1
|
Ferrera I, Auladell A, Balagué V, Reñé A, Garcés E, Massana R, Gasol JM. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13299. [PMID: 39081120 PMCID: PMC11289420 DOI: 10.1111/1758-2229.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 08/03/2024]
Abstract
Marine microbial communities differ genetically, metabolically, and ecologically according to their lifestyle, and they may respond differently to environmental changes. In this study, we investigated the seasonal dynamics of bacterial assemblies in the free-living (FL) and particle-associated (PA) fractions across a span of 6 years in the Blanes Bay Microbial Observatory in the Northwestern Mediterranean. Both lifestyles showed marked seasonality. The trends in alpha diversity were similar, with lower values in spring-summer than in autumn-winter. Samples from both fractions were grouped seasonally and the percentage of community variability explained by the measured environmental variables was comparable (32% in FL and 31% in PA). Canonical analyses showed that biotic interactions were determinants of bacterioplankton dynamics and that their relevance varies depending on lifestyles. Time-decay curves confirmed a high degree of predictability in both fractions. Yet, 'seasonal' Amplicon Sequence Variants (ASVs) (as defined by Lomb Scargle time series analysis) in the PA communities represented 46% of the total relative abundance while these accounted for 30% in the FL fraction. These results demonstrate that bacteria inhabiting both fractions exhibit marked seasonality, highlighting the importance of accounting for both lifestyles to fully comprehend the dynamics of marine prokaryotic communities.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO‐CSIC)MálagaSpain
| | - Adrià Auladell
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
- Present address:
Institut de Biologia Evolutiva (IBE‐UPF‐CSIC)BarcelonaCataloniaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC)BarcelonaCataloniaSpain
| |
Collapse
|
2
|
Cheng H, Medina JS, Zhou J, Pinho EM, Meng R, Wang L, He Q, Morán XA, Hong PY. Predicting Anaerobic Membrane Bioreactor Performance Using Flow-Cytometry-Derived High and Low Nucleic Acid Content Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2360-2372. [PMID: 38261758 PMCID: PMC10851436 DOI: 10.1021/acs.est.3c07702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.
Collapse
Affiliation(s)
- Hong Cheng
- Key
Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry
of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, People’s
Republic of China
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Julie Sanchez Medina
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jianqiang Zhou
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- State
Power Investment Corporation Research Institute, Beijing 102209, People’s Republic of China
| | - Eduardo Machado Pinho
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Bioengineering, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
| | - Rui Meng
- Lawrence
Berkeley National Laboratory, Berkeley, California 94301, United States
- Amazon,
Incorporated, Palo Alto, California 94301, United States
| | - Liuwei Wang
- Systems
Medicine of Infectious Disease (P5), Robert
Koch Institute, 13353 Berlin, Germany
- Department
of Mathematics and Computer Science, Freie
Universität Berlin, 10117 Berlin, Germany
| | - Qiang He
- Key
Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry
of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, People’s
Republic of China
| | - Xosé Anxelu
G. Morán
- Red
Sea Research Center, Biological and Environmental Science & Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Environmental
Science and Engineering Program, Biological and Environmental Sciences
& Engineering Division (BESE), King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Water
Desalination and Reuse Center (WDRC), Biological and Environmental
Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Junger PC, Sarmento H, Giner CR, Mestre M, Sebastián M, Morán XAG, Arístegui J, Agustí S, Duarte CM, Acinas SG, Massana R, Gasol JM, Logares R. Global biogeography of the smallest plankton across ocean depths. SCIENCE ADVANCES 2023; 9:eadg9763. [PMID: 37939185 PMCID: PMC10631730 DOI: 10.1126/sciadv.adg9763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton β-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.
Collapse
Affiliation(s)
- Pedro C. Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Caterina R. Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Mireia Mestre
- Centro COPAS-COASTAL, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Marta Sebastián
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Xosé Anxelu G. Morán
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón/Xixón, Asturias 33212, Spain
| | - Javier Arístegui
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35214, Spain
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Silvia G. Acinas
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalunya 08003, Spain
| |
Collapse
|
4
|
Sabbagh EI, Calleja ML, Daffonchio D, Morán XAG. Seasonality of top-down control of bacterioplankton at two central Red Sea sites with different trophic status. Environ Microbiol 2023; 25:2002-2019. [PMID: 37286523 DOI: 10.1111/1462-2920.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = -0.62 to -0.59, p = 0.001-0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = -0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.
Collapse
Affiliation(s)
- Eman I Sabbagh
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Plank Institute for Chemistry (MPIC), Mainz, Germany
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Sanz-Sáez I, Sánchez P, Salazar G, Sunagawa S, de Vargas C, Bowler C, Sullivan MB, Wincker P, Karsenti E, Pedrós-Alió C, Agustí S, Gojobori T, Duarte CM, Gasol JM, Sánchez O, Acinas SG. Top abundant deep ocean heterotrophic bacteria can be retrieved by cultivation. ISME COMMUNICATIONS 2023; 3:92. [PMID: 37660234 PMCID: PMC10475052 DOI: 10.1038/s43705-023-00290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain.
| | - Pablo Sánchez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Colomban de Vargas
- Sorbonne University, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering; The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
| | - Eric Karsenti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France
- Directors' Research European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Susana Agustí
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain.
| |
Collapse
|
6
|
Fridolfsson E, Bunse C, Lindehoff E, Farnelid H, Pontiller B, Bergström K, Pinhassi J, Legrand C, Hylander S. Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper. Sci Rep 2023; 13:11865. [PMID: 37481661 PMCID: PMC10363133 DOI: 10.1038/s41598-023-38816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/15/2023] [Indexed: 07/24/2023] Open
Abstract
The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models.
Collapse
Affiliation(s)
- Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- Department of Marine Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- GEOMAR Helmholtz Centre for Ocean Research Kiel, E24105, Kiel, Germany
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
- School of Business, Innovation and Sustainability, Halmstad University, 30118, Halmstad, Sweden.
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
7
|
Šantić D, Stojan I, Matić F, Trumbić Ž, Vrdoljak Tomaš A, Fredotović Ž, Piwosz K, Lepen Pleić I, Šestanović S, Šolić M. Picoplankton diversity in an oligotrophic and high salinity environment in the central Adriatic Sea. Sci Rep 2023; 13:7617. [PMID: 37165047 PMCID: PMC10172355 DOI: 10.1038/s41598-023-34704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
By combining qualitative 16S metabarcoding and quantitative CARD-FISH methods with neural gas analysis, different patterns of the picoplankton community were revealed at finer taxonomic levels in response to changing environmental conditions in the Adriatic Sea. We present the results of a one-year study carried out in an oligotrophic environment where increased salinity was recently observed. We have shown that the initial state of community structure changes according to environmental conditions and is expressed as qualitative and quantitative changes. A general pattern of increasing diversity under harsh environmental conditions, particularly under the influence of increasing salinity at the expense of community abundance was observed. Considering the trend of changing seawater characteristics due to climate change, this study helps in understanding a possible structural change in the microbial community of the Adriatic Sea that could affect higher levels of the marine food web.
Collapse
Affiliation(s)
- Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia.
