1
|
Jiang R, Chen W, Li Q, Guo J, Lv Z, Chen W. Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua. Int J Biol Macromol 2025; 289:138834. [PMID: 39689807 DOI: 10.1016/j.ijbiomac.2024.138834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis. However, WD40 proteins have not been comprehensively identified in A. annua. In this study, we identified 236 WD40 proteins in the A. annua genome and examined their conserved domains, motifs, and cis-regulatory elements, gene structures, chromosomal distribution, duplication events of their encoding genes. Furthermore, we isolated and characterized TRANSPARENT TESTA GLABROUS 1 (AaTTG1), a homolog of Arabidopsis TTG1, and confirmed that AaTTG1 was localized to the nucleus and cytoplasm. Indeed, AaTTG1 can rescue the glabrous phenotype of the Arabidopsis ttg1 mutant and enhanced trichome production when heterologously expressed in wild-type Arabidopsis plants. Transgenic A. annua lines overexpressing AaTTG1 displayed a significantly higher density of glandular trichomes and higher artemisinin contents. Transgenic A. annua lines with inhibited AaTTG1 function had fewer glandular trichomes and lower artemisinin levels. Moreover, we demonstrated that AaTTG1 positively regulates glandular trichome development in A. annua through interactions with AaSPL9. This study thus provides fundamental insights into the role of WD40 proteins in A. annua and introduces a promising approach to enhance artemisinin production by manipulating glandular trichome development in this valuable medicinal plant.
Collapse
Affiliation(s)
- Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 610075, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
2
|
Panda MS, Qazi B, Vishwakarma V, Pattnaik GP, Haldar S, Chakraborty H. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template. RSC Med Chem 2024; 16:d4md00523f. [PMID: 39399312 PMCID: PMC11467784 DOI: 10.1039/d4md00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30-40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
Collapse
Affiliation(s)
- Manbit Subhadarsi Panda
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Bushra Qazi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Vaishali Vishwakarma
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
| | - Gourab Prasad Pattnaik
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| |
Collapse
|
3
|
Isaioglou I, Podia V, Velentzas AD, Kapolas G, Beris D, Karampelias M, Plitsi PK, Chatzopoulos D, Samakovli D, Roussis A, Merzaban J, Milioni D, Stravopodis DJ, Haralampidis K. APRF1 Interactome Reveals HSP90 as a New Player in the Complex That Epigenetically Regulates Flowering Time in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1313. [PMID: 38279311 PMCID: PMC10816710 DOI: 10.3390/ijms25021313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in Arabidopsis thaliana, such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet. Here, we show that the late-flowering phenotype of the anthesis promoting factor 1 (aprf1) mutants is temperature-dependent and can be suppressed when plants are grown under mild heat stress conditions. To gain further insight into the mechanism of APRF1 function, we employed a co-immunoprecipitation (Co-IP) approach to identify its interaction partners. We provide the first interactome of APRF1, which includes proteins that are localized in several subcellular compartments and are implicated in diverse cellular functions. The dual nucleocytoplasmic localization of ARRF1, which was validated through the interaction of APRF1 with HEAT SHOCK PROTEIN 1 (HSP90.1) in the nucleus and with HSP90.2 in the cytoplasm, indicates a dynamic and versatile involvement of APRF1 in multiple biological processes. The specific interaction of APRF1 with the chaperon HSP90.1 in the nucleus expands our knowledge regarding the epigenetic regulation of flowering time in A. thaliana and further suggests the existence of a delicate thermoregulated mechanism during anthesis.
Collapse
Affiliation(s)
- Ioannis Isaioglou
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Varvara Podia
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Athanassios D. Velentzas
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Georgios Kapolas
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Despoina Beris
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Michael Karampelias
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Panagiota Konstantinia Plitsi
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitris Chatzopoulos
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Despina Samakovli
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Andreas Roussis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| | - Jasmeen Merzaban
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.K.); (J.M.)
| | - Dimitra Milioni
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece (D.M.)
| | - Dimitrios J. Stravopodis
- Section of Cell Biology & Biophysics, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.D.V.); (D.C.); (D.J.S.)
| | - Kosmas Haralampidis
- Section of Botany, Biology Department, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.I.); (V.P.); (G.K.); (D.B.); (D.S.); (A.R.)
| |
Collapse
|
4
|
Ke S, Jiang Y, Zhou M, Li Y. Genome-Wide Identification, Evolution, and Expression Analysis of the WD40 Subfamily in Oryza Genus. Int J Mol Sci 2023; 24:15776. [PMID: 37958759 PMCID: PMC10648978 DOI: 10.3390/ijms242115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.
Collapse
Affiliation(s)
| | | | | | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (S.K.); (Y.J.); (M.Z.)
| |
Collapse
|
5
|
Adams DM, Reay WR, Cairns MJ. Multiomic prioritisation of risk genes for anorexia nervosa. Psychol Med 2023; 53:6754-6762. [PMID: 36803885 PMCID: PMC10600818 DOI: 10.1017/s0033291723000235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a psychiatric disorder associated with marked morbidity. Whilst AN genetic studies could identify novel treatment targets, integration of functional genomics data, including transcriptomics and proteomics, would assist to disentangle correlated signals and reveal causally associated genes. METHODS We used models of genetically imputed expression and splicing from 14 tissues, leveraging mRNA, protein, and mRNA alternative splicing weights to identify genes, proteins, and transcripts, respectively, associated with AN risk. This was accomplished through transcriptome, proteome, and spliceosome-wide association studies, followed by conditional analysis and finemapping to prioritise candidate causal genes. RESULTS We uncovered 134 genes for which genetically predicted mRNA expression was associated with AN after multiple-testing correction, as well as four proteins and 16 alternatively spliced transcripts. Conditional analysis of these significantly associated genes on other proximal association signals resulted in 97 genes independently associated with AN. Moreover, probabilistic finemapping further refined these associations and prioritised putative causal genes. The gene WDR6, for which increased genetically predicted mRNA expression was correlated with AN, was strongly supported by both conditional analyses and finemapping. Pathway analysis of genes revealed by finemapping identified the pathway regulation of immune system process (overlapping genes = MST1, TREX1, PRKAR2A, PROS1) as statistically overrepresented. CONCLUSIONS We leveraged multiomic datasets to genetically prioritise novel risk genes for AN. Multiple-lines of evidence support that WDR6 is associated with AN, whilst other prioritised genes were enriched within immune related pathways, further supporting the role of the immune system in AN.
Collapse
Affiliation(s)
- Danielle M. Adams
- School of Biomedical Sciences and Pharmacy, Centre for Complex Disease Neurobiology and Precision Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - William R. Reay
- School of Biomedical Sciences and Pharmacy, Centre for Complex Disease Neurobiology and Precision Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, Centre for Complex Disease Neurobiology and Precision Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
6
|
Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. Expanding the repertoire of human tandem repeat RNA-binding proteins. PLoS One 2023; 18:e0290890. [PMID: 37729217 PMCID: PMC10511089 DOI: 10.1371/journal.pone.0290890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.
Collapse
Affiliation(s)
- Agustín Ormazábal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Matías Sebastián Carletti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Tadeo Enrique Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Martín Gonzalez Buitron
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
9
|
Vulpetti A, Holzer P, Schmiedeberg N, Imbach-Weese P, Pissot-Soldermann C, Hollingworth GJ, Radimerski T, Thoma CR, Stachyra TM, Wojtynek M, Maschlej M, Chau S, Schuffenhauer A, Fernández C, Schröder M, Renatus M. Discovery of New Binders for DCAF1, an Emerging Ligase Target in the Targeted Protein Degradation Field. ACS Med Chem Lett 2023; 14:949-954. [PMID: 37465299 PMCID: PMC10350940 DOI: 10.1021/acsmedchemlett.3c00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/20/2023] Open
Abstract
In this study, we describe the rapid identification of potent binders for the WD40 repeat domain (WDR) of DCAF1. This was achieved by two rounds of iterative focused screening of a small set of compounds selected on the basis of internal WDR domain knowledge followed by hit expansion. Subsequent structure-based design led to nanomolar potency binders with a clear exit vector enabling DCAF1-based bifunctional degrader exploration.
