was evaluated for antigenicity, allergenicity, solubility, and its ability to achieve high-level expression in bacterial hosts. Finally, the immune simulation was carried out to evaluate the immune response after three vaccine doses. The designed vaccine is antigenic (with or without the adjuvant), non-allergenic, binds well with TLR-3 receptor and might elicit a diverse and strong immune response.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.,Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
25
|
Aktaş E, Özdemir Özgentürk N. Revealing In Silico that Bacteria's Outer Membrane Proteins may Help our Bodies Replicate and Carry Severe Acute Respiratory Syndrome Coronavirus 2. Bioinform Biol Insights 2022; 16:11779322221116320. [PMID: 35966808 PMCID: PMC9364190 DOI: 10.1177/11779322221116320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/10/2022] [Indexed: 10/31/2022] Open
Abstract
Some studies in the literature show that viruses can affect bacteria directly or indirectly, and viruses use their own specific ways to do these interactions. Furthermore, it is said that bacteria are prone to attachment mammalian cells during a viral illness using their surface proteins that bind to host extracellular matrix proteins such as fibronectin, fibrinogen, vitronectin, and elastin. A recent study identified the cooperation between bacteria and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in silico, in vitro, and in vivo. Like this study, we hypothesized that more bacteria protein might help SARS-CoV-2 transport and attach to angiotensin-converting enzyme 2 (ACE2). The bacteria's outer membrane proteins (OMPs) we chose were not random; they had to be on the outer surface of the bacteria because these proteins on the outer surface should have a high probability of interacting with both the spike protein and ACE2. We obtained by using bioinformatics tools that there may be binding between both ACE2 and spike protein of these bacteria's OMPs. Protein-protein interaction results also supported our hypothesis. Therefore, based on our predicted results, these bacteria OMPs may help SARS-CoV-2 move in our body, and both find and attach to ACE2. It is expected that these inferences obtained from the bioinformatics results may play a role in the SARS-CoV-2 virus reaching host cells. Thus, it may bring a different perspective to studies on how the virus can infect host cells.
Collapse
Affiliation(s)
- Emre Aktaş
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Faculty of Art and Science, Molecular Biology and Genetics, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
26
|
Gning LD, Diop A, Diagne ML, Tchuenche J. Modelling COVID-19 in Senegal and China with count autoregressive models. MODELING EARTH SYSTEMS AND ENVIRONMENT 2022; 8:5713-5721. [PMID: 35966644 PMCID: PMC9362506 DOI: 10.1007/s40808-022-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Lucien Diégane Gning
- LERSTAD, UFR Sciences appliquées et Technologie, Université Gaston BERGER, Saint-Louis, BP 234 Senegal
| | - Aba Diop
- Equipe de Recherche en Statistique et Modèles Aléatoires(ERESMA), Universitê Alioune Diop, Bambey, Senegal
| | - Mamadou Lamine Diagne
- Département de Mathématiques, UFR Sciences et Technologie, Universite de Thiès, Thiès, Senegal
| | - Jean Tchuenche
- School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
- School of Computational and Communication Sciences and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
27
|
Zanchettin AC, Barbosa LV, Dutra AA, Prá DMM, Pereira MRC, Stocco RB, Martins APC, Vaz de Paula CB, Nagashima S, de Noronha L, Machado-Souza C. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022; 14:v14081699. [PMID: 36016321 PMCID: PMC9415703 DOI: 10.3390/v14081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is a viral disease associated with an intense inflammatory response. Macrophage Activation Syndrome (MAS), the complication present in secondary hemophagocytic lymphohistiocytosis (sHLH), shares many clinical aspects observed in COVID-19 patients, and investigating the cytolytic function of the responsible cells for the first line of the immune response is important. Formalin-fixed paraffin-embedded lung tissue samples obtained by post mortem necropsy were accessed for three groups (COVID-19, H1N1, and CONTROL). Polymorphisms in MAS cytolytic pathway (PRF1; STX11; STXBP2; UNC13D and GZMB) were selected and genotyping by TaqMan® assays (Thermo Fisher Scientific, MA, USA) using Real-Time PCR (Applied Biosystems, MA USA). Moreover, immunohistochemistry staining was performed with a monoclonal antibody against perforin, CD8+ and CD57+ proteins. Histopathological analysis showed high perforin tissue expression in the COVID-19 group; CD8+ was high in the H1N1 group and CD57+ in the CONTROL group. An association could be observed in two genes related to the cytolytic pathway (PRF1 rs885822 G/A and STXBP2 rs2303115 G/A). Furthermore, PRF1 rs350947132 was associated with increased immune tissue expression for perforin in the COVID-19 group. The genotype approach could help identify patients that are more susceptible, and for this reason, our results showed that perforin and SNPs in the PRF1 gene can be involved in this critical pathway in the context of COVID-19.