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia, Poland
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
8
|
Iriarte J, Dachs J, Casas G, Martínez-Varela A, Berrojalbiz N, Vila-Costa M. Snow-Dependent Biogeochemical Cycling of Polycyclic Aromatic Hydrocarbons at Coastal Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1625-1636. [PMID: 36655903 PMCID: PMC9893724 DOI: 10.1021/acs.est.2c05583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 05/28/2023]
Abstract
The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.
Collapse
|
9
|
Predation increases multiple components of microbial diversity in activated sludge communities. THE ISME JOURNAL 2022; 16:1086-1094. [PMID: 34853477 PMCID: PMC8941047 DOI: 10.1038/s41396-021-01145-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.
Collapse
|
10
|
Silva L, Calleja ML, Huete-Stauffer TM, Ivetic S, Ansari MI, Viegas M, Morán XAG. Heterotrophic Bacterioplankton Growth and Physiological Properties in Red Sea Tropical Shallow Ecosystems With Different Dissolved Organic Matter Sources. Front Microbiol 2022; 12:784325. [PMID: 35046913 PMCID: PMC8762102 DOI: 10.3389/fmicb.2021.784325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the key role of heterotrophic bacterioplankton in the biogeochemistry of tropical coastal waters, their dynamics have been poorly investigated in relation to the different dissolved organic matter (DOM) pools usually available. In this study we conducted four seasonal incubations of unfiltered and predator-free seawater (Community and Filtered treatment, respectively) at three Red Sea coastal sites characterized by different dominant DOM sources: Seagrass, Mangrove, and Phytoplankton. Bacterial abundance, growth and physiological status were assessed by flow cytometry and community composition by 16S rRNA gene amplicons. The Seagrass site showed the highest initial abundances (6.93 ± 0.30 × 105 cells mL-1), coincident with maximum DOC concentrations (>100 μmol C L-1), while growth rates peaked at the Mangrove site (1.11 ± 0.09 d-1) and were consistently higher in the Filtered treatment. The ratio between the Filtered and Community maximum bacterial abundance (a proxy for top-down control by protistan grazers) showed minimum values at the Seagrass site (1.05 ± 0.05) and maximum at the Phytoplankton site (1.24 ± 0.30), suggesting protistan grazing was higher in open waters, especially in the first half of the year. Since the Mangrove and Seagrass sites shared a similar bacterial diversity, the unexpected lack of bacterial response to predators removal at the latter site should be explained by differences in DOM characteristics. Nitrogen-rich DOM and fluorescent protein-like components were significantly associated with enhanced specific growth rates along the inshore-offshore gradient. Our study confirms the hypotheses that top-down factors control bacterial standing stocks while specific growth rates are bottom-up controlled in representative Red Sea shallow, oligotrophic ecosystems.
Collapse
Affiliation(s)
- Luis Silva
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Ll. Calleja
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Tamara M. Huete-Stauffer
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Snjezana Ivetic
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohd I. Ansari
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Biosciences, Integral University, Lucknow, India
| | - Miguel Viegas
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xosé Anxelu G. Morán
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centro Oceanográfico de Gijón/Xixón (IEO, CSIC), Gijón, Spain
| |
Collapse
|
11
|
Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. THE ISME JOURNAL 2022; 16:178-189. [PMID: 34285363 PMCID: PMC8692485 DOI: 10.1038/s41396-021-01053-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Bacteria display dynamic abundance fluctuations over time in marine environments, where they play key biogeochemical roles. Here, we characterized the seasonal dynamics of marine bacteria in a coastal oligotrophic time series station, tested how similar the temporal niche of closely related taxa is, and what are the environmental parameters modulating their seasonal abundance patterns. We further explored how conserved the niche is at higher taxonomic levels. The community presented recurrent patterns of seasonality for 297 out of 6825 amplicon sequence variants (ASVs), which constituted almost half of the total relative abundance (47%). For certain genera, niche similarity decreased as nucleotide divergence in the 16S rRNA gene increased, a pattern compatible with the selection of similar taxa through environmental filtering. Additionally, we observed evidence of seasonal differentiation within various genera as seen by the distinct seasonal patterns of closely related taxa. At broader taxonomic levels, coherent seasonal trends did not exist at the class level, while the order and family ranks depended on the patterns that existed at the genus level. This study identifies the coexistence of closely related taxa for some bacterial groups and seasonal differentiation for others in a coastal marine environment subjected to a strong seasonality.
Collapse
Affiliation(s)
- Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Center for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, Fuengirola, Málaga, Spain.
| |
Collapse
|
12
|
Hörstmann C, Buttigieg PL, John U, Raes EJ, Wolf-Gladrow D, Bracher A, Waite AM. Microbial diversity through an oceanographic lens: refining the concept of ocean provinces through trophic-level analysis and productivity-specific length scales. Environ Microbiol 2021; 24:404-419. [PMID: 34766422 DOI: 10.1111/1462-2920.15832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S-50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.
Collapse
Affiliation(s)
- Cora Hörstmann
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Department of Life Sciences and Chemistry, Jacobs University gGmbH, Bremen, Germany
| | | | - Uwe John
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Eric J Raes
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Dieter Wolf-Gladrow
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany
| | - Astrid Bracher
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Science, Bremerhaven, Germany.,Institute of Environmental Physics, University of Bremen, Bremen, Germany
| | - Anya M Waite
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Lineage-Specific Growth Curves Document Large Differences in Response of Individual Groups of Marine Bacteria to the Top-Down and Bottom-Up Controls. mSystems 2021; 6:e0093421. [PMID: 34581594 PMCID: PMC8547455 DOI: 10.1128/msystems.00934-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine bacterioplankton represent a diverse assembly of species differing largely in their abundance, physiology, metabolic activity, and role in microbial food webs. To analyze their sensitivity to bottom-up and top-down controls, we performed a manipulation experiment where grazers were removed, with or without the addition of phosphate. Using amplicon-reads normalization by internal standard (ARNIS), we reconstructed growth curves for almost 300 individual phylotypes. Grazer removal caused a rapid growth of most bacterial groups, which grew at rates of 0.6 to 3.5 day−1, with the highest rates (>4 day−1) recorded among Rhodobacteraceae, Oceanospirillales, Alteromonadaceae, and Arcobacteraceae. Based on their growth response, the phylotypes were divided into three basic groups. Most of the phylotypes responded positively to both grazer removal as well as phosphate addition. The second group (containing, e.g., Rhodobacterales and Rhizobiales) responded to the grazer removal but not to the phosphate addition. Finally, some clades, such as SAR11 and Flavobacteriaceae, responded only to phosphate amendment but not to grazer removal. Our results show large differences in bacterial responses to experimental manipulations at the phylotype level and document different life strategies of marine bacterioplankton. In addition, growth curves of 130 phylogroups of aerobic anoxygenic phototrophs were reconstructed based on changes of the functional pufM gene. The use of functional genes together with rRNA genes may significantly expand the scientific potential of the ARNIS technique. IMPORTANCE Growth is one of the main manifestations of life. It is assumed generally that bacterial growth is constrained mostly by nutrient availability (bottom-up control) and grazing (top-down control). Since marine bacteria represent a very diverse assembly of species with different metabolic properties, their growth characteristics also largely differ accordingly. Currently, the growth of marine microorganisms is typically evaluated using microscopy in combination with fluorescence in situ hybridization (FISH). However, these laborious techniques are limited in their throughput and taxonomical resolution. Therefore, we combined a classical manipulation experiment with next-generation sequencing to resolve the growth dynamics of almost 300 bacterial phylogroups in the coastal Adriatic Sea. The analysis documented that most of the phylogroups responded positively to both grazer removal and phosphate addition. We observed significant differences in growth kinetics among closely related species, which could not be distinguished by the classical FISH technique.