Collapse
Affiliation(s)
- Anna Vulpetti
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Philipp Holzer
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Niko Schmiedeberg
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Patricia Imbach-Weese
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Carole Pissot-Soldermann
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Gregory J. Hollingworth
- Global
Discovery Chemistry, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Thomas Radimerski
- Oncology
Drug Discovery, Novartis Institutes for
BioMedical Research, Basel 4002, Switzerland
| | - Claudio R. Thoma
- Oncology
Drug Discovery, Novartis Institutes for
BioMedical Research, Basel 4002, Switzerland
| | - Therese-Marie Stachyra
- Oncology
Drug Discovery, Novartis Institutes for
BioMedical Research, Basel 4002, Switzerland
| | - Matthias Wojtynek
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Magdalena Maschlej
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Suzanne Chau
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Ansgar Schuffenhauer
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - César Fernández
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Martin Schröder
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| | - Martin Renatus
- Chemical
Biology & Therapeutics, Novartis Institutes
for BioMedical Research, Basel 4002, Switzerland
| |
Collapse
|
10
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
11
|
Kim YJ, Zhang H, Lee Y, Seymen F, Koruyucu M, Kasimoglu Y, Simmer JP, Hu JCC, Kim JW. Novel WDR72 Mutations Causing Hypomaturation Amelogenesis Imperfecta. J Pers Med 2023; 13:326. [PMID: 36836560 PMCID: PMC9965932 DOI: 10.3390/jpm13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous collection of hereditary enamel defects. The affected enamel can be classified as hypoplastic, hypomaturation, or hypocalcified in form. A better understanding of normal amelogenesis and improvements in our ability to diagnose AI through genetic testing can be realized through more complete knowledge of the genes and disease-causing variants that cause AI. In this study, mutational analysis was performed with whole exome sequencing (WES) to identify genetic etiology underlying the hypomaturation AI condition in affected families. Mutational analyses identified biallelic WDR72 mutations in four hypomaturation AI families. Novel mutations include a homozygous deletion and insertion mutation (NM_182758.4: c.2680_2699delinsACTATAGTT, p.(Ser894Thrfs*15)), compound heterozygous mutations (paternal c.2332dupA, p.(Met778Asnfs*4)) and (maternal c.1287_1289del, p.(Ile430del)) and a homozygous 3694 bp deletion that includes exon 14 (NG_017034.2:g.96472_100165del). A homozygous recurrent mutation variant (c.1467_1468delAT, p.(Val491Aspfs*8)) was also identified. Current ideas on WDR72 structure and function are discussed. These cases expand the mutational spectrum of WDR72 mutations causing hypomaturation AI and improve the possibility of genetic testing to accurately diagnose AI caused by WDR72 defects.
Collapse
Affiliation(s)
- Youn Jung Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yejin Lee
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Figen Seymen
- Department of Paediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
- Department of Molecular Genetics & DRI, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Ji XL, Zhang M, Wang D, Li Z, Lang S, Song XS. Genome-wide identification of WD40 superfamily in Cerasus humilis and functional characteristics of ChTTG1. Int J Biol Macromol 2023; 225:376-388. [PMID: 36402390 DOI: 10.1016/j.ijbiomac.2022.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
The WD40 superfamily plays an important role in a wide range of developmental and physiological processes. It is a large gene family in eukaryotes. Unfortunately, the research on the WD40 superfamily genes in Cerasus humilis has not been reported. 198 ChWD40s were identified and analyzed in the present study, along with evolutionary relationships, gene structure, chromosome distribution, and collinearity. Then, 5 pairs of tandem duplication and 17 pairs of segmental duplication were found. Based on RNA-Seq data analysis, we screened 31 candidate genes whose expression was up-regulated during the four developmental stages of fruit peel. In addition, we also demonstrated that ChWD40-140, namely ChTTG1, located in the nucleus, cytoplasm, and cytomembrane, has transcriptional activation activity and can form homodimers. ChTTG1 is involved in anthocyanin biosynthesis through heterologous overexpression in Arabidopsis. These research results provide a reference for a comprehensive analysis of the functions of WD40 in the future.
Collapse
Affiliation(s)
- Xiao Long Ji
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhe Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyu Lang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xing Shun Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Department of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Tian M, Liu X, Lin S, Wang J, Luo S, Gao L, Chen X, Liang X, Liu Z, He N, Yi Y, Liao W. Variants in BRWD3 associated with X-linked partial epilepsy without intellectual disability. CNS Neurosci Ther 2022; 29:727-735. [PMID: 36514184 PMCID: PMC9873514 DOI: 10.1111/cns.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Etiology of the majority patients with idiopathic partial epilepsy (IPE) remains elusive. We thus screened the potential disease-associated variants in the patients with IPE. METHODS Trios-based whole exome sequencing was performed in a cohort of 320 patients with IPE. Frequency and molecular effects of variants were predicted. RESULTS Three novel BRWD3 variants were identified in five unrelated cases with IPE, which were four male cases and one female case. The variants included two recurrent missense variants (c.836C>T/p.Thr279Ile and c.4234A>C/p.Ile1412Leu) and one intronic variant close to splice site (c.2475 + 6A>G). The two missense variants were located in WD40 repeat domain and bromodomain, respectively. They were predicted to be damaging by silico tools and change hydrogen bonds with surrounding amino acids. The frequency of mutant alleles in this cohort was significantly higher than that in the controls of East Asian and all population of gnomAD. All these variants were inherited from the asymptomatic mothers. Four male cases presented frequent seizures at onset, while the female case only had two fever-triggered seizures. They showed good responses to valproate and lamotrigine, then finally became seizure free. All the cases had no intellectual disability. Further analysis demonstrated that all previously reported destructive variants of BRWD3 caused intellectual disability, while missense variants located in WD40 repeat domains and bromodomains of BRWD3 were associated with epilepsy. CONCLUSION BRWD3 gene is potentially associated with X-linked partial epilepsy without intellectual disability. The genotypes and locations of BRWD3 variants may explain for their phenotypic variation.
Collapse
Affiliation(s)
- Mao‐Qiang Tian
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina,Department of PediatricsAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiao‐Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Si‐Mei Lin
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Sheng Luo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Liang‐Di Gao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Xiao‐Bin Chen
- Department of PediatricsThe 900th Hospital of Joint Logistic Support ForceFuzhouChina
| | - Xiao‐Yu Liang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Zhi‐Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare HospitalSouthern Medical UniversityFoshanChina
| | - Na He
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Yong‐Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | - Wei‐Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical UniversityKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouChina
| | | |
Collapse
|
14
|
Zhang J, Lu Y, Tian X, Men X, Zhang Y, Yan H, Yang F, Yang Z, Wang X. A homozygous variant of WDR45B results in global developmental delay: Additional case and literature review. Mol Genet Genomic Med 2022; 10:e2036. [PMID: 35962600 PMCID: PMC9544213 DOI: 10.1002/mgg3.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Global developmental delay (GDD) has a heterogeneous clinical profile among patients, accounting for approximately 1%-3% of cases in children. An increasing number of gene defects have been demonstrated to be associated with GDD; up to now, only limited studies have reported developmental disorders driven by WDR45B. METHODS Trio-whole exome sequencing (Trio-WES) was performed for the patient and her family. All variants with a minor allele frequency <0.01 were selected for further interpretation according to the ACMG guidelines. Candidate pathogenic variants were validated by Sanger sequencing in her family. RESULTS A homozygous nonsynonymous variant in WDR45B [NM_019613.4: c.677G>C (p. Arg226Thr)] was identified from the proband. The variant was absent in published databases such as gnomAD and Exome Aggregation Consortium (ExAC). The variant was predicted to be damaging for proteins and classified as VUS according to the ACMG guidelines. We reviewed the literature, and the development delay level in our case was less severe than the other reported cases. CONCLUSION We reported another case with a novel homozygous variant of WDR45B and showed the heterogeneity of clinical features.