Collapse
Affiliation(s)
- Aline Cristina Zanchettin
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Leonardo Vinicius Barbosa
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Anderson Azevedo Dutra
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Daniele Margarita Marani Prá
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Marcos Roberto Curcio Pereira
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Rebecca Benicio Stocco
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Ana Paula Camargo Martins
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Caroline Busatta Vaz de Paula
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Seigo Nagashima
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
- Correspondence:
| |
Collapse
|
28
|
Zitzmann C, Dächert C, Schmid B, van der Schaar H, van Hemert M, Perelson AS, van Kuppeveld FJ, Bartenschlager R, Binder M, Kaderali L. Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.25.501353. [PMID: 35923314 PMCID: PMC9347285 DOI: 10.1101/2022.07.25.501353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Schmid
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hilde van der Schaar
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Frank J.M. van Kuppeveld
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Ting X, Xiang C, Liu DX, Chen R. Establishment and Cross-Protection Efficacy of a Recombinant Avian Gammacoronavirus Infectious Bronchitis Virus Harboring a Chimeric S1 Subunit. Front Microbiol 2022; 13:897560. [PMID: 35935229 PMCID: PMC9354458 DOI: 10.3389/fmicb.2022.897560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. A diversity of serotypes and genotypes of IBV have been identified worldwide, and the currently available vaccines do not cross-protect. In the present study, an efficient reverse genetics technology based on Beaudette-p65 has been used to construct a recombinant IBV, rIBV-Beaudette-KC(S1), by replacing the nucleotides 21,704–22,411 with the corresponding sequence from an isolate of QX-like genotype KC strain. Continuous passage of this recombinant virus in chicken embryos resulted in the accumulation of two point mutations (G21556C and C22077T) in the S1 region. Further studies showed that the T248S (G21556C) substitution may be essential for the adaptation of the recombinant virus to cell culture. Immunization of chicks with the recombinant IBV elicited strong antibody responses and showed high cross-protection against challenges with virulent M41 and a QX-like genotype IBV. This study reveals the potential of developing rIBV-Beau-KC(S1) as a cell-based vaccine with a broad protective immunity against two different genotypes of IBV.
Collapse
Affiliation(s)
- Xiong Ting
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Ding Xiang Liu ;
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- *Correspondence: Ruiai Chen
| |
Collapse
|
30
|
Laise P, Stanifer ML, Bosker G, Sun X, Triana S, Doldan P, La Manna F, De Menna M, Realubit RB, Pampou S, Karan C, Alexandrov T, Kruithof-de Julio M, Califano A, Boulant S, Alvarez MJ. A model for network-based identification and pharmacological targeting of aberrant, replication-permissive transcriptional programs induced by viral infection. Commun Biol 2022; 5:714. [PMID: 35854100 PMCID: PMC9296638 DOI: 10.1038/s42003-022-03663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/29/2022] [Indexed: 11/08/2022] Open
Abstract
SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Here we show that analysis of Master Regulator proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of Master Regulators enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed Master Regulators, based on their experimentally elucidated, context-specific mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based Master Regulator signatures induced by virtually any pathogen.
Collapse
Affiliation(s)
- Pasquale Laise
- DarwinHealth Inc, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA
| | | | | | - Sergio Triana
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group "Cellular Polarity and Viral Infection", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Translational Organoid Resource, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marta De Menna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Translational Organoid Resource, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ronald B Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Translational Organoid Resource, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, USA.
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
- Research Group "Cellular Polarity and Viral Infection", German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Attenuated Viral Replication of Avian Infectious Bronchitis Virus with a Novel 82-Nucleotide Deletion in the 5a Gene Indicates a Critical Role for 5a in Virus-Host Interactions. Microbiol Spectr 2022; 10:e0140522. [PMID: 35766501 PMCID: PMC9430126 DOI: 10.1128/spectrum.01405-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously found that a deletion in γ-coronavirus Infectious bronchitis virus (IBV) accessory gene 5a is critical for decreased viral pathogenicity in chickens. Here, we systematically analyzed IBV virus infection: invasion, genome replication, subgenomic mRNA (sgmRNA) synthesis, protein synthesis, and virion release. The ability of the mutant IBV strain rYN-Δ5a to invade susceptible cells was not significantly different from that of parental rYN. However, compared with rYN, the level of sgmRNA synthesis and genome replication after cell entry by rYN-Δ5a was significantly lower in the early stage, resulting in a significantly lower level of nucleoprotein (N) synthesis and a consequent significantly lower number of offspring viruses released into the supernatant. The detected 5a protein was diffusely distributed in the cytoplasm and perinuclear area. We identified 16 differentially expressed host proteins, 8 of which were found to be host nuclear and cytoplasmic transport-related proteins. Coimmunoprecipitation revealed an interaction between hemagglutinin (HA)-tagged TNPO1, TNPO3, XPO1, XPOT, RanBP1, and EIF2B4 proteins and Flag-tagged 5a protein, and laser confocal microscopy confirmed 5a protein colocalization with these proteins, indicating that 5a protein can cause changes in the host protein localization. These host proteins promote the nuclear localization of N proteins, so we believe that 5a protein can hijack host nucleoplasmic transport-related proteins to help N enter the nucleus. This may involve regulating the cell cycle to promote the optimal intracellular conditions for virus assembly or by participating in the regulation of nucleolar function as a strategy to optimize virus replication. IMPORTANCE Coronaviruses (CoVs) have a huge impact on humans and animals. It is important for the prevention and control of the viruses to assess the molecular mechanisms related to virulence attenuation. Here, we systematically analyzed a single cycle of virus infection by γ-CoV IBV lacking accessory protein 5a. We observed that a 5a deletion in the IBV genome affected virus replication and sgmRNA synthesis early in the virus life cycle, leading to decreases in protein synthesis, offspring virus assembly, and virion release in chicken embryonic kidney cells. IBV 5a protein was found to interact with multiple host nuclear and cytoplasmic transport- and translation-related proteins, which can also interact with IBV N and relocate it into the cell nucleus. These findings provide a comprehensive view regarding the importance of IBV accessory protein 5a and an important theoretical basis for studying the interaction between coronavirus and host cell proteins.