Collapse
|
14
|
Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea. Sci Rep 2021; 11:11186. [PMID: 34045659 PMCID: PMC8159981 DOI: 10.1038/s41598-021-90863-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Bacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.
Collapse
|
15
|
Quiroga MV, Huber P, Ospina-Serna J, Diovisalvi N, Odriozola M, Cueto GR, Lagomarsino L, Fermani P, Bustingorry J, Escaray R, Zagarese H, Unrein F. The dynamics of picocyanobacteria from a hypereutrophic shallow lake is affected by light-climate and small-bodied zooplankton: a 10-year cytometric time-series analysis. FEMS Microbiol Ecol 2021; 97:6204701. [PMID: 33784379 DOI: 10.1093/femsec/fiab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 11/12/2022] Open
Abstract
In aquatic systems, an interplay between bottom-up and top-down processes determines the dynamic of picocyanobacteria (Pcy) abundance and community structure. Here, we analyzed a 10-year time series (sampled fortnightly) from a hypereutrophic turbid shallow lake located within the Pampa Region of South America, generating the first long-term record of freshwater Pcy from the Southern Hemisphere. We used a cytometric approach to study Pcy community, and focused on its relations with nutrient and light conditions (bottom-up) and potential grazers (top-down). A novel Pcy abundance seasonality with winter maximums was observed for years with relatively stable hydrological levels, related with decreased abundance of seasonal rotifers during colder seasons. Pcy showed lower abundance and higher cytometric alpha diversity during summer, probably due to a strong predation exerted by rotifers. In turn, a direct effect of the non-seasonal small cladocerans Bosmina spp. decreased Pcy abundance and induced a shift from single-cell Pcy into aggregated forms. This structuring effect of Bosmina spp. was further confirmed by Pcy cytometric (dis)similarity analyses from the time series and in situ experimental data. Remarkably, Pcy showed acclimatization to underwater light variations, resembling the relevance of light in this turbid system.
Collapse
Affiliation(s)
- María Victoria Quiroga
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina.,Instituto Nacional de Limnología (INALI), Universidad Nacional del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Paraje El Pozo, (3000) Santa Fe, Argentina
| | - Juliana Ospina-Serna
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Nadia Diovisalvi
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Mariana Odriozola
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Gerardo R Cueto
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, (1428) Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Lagomarsino
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Paulina Fermani
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - José Bustingorry
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Roberto Escaray
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Horacio Zagarese
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Intendente Marino Km 8.200, (7130) Chascomús, Buenos Aires, Argentina
| |
Collapse
|
16
|
Stephens BM, Opalk K, Petras D, Liu S, Comstock J, Aluwihare LI, Hansell DA, Carlson CA. Organic Matter Composition at Ocean Station Papa Affects Its Bioavailability, Bacterioplankton Growth Efficiency and the Responding Taxa. FRONTIERS IN MARINE SCIENCE 2021; 2021:10.3389/fmars.2020.590273. [PMID: 35004707 PMCID: PMC8740527 DOI: 10.3389/fmars.2020.590273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioavailability of organic matter (OM) to marine heterotrophic bacterioplankton is determined by both the chemical composition of OM and the microbial community composition. In the current study, changes in OM bioavailability were identified at Ocean Station Papa as part of the 2018 Export Processes in the Ocean from Remote Sensing (EXPORTS) field study. Removal rates of carbon (C) in controlled experiments were significantly correlated with the initial composition of total hydrolyzable amino acids, and C removal rates were high when the amino acid degradation index suggested a more labile composition. Carbon remineralization rates averaged 0.19 ± 0.08 μmol C L-1 d-1 over 6-10 days while bacterial growth efficiencies averaged 31 ± 7%. Amino acid composition and tandem mass spectrometry analysis of compound classes also revealed transformations to a more degraded OM composition during experiments. There was a log2-fold increase in the relative abundances of 16S rDNA-resolved bacterioplankton taxa in most experiments by members of the Methylophilaceae family (OM43 genus) and KI89A order. Additionally, when OM was more bioavailable, relative abundances increased by at least threefold for the classes Bacteroidetes (Flavobacteriaceae NS2b genus), Alphaproteobacteria (Rhodobacteraceae Sulfitobacter genus), and Gammaproteobacteria (Alteromonadales and Ectothiorhodospiraceae orders). Our data suggest that a diverse group of bacterioplankton was responsible for removing organic carbon and altering the OM composition to a more degraded state. Elevated community diversity, as inferred from the Shannon-Wiener H index, may have contributed to relatively high growth efficiencies by the bacterioplankton. The data presented here shed light on the interconnections between OM bioavailability and key bacterioplankton taxa for the degradation of marine OM.
Collapse
Affiliation(s)
- Brandon M. Stephens
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lihini I. Aluwihare
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Dennis A. Hansell
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, United States
| | - Craig A. Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
17
|
Carreira C, Lønborg C, Kühl M, Lillebø AI, Sandaa RA, Villanueva L, Cruz S. Fungi and viruses as important players in microbial mats. FEMS Microbiol Ecol 2021; 96:5910486. [PMID: 32966583 DOI: 10.1093/femsec/fiaa187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
Microbial mats are compacted, surface-associated microbial ecosystems reminiscent of the first living communities on early Earth. While often considered predominantly prokaryotic, recent findings show that both fungi and viruses are ubiquitous in microbial mats, albeit their functional roles remain unknown. Fungal research has mostly focused on terrestrial and freshwater ecosystems where fungi are known as important recyclers of organic matter, whereas viruses are exceptionally abundant and important in aquatic ecosystems. Here, viruses have shown to affect organic matter cycling and the diversity of microbial communities by facilitating horizontal gene transfer and cell lysis. We hypothesise fungi and viruses to have similar roles in microbial mats. Based on the analysis of previous research in terrestrial and aquatic ecosystems, we outline novel hypotheses proposing strong impacts of fungi and viruses on element cycling, food web structure and function in microbial mats, and outline experimental approaches for studies needed to understand these interactions.