Collapse
Affiliation(s)
- Jinhong Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Lu
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyu Tian
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinyi Men
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yange Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huifang Yan
- Department of Pediatrics, Hengshui people's Hospital, Hengshui, Hebei, China
| | | | | | - Xiuxia Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Fan Z, Zhai Y, Wang Y, Zhang L, Song M, Flaishman MA, Ma H. Genome-Wide Analysis of Anthocyanin Biosynthesis Regulatory WD40 Gene FcTTG1 and Related Family in Ficus carica L. FRONTIERS IN PLANT SCIENCE 2022; 13:948084. [PMID: 35909733 PMCID: PMC9334019 DOI: 10.3389/fpls.2022.948084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
WD40 proteins serve as crucial regulators in a broad spectrum of plant developmental and physiological processes, including anthocyanin biosynthesis. However, in fig (Ficus carica L.), neither the WD40 family nor any member involved in anthocyanin biosynthesis has been elucidated. In the present study, 204 WD40 genes were identified from the fig genome and phylogenetically classified into 5 clusters and 12 subfamilies. Bioinformatics analysis prediction localized 109, 69, and 26 FcWD40 proteins to the cytoplasm, nucleus and other cellular compartments, respectively. RNA-seq data mining revealed 127 FcWD40s expressed at FPKM > 10 in fig fruit. Most of these genes demonstrated higher expression in the early stages of fruit development. FcWD40-97 was recruited according to three criteria: high expression in fig fruit, predicted nuclear localization, and closest clustering with TTG1s identified in other plants. FcWD40-97, encoding 339 amino acids including 5 WD-repeat motifs, showed 88.01 and 87.94% amino acid sequence similarity to apple and peach TTG1, respectively. The gene is located on fig chromosome 4, and is composed of 1 intron and 2 exons. Promoter analysis revealed multiple light-responsive elements, one salicylic acid-responsive element, three methyl jasmonate-responsive elements, and one MYB-binding site involved in flavonoid biosynthesis gene regulation. FcWD40-97 was in the FPKM > 100 expression level group in fig fruit, and higher expression was consistently found in the peel compared to the flesh at the same development stages. Expression level did not change significantly under light deprivation, whereas in leaves and roots, its expression was relatively low. Transient expression verified FcWD40-97's localization to the nucleus. Yeast two-hybrid (Y2H) and biomolecular fluorescence complementation (BiFC) assays revealed that FcWD40-97 interacts with FcMYB114, FcMYB123, and FcbHLH42 proteins in vitro and in vivo, showing that FcWD40-97 functions as a member of the MYB-bHLH-WD40 (MBW) complex in anthocyanin-biosynthesis regulation in fig. We therefore renamed FcWD40-97 as FcTTG1. Our results provide the first systematic analysis of the FcWD40 family and identification of FcTTG1 in fig pigmentation.
Collapse
Affiliation(s)
- Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Long Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Miaoyu Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Lin S, Rajan S, Lemberg S, Altawil M, Anderson K, Bryant R, Cappeta S, Chin B, Hamdan I, Hamer A, Hyzny R, Karp A, Lee D, Lim A, Nayak M, Palaniappan V, Park S, Satishkumar S, Seth A, Sri Dasari U, Toppari E, Vyas A, Walker J, Weston E, Zafar A, Zielke C, Mahabeleshwar GH, Tartakoff AM. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics 2022; 221:iyac070. [PMID: 35657327 PMCID: PMC9252279 DOI: 10.1093/genetics/iyac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
35S rRNA transcripts include a 5'-external transcribed spacer followed by rRNAs of the small and large ribosomal subunits. Their processing yields massive precursors that include dozens of assembly factor proteins. In Saccharomyces cerevisiae, nucleolar assembly factors form 2 coaxial layers/volumes around ribosomal DNA. Most of these factors are cyclically recruited from a latent state to an operative state, and are extensively conserved. The layers match, at least approximately, known subcompartments found in higher eukaryotic cells. ∼80% of assembly factors are essential. The number of copies of these assembly factors is comparable to the number of nascent transcripts. Moreover, they exhibit "isoelectric balance," with RNA-binding candidate "nucleator" assembly factors being notably basic. The physical properties of pre-small subunit and pre-large subunit assembly factors are similar, as are their 19 motif signatures detected by hierarchical clustering, unlike motif signatures of the 5'-external transcribed spacer rRNP. Additionally, many assembly factors lack shared motifs. Taken together with the progression of rRNP composition during subunit maturation, and the realization that the ribosomal DNA cable is initially bathed in a subunit-nonspecific assembly factor reservoir/microenvironment, we propose a "3-step subdomain assembly model": Step (1): predominantly basic assembly factors sequentially nucleate sites along nascent rRNA; Step (2): the resulting rRNPs recruit numerous less basic assembly factors along with notably basic ribosomal proteins; Step (3): rRNPs in nearby subdomains consolidate. Cleavages of rRNA then promote release of rRNPs to the nucleoplasm, likely facilitated by the persistence of assembly factors that were already associated with nucleolar precursors.
Collapse
Affiliation(s)
- Samantha Lin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suchita Rajan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sofia Lemberg
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark Altawil
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Anderson
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Bryant
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Cappeta
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brandon Chin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabella Hamdan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Annelise Hamer
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Hyzny
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Karp
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Lee
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandria Lim
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Medha Nayak
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vishnu Palaniappan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soomin Park
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarika Satishkumar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anika Seth
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uva Sri Dasari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emili Toppari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ayush Vyas
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julianne Walker
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan Weston
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Atif Zafar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cecelia Zielke
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ganapati H Mahabeleshwar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan M Tartakoff
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Wang J, Zhang C, Tang H, Zheng A, Li H, Yang S, Xiang J. Successful Results of Intracytoplasmic Sperm Injection of a Chinese Patient With Multiple Morphological Abnormalities of Sperm Flagella Caused by a Novel Splicing Mutation in CFAP251. Front Genet 2022; 12:783790. [PMID: 35087568 PMCID: PMC8787216 DOI: 10.3389/fgene.2021.783790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Asthenospermia is one of the most important causes of male infertility. Among asthenospermia, multiple morphological abnormalities of sperm flagella (MMAF) are relatively rare idiopathic conditions characterized by multiple defects in sperm flagella. Although many studies focusing on the genetic factors of MMAF have been conducted, its pathogenesis and treatment effect remain largely unknown. Here, we report a male patient from a nonconsanguineous Chinese family who exhibited a typical MMAF phenotype revealed by morphological analysis. We identified splicing mutations in CFAP251 (c.1192-3C>G), and the mutation was proven to cause exon skipping. In addition, western blotting and immunofluorescence analysis of the spermatozoa from the proband and a control subject revealed a significantly lower expression of CFAP251 protein due to pathogenic mutation. Interestingly, the patient’s mother was a heterozygous carrier for the mutation, but his father was not, and finally, the inheritance pattern was proven to be maternal uniparental disomy. We applied an intracytoplasmic sperm injection and achieved a successful pregnancy. Above all, our findings expand the spectrum of CFAP251 pathogenic mutations and provide more indications for clinical genetic counseling and assisted reproductive treatment for such patients.
Collapse
Affiliation(s)
- Jiaxiong Wang
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ce Zhang
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Tang
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Aiyan Zheng
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hong Li
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shenmin Yang
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- The Center of Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
18
|
Lanzafame M, Branca G, Landi C, Qiang M, Vaz B, Nardo T, Ferri D, Mura M, Iben S, Stefanini M, Peverali FA, Bini L, Orioli D. Cockayne syndrome group A and ferrochelatase finely tune ribosomal gene transcription and its response to UV irradiation. Nucleic Acids Res 2021; 49:10911-10930. [PMID: 34581821 PMCID: PMC8565352 DOI: 10.1093/nar/gkab819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 09/12/2021] [Indexed: 11/14/2022] Open
Abstract
CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA–FECH–CSB–RNAP1–RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.