Collapse
|
32
|
Xie P, Fang Y, Baloch Z, Yu H, Zhao Z, Li R, Zhang T, Li R, Zhao J, Yang Z, Dong S, Xia X. A Mouse-Adapted Model of HCoV-OC43 and Its Usage to the Evaluation of Antiviral Drugs. Front Microbiol 2022; 13:845269. [PMID: 35755996 PMCID: PMC9220093 DOI: 10.3389/fmicb.2022.845269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The human coronavirus OC43 (HCoV-OC43) is one of the most common causes of common cold but can lead to fatal pneumonia in children and elderly. However, the available animal models of HCoV-OC43 did not show respiratory symptoms that are insufficient to assist in screening antiviral agents for respiratory diseases. In this study, we adapted the HCoV-OC43 VR-1558 strain by serial passage in suckling C57BL/6 mice and the resulting mouse-adapted virus at passage 9 (P9) contained 8 coding mutations in polyprotein 1ab, spike (S) protein, and nucleocapsid (N) protein. Pups infected with the P9 virus significantly lost body weight and died within 5 dpi. In cerebral and pulmonary tissues, the P9 virus replication induced the production of G-CSF, IFN-γ, IL-6, CXCL1, MCP-1, MIP-1α, RANTES, IP-10, MIP-1β, and TNF-α, as well as pathological alterations including reduction of neuronal cells and typical symptoms of viral pneumonia. We found that the treatment of arbidol hydrochloride (ARB) or Qingwenjiere Mixture (QJM) efficiently improved the symptoms and decreased n gene expression, inflammatory response, and pathological changes. Furthermore, treating with QJM or ARB raised the P9-infected mice’s survival rate within a 15 day observation period. These findings suggested that the new mouse-adapted HCoV-OC43 model is applicable and reproducible for antiviral studies of HCoV-OC43.
Collapse
Affiliation(s)
- Peifang Xie
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yue Fang
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Huanhuan Yu
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zeyuan Zhao
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongqiao Li
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tongtong Zhang
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuwei Dong
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- The Affiliated AnNing First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
33
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
34
|
Agarwal D, Zafar I, Ahmad SU, Kumar S, Ain QU, Sundaray JK, Rather MA. Structural, genomic information and computational analysis of emerging coronavirus (SARS-CoV-2). BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:170. [PMID: 35729950 PMCID: PMC9199328 DOI: 10.1186/s42269-022-00861-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 05/08/2023]
Abstract
Background The emerging viral pandemic worldwide is associated with a novel coronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). This virus is said to emerge from its epidemic center in Wuhan, China, in 2019. Coronaviruses (CoVs) are single-stranded, giant, enveloped RNA viruses that come under the family of coronaviridae and order Nidovirales which are the crucial pathogens for humans and other vertebrates. Main body Coronaviruses are divided into several subfamilies and genera based on the genomic structure and phylogenetic relationship. The name corona is raised due to the presence of spike protein on the envelope of the virus. The structural and genomic study revealed that the total genome size of SARS-CoV-2 is from 29.8 kb to 29.9 kb. The spike protein (S) is a glycoprotein that attaches to the receptor of host cells for entry into the host cell, followed by the attachment of virus RNA to the host ribosome for translation. The phylogenetic analysis of SARS-CoV-2 revealed the similarity (75-88%) with bat SARS-like coronavirus. Conclusion The sign and symptoms of novel severe acute respiratory syndrome coronavirus 2 are also discussed in this paper. The worldwide outbreak and prevention from severe acute respiratory syndrome coronavirus 2 are overviewed in the present article. The latest variant of coronavirus and the status of vaccines are also overviewed in the present article.