Collapse
Affiliation(s)
- Cátia Carreira
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Christian Lønborg
- Section for Applied Marine Ecology and Modelling, Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Ana I Lillebø
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
| | - Sónia Cruz
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Departament of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Malits A, Boras JA, Balagué V, Calvo E, Gasol JM, Marrasé C, Pelejero C, Pinhassi J, Sala MM, Vaqué D. Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web. Front Microbiol 2021; 12:635821. [PMID: 33935996 PMCID: PMC8079731 DOI: 10.3389/fmicb.2021.635821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic carbon emissions are causing changes in seawater carbonate chemistry including a decline in the pH of the oceans. While its aftermath for calcifying microbes has been widely studied, the effect of ocean acidification (OA) on marine viruses and their microbial hosts is controversial, and even more in combination with another anthropogenic stressor, i.e., human-induced nutrient loads. In this study, two mesocosm acidification experiments with Mediterranean waters from different seasons revealed distinct effects of OA on viruses and viral-mediated prokaryotic mortality depending on the trophic state and the successional stage of the plankton community. In the winter bloom situation, low fluorescence viruses, the most abundant virus-like particle (VLP) subpopulation comprising mostly bacteriophages, were negatively affected by lowered pH with nutrient addition, while the bacterial host abundance was stimulated. High fluorescence viruses, containing cyanophages, were stimulated by OA regardless of the nutrient conditions, while cyanobacteria of the genus Synechococcus were negatively affected by OA. Moreover, the abundance of very high fluorescence viruses infecting small haptophytes tended to be lower under acidification while their putative hosts' abundance was enhanced, suggesting a direct and negative effect of OA on viral-host interactions. In the oligotrophic summer situation, we found a stimulating effect of OA on total viral abundance and the viral populations, suggesting a cascading effect of the elevated pCO2 stimulating autotrophic and heterotrophic production. In winter, viral lysis accounted for 30 ± 16% of the loss of bacterial standing stock per day (VMMBSS) under increased pCO2 compared to 53 ± 35% in the control treatments, without effects of nutrient additions while in summer, OA had no significant effects on VMMBSS (35 ± 20% and 38 ± 5% per day in the OA and control treatments, respectively). We found that phage production and resulting organic carbon release rates significantly reduced under OA in the nutrient replete winter situation, but it was also observed that high nutrient loads lowered the negative effect of OA on viral lysis, suggesting an antagonistic interplay between these two major global ocean stressors in the Anthropocene. In summer, however, viral-mediated carbon release rates were lower and not affected by lowered pH. Eutrophication consistently stimulated viral production regardless of the season or initial conditions. Given the relevant role of viruses for marine carbon cycling and the biological carbon pump, these two anthropogenic stressors may modulate carbon fluxes through their effect on viruses at the base of the pelagic food web in a future global change scenario.
Collapse
Affiliation(s)
- Andrea Malits
- Biological Oceanography Laboratory, Austral Center for Scientific Research (CONICET), Ushuaia, Argentina
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Julia A. Boras
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Vanessa Balagué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Eva Calvo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Josep M. Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- Center for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Cèlia Marrasé
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Carles Pelejero
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Maria Montserrat Sala
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| |
Collapse
|
19
|
Sabbagh EI, Huete-Stauffer TM, Calleja MLL, Silva L, Viegas M, Morán XAG. Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiol Ecol 2020; 96:5800985. [PMID: 32149360 PMCID: PMC7104677 DOI: 10.1093/femsec/fiaa033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/08/2020] [Indexed: 11/14/2022] Open
Abstract
Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL−1) in Red Sea coastal waters.
Collapse
Affiliation(s)
- Eman I Sabbagh
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Tamara M Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Maria L L Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia.,Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, 55128 Mainz, Germany
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Miguel Viegas
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Sánchez O, Ferrera I, Mabrito I, Gazulla CR, Sebastián M, Auladell A, Marín-Vindas C, Cardelús C, Sanz-Sáez I, Pernice MC, Marrasé C, Sala MM, Gasol JM. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Sci Rep 2020; 10:19773. [PMID: 33188261 PMCID: PMC7666142 DOI: 10.1038/s41598-020-76590-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Estimation of prokaryotic growth rates is critical to understand the ecological role and contribution of different microbes to marine biogeochemical cycles. However, there is a general lack of knowledge on what factors control the growth rates of different prokaryotic groups and how these vary between sites and along seasons at a given site. We carried out several manipulation experiments during the four astronomical seasons in the coastal NW Mediterranean in order to evaluate the impact of grazing, viral mortality, resource competition and light on the growth and loss rates of prokaryotes. Gross and net growth rates of different bacterioplankton groups targeted by group-specific CARD-FISH probes and infrared microscopy (for aerobic anoxygenic phototrophs, AAP), were calculated from changes in cell abundances. Maximal group-specific growth rates were achieved when both predation pressure and nutrient limitation were experimentally minimized, while only a minimal effect of viral pressure on growth rates was observed; nevertheless, the response to predation removal was more remarkable in winter, when the bacterial community was not subjected to nutrient limitation. Although all groups showed increases in their growth rates when resource competition as well as grazers and viral pressure were reduced, Alteromonadaceae consistently presented the highest rates in all seasons. The response to light availability was generally weaker than that to the other factors, but it was variable between seasons. In summer and spring, the growth rates of AAP were stimulated by light whereas the growth of the SAR11 clade (likely containing proteorhodopsin) was enhanced by light in all seasons. Overall, our results set thresholds on bacterioplankton group-specific growth and mortality rates and contribute to estimate the seasonally changing contribution of various bacterioplankton groups to the function of microbial communities. Our results also indicate that the least abundant groups display the highest growth rates, contributing to the recycling of organic matter to a much greater extent than what their abundances alone would predict.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, 29640, Fuengirola, Málaga, Spain. .,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.
| | - Isabel Mabrito
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain
| | - Carlota R Gazulla
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalunya, Spain.,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, 35214, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Carolina Marín-Vindas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain.,Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, 40101, Costa Rica
| | - Clara Cardelús
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Massimo C Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Catalunya, Spain
| |
Collapse
|
21
|
Sebastián M, Forn I, Auladell A, Gómez-Letona M, Sala MM, Gasol JM, Marrasé C. Differential recruitment of opportunistic taxa leads to contrasting abilities in carbon processing by bathypelagic and surface microbial communities. Environ Microbiol 2020; 23:190-206. [PMID: 33089653 DOI: 10.1111/1462-2920.15292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
Different factors affect the way dissolved organic matter (DOM) is processed in the ocean water column, including environmental conditions and the functional capabilities of the communities. Recent studies have shown that bathypelagic prokaryotes are metabolically flexible, but whether this versatility translates into a higher ability to process DOM has been barely explored. Here we performed a multifactorial transplant experiment to compare the growth, activity and changes in DOM quality in surface and bathypelagic waters inoculated with either surface or bathypelagic prokaryotic communities. The effect of nutrient additions to surface waters was also explored. Despite no differences in the cell abundance of surface and deep ocean prokaryotes were observed in any of the treatments, in surface waters with nutrients the heterotrophic production of surface prokaryotes rapidly decreased. Conversely, bathypelagic communities displayed a sustained production throughout the experiment. Incubations with surface prokaryotes always led to a significant accumulation of recalcitrant compounds, which did not occur with bathypelagic prokaryotes, suggesting they have a higher ability to process DOM. These contrasting abilities could be explained by the recruitment of a comparatively larger number of opportunistic taxa within the bathypelagic assemblages, which likely resulted in a broader community capability of substrate utilization.