Collapse
Affiliation(s)
- Manuela Lanzafame
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Giulia Branca
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Bruno Vaz
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Tiziana Nardo
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Debora Ferri
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Manuela Mura
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Miria Stefanini
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Fiorenzo A Peverali
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Donata Orioli
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| |
Collapse
|
19
|
Hemmat N, Asadzadeh H, Asadzadeh Z, Shadbad MA, Baradaran B. The Analysis of Herpes Simplex Virus Type 1 (HSV-1)-Encoded MicroRNAs Targets: A Likely Relationship of Alzheimer's Disease and HSV-1 Infection. Cell Mol Neurobiol 2021; 42:2849-2861. [PMID: 34661780 DOI: 10.1007/s10571-021-01154-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD), the most frequently diagnosed dementia, is a senile neurodegenerative disorder characterized by amnesia and cognitive dysfunction. Unfortunately, there are still no successful strategies to prevent AD progression. Thus, the vast majority of research focuses on recognizing risk factors for developing and progressing this disease. Human spirochetes, fungi, Borrelia burgdorferi, Chlamydophila pneumoniae, Helicobacter pylori, and human herpes simplex virus type 1 (HSV-1) have all been implicated in the development and progression of AD. Identifying microRNAs (miRs) encoded by DNA viruses has indicated that viruses can be evolved to exploit RNA silencing to regulate host and viral genes. Similar to host miR, v-miR can interact with the 3' untranslated region (UTR) of the target mRNA to regulate gene expression. Although HSV-1 can also encode various miRs, their significance in the development and progression of AD is still unclear. In the present study, utilizing the bioinformatics approach (R software and related packages), we analyzed the differentially expressed genes (DEGs) in AD samples (grey matter) of GSE37263 dataset obtained from the NCBI Gene Expression Omnibus (GEO). Then, the sequences of HSV-1-encoded-miRs were retrieved from miRbase, and their targets were predicted by miRDB. Afterward, the common genes between downregulated DEGs in AD and targets of HSV-1-encoded miRs were identified to shed new light on the relationship between HSV-1 infection and AD development. Our results have indicated that HSV-1-encoded-miRs can target the downregulated DEGs in AD, and these aberrant interactions can offer valuable diagnostic/prognostic biomarkers for affected patients.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Asadzadeh
- Department of Psychology, Ardabil Branch of Islamic Azad University, Ardabil, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Novel Binding Partners for CCT and PhLP1 Suggest a Common Folding Mechanism for WD40 Proteins with a 7-Bladed Beta-Propeller Structure. Proteomes 2021; 9:proteomes9040040. [PMID: 34698247 PMCID: PMC8544692 DOI: 10.3390/proteomes9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigates whether selected WD40 proteins with a 7-bladed β-propeller structure, similar to that of the β subunit of the G protein heterotrimer, interact with the cytosolic chaperonin CCT and its known binding partner, PhLP1. Previous studies have shown that CCT is required for the folding of the Gβ subunit and other WD40 proteins. The role of PhLP1 in the folding of Gβ has also been established, but it is unknown if PhLP1 assists in the folding of other Gβ-like proteins. The binding of three Gβ-like proteins, TBL2, MLST8 and CDC20, to CCT and PhLP1, was demonstrated in this study. Co-immunoprecipitation assays identified one novel binding partner for CCT and three new interactors for PhLP1. All three of the studied proteins interact with CCT and PhLP1, suggesting that these proteins may have a folding machinery in common with that of Gβ and that the well-established Gβ folding mechanism may have significantly broader biological implications than previously thought. These findings contribute to continuous efforts to determine common traits and unique differences in the folding mechanism of the WD40 β-propeller protein family, and the role PhLP1 has in this process.
Collapse
|
21
|
Wang R, Wang Z, Wang X, Li Y, Qu L, Lan X. A novel 4-bp insertion within the goat CFAP43 gene and its association with litter size. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Ghit A. Immunofluorescence studies to dissect the impact of Cockayne syndrome A alterations on the protein interaction and cellular localization. J Genet Eng Biotechnol 2021; 19:88. [PMID: 34132928 PMCID: PMC8208330 DOI: 10.1186/s43141-021-00190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Background Cockayne syndrome (CS), which was discovered by Alfred Cockayne nearly 75 years ago, is a rare autosomal recessive disorder characterized by growth failure, neurological dysfunction, premature aging, and other clinical features including microcephaly, ophthalmologic abnormalities, dental caries, and cutaneous photosensitivity. These alterations are caused by mutations in the CSA or CSB genes, both of which are involved in transcription-coupled nucleotide excision repair (TC-NER), the sub-pathway of NER that rapidly removes UV-induced DNA lesions which block the progression of the transcription machinery in the transcribed strand of active genes. Several studies assumed that CSA and CSB genes can play additional roles outside TC-NER, due to the wide variations in type and severity of the CS phenotype and the lack of a clear relationship between genotype and phenotype. To address this issue, our lab generated isogenic cell lines expressing wild type as well as different versions of mutated CSA proteins, fused at the C-terminus with the Flag and HA epitope tags (CSAFlag-HA). In unpublished data, the identity of the CSA-interacting proteins was determined by mass spectrometry. Among which three subunits (namely, CCT3, CCT8, and TCP1) of the TRiC/CCT complex appeared as novel interactors. TRiC is a chaperonin involved in the folding of newly synthesized or unfolded proteins. The aim of this study is directed to investigate by immunofluorescence analysis the impact of the selected CSA mutations on the subcellular localization of the CSA protein itself as well as on its novel interactors CCT3, CCT8, and TCP1. Results We showed that specific CSA mutations impair the proper cellular localization of the protein, but have no impact on the cellular distribution of the TRiC subunits or CSA/TRiC co-localization. Conclusion We suggested that the activity of the TRiC complex does not rely on the functionality of CSA. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00190-7.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| |
Collapse
|
23
|
Simm D, Hatje K, Waack S, Kollmar M. Critical assessment of coiled-coil predictions based on protein structure data. Sci Rep 2021; 11:12439. [PMID: 34127723 PMCID: PMC8203680 DOI: 10.1038/s41598-021-91886-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools' performance is close to random. This implicates that the tools' predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.
Collapse
Affiliation(s)
- Dominic Simm
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.417570.00000 0004 0374 1269Present Address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Waack
- grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Kollmar
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Tan L, Salih H, Htet NNW, Azeem F, Zhan R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 2021; 11:2266. [PMID: 33500544 PMCID: PMC7838414 DOI: 10.1038/s41598-021-81969-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.
Collapse
Affiliation(s)
- Lin Tan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Haron Salih
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,grid.442436.30000 0004 0447 7877Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Sudan
| | - Nwe Ni Win Htet
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,Microbiology Laboratory, Biotechnology Research Department, Kyaukse, 05151 Myanmar
| | - Farrukh Azeem
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Rulin Zhan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| |
Collapse
|
25
|
Lim SM, Cruz VE, Antoku S, Gundersen GG, Schwartz TU. Structures of FHOD1-Nesprin1/2 complexes reveal alternate binding modes for the FH3 domain of formins. Structure 2021; 29:540-552.e5. [PMID: 33472039 DOI: 10.1016/j.str.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The nuclear position in eukaryotes is controlled by a nucleo-cytoskeletal network, critical in cell differentiation, division, and movement. Forces are transmitted through conserved Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes that traverse the nuclear envelope and engage on either side of the membrane with diverse binding partners. Nesprin-2-giant (Nes2G), a LINC element in the outer nuclear membrane, connects to the actin directly as well as through FHOD1, a formin primarily involved in actin bundling. Here, we report the crystal structure of Nes2G bound to FHOD1 and show that the presumed G-binding domain of FHOD1 is rather a spectrin repeat (SR) binding enhancer for the neighboring FH3 domain. The structure reveals that SR binding by FHOD1 is likely not regulated by the diaphanous-autoregulatory domain helix of FHOD1. Finally, we establish that Nes1G also has one FHOD1 binding SR, indicating that these abundant, giant Nesprins have overlapping functions in actin-bundle recruitment for nuclear movement.
Collapse
Affiliation(s)
- Sing Mei Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Victor E Cruz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Massoud TF, Paulmurugan R. Molecular Imaging of Protein–Protein Interactions and Protein Folding. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
De S, Pollari M, Varjosalo M, Mäkinen K. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 2020; 16:e1008956. [PMID: 33045020 PMCID: PMC7581364 DOI: 10.1371/journal.ppat.1008956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the significance of a conserved five-amino acid motif 'AELPR' in the C-terminal region of helper component-proteinase (HCPro) for potato virus A (PVA; genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-containing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed that they have a role in RNA silencing suppression. We now demonstrate that the ability of HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes were more stable when associated with wild-type HCPro than with HCProWD. Moreover, VCS and two viral components of the HMW-complexes, viral protein genome-linked and cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-complexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordination in PVA translation was further supported by results from VCS silencing and overexpression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-VCS containing multiprotein assemblies associated with PVA RNA in protecting it from degradation, ensuring efficient translation, formation of stable virions and establishment of systemic infection.
Collapse
Affiliation(s)
- Swarnalok De
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | - Maija Pollari
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | | | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| |
Collapse
|
28
|
Paladin L, Necci M, Piovesan D, Mier P, Andrade-Navarro MA, Tosatto SCE. A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication. J Struct Biol 2020; 212:107608. [PMID: 32896658 DOI: 10.1016/j.jsb.2020.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/30/2022]
Abstract
Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the two definitions (structural units and exons) are visualized in a single matrix, the "repeat/exon plot". An analysis of different repeat protein families, including the solenoids Leucine-Rich, Ankyrin, Pumilio, HEAT repeats and the β propellers Kelch-like, WD40 and RCC1, shows different behaviors, illustrated here through examples. For each example, the analysis of the exon mapping in homologous proteins supports the conservation of their exon patterns. We propose that when a clear-cut relationship between exon and structural boundaries can be identified, it is possible to infer a specific "evolutionary pattern" which may improve TRPs detection and classification.