Collapse
Affiliation(s)
- Deepak Agarwal
- Tamil Nadu Dr. Jayalalithaa Fisheries University-IFPGS, OMR Campus, Vaniyanchavadi, Chennai, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Lahore, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University Mansehra, Mansehra, Pakistan
| | - Sujit Kumar
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar, India
| | - Qurat ul Ain
- Government College Women University, Faisalabad, Pakistan
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha India 751002
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| |
Collapse
|
35
|
Alsalman AJ, Al Mohaini M, Malik MZ, Imran M, Alomar FA, Al Awwad N. Elevated Vulnerability of Chronic Leukemia Patients to COVID-19 Infection: A Systems Biology Approach. DR. SULAIMAN AL HABIB MEDICAL JOURNAL 2022. [PMCID: PMC9099323 DOI: 10.1007/s44229-022-00005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Background
Emerging evidence has shown that SARS-CoV-2 may affect the circulatory system in addition to the human respiratory system. However, no study has indicated whether patients with leukemia have a greater likelihood of SARS-CoV-2 infection or have poor treatment outcomes.
Objective
The study aimed to demonstrate the relationship between essential blood proteins and the major SARS-CoV-2 proteins by network pharmacology bioinformatics analysis.
Methods
Bioinformatics analysis was used to establish eight differentially expressed gene hubs in leukemia through differential gene screening, protein–protein interaction network analysis, and gene enrichment analysis. Molecular docking analysis was also conducted to dock the two up-regulated proteins with the spike glycoprotein in leukemia and the critical protease enzyme (Mpro) of SARS-CoV-2.
Results
We identified two up-regulated genes (PTPRC and BCL6) among the eight differentially expressed genes. The PTPRC and BCL6 also docked perfectly with the main SARS-CoV-2 structural proteins.
Conclusion and Recommendation
This study indicates that SARS-CoV-2 is likely to affect with the blood in patients with chronic leukemia. Therefore, patients with chronic leukemia require greater medical attention and precautions during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, 91911 Saudi Arabia
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al-Hasa, Saudi Arabia
| | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi , 110025 India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, 91911 Saudi Arabia
| | - Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441 Saudi Arabia
| | - Nasir Al Awwad
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Al Bahah, Al Bahah Province Saudi Arabia
| |
Collapse
|
36
|
Zhang J, Yuan S, Peng Q, Ding Z, Hao W, Peng G, Xiao S, Fang L. Porcine Epidemic Diarrhea Virus nsp7 Inhibits Interferon-Induced JAK-STAT Signaling through Sequestering the Interaction between KPNA1 and STAT1. J Virol 2022; 96:e0040022. [PMID: 35442061 PMCID: PMC9093119 DOI: 10.1128/jvi.00400-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes high mortality in piglets. Interferon (IFN) responses are the primary defense mechanism against viral infection; however, viruses always evolve elaborate strategies to antagonize the antiviral action of IFN. Previous study showed that PEDV nonstructural protein 7 (nsp7), a component of the viral replicase polyprotein, can antagonize ploy(I:C)-induced type I IFN production. Here, we found that PEDV nsp7 also antagonized IFN-α-induced JAK-STAT signaling and the production of IFN-stimulated genes. PEDV nsp7 did not affect the protein and phosphorylation levels of JAK1, Tyk2, STAT1, and STAT2 or the formation of the interferon-stimulated gene factor 3 (ISGF3) complex. However, PEDV nsp7 prevented the nuclear translocation of STAT1 and STAT2. Mechanistically, PEDV nsp7 interacted with the DNA binding domain of STAT1/STAT2, which sequestered the interaction between karyopherin α1 (KPNA1) and STAT1, thereby blocking the nuclear transport of ISGF3. Collectively, these data reveal a new mechanism developed by PEDV to inhibit type I IFN signaling pathway. IMPORTANCE In recent years, an emerging porcine epidemic diarrhea virus (PEDV) variant has gained attention because of serious outbreaks of piglet diarrhea in China and the United States. Coronavirus nonstructural protein 7 (nsp7) has been proposed to act with nsp8 as part of an RNA primase to generate RNA primers for viral RNA synthesis. However, accumulating evidence indicates that coronavirus nsp7 can also antagonize type I IFN production. Our present study extends previous findings and demonstrates that PEDV nsp7 also antagonizes IFN-α-induced IFN signaling by competing with KPNA1 for binding to STAT1, thereby enriching the immune regulation function of coronavirus nsp7.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuangling Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenqi Hao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
37
|
Ngai HW, Kim DH, Hammad M, Gutova M, Aboody K, Cox CD. Stem Cell-based therapies for COVID-19-related acute respiratory distress syndrome. J Cell Mol Med 2022; 26:2483-2504. [PMID: 35426198 PMCID: PMC9077311 DOI: 10.1111/jcmm.17265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
As the number of confirmed cases and resulting death toll of the COVID-19 pandemic continue to increase around the globe - especially with the emergence of new mutations of the SARS-CoV-2 virus in addition to the known alpha, beta, gamma, delta and omicron variants - tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post-viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell-based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS. A number of candidate stem cell therapies have been found to exhibit low immunogenicity, coupled with inherent tropism to injury sites. In recent studies, these have demonstrated the ability to modulate suppression of pro-inflammatory cytokine signals such as those characterizing COVID-19-associated ARDS. Present translational studies are aiming to optimize the safety, efficacy and delivery to fully validate stem cell-based strategies targeting COVID-19 associated ARDS for viable clinical application.