Collapse
Affiliation(s)
- Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain.,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - Irene Forn
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
22
|
Martinez-Varela A, Casas G, Piña B, Dachs J, Vila-Costa M. Large Enrichment of Anthropogenic Organic Matter Degrading Bacteria in the Sea-Surface Microlayer at Coastal Livingston Island (Antarctica). Front Microbiol 2020; 11:571983. [PMID: 33013806 PMCID: PMC7516020 DOI: 10.3389/fmicb.2020.571983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January–March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
23
|
Alsaffar Z, Pearman JK, Cúrdia J, Ellis J, Calleja ML, Ruiz-Compean P, Roth F, Villalobos R, Jones BH, Morán XAG, Carvalho S. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci Rep 2020; 10:13550. [PMID: 32782295 PMCID: PMC7419567 DOI: 10.1038/s41598-020-70318-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
We investigated the influence of seagrass canopies on the benthic biodiversity of bacteria and macroinvertebrates in a Red Sea tropical lagoon. Changes in abundance, number of taxa and assemblage structure were analyzed in response to seagrass densities (low, SLD; high, SHD; seagrasses with algae, SA), and compared with unvegetated sediments. Biological and environmental variables were examined in these four habitats (hereafter called treatments), both in the underlaying sediments and overlaying waters, at three randomly picked locations in March 2017. Differences between treatments were more apparent in the benthic habitat than in the overlaying waters. The presence of vegetation (more than its cover) and changes in sedimentary features (grain size and metals) at local scales influenced the observed biological patterns, particularly for macroinvertebrates. Of note, the highest percentage of exclusive macroinvertebrate taxa (18% of the gamma diversity) was observed in the SHD treatment peaking in the SA for bacteria. Benthic macroinvertebrates and bacteria shared a generally low number of taxa across treatments and locations; approximately, 25% of the gamma diversity was shared among all treatments and locations for macrofauna, dropping to 11% for bacteria. Given the low overlap in the species distribution across the lagoon, sustaining the connectivity among heterogeneous soft sediment habitats appears to be essential for maintaining regional biodiversity. This study addresses a current scientific gap related to the relative contributions of vegetated and unvegetated habitats to biodiversity in tropical regions.
Collapse
Affiliation(s)
- Z Alsaffar
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,King Saud University, Riyadh, Saudi Arabia
| | - J K Pearman
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - J Cúrdia
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - J Ellis
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,School of Science, University of Waikato, Tauranga, New Zealand
| | - M Ll Calleja
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, Germany
| | - P Ruiz-Compean
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - F Roth
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, Helsinki, Finland
| | - R Villalobos
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - B H Jones
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - X A G Morán
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - S Carvalho
- Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
24
|
Morán XAG, Baltar F, Carreira C, Lønborg C. Responses of physiological groups of tropical heterotrophic bacteria to temperature and dissolved organic matter additions: food matters more than warming. Environ Microbiol 2020; 22:1930-1943. [PMID: 32249543 PMCID: PMC7384166 DOI: 10.1111/1462-2920.15007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
Compared to higher latitudes, tropical heterotrophic bacteria may be less responsive to warming because of strong bottom‐up control. In order to separate both drivers, we determined the growth responses of bacterial physiological groups to temperature after adding dissolved organic matter (DOM) from mangroves, seagrasses and glucose to natural seawater from the Great Barrier Reef. Low (LNA) and high (HNA) nucleic acid content, membrane‐intact (Live) and membrane‐damaged (Dead) plus actively respiring (CTC+) cells were monitored for 4 days. Specific growth rates of the whole community were significantly higher (1.9 day‐1) in the mangrove treatment relative to the rest (0.2–0.4 day‐1) at in situ temperature and their temperature dependence, estimated as activation energy, was also consistently higher. Strong bottom‐up control was suggested in the other treatments. Cell size depended more on DOM than temperature. Mangrove DOM resulted in significantly higher contributions of Live, HNA and CTC+ cells to total abundance, while the seagrass leachate reduced Live cells below 50%. Warming significantly decreased Live and CTC+ cells contributions in most treatments. Our results suggest that only in the presence of highly labile compounds, such as mangroves DOM, can we anticipate increases in heterotrophic bacteria biomass in response to warming in tropical regions.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, 1090, Althanstraße 14, Vienna, Austria.,Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand.,NIWA/University of Otago Research Centre for Oceanography, Dunedin, 9054, New Zealand
| | - Cátia Carreira
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Christian Lønborg
- Australian Institute of Marine Science, Townsville, Queensland, 4810, Australia
| |
Collapse
|
25
|
Al-Otaibi N, Huete-Stauffer TM, Calleja ML, Irigoien X, Morán XAG. Seasonal variability and vertical distribution of autotrophic and heterotrophic picoplankton in the Central Red Sea. PeerJ 2020; 8:e8612. [PMID: 32140305 PMCID: PMC7045887 DOI: 10.7717/peerj.8612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
The Red Sea is characterized by higher temperatures and salinities than other oligotrophic tropical regions. Here, we investigated the vertical and seasonal variations in the abundance and biomass of autotrophic and heterotrophic picoplankton. Using flow cytometry, we consistently observed five groups of autotrophs (Prochlorococcus, two populations of Synechococcus separated by their relative phycoerythrin fluorescence, low (LF-Syn) and high (HF-Syn), and two differently-sized groups of picoeukaryotes, small (Speuk) and large (Lpeuk)) and two groups of heterotrophic prokaryotes of low and high nucleic acid content (LNA and HNA, respectively). Samples were collected in 15 surveys conducted from 2015 to 2017 at a 700-m depth station in the central Red Sea. Surface temperature ranged from 24.6 to 32.6 °C with a constant value of 21.7 °C below 200 m. Integrated (0-100 m) chlorophyll a concentrations were low, with maximum values in fall (24.0 ± 2.7 mg m-2) and minima in spring and summer (16.1 ± 1.9 and 1.1 mg m-2, respectively). Picoplankton abundance was generally lower than in other tropical environments. Vertical distributions differed for each group, with Synechococcus and LNA prokaryotes more abundant at the surface while Prochlorococcus, picoeukaryotes and HNA prokaryotes peaked at the deep chlorophyll maximum, located between 40 and 76 m. Surface to 100 m depth-weighted abundances exhibited clear seasonal patterns for Prochlorococcus, with maxima in summer (7.83 × 104 cells mL-1, July 2015) and minima in winter (1.39 × 104 cells mL-1, January 2015). LF-Syn (0.32 - 2.70 × 104 cells mL-1 ), HF-Syn (1.11 - 3.20 × 104 cells mL-1) and Speuk (0.99 - 4.81 × 102 cells mL-1) showed an inverse pattern to Prochlorococcus, while Lpeuk (0.16 - 7.05 × 104 cells mL-1) peaked in fall. Synechococcus unexpectedly outnumbered Prochlorococcus in winter and at the end of fall. The seasonality of heterotrophic prokaryotes (2.29 - 4.21×105 cells mL-1 ) was less noticeable than autotrophic picoplankton. The contribution of HNA cells was generally low in the upper layers, ranging from 36% in late spring and early summer to ca. 50% in winter and fall. Autotrophs dominated integrated picoplankton biomass in the upper 100 m, with 1.4-fold higher values in summer than in winter (mean 387 and 272 mg C m-2, respectively). However, when the whole water column was considered, the biomass of heterotrophic prokaryotes exceeded that of autotrophic picoplankton with an average of 411 mg C m-2. Despite being located in tropical waters, our results show that the picoplankton community seasonal differences in the central Red Sea are not fundamentally different from higher latitude regions.