Collapse
Affiliation(s)
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padova, Italy
| | | | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University of Mainz, Germany
| | | | | |
Collapse
|
29
|
Beckett L, Xie S, Thimmapuram J, Tucker HA, Donkin SS, Casey T. Mammary transcriptome reveals cell maintenance and protein turnover support milk synthesis in early-lactation cows. Physiol Genomics 2020; 52:435-450. [PMID: 32744883 DOI: 10.1152/physiolgenomics.00046.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A more complete understanding of the molecular mechanisms that support milk synthesis is needed to develop strategies to efficiently and sustainably meet the growing global demand for dairy products. With the postulate that coding gene transcript abundance reflects relative importance in supporting milk synthesis, we analyzed the global transcriptome of early lactation cows across magnitudes of normalized RNA-Seq read counts. Total RNA was isolated from milk samples collected from early-lactation cows (n = 6) following two treatment periods of postruminal lysine infusion of 0 or 63 g/day. Twelve libraries were prepared and sequenced on an Illumina NovaSeq6000 platform using paired end reads. Normalized read counts were averaged across both treatments, because EBseq analysis found no significant effect of lysine infusion. Approximately 10% of the total reads corresponded to 12,730 protein coding transcripts with a normalized read count mean ≥5. For functional annotation analysis, the protein coding transcripts were divided into nine categories by magnitude of reads. The 13 most abundant transcripts (≥50K reads) accounted for 67% of the 23M coding reads and included casein and whey proteins, regulators of fat synthesis and secretion, a ubiquitinating protein, and a tRNA transporter. Mammalian target of rapamycin, JAK/STAT, peroxisome proliferator-activated receptor alpha, and ubiquitin proteasome pathways were enriched with normalized reads ≥100 counts. Genes with ≤100 reads regulated tissue homeostasis and immune response. Enrichment in ontologies that reflect maintenance of translation, protein turnover, and amino acid recycling indicated that proteostatic mechanisms are central to supporting mammary function and primary milk component synthesis.
Collapse
Affiliation(s)
- L Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - S Xie
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - H A Tucker
- Novus International Incorporated, St. Charles, Missouri
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - T Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
30
|
Mistry BV, Alanazi M, Fitwi H, Al-Harazi O, Rajab M, Altorbag A, Almohanna F, Colak D, Assiri AM. Expression profiling of WD40 family genes including DDB1- and CUL4- associated factor (DCAF) genes in mice and human suggests important regulatory roles in testicular development and spermatogenesis. BMC Genomics 2020; 21:602. [PMID: 32867693 PMCID: PMC7457511 DOI: 10.1186/s12864-020-07016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The WD40-repeat containing proteins, including DDB1-CUL4-associated factors (DCAFs), are abundant and conserved proteins that play important roles in different cellular processes including spermatogenesis. DCAFs are subset of WD40 family proteins that contain WDxR motif and have been proposed to function as substrate receptor for Cullin4-RING-based E3 ubiquitin ligase complexes to recruit diverse proteins for ubiquitination, a vital process in spermatogenesis. Large number of WD40 genes has been identified in different species including mouse and human. However, a systematic expression profiling of WD40 genes in different tissues of mouse and human has not been investigated. We hypothesize that large number of WD40 genes may express highly or specifically in the testis, where their expression is uniquely regulated during testis development and spermatogenesis. Therefore, the objective of this study is to mine and characterize expression patterns of WD40 genes in different tissues of mouse and human with particular emphasis on DCAF genes expressions during mouse testicular development. RESULTS Publically available RNA sequencing (RNA seq) data mining identified 347 and 349 WD40 genes in mouse and human, respectively. Hierarchical clustering and heat map analyses of RNA seq datasets revealed differential expression patterns of WD40 genes with around 60-73% of the genes were highly or specifically expressed in testis. Similarly, around 74-83% of DCAF genes were predominantly or specifically expressed in testis. Moreover, WD40 genes showed distinct expression patterns during embryonic and postnatal testis development in mice. Finally, different germ cell populations of testis showed specific patterns of WD40 genes expression. Predicted gene ontology analyses revealed more than 80% of these proteins are implicated in cellular, metabolic, biological regulation and cell localization processes. CONCLUSIONS We have identified large number of WD40 family genes that are highly or specifically expressed in the testes of mouse and human. Moreover, WD40 genes have distinct expression patterns during embryonic and postnatal development of the testis in mice. Further, different germ cell populations within the testis showed specific patterns of WD40 genes expression. These results provide foundation for further research towards understanding the functional genomics and molecular mechanisms of mammalian testis development and spermatogenesis.
Collapse
Affiliation(s)
- Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alanazi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hanae Fitwi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Altorbag
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
31
|
Tapia Contreras C, Hoyer-Fender S. The WD40-protein CFAP52/WDR16 is a centrosome/basal body protein and localizes to the manchette and the flagellum in male germ cells. Sci Rep 2020; 10:14240. [PMID: 32859975 PMCID: PMC7455747 DOI: 10.1038/s41598-020-71120-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Development of spermatozoa requires remodelling and formation of particular structures. In elongating spermatids, the transient microtubular manchette contributes to the formation of the head-tail coupling apparatus (HTCA) and the sperm tail. The HTCA derives from the centrosome in that the proximal centriole inserts into the nuclear indentation and the distal centriole gives rise to the sperm flagellum. Although impairments in the formation of HTCA and sperm tail cause male infertility their molecular constituents are only partially known. The WD40-protein CFAP52 is implicated in motile cilia, but its relevance for male germ cell differentiation is not known. Here we show that CFAP52 is widespread expressed and localizes to a subset of microtubular structures. In male germ cells, CFAP52 is a component of the transient manchette and the sperm tail. However, expression of Cfap52 is not restricted to motile cilia-bearing cells. In NIH3T3 cells, CFAP52 localizes to the centrosome, the basal body, and the mitotic spindle poles, but not to the primary cilium. Our results demonstrate that CFAP52 is not restricted to motile cilia but instead most likely functions in constituting the centrosome/basal body matrix and the sperm tail.
Collapse
Affiliation(s)
- Constanza Tapia Contreras
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-Von-Liebig-Weg11, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-Von-Liebig-Weg11, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
32
|
Li J, Wang Y, Xu B, Liu Y, Zhou M, Long T, Li H, Dong H, Nie Y, Chen PR, Wang E, Liu R. Intellectual disability-associated gene ftsj1 is responsible for 2'-O-methylation of specific tRNAs. EMBO Rep 2020; 21:e50095. [PMID: 32558197 PMCID: PMC7403668 DOI: 10.15252/embr.202050095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
tRNA modifications at the anti-codon loop are critical for accurate decoding. FTSJ1 was hypothesized to be a human tRNA 2'-O-methyltransferase. tRNAPhe (GAA) from intellectual disability patients with mutations in ftsj1 lacks 2'-O-methylation at C32 and G34 (Cm32 and Gm34). However, the catalytic activity, RNA substrates, and pathogenic mechanism of FTSJ1 remain unknown, owing, in part, to the difficulty in reconstituting enzymatic activity in vitro. Here, we identify an interacting protein of FTSJ1, WDR6. For the first time, we reconstitute the 2'-O-methylation activity of the FTSJ1-WDR6 complex in vitro, which occurs at position 34 of specific tRNAs with m1 G37 as a prerequisite. We find that modifications at positions 32, 34, and 37 are interdependent and occur in a hierarchical order in vivo. We also show that the translation efficiency of the UUU codon, but not the UUC codon decoded by tRNAPhe (GAA), is reduced in ftsj1 knockout cells. Bioinformatics analysis reveals that almost 40% of the high TTT-biased genes are related to brain/nervous functions. Our data potentially enhance our understanding of the relationship between FTSJ1 and nervous system development.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yan‐Nan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Bei‐Si Xu
- Center for Applied BioinformaticsSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ya‐Ping Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Mi Zhou
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Tao Long
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Hao Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Han Dong
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Peng R Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationSynthetic and Functional Biomolecules CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - En‐Duo Wang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Ru‐Juan Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
33
|
Kölle M, Horta MAC, Nowrousian M, Ohm RA, Benz JP, Pilgård A. Degradative Capacity of Two Strains of Rhodonia placenta: From Phenotype to Genotype. Front Microbiol 2020; 11:1338. [PMID: 32625194 PMCID: PMC7314958 DOI: 10.3389/fmicb.2020.01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
Brown rot fungi, such as Rhodonia placenta (previously Postia placenta), occur naturally in northern coniferous forest ecosystems and are known to be the most destructive group of decay fungi, degrading wood faster and more effectively than other wood-degrading organisms. It has been shown that brown rot fungi not only rely on enzymatic degradation of lignocellulose, but also use low molecular weight oxidative agents in a non-enzymatic degradation step prior to the enzymatic degradation. R. placenta is used in standardized decay tests in both Europe and North America. However, two different strains are employed (FPRL280 and MAD-698, respectively) for which differences in colonization-rate, mass loss, as well as in gene expression have been observed, limiting the comparability of results. To elucidate the divergence between both strains, we investigated the phenotypes in more detail and compared their genomes. Significant phenotypic differences were found between the two strains, and no fusion was possible. MAD-698 degraded scots pine more aggressively, had a more constant growth rate and produced mycelia faster than FPRL280. After sequencing the genome of FPRL280 and comparing it with the published MAD-698 genome we found 660,566 SNPs, resulting in 98.4% genome identity. Specific analysis of the carbohydrate-active enzymes, encoded by the genome (CAZome) identified differences in many families related to plant biomass degradation, including SNPs, indels, gaps or insertions within structural domains. Four genes belonging to the AA3_2 family could not be found in or amplified from FPRL280 gDNA, suggesting the absence of these genes. Differences in other CAZy encoding genes that could potentially affect the lignocellulolytic activity of the strains were also predicted by comparison of genome assemblies (e.g., GH2, GH3, GH5, GH10, GH16, GH78, GT2, GT15, and CBM13). Overall, these mutations help to explain the phenotypic differences observed between both strains as they could interfere with the enzymatic activities, substrate binding ability or protein folding. The investigation of the molecular reasons that make these two strains distinct contributes to the understanding of the development of this important brown rot reference species and will help to put the data obtained from standardized decay tests across the globe into a better biological context.