Collapse
Affiliation(s)
- Hoi Wa Ngai
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Dae Hong Kim
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | - Karen Aboody
- Department of Stem Cell Biology and Regenerative MedicineCity of Hope Beckman Research InstituteDuarteCaliforniaUSA
| | | |
Collapse
|
38
|
Labeau A, Fery-Simonian L, Lefevre-Utile A, Pourcelot M, Bonnet-Madin L, Soumelis V, Lotteau V, Vidalain PO, Amara A, Meertens L. Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Rep 2022; 39:110744. [PMID: 35477000 PMCID: PMC9040432 DOI: 10.1016/j.celrep.2022.110744] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic, which has led to a devastating global health crisis. The emergence of variants that escape neutralizing responses emphasizes the urgent need to deepen our understanding of SARS-CoV-2 biology. Using a comprehensive identification of RNA-binding proteins (RBPs) by mass spectrometry (ChIRP-MS) approach, we identify 107 high-confidence cellular factors that interact with the SARS-CoV-2 genome during infection. By systematically knocking down their expression in human lung epithelial cells, we find that the majority of the identified RBPs are SARS-CoV-2 proviral factors. In particular, we show that HNRNPA2B1, ILF3, QKI, and SFPQ interact with the SARS-CoV-2 genome and promote viral RNA amplification. Our study provides valuable resources for future investigations into the mechanisms of SARS-CoV-2 replication and the identification of host-centered antiviral therapies.
Collapse
Affiliation(s)
- Athéna Labeau
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Luc Fery-Simonian
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Alain Lefevre-Utile
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Marie Pourcelot
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Lucie Bonnet-Madin
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Vassili Soumelis
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Pierre-Olivier Vidalain
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Ali Amara
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France.
| | - Laurent Meertens
- Université Paris Cité, INSERM U944 CNRS 7212, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France.
| |
Collapse
|
39
|
Chavda V, Chaurasia B, Fiorindi A, Umana GE, Lu B, Montemurro N. Ischemic Stroke and SARS-CoV-2 Infection: The Bidirectional Pathology and Risk Morbidities. Neurol Int 2022; 14:391-405. [PMID: 35645351 PMCID: PMC9149929 DOI: 10.3390/neurolint14020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is a fatal morbidity that needs emergency medical admission and immediate medical attention. COVID-19 ischemic brain damage is closely associated with common neurological symptoms, which are extremely difficult to treat medically, and risk factors. We performed literature research about COVID-19 and ischemia in PubMed, MEDLINE, and Scopus for this current narrative review. We discovered parallel manifestations of SARS-CoV-19 infection and brain ischemia risk factors. In published papers, we discovered a similar but complex pathophysiology of SARS-CoV-2 infection and stroke pathology. A patient with other systemic co-morbidities, such as diabetes, hypertension, or any respiratory disease, has a fatal combination in intensive care management when infected with SARS-CoV-19. Furthermore, due to their shared risk factors, COVID-19 and stroke are a lethal combination for medical management to treat. In this review, we discuss shared pathophysiology, adjuvant risk factors, challenges, and advancements in stroke-associated COVID-19 therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, San Francisco, CA 94305, USA; (V.C.); (B.L.)
| | - Bipin Chaurasia
- Department of Neurosurgery, Bhawani Hospital and Research Center, Birgunj 44300, Nepal;
| | - Alessandro Fiorindi
- Neurosurgery, SpedaliCivili, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25100 Brescia, Italy;
| | - Giuseppe E. Umana
- Department of Neurosurgery, Trauma and Gamma-Knife Center, Cannizzaro Hospital, 95100 Catania, Italy;
| | - Bingwei Lu
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, San Francisco, CA 94305, USA; (V.C.); (B.L.)