Collapse
Affiliation(s)
- Najwa Al-Otaibi
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tamara M Huete-Stauffer
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, Germany
| | - Xabier Irigoien
- AZTI - Marine Research, Pasaia, Spain.,Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Lønborg C, Baltar F, Carreira C, Morán XAG. Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming. Front Microbiol 2019; 10:2807. [PMID: 31866976 PMCID: PMC6906166 DOI: 10.3389/fmicb.2019.02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023] Open
Abstract
Global change impacts on marine biogeochemistry will be partly mediated by heterotrophic bacteria. Besides ocean warming, future environmental changes have been suggested to affect the quantity and quality of organic matter available for bacterial growth. However, it is yet to be determined in what way warming and changing substrate conditions will impact marine heterotrophic bacteria activity. Using short-term (4 days) experiments conducted at three temperatures (−3°C, in situ, +3°C) we assessed the temperature dependence of bacterial cycling of marine surface water used as a control and three different dissolved organic carbon (DOC) substrates (glucose, seagrass, and mangrove) in tropical coastal waters of the Great Barrier Reef, Australia. Our study shows that DOC source had the largest effect on the measured bacterial response, but this response was amplified by increasing temperature. We specifically demonstrate that (1) extracellular enzymatic activity and DOC consumption increased with warming, (2) this enhanced DOC consumption did not result in increased biomass production, since the increases in respiration were larger than for bacterial growth with warming, and (3) different DOC bioavailability affected the magnitude of the microbial community response to warming. We suggest that in coastal tropical waters, the magnitude of heterotrophic bacterial productivity and enzyme activity response to warming will depend partly on the DOC source bioavailability.
Collapse
Affiliation(s)
| | - Federico Baltar
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria.,Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Cátia Carreira
- Departamento de Biologia and CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Xosé Anxelu G Morán
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Brewin RJW, Morán XAG, Raitsos DE, Gittings JA, Calleja ML, Viegas M, Ansari MI, Al-Otaibi N, Huete-Stauffer TM, Hoteit I. Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll- a in Coastal Waters of the Red Sea. Front Microbiol 2019; 10:1964. [PMID: 31551946 PMCID: PMC6746215 DOI: 10.3389/fmicb.2019.01964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll-a concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia. We fitted a three-component model to the size-fractionated chlorophyll-a data to quantify the relationship between total chlorophyll and that in three size classes of phytoplankton [pico- (<2 μm), nano- (2–20 μm) and micro-phytoplankton (>20 μm)]. The model has an advantage over other more empirical methods in that its parameters are interpretable, expressed as the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined pico-nanophytoplankton, Cpm and Cp,nm, respectively) and the fractional contribution of these two size classes to total chlorophyll-a as it tends to zero (Dp and Dp,n). Residuals between the model and the data (model minus data) were compared with a range of other environmental variables available in the dataset. Residuals in pico- and combined pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with water temperature (positively) and picoeukaryote cell number (negatively). We conducted a running fit of the model with increasing temperature and found a negative relationship between temperature and parameters Cpm and Cp,nm and a positive relationship between temperature and parameters Dp and Dp,n. By harnessing the relative red fluorescence of the flow cytometric data, we show that picoeukaryotes, which are higher in cell number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other picophytoplankton and are slightly larger in size, possibly explaining the temperature shift in model parameters, though further evidence is needed to substantiate this finding. Our results emphasize the importance of knowing the water temperature and taxonomic composition of phytoplankton within each size class when understanding their relative contribution to total chlorophyll. Furthermore, our results have implications for the development of algorithms for inferring size-fractionated chlorophyll from satellite data, and for how the partitioning of total chlorophyll into the three size classes may change in a future ocean.
Collapse
Affiliation(s)
- Robert J W Brewin
- College of Life and Environmental Sciences, University of Exeter, Cornwall, United Kingdom.,National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Xosé Anxelu G Morán
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia
| | - Dionysios E Raitsos
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom.,Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - John A Gittings
- Department of Earth Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia.,Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Miguel Viegas
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia
| | - Mohd I Ansari
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia
| | - Najwa Al-Otaibi
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia
| | - Tamara M Huete-Stauffer
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research Center, King Abdullah University for Science and Technology, Thuwal, Saudi Arabia
| | - Ibrahim Hoteit
- Department of Earth Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Yahya RZ, Arrieta JM, Cusack M, Duarte CM. Airborne Prokaryote and Virus Abundance Over the Red Sea. Front Microbiol 2019; 10:1112. [PMID: 31214129 PMCID: PMC6554326 DOI: 10.3389/fmicb.2019.01112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
Aeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 μg m-3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m-3 and from 69,615 to 3,104,758 particles m-3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.
Collapse
Affiliation(s)
- Razan Z Yahya
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Santa Cruz de Tenerife, Spain
| | - Michael Cusack
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Division of Biological and Environmental Science and Engineering, Red Sea Research Centre and Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Calleja ML, Al-Otaibi N, Morán XAG. Dissolved organic carbon contribution to oxygen respiration in the central Red Sea. Sci Rep 2019; 9:4690. [PMID: 30886181 PMCID: PMC6423344 DOI: 10.1038/s41598-019-40753-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
In oligotrophic waters, dissolved organic carbon (DOC) is mostly produced in the surface layers by phytoplankton and remineralized by heterotrophic prokaryotes throughout the water column. DOC surface excess is subducted and exported to deeper layers where a semi-labile fraction is further processed contributing to oxygen consumption. How this cycling of DOC occurs in the Red Sea, one of the warmest oligotrophic marine basins, is virtually unknown. We examined DOC vertical and seasonal variability in a mesopelagic station (ca. 700 m depth) of the central Red Sea performing monthly profile samplings over a two-year period. Together with DOC vertical and seasonal distribution we evaluated the interaction with heterotrophic prokaryotes and contribution to oxygen respiration. DOC values ranged from 41.4 to 95.4 µmol C L−1, with concentrations in the epipelagic (70.0 ± 7.5 µmol C L−1) 40% higher on average than in the mesopelagic (50.7 ± 4.1 µmol C L−1). Subduction of seasonally accumulated semi-labile DOC was estimated to be responsible for ∼20% of the oxygen consumption mostly occurring at the low epipelagic-upper mesopelagic boundary layer. Variability in mesopelagic waters was higher than expected (ca. 20 µmol C L−1) evidencing a more active realm than previously thought, with consequences for carbon sequestration.