Collapse
Affiliation(s)
- Martina Kölle
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Maria Augusta Crivelente Horta
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Robin A Ohm
- Department of Biology, Microbiology, Utrecht University, Utrecht, Netherlands
| | - J Philipp Benz
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Institute of Advanced Study, Technical University of Munich, Garching, Germany
| | - Annica Pilgård
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Biobased Materials, Bioeconomy, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
34
|
Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, Ray PF, Coutton C. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 2020; 140:21-42. [PMID: 31950240 DOI: 10.1007/s00439-020-02113-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Spermatozoa contain highly specialized structural features reflecting unique functions required for fertilization. Among them, the flagellum is a sperm-specific organelle required to generate the motility, which is essential to reach the egg. The flagellum integrity is, therefore, critical for normal sperm function and flagellum defects consistently lead to male infertility due to reduced or absent sperm motility defined as asthenozoospermia. Multiple morphological abnormalities of the flagella (MMAF), also called short tails, is among the most severe forms of sperm flagellum defects responsible for male infertility and is characterized by the presence in the ejaculate of spermatozoa being short, coiled, absent and of irregular caliber. Recent studies have demonstrated that MMAF is genetically heterogeneous which is consistent with the large number of proteins (over one thousand) localized in the human sperm flagella. In the past 5 years, genomic investigation of the MMAF phenotype allowed the identification of 18 genes whose mutations induce MMAF and infertility. Here we will review information about those genes including their expression pattern, the features of the encoded proteins together with their localization within the different flagellar protein complexes (axonemal or peri-axonemal) and their potential functions. We will categorize the identified MMAF genes following the protein complexes, functions or biological processes they may be associated with, based on the current knowledge in the field.
Collapse
Affiliation(s)
- Aminata Touré
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France.,INSERM U1016, Institut Cochin, 75014, Paris, France.,Centre National de La Recherche Scientifique UMR8104, 75014, Paris, France
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julie Beurois
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Univ. Grenoble Alpes, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
| |
Collapse
|
35
|
Kokabi K, Gorelova O, Zorin B, Didi-Cohen S, Itkin M, Malitsky S, Solovchenko A, Boussiba S, Khozin-Goldberg I. Lipidome Remodeling and Autophagic Respose in the Arachidonic-Acid-Rich Microalga Lobosphaera incisa Under Nitrogen and Phosphorous Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:614846. [PMID: 33329680 PMCID: PMC7728692 DOI: 10.3389/fpls.2020.614846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 05/09/2023]
Abstract
The green microalga Lobosphaera incisa accumulates triacylglycerols (TAGs) with exceptionally high levels of long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid (ARA) under nitrogen (N) deprivation. Phosphorous (P) deprivation induces milder changes in fatty acid composition, cell ultrastructure, and growth performance. We hypothesized that the resource-demanding biosynthesis and sequestration of ARA-rich TAG in lipid droplets (LDs) are associated with the enhancement of catabolic processes, including membrane lipid turnover and autophagic activity. Although this work focuses mainly on N deprivation, a comparative analysis of N and P deprivation responses is included. The results of lipidomic profiling showed a differential impact of N and P deprivation on the reorganization of glycerolipids. The formation of TAG under N deprivation was associated with the enhanced breakdown of chloroplast glycerolipids and the formation of lyso-lipids. N-deprived cells displayed a profound reorganization of cell ultrastructure, including internalization of cellular material into autophagic vacuoles, concomitant with the formation of LDs, while P-deprived cells showed better cellular ultrastructural integrity. The expression of the hallmark autophagy protein ATG8 and the major lipid droplet protein (MLDP) genes were coordinately upregulated, but to different extents under either N or P deprivation. The expression of the Δ5-desaturase gene, involved in the final step of ARA biosynthesis, was coordinated with ATG8 and MLDP, exclusively under N deprivation. Concanamycin A, the inhibitor of vacuolar proteolysis and autophagic flux, suppressed growth and enhanced levels of ATG8 and TAG in N-replete cells. The proportions of ARA in TAG decreased with a concomitant increase in oleic acid under both N-replete and N-deprived conditions. The photosynthetic apparatus's recovery from N deprivation was impaired in the presence of the inhibitor, along with the delayed LD degradation. The GFP-ATG8 processing assay showed the release of free GFP in N-replete and N-deprived cells, supporting the existence of autophagic flux. This study provides the first insight into the homeostatic role of autophagy in L. incisa and points to a possible metabolic link between autophagy and ARA-rich TAG biosynthesis.