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
40
|
Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, Blasi M, Musah S. SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Front Cell Dev Biol 2022; 10:855340. [PMID: 35517495 PMCID: PMC9065256 DOI: 10.3389/fcell.2022.855340] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the Coronavirus disease 2019 (COVID-19), which has resulted in over 5.9 million deaths worldwide. While cells in the respiratory system are the initial target of SARS-CoV-2, there is mounting evidence that COVID-19 is a multi-organ disease. Still, the direct affinity of SARS-CoV-2 for cells in other organs such as the kidneys, which are often targeted in severe COVID-19, remains poorly understood. We employed a human induced pluripotent stem (iPS) cell-derived model to investigate the affinity of SARS-CoV-2 for kidney glomerular podocytes, and examined the expression of host factors for binding and processing of the virus. We studied cellular uptake of the live SARS-CoV-2 virus as well as a pseudotyped virus. Infection of podocytes with live SARS-CoV-2 or spike-pseudotyped lentiviral particles revealed cellular uptake even at low multiplicity of infection (MOI) of 0.01. We found that direct infection of human iPS cell-derived podocytes by SARS-CoV-2 virus can cause cell death and podocyte foot process retraction, a hallmark of podocytopathies and progressive glomerular diseases including collapsing glomerulopathy observed in patients with severe COVID-19 disease. We identified BSG/CD147 and ACE2 receptors as key mediators of spike binding activity in human iPS cell-derived podocytes. These results show that SARS-CoV-2 can infect kidney glomerular podocytes in vitro via multiple binding interactions and partners, which may underlie the high affinity of SARS-CoV-2 for kidney tissues. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism.
Collapse
Affiliation(s)
- Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, United States
| | - Morgan A. Burt
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatianna Travieso
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Arinze E. Okafor
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Maria Blasi
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, United States
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Developmental and Stem Cell Biology Program, Duke University, Durham, NC, United States
- Department of Cell Biology, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Detection of Four Porcine Enteric Coronaviruses Using CRISPR-Cas12a Combined with Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay. Viruses 2022; 14:v14040833. [PMID: 35458562 PMCID: PMC9032155 DOI: 10.3390/v14040833] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Porcine enteric coronaviruses have caused immense economic losses to the global pig industry, and pose a potential risk for cross-species transmission. The clinical symptoms of the porcine enteric coronaviruses (CoVs) are similar, making it difficult to distinguish between the specific pathogens by symptoms alone. Here, a multiplex nucleic acid detection platform based on CRISPR/Cas12a and multiplex reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) was developed for the detection of four diarrhea CoVs: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). With this strategy, we realized a visual colorimetric readout visible to the naked eye without specialized instrumentation by using a ROX-labeled single-stranded DNA-fluorescence-quenched (ssDNA-FQ) reporter. Our method achieved single-copy sensitivity with no cross-reactivity in the identification and detection of the target viruses. In addition, we successfully detected these four enteric CoVs from RNA of clinical samples. Thus, we established a rapid, sensitive, and on-site multiplex molecular differential diagnosis technology for porcine enteric CoVs.
Collapse
|
42
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Islam MA, Haque MA, Rahman MA, Hossen F, Reza M, Barua A, Marzan AA, Das T, Kumar Baral S, He C, Ahmed F, Bhattacharya P, Jakariya M. A Review on Measures to Rejuvenate Immune System: Natural Mode of Protection Against Coronavirus Infection. Front Immunol 2022; 13:837290. [PMID: 35371007 PMCID: PMC8965011 DOI: 10.3389/fimmu.2022.837290] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology President Abdul Hamid Medical College, Karimganj, Bangladesh
| | - Md. Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahin Reza
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| |
Collapse
|
44
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
45
|
Nahalka J. Transcription of the Envelope Protein by 1-L Protein-RNA Recognition Code Leads to Genes/Proteins That Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Curr Issues Mol Biol 2022; 44:791-816. [PMID: 35723340 PMCID: PMC8928949 DOI: 10.3390/cimb44020055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
The theoretical protein-RNA recognition code was used in this study to research the compatibility of the SARS-CoV-2 envelope protein (E) with mRNAs in the human transcriptome. According to a review of the literature, the spectrum of identified genes showed that the virus post-transcriptionally promotes or represses the genes involved in the SARS-CoV-2 life cycle. The identified genes/proteins are also involved in adaptive immunity, in the function of the cilia and wound healing (EMT and MET) in the pulmonary epithelial tissue, in Alzheimer's and Parkinson's disease and in type 2 diabetes. For example, the E-protein promotes BHLHE40, which switches off the IL-10 inflammatory "brake" and inhibits antiviral THαβ cells. In the viral cycle, E supports the COPII-SCAP-SREBP-HSP90α transport complex by the lowering of cholesterol in the ER and by the repression of insulin signaling, which explains the positive effect of HSP90 inhibitors in COVID-19 (geldanamycin), and E also supports importin α/β-mediated transport to the nucleus, which explains the positive effect of ivermectin, a blocker of importins α/β. In summary, transcription of the envelope protein by the 1-L protein-RNA recognition code leads to genes/proteins that are relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia
- Centre of Excellence for White-Green Biotechnology, Institute of Chemistry, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
46
|