Collapse
Affiliation(s)
- Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia.
| | - Najwa Al-Otaibi
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
30
|
Vila-Costa M, Sebastián M, Pizarro M, Cerro-Gálvez E, Lundin D, Gasol JM, Dachs J. Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. Sci Rep 2019; 9:233. [PMID: 30659251 PMCID: PMC6338803 DOI: 10.1038/s41598-018-36635-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022] Open
Abstract
The anthropogenic perturbation of the phosphorus (P) marine biogeochemical cycle due to synthetic organophosphorus compounds remains unexplored. The objective of this work was to investigate the microbial degradation of organophosphate triesters (OPEs), widely used as plasticizers and flame retardants, in seawater and their effects on the physiology and composition of microbial communities. Experiments were performed in July 2014 using surface seawater from the Blanes Bay Microbial Observatory (NW Mediterranean) to which OPEs were added at environmentally relevant concentrations. The concentrations of OPEs in the dissolved-phase generally decreased after 24 hours of incubation at in situ conditions. The fitted first order reaction constants were significantly different than zero for the trihaloalkyl phosphate, tris(2-chloroethyl) phosphate and trialyl phosphate tricresyl phosphate. In general, OPEs triggered an increase of the percentage of actively respiring bacteria, total bacterial activity, and the number of low-nucleic acid bacteria, and a decrease in the percentage of membrane-compromised bacteria. Members of some bacterial groups, in particular Flavobacteria, increased their specific activity, indicating that seawater contains bacteria with the potential to degrade OPEs. In aged seawater that was presumably depleted of labile dissolved organic carbon and inorganic P, alkaline phosphatase activities significantly decreased when OPEs were added, indicating a relief on P stress, consistent with the role of OPEs as potential P sources.
Collapse
Affiliation(s)
- Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Barcelona, Catalunya, Spain.
| | - Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain.,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, 35214, Gran Canaria, Spain
| | - Mariana Pizarro
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Barcelona, Catalunya, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Barcelona, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Barlastgatan 11, 391 82, Kalmar, Sweden
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC-Jordi Girona 18-26, Barcelona, 08034, Barcelona, Catalunya, Spain
| |
Collapse
|
31
|
Morán XAG, Calvo-Díaz A, Arandia-Gorostidi N, Huete-Stauffer TM. Temperature sensitivities of microbial plankton net growth rates are seasonally coherent and linked to nutrient availability. Environ Microbiol 2018; 20:3798-3810. [PMID: 30159999 DOI: 10.1111/1462-2920.14393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Recent work suggests that temperature effects on marine heterotrophic bacteria are strongly seasonal, but few attempts have been made to concurrently assess them across trophic levels. Here, we estimated the temperature sensitivities (using activation energies, E) of autotrophic and heterotrophic microbial plankton net growth rates over an annual cycle in NE Atlantic coastal waters. Phytoplankton grew in winter and late autumn (0.41 ± 0.16 SE d-1 ) and decayed in the remaining months (-0.42 ± 0.10 d-1 ). Heterotrophic microbes shared a similar seasonality, with positive net growth for bacteria (0.14-1.48 d-1 ), while nanoflagellates had higher values (> 0.4 d-1 ) in winter and spring relative to the rest of the year (-0.46 to 0.29 d-1 ). Net growth rates activation energies showed similar dynamics in the three groups (-1.07 to 1.51 eV), characterized by maxima in winter, minima in summer and resumed increases in autumn. Microbial plankton E values were significantly correlated with nitrate concentrations as a proxy for nutrient availability. Nutrient-sufficiency (i.e., > 1 μmol l-1 nitrate) resulted in significantly higher activation energies of phytoplankton and heterotrophic nanoflagellates relative to nutrient-limited conditions. We suggest that only within spatio-temporal windows of both moderate bottom-up and top-down controls will temperature have a major enhancing effect on microbial growth.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Alejandra Calvo-Díaz
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| | - Nestor Arandia-Gorostidi
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain.,Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Tamara Megan Huete-Stauffer
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia.,Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía (IEO), Gijón/Xixón, Spain
| |
Collapse
|
32
|
Sebastián M, Auguet JC, Restrepo-Ortiz CX, Sala MM, Marrasé C, Gasol JM. Deep ocean prokaryotic communities are remarkably malleable when facing long-term starvation. Environ Microbiol 2017; 20:713-723. [PMID: 29159926 DOI: 10.1111/1462-2920.14002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
The bathypelagic ocean is one of the largest ecosystems on Earth and sustains half of the ocean's microbial activity. This microbial activity strongly relies on surface-derived particles, but there is growing evidence that the carbon released through solubilization of these particles may not be sufficient to meet the energy demands of deep ocean prokaryotes. To explore how bathypelagic prokaryotes respond to the absence of external inputs of carbon, we followed the long-term (1 year) dynamics of an enclosed community. Despite the lack of external energy supply, we observed a continuous succession of active prokaryotic phylotypes, which was driven by recruitment of taxa from the seed bank (i.e., initially rare operational taxonomic units [OTUs]). A single OTU belonging to Marine Group I of Thaumarchaeota, which was originally rare, dominated the microbial community for ∼ 4 months and played a fundamental role in this succession likely by introducing new organic carbon through chemolithoautotrophy. This carbon presumably produced a priming effect, because after the decline of Thaumarchaeota, the diversity and metabolic potential of the community increased back to the levels present at the start of the experiment. Our study demonstrates the profound versatility of deep microbial communities when facing organic carbon deprivation.
Collapse
Affiliation(s)
- Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, E08003 Barcelona, Catalunya, Spain.,Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino de Taliarte, s/n 35214, Telde, Spain
| | - Jean-Christophe Auguet
- Marine Biodiversity, Exploitation and Conservation (MARBEC), UMR CNRS 9190, Université de Montpellier, CC093, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Claudia Ximena Restrepo-Ortiz
- Marine Biodiversity, Exploitation and Conservation (MARBEC), UMR CNRS 9190, Université de Montpellier, CC093, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - María Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, E08003 Barcelona, Catalunya, Spain
| | - Celia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, E08003 Barcelona, Catalunya, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar CSIC, Passeig Marítim de la Barceloneta, 37-49, E08003 Barcelona, Catalunya, Spain
| |
Collapse
|
33
|
Amalfitano S, Fazi S, Ejarque E, Freixa A, Romaní AM, Butturini A. Deconvolution model to resolve cytometric microbial community patterns in flowing waters. Cytometry A 2017; 93:194-200. [PMID: 29265528 DOI: 10.1002/cyto.a.23304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023]
Abstract
Flow cytometry is suitable to discriminate and quantify aquatic microbial cells within a spectrum of fluorescence and light scatter signals. Using fixed gating and operational settings, we developed a finite distribution mixture model, followed by the Voronoi tessellation, to resolve bivariate cytometric profiles into cohesive subgroups of events. This procedure was applied to outline recurrent patterns and quantitative changes of the aquatic microbial community along a river hydrologic continuum. We found five major subgroups within each of the commonly retrieved populations of cells with Low and High content of Nucleic Acids (namely, LNA, and HNA cells). Moreover, the advanced analysis allowed assessing changes of community patterns perturbed by a wastewater feed. Our approach for cytometric data deconvolution confirmed that flow cytometry could represent a prime candidate technology for assessing microbial community patterns in flowing waters. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Rome, Italy
| | | | - Anna Freixa