Collapse
Affiliation(s)
- Kamilya Kokabi
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
| | - Boris Zorin
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Maxim Itkin
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Metabolic Profiling Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, Tambov, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
36
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
37
|
Hu DJ, Shi WJ, Yu M, Zhang L. High WDR34 mRNA expression as a potential prognostic biomarker in patients with breast cancer as determined by integrated bioinformatics analysis. Oncol Lett 2019; 18:3177-3187. [PMID: 31452794 PMCID: PMC6676453 DOI: 10.3892/ol.2019.10634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
The WD-repeat domain (WDR) family is distributed in the majority of eukaryotes and has several unique biological functions. It serves important roles in signal transduction, cytoskeleton assembly, protein transport, RNA processing, chromatin modification and transcription mechanisms. WD repeat domain 34 (WDR34) has been recently identified as a member of the WDR family. Overexpression of WDR34 was accompanied by the presence of multiple centrioles in the cell, suggesting that it was associated with tumor occurrence. However, its association with breast cancer was unclear. To the best of our knowledge, it has not yet been confirmed whether WDR34 gene expression is associated with breast cancer. Therefore, the current study attempted to clarify this by performing a comprehensive study using multiple datasets in the Oncomine, Breast Cancer Gene-Expression Miner and Kaplan-Meier Plotter databases. The analysis indicated that the mRNA expression levels of WDR34 were increased in breast cancer tissues compared with normal tissues. Consistent with this result, the Broad-Novartis Cancer Cell Line Encyclopedia revealed that WDR34 mRNA expression levels were upregulated in breast cancer cell lines compared with other cancer cells. It was noted that high WDR34 mRNA expression was associated with forkhead box M1 and PTTG1 regulator of sister chromatid separation, securing in co-expression analysis. Expression profile characteristics of WDR34 mRNA were identified in different molecular subtypes of breast cancer. Furthermore, survival analysis revealed that increased expression levels of WDR34 mRNA were associated with poor overall survival in patients with breast cancer, particularly in luminal B, lymph node status-positive and estrogen receptor (ER)-negative subgroups. Additionally, Kaplan-Meier curves revealed that high WDR34 mRNA expression was associated with shorter relapse-free survival in patients with breast cancer, particularly in ER-positive, human epidermal growth factor receptor 2-negative and progesterone receptor-positive subgroups. These results suggested that WDR34 may be used as a prognosis predictor in breast cancer and may provide a novel target for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Dao-Jun Hu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Wen-Jie Shi
- Department of Breast Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Miao Yu
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| | - Li Zhang
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Chongming Branch), Shanghai 202150, P.R. China
| |
Collapse
|
38
|
Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol 2019; 7:121. [PMID: 31355196 PMCID: PMC6637222 DOI: 10.3389/fcell.2019.00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The development of Gonadotropin releasing hormone-1 (GnRH) neurons is important for a functional reproduction system in vertebrates. Disruption of GnRH results in hypogonadism and if accompanied by anosmia is termed Kallmann Syndrome (KS). From their origin in the nasal placode, GnRH neurons migrate along the olfactory-derived vomeronasal axons to the nasal forebrain junction and then turn caudally into the developing forebrain. Although research on the origin of GnRH neurons, their migration and genes associated with KS has identified multiple factors that influence development of this system, several aspects still remain unclear. This review discusses development of the olfactory system, factors that regulate GnRH neuron formation and development of the olfactory system, migration of the GnRH neurons from the nose into the brain, and mutations in humans with KS that result from disruption of normal GnRH/olfactory systems development.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Niteace C Whittington
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Collins J, O'Grady K, Chen S, Gurley W. The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein-protein interaction surface. PLANT MOLECULAR BIOLOGY 2019; 100:47-58. [PMID: 30783952 DOI: 10.1007/s11103-019-00842-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The two predicted WD40 propellers on TOPLESS function as protein-protein interaction domains. The 1st WD40 propeller mediates interaction with RAV1, and the 2nd WD40 propeller mediates interaction with VRN5. The TOPLESS/TOPLESS-RELATED (TPL/TPR) co-repressor family proteins are known to interact with a wide variety of proteins including transcription factors, Mediator subunits, histone deacetylases, and histone tails. Through these interactions, TPL/TPR act to repress transcription in an increasingly diverse array of plant pathways. Proteins that bind TPL/TPR typically contain one or more Repression Domains (RDs) that mediate the interaction. For example, the well-characterized Ethylene response factor-associated Amphiphilic Repression (EAR) motif is known to facilitate interaction by binding the TOPLESS Domain (TPD) located in the N-terminus. Here we show that in yeast two-hybrid assays, the non-EAR protein, Related to ABI3/VP1-1 (RAV1), binds a novel region located within the first nine WD40-repeats of TPL. Protein modeling and in silico analysis suggest that these nine WD40 repeats may form the first of two WD40 propellers located on C-terminus of TPL. The interaction between RAV1 and the 1st WD40 propeller is conserved with another RAV family member, TEMPRANILLO1 (TEM1) and is mediated by the B3 Repression Domain (BRD) located on both RAV1 and TEM1. Also, the predicted 2nd WD40 propeller was shown in yeast cells to bind Vernalization 5 (VRN5), which contains several unconfirmed partial RDs. Furthermore, we demonstrate that the 1st WD40 propeller of TPL can form a complex with RAV1 both in yeast and in Arabidopsis protoplasts.
Collapse
Affiliation(s)
- Joe Collins
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Kevin O'Grady
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - William Gurley
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Tenorio J, Alarcón P, Arias P, Ramos FJ, Campistol J, Climent S, García‐Miñaur S, Dapía I, Hernández A, Nevado J, Solís M, Ruiz‐Pérez VL, Lapunzina P. MRX93 syndrome (
BRWD3
gene): five new patients with novel mutations. Clin Genet 2019; 95:726-731. [DOI: 10.1111/cge.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Pablo Alarcón
- Genetic SectionHospital Clínico Universidad de Chile Santiago Chile
| | - Pedro Arias
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Feliciano J. Ramos
- Clinical Genetics Unit, Service of PaediatricsUniversity Hospital “Lozano Blesa”, University of Zaragoza School of Medicine Zaragoza Spain
| | - Jaume Campistol
- Neurology UnitHospital Sant Joan de Deu ‐ Passeig Sant Joan de Déu Barcelona Spain
| | | | - Sixto García‐Miñaur
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Irene Dapía
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Alicia Hernández
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Julián Nevado
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Mario Solís
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Víctor L. Ruiz‐Pérez
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
- Instituto de Investigaciones Biomedicas de Madrid (CSIC‐UAM)Arturo Duperier Madrid Spain
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | | |
Collapse
|
41
|
Gęgotek A, Domingues P, Wroński A, Ambrożewicz E, Skrzydlewska E. The Proteomic Profile of Keratinocytes and Lymphocytes in Psoriatic Patients. Proteomics Clin Appl 2019; 13:e1800119. [DOI: 10.1002/prca.201800119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, Department of ChemistryUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Bialystok 15‐453 Bialystok Poland
| | - Ewa Ambrożewicz
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical ChemistryMedical University of Bialystok 15‐089 Bialystok Poland
| |
Collapse
|
42
|
Gerbasi VR, Browne CM, Samir P, Shen B, Sun M, Hazelbaker DZ, Galassie AC, Frank J, Link AJ. Critical Role for Saccharomyces cerevisiae Asc1p in Translational Initiation at Elevated Temperatures. Proteomics 2018; 18:e1800208. [PMID: 30285306 PMCID: PMC6461043 DOI: 10.1002/pmic.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/29/2018] [Indexed: 11/11/2022]
Abstract
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Collapse
Affiliation(s)
- Vincent R. Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher M. Browne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Dane Z. Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
43
|
Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet 2018; 64:49-54. [PMID: 30310178 DOI: 10.1038/s10038-018-0520-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022]
Abstract
Multiple morphological abnormalities of flagella (MMAF) are human reproduction disorders due to the dysplastic development of sperm flagella. The spermatozoa of men with MMAF manifest absent, short, coiled, bent, and/or irregular-caliber flagella. Previous studies revealed genetic contributions to human MMAF, but known MMAF-associated genes only explained approximately 50% MMAF cases. In this study, we employed human whole-exome sequencing for genetic analysis and identified biallelic mutations of CFAP251 (cilia- and flagella-associated protein 251, also known as WDR66) in three (5%) of 65 Han Chinese men with MMAF. All these CFAP251 mutations are loss-of-function. The population genome data suggested that these CFAP251 mutations are extremely rare (only heterozygous) or absent from human populations. Our functional assays of gene expression and immunofluorescence staining in a CFAP251-deficient man, together with previous experimental evidence from model organisms, suggested that CFAP251 is involved in flagellar functions. Our observations suggested that CFAP251 is associated with sperm flagellar development and human male infertility.