Tabassum T, Rahman A, Araf Y, Ullah MA, Hosen MJ. Management of asthma patients during the COVID-19 pandemic: pathophysiological considerations to address the challenges. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:20. [PMID: 35155689 PMCID: PMC8817645 DOI: 10.1186/s43088-022-00204-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has become a serious global health issue, especially for people with pre-existing health conditions. Patients dealing with asthma are presumed to be at higher risk as COVID-19 may cause severe respiratory distress. Main body From the initial stage of the pandemic, several clinical trials and studies have assessed the association between COVID-19 and asthma; however, no significant association was reported. This may be due to the fact that most of the asthma cases remained undiagnosed and overlapping respiratory features make it difficult to differentiate between these two diseases. The pathomechanism of the conditions and the immune response generated in response to the conditions suggest that the presence of any of the conditions is very likely to influence the presence or severity of the other condition. So far, no specific treatments are known for COVID-19; however, the use of plasma therapy and broad-spectrum antiviral drugs during the initial phase of the pandemic and widespread vaccination during the latter phase has given positive outcomes in reducing COVID-19 cases as well as disease severity. Short conclusion Taking asthma as an increased risk factor for COVID-19 morbidity, this article aims to provide comprehensive insights into the risk and proper management of asthma patients during this COVID-19 pandemic. The common medications of asthma patients suppress their respiratory immune response that might facilitate cytokine storm in COVID-19 patients. Similarly, there are risks of viral-induced asthma exacerbations. Besides, different social issues such as shortage of medicines, SDOH, and delayed clinical trials put asthma patients through inconvenience. The primary focus at this point should be to reduce probable asthma attacks and severity to prevent hospitalization of asthma patients. Moreover, for better management of asthma patients maintaining an asthma action plan and healthy lifestyle, ensuring a nutritious diet, and developing self-management interventions can play a crucial role.
Collapse
|
47
|
Ullah MF, Ali Y, Khan MR, Khan IU, Yan B, Ijaz Khan M, Malik M. A review of COVID-19: Treatment strategies and CRISPR/Cas9 gene editing technology approaches to the coronavirus disease. Saudi J Biol Sci 2022; 29:860-871. [PMID: 34658640 PMCID: PMC8511869 DOI: 10.1016/j.sjbs.2021.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The new coronavirus SARS-CoV-2 pandemic has put the world on lockdown for the first time in decades. This has wreaked havoc on the global economy, put additional burden on local and global public health resources, and, most importantly, jeopardised human health. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and the CRISPR associated (Cas) protein (CRISPR/Cas) was identified to have structures in E. coli. The most modern of these systems is CRISPR/Cas. Editing the genomes of plants and animals took several years and cost hundreds of thousands of dollars until the CRISPR approach was discovered in 2012. As a result, CRISPR/Cas has piqued the scientific community's attention, particularly for disease diagnosis and treatment, because it is faster, less expensive, and more precise than previous genome editing technologies. Data from gene mutations in specific patients gathered using CRISPR/Cas can aid in the identification of the best treatment strategy for each patient, as well as other research domains such as coronavirus replication in cell culture, such as SARS-CoV2. The implications of the most prevalent driver mutations, on the other hand, are often unknown, making treatment interpretation difficult. For detecting a wide range of target genes, the CRISPR/Cas categories provide highly sensitive and selective tools. Genome-wide association studies are a relatively new strategy to discovering genes involved in human disease when it comes to the next steps in genomic research. Furthermore, CRISPR/Cas provides a method for modifying non-coding portions of the genome, which will help advance whole genome libraries by speeding up the analysis of these poorly defined parts of the genome.
Collapse
Affiliation(s)
- Muhammad Farhat Ullah
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Yasir Ali
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Inam Ullah Khan
- University of Sheffield, Department of Chemical and Biological Engineering, Arts Tower Western Bank, Sheffield, S102TN, The University of Sheffield, Manchester, UK
| | - Bing Yan
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, Huzhou 313000, PR China
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan
| | - M.Y. Malik
- Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
48
|
Qiu LJ, Yin KJ, Pan GX, Ni J, Wang B. Non-Causal Effects of Asthma on COVID-19 Susceptibility and Severity. Front Genet 2022; 12:762697. [PMID: 35082829 PMCID: PMC8784851 DOI: 10.3389/fgene.2021.762697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Asthma is observationally associated with an increased risk of COVID-19, but the causality remains unclear. We aim to determine whether there is a casual role of asthma in susceptibility to SARS-CoV-2 infection or COVID-19 severity. Methods: Instrumental variables (IVs) for asthma and moderate-to-severe asthma were obtained from publicly available summary statistics from the most recent and largest genome-wide association study (GWAS), including 394 283 and 57 695 participants of European ancestry, respectively. The corresponding data for COVID-19 susceptibility, hospitalization and severe-disease were derived from the COVID-19 Host Genetics Initiative GWAS meta-analysis of up to 1 683 768 individuals of European descent. Causality was inferred between correlated traits by Mendelian Randomization analyses. Inverse-variance weighted method was used as the primary MR estimates and multiple alternate approaches and several sensitivity analyses were also conducted. Results: Our MR analysis revealed no causal effects of asthma on COVID-19 susceptibility, hospitalization or severe disease, with odds ratio (OR) of 0.994 (95% CI: 0.962-1.027), 1.020 (95% CI: 0.955-1.089), and 0.929 (95% CI: 0.836-1.032), respectively. Furthermore, using genetic variants for moderate-to-severe asthma, a similar pattern of results was observed for COVID-19 susceptibility (OR: 0.988, 95% CI: 0.946-1.031), hospitalization (OR: 0.967, 95% CI: 0.906-1.031), and severe disease (OR: 0.911, 95% CI: 0.823-1.009). The association of asthma and moderate-to-severe asthma with COVID-19 was overall robust to sensitivity analyses. Conclusion: Genetically predicted asthma was not associated with susceptibility to, or severity of, COVID-19 disease, indicating that asthma is unlikely to be a causal factor in the development of COVID-19.