- Catalan Institute for Water Research (ICRA), Girona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Andrea Butturini
- Departament de Biología Evolutiva, Ecología i Ciencias Ambientales, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Lambrecht J, Cichocki N, Hübschmann T, Koch C, Harms H, Müller S. Flow cytometric quantification, sorting and sequencing of methanogenic archaea based on F 420 autofluorescence. Microb Cell Fact 2017; 16:180. [PMID: 29084543 PMCID: PMC5663091 DOI: 10.1186/s12934-017-0793-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023] Open
Abstract
Background The widely established production of CH4 from renewable biomass in industrial scale anaerobic reactors may play a major role in the future energy supply. It relies on methanogenic archaea as key organisms which represent the bottleneck in the process. The quantitative analysis of these organisms can help to maximize process performance, uncover disturbances before failure, and may ultimately lead to community-based process control schemes. Existing qPCR and fluorescence microscopy-based methods are very attractive but can be cost-intensive and laborious. Results In this study we present an autofluorescence-based, flow cytometric method for the fast low-cost quantification of methanogenic archaea in complex microbial communities and crude substrates. The method was applied to a methanogenic enrichment culture (MEC) and digester samples (DS). The methanogenic archaea were quantified using the distinct fluorescence of their cofactor F420 in a range from 3.7 × 108 (± 3.3 × 106) cells mL−1 and 1.8 x 109 (± 1.1 × 108) cells mL−1. We evaluated different fixation methods and tested the sample stability. Stable abundance and fluorescence intensity were recorded up to 26 days during aerobic storage in PBS at 6 °C. The discrimination of the whole microbial community from the ubiquitous particle noise was facilitated by SYBR Green I staining and enabled calculation of relative abundances of methanogenic archaea of up to 9.64 ± 0.23% in the MEC and up to 4.43 ± 0.74% in the DS. The metaprofiling of the mcrA gene reinforced the results. Conclusions The presented method allows for fast and reliable quantification of methanogenic archaea in microbial communities under authentic digester conditions and can thus be useful for process monitoring and control in biogas digesters. Electronic supplementary material The online version of this article (10.1186/s12934-017-0793-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Lambrecht
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Nicolas Cichocki
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Christin Koch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
35
|
Arandia-Gorostidi N, Huete-Stauffer TM, Alonso-Sáez L, G Morán XA. Testing the metabolic theory of ecology with marine bacteria: different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom. Environ Microbiol 2017; 19:4493-4505. [PMID: 28836731 DOI: 10.1111/1462-2920.13898] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022]
Abstract
Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain
| | - Tamara Megan Huete-Stauffer
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
| | - Laura Alonso-Sáez
- Plankton Ecology and Pelagic Ecosystem Dynamics Division, Instituto Español de Oceanografía, Centro Oceanográfico de Gijón/Xixón, Gijón/Xixón, Asturias, Spain.,Marine Research Division, AZTI, Sukarrieta, Bizkaia, Spain
| | - Xosé Anxelu G Morán
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Casentini B, Falcione FT, Amalfitano S, Fazi S, Rossetti S. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. WATER RESEARCH 2016; 106:135-145. [PMID: 27710797 DOI: 10.1016/j.watres.2016.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Different countries in Europe still suffer of elevated arsenic (As) concentration in groundwaters used for human consumption. In the case of households not connected to the distribution system, decentralized water supply systems, such as Point of Use (POU) and Point of Entry (POE), offer a direct benefit for the consumers. Field scale ex-situ treatment systems based on metallic iron (ZVI) are already available for the production of reduced volumes of drinking water in remote areas (village scale). To address drinking water needs at larger scale, we designed a pilot unit able to produce an elevated daily volume of water for human consumption. We tested the long-term As removal efficiency of a two steps ZVI treatment unit for the production of 400 L/day clean water based on the combination of ZVI corrosion process with sedimentation and retention of freshly formed Fe precipitates. The system treated 100 μg/L As(V)-contaminated oxic groundwater in a discontinuous operation mode at a flow rate of 1 L/min for 31 days. Final removal was 77-96% and the most performing step was aeration/sedimentation (A/S) tank with a 60-94% efficiency. Arsenic in the outflow slightly exceeded the drinking water limit of 10 μg/L only after 6000 L treated and Fe concentration was always below 0.2 mg/L. Under proposed operating conditions ZVI passivation readily occurred and, as a consequence, Fe production sharply decreased. Arsenic mobility attached to particulate was 13-60% after ZVI column and 37-100% after A/S tank. Uniform amorphous cluster of Fe nanoparticles (100 nm) formed during aeration drove As removal process with an adsorption capacity corresponding to 20.5 mgAs/gFe. Research studies often focus only on chemico-physical aspects disregarding the importance of biological processes that may co-occur and interfere with ZVI corrosion, As removal and safe water production. We explored the microbial transport dynamics by flow cytometry, proved as a suitable tool to monitor the fate of both single cells and bioactive particles along the treatment train of the pilot unit. A net release of bioactive particles, representing on average 26.5% of flow cytometric events, was promoted by the ZVI filter, with densities 10 times higher than those found in the inflow. In conclusion, the proposed system was efficient to treat large daily volumes of As contaminated groundwater. However, filter design and operating conditions should be carefully adapted to specific situation, since several key factors affect As removal efficiency. An effort in the optimization of ZVI filter design should be made to reduce fast observed ZVI passivation and low As adsorption capacity of the whole filter. More attention to biomass retention and bioactive particles travelling within the unit should be given in order to elucidate bacteria influences on As removal efficiency and related sanitary risks on long term basis.
Collapse
Affiliation(s)
- Barbara Casentini
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria km 29.300, Monterotondo, Rome, 00015, Italy.
| | - Fabiano Teo Falcione
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| | - Stefano Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
37
|
Callieri C, Amalfitano S, Corno G, Bertoni R. Grazing-induced Synechococcus microcolony formation: experimental insights from two freshwater phylotypes. FEMS Microbiol Ecol 2016; 92:fiw154. [PMID: 27411979 DOI: 10.1093/femsec/fiw154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Freshwater cyanobacteria of the genus Synechococcus are ubiquitous and organized either as single cells of diverse morphology or as microcolonies of different size. We studied the formation of microcolonies induced by the mixotrophic nanoflagellate Poterioochromonas sp. grazing on two Synechococcus strains belonging to phylotypes with different content of phycobiliproteins (PE: phycoerythrin-rich cells, L.Albano Group A; PC: phycocyanin-rich cells, MW101C3 Group I). The quantitative variations in cell abundance, morphological and physiological conditions were assessed on short-term incubations in semi-continuous cultures, single culture (PE, PC) and co-culture (PE+PC), with and without predators, by flow cytometry, and PhytoPAM. Under grazing pressure, we observed that (i) the abundance of PE single cells decreased over time with a concomitant formation of PE microcolonies; (ii) in PC single cultures, no significant variation in single cells was found and microcolonies did not form; (iii) both PE and PC formed monoclonal microcolonies in co-culture; (iv) PC cells increased the photosynthetic efficiency of the PSII (higher Fv/Fm) in co-culture. In the aftermath of microcolony formation as a predation-induced adaptation, our findings indicated a different response of Synechococcus phylotypes potentially co-existing in natural environment and the importance of their interaction.
Collapse
Affiliation(s)
| | | | - Gianluca Corno
- Institute of Ecosystem Study, CNR-ISE, 28922 Verbania, Italy
| | - Roberto Bertoni
- Institute of Ecosystem Study, CNR-ISE, 28922 Verbania, Italy
| |
Collapse
|