Collapse
Affiliation(s)
- Li-Juan Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- Medical Insurance Office, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang-Jia Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Gui-Xia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
49
|
Baricitinib combination therapy: a narrative review of repurposed Janus kinase inhibitor against severe SARS-CoV-2 infection. Infection 2022; 50:295-308. [PMID: 34902115 PMCID: PMC8666469 DOI: 10.1007/s15010-021-01730-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The Coronavirus disease 2019 (COVID-19) pandemic is one of the most devastating global problems. Regarding the lack of disease-specific treatments, repurposing drug therapy is currently considered a promising therapeutic approach in pandemic situations. Recently, the combination therapy of Janus kinase (JAK) inhibitor baricitinib has been authorized for emergency COVID-19 hospitalized patients; however, this strategy's safety, drug-drug interactions, and cellular signaling pathways remain a tremendous challenge. METHODS In this study, we aimed to provide a deep insight into the baricitinib combination therapies in severe COVID-19 patients through reviewing the published literature on PubMed, Scopus, and Google scholar databases. We also focused on cellular and subcellular pathways related to the synergistic effects of baricitinib plus antiviral agents, virus entry, and cytokine storm (CS) induction. The safety and effectiveness of this strategy have also been discussed in moderate to severe forms of COVID-19 infection. RESULTS The severity of COVID-19 is commonly associated with a dysregulated immune response and excessive release of pro-inflammatory agents, resulting in CS. It has been shown that baricitinib combined with antiviral agents could modulate the inflammatory response and provide a series of positive therapeutic outcomes in hospitalized adults and pediatric patients (age ≥ two years old). CONCLUSION Baricitinib plus the standard of care treatment might be a potential strategy in hospitalized patients with severe COVID-19.
Collapse
|
50
|
Farheen S, Agrawal S, Zubair S, Agrawal A, Jamal F, Altaf I, Kashif Anwar A, Umair SM, Owais M. Patho-Physiology of Aging and Immune-Senescence: Possible Correlates With Comorbidity and Mortality in Middle-Aged and Old COVID-19 Patients. FRONTIERS IN AGING 2021; 2:748591. [PMID: 35822018 PMCID: PMC9261314 DOI: 10.3389/fragi.2021.748591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
During the last 2 years, the entire world has been severely devastated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) as it resulted in several million deaths across the globe. While the virus infects people indiscriminately, the casualty risk is higher mainly in old, and middle-aged COVID-19 patients. The incidences of COVID-19 associated co-morbidity and mortality have a great deal of correlation with the weakened and malfunctioning immune systems of elderly people. Presumably, due to the physiological changes associated with aging and because of possible comorbidities such as diabetes, hypertension, obesity, cardiovascular, and lung diseases, which are more common in elderly people, may be considered as the reason making the elderly vulnerable to the infection on one hand, and COVID-19 associated complications on the other. The accretion of senescent immune cells not only contributes to the deterioration of host defense, but also results in elevated inflammatory phenotype persuaded immune dysfunction. In the present review, we envisage to correlate functioning of the immune defense of older COVID-19 patients with secondary/super infection, increased susceptibility or aggravation against already existing cancer, infectious, autoimmune, and other chronic inflammatory diseases. Moreover, we have discussed how age-linked modulations in the immune system affect therapeutic response against administered drugs as well as immunological response to various prophylactic measures including vaccination in the elderly host. The present review also provides an insight into the intricate pathophysiology of the aging and the overall immune response of the host to SARS-CoV-2 infection. A better understanding of age-related immune dysfunction is likely to help us in the development of targeted preemptive strategies for deadly COVID-19 in elderly patients.
Collapse
Affiliation(s)
- Saba Farheen
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Fauzia Jamal
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ishrat Altaf
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Abu Kashif Anwar
- Department of Anatomy, HSZH Gov, Unani Medical College, Bhopal, India
| | | | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
- *Correspondence: Mohammad Owais,
| |
Collapse
|