Collapse
|
44
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. De novo assembly and analysis of midgut transcriptome of the argasid tick Ornithodoros erraticus and identification of genes differentially expressed after blood feeding. Ticks Tick Borne Dis 2018; 9:1537-1554. [PMID: 30093291 DOI: 10.1016/j.ttbdis.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Ticks are hematophagous vectors of great medical and veterinary importance because they transmit numerous pathogenic microorganisms to humans and animals. The argasid Ornithodoros erraticus is the main vector of tick-borne human relapsing fever and African swine fever in the Mediterranean Basin. Tick enterocytes express bioactive molecules that perform key functions in blood digestion, feeding, toxic waste processing and pathogen transmission. To explore new strategies for tick control, in this work we have obtained and compared the midgut transcriptomes of O. erraticus female ticks before and after a blood meal and identified the genes whose expression is differentially regulated after feeding. The transcript sequences were annotated, functionally and structurally characterised and their expression levels compared between both physiological conditions (unfed females and fed females at 2 days post-engorgement). Up to 29,025 transcripts were assembled, and 9290 of them corresponded to differentially expressed genes (DEGs) after feeding. Of these, 4656 genes were upregulated and nearly the same number of genes was downregulated in fed females compared to unfed females. BLASTN and BLASTX analyses of the 29,025 transcripts allowed the annotation of 9072 transcripts/proteins. Among them, the most numerous were those with catalytic and binding activities and those involved in diverse metabolic pathways and cellular processes. The analyses of functional groups of upregulated DEGs potentially related to the digestion of proteins, carbohydrates and lipids, and the genes involved in the defence response and response to oxidative stress, confirm that these processes are narrowly regulated in ticks, highlighting their complexity and importance in tick biology. The expression patterns of six genes throughout the blood digestion period revealed significant differences between these patterns, strongly suggesting that the transcriptome composition is highly dynamic and subjected to important variation along the trophogonic cycle. This may guide future studies aimed at improving the understanding of the molecular physiology of tick digestion and digestion-related processes. The current work provides a more robust and comprehensive understanding of the argasid tick digestive system.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
45
|
Cha S, Lim JE, Park AY, Do JH, Lee SW, Shin C, Cho NH, Kang JO, Nam JM, Kim JS, Woo KM, Lee SH, Kim JY, Oh B. Identification of five novel genetic loci related to facial morphology by genome-wide association studies. BMC Genomics 2018; 19:481. [PMID: 29921221 PMCID: PMC6008943 DOI: 10.1186/s12864-018-4865-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/12/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Face morphology is strongly determined by genetic factors. However, only a small number of genes related to face morphology have been identified to date. Here, we performed a two-stage genome-wide association study (GWAS) of 85 face morphological traits in 7569 Koreans (5643 in the discovery set and 1926 in the replication set). RESULTS In this study, we analyzed 85 facial traits, including facial angles. After discovery GWAS, 128 single nucleotide polymorphisms (SNPs) showing an association of P < 5 × 10- 6 were selected to determine the replication of the associations, and meta-analysis of discovery GWAS and the replication analysis resulted in five genome-wide significant loci. The OSR1-WDR35 [rs7567283, G allele, beta (se) = -0.536 (0.096), P = 2.75 × 10- 8] locus was associated with the facial frontal contour; the HOXD1-MTX2 [rs970797, A allele, beta (se) = 0.015 (0.003), P = 3.97 × 10- 9] and WDR27 [rs3736712, C allele, beta (se) = 0.293 (0.048), P = 8.44 × 10- 10] loci were associated with eye shape; and the SOX9 [rs2193054, C allele, beta (se) (ln-transformed) = -0.007 (0.001), P = 6.17 × 10- 17] and DHX35 [rs2206437, A allele, beta (se) = -0.283 (0.047), P = 1.61 × 10- 9] loci were associated with nose shape. WDR35 and SOX9 were related to known craniofacial malformations, i.e., cranioectodermal dysplasia 2 and campomelic dysplasia, respectively. In addition, we found three independent association signals in the SOX9 locus, and six known loci for nose size and shape were replicated in this study population. Interestingly, four SNPs within these five face morphology-related loci showed discrepancies in allele frequencies among ethnic groups. CONCLUSIONS We identified five novel face morphology loci that were associated with facial frontal contour, nose shape, and eye shape. Our findings provide useful genetic information for the determination of face morphology.
Collapse
Affiliation(s)
- Seongwon Cha
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ah Yeon Park
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Jun-Hyeong Do
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Si Woo Lee
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Chol Shin
- Division of Pulmonary Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital and Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, 15355, Republic of Korea
| | - Nam Han Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Min Nam
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Sik Kim
- DNA Forensic Division, Supreme Prosecutors' Office, Seoul, 06590, Republic of Korea
| | - Kwang-Man Woo
- DNA Forensic Division, Supreme Prosecutors' Office, Seoul, 06590, Republic of Korea
| | - Seung-Hwan Lee
- DNA Forensic Division, Supreme Prosecutors' Office, Seoul, 06590, Republic of Korea
| | - Jong Yeol Kim
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
46
|
Nguyen HM, Liu S, Daher W, Tan F, Besteiro S. Characterisation of two Toxoplasma PROPPINs homologous to Atg18/WIPI suggests they have evolved distinct specialised functions. PLoS One 2018; 13:e0195921. [PMID: 29659619 PMCID: PMC5901921 DOI: 10.1371/journal.pone.0195921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/02/2018] [Indexed: 01/20/2023] Open
Abstract
Toxoplasma gondii is a parasitic protist possessing a limited set of proteins involved in the autophagy pathway, a self-degradative machinery for protein and organelle recycling. This distant eukaryote has even repurposed part of this machinery, centered on protein ATG8, for a non-degradative function related to the maintenance of the apicoplast, a parasite-specific organelle. However, some evidence also suggest Toxoplasma is able to generate autophagic vesicles upon stress, and that some autophagy-related proteins, such as ATG9, might be involved solely in the canonical autophagy function. Here, we have characterised TgPROP1 and TgPROP2, two Toxoplasma proteins containing WD-40 repeat that can bind lipids for their recruitment to vesicular structures upon stress. They belong to the PROPPIN family and are homologues to ATG18/WIPI, which are known to be important for the autophagic process. We conducted a functional analysis of these two Toxoplasma PROPPINs. One of them is dispensable for normal in vitro growth, although it may play a role for parasite survival in specific stress conditions or for parasite fitness in the host, through a canonical autophagy-related function. The other, however, seems important for parasite viability in normal growth conditions and could be primarily involved in a non-canonical function. These divergent roles for two proteins from the same family illustrate the functional versatility of the autophagy-related machinery in Toxoplasma.
Collapse
Affiliation(s)
- Hoa Mai Nguyen
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
| | - Shuxian Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wassim Daher
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
| | - Feng Tan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (FT); (SB)
| | - Sébastien Besteiro
- DIMNP, UMR5235 CNRS - Université de Montpellier, Montpellier, France
- * E-mail: (FT); (SB)
| |
Collapse
|
47
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
48
|
Chen J, Sheng X, Ma H, Tang Z, Yang C, Cao L, Sun Y, Deng T, Feng P, Hu B, Wei D, Liu J, Xiong W, Ye M. WDR79 mediates the proliferation of non-small cell lung cancer cells by regulating the stability of UHRF1. J Cell Mol Med 2018. [PMID: 29516630 PMCID: PMC5908104 DOI: 10.1111/jcmm.13580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WD repeat protein 79 (WDR79) is a member of the WD-repeat protein family characterized by the presence of a series of WD-repeat domains and is a scaffold protein that participates in telomerase assembly, Cajal body formation and DNA double strand break repair. Although previous studies have revealed that WDR79 is frequently overexpressed in non-small cell lung cancer (NSCLC) and promotes the proliferation of NSCLC cells, the underlying mechanism responsible for WDR79-mediated NSCLC proliferation is not fully understood. In this study, we report a novel molecular function of WDR79 that mediates NSCLC cell proliferation by controlling the stability of UHRF1. In the nucleus, WDR79 colocalized and interacted with UHRF1. As a result, overexpression of WDR79 stabilized UHRF1, whereas ablation of WDR79 decreased the level of UHRF1. Meanwhile, we showed that WDR79 can protect UHRF1 from poly-ubiquitination-mediated proteolysis, which facilitated the stabilization of UHRF1. We further demonstrated that WDR79 exerts a proliferation effect on NSCLC cells by stabilizing UHRF1. These findings reveal that WDR79 is a novel UHRF1 regulator by maintaining UHRF1 stability, and they also provide a clue as to how to explore WDR79 for potential therapeutic application in NSCLC.
Collapse
Affiliation(s)
- Jieying Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Xunan Sheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Hongchang Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Zhengshan Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Chao Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China.,College of Life and Environmental Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Sun
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Bin Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Dong Wei
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan, China
| |
Collapse
|
49
|
Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 2018; 9:686. [PMID: 29449551 PMCID: PMC5814398 DOI: 10.1038/s41467-017-02792-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/28/2017] [Indexed: 11/09/2022] Open
Abstract
Spermatogenesis defects concern millions of men worldwide, yet the vast majority remains undiagnosed. Here we report men with primary infertility due to multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme, a microtubule-based structure highly conserved throughout evolution. Whole-exome sequencing was performed on 78 patients allowing the identification of 22 men with bi-allelic mutations in DNAH1 (n = 6), CFAP43 (n = 10), and CFAP44 (n = 6). CRISPR/Cas9 created homozygous CFAP43/44 male mice that were infertile and presented severe flagellar defects confirming the human genetic results. Immunoelectron and stimulated-emission-depletion microscopy performed on CFAP43 and CFAP44 orthologs in Trypanosoma brucei evidenced that both proteins are located between the doublet microtubules 5 and 6 and the paraflagellar rod. Overall, we demonstrate that CFAP43 and CFAP44 have a similar structure with a unique axonemal localization and are necessary to produce functional flagella in species ranging from Trypanosoma to human. Asthenozoospermia is a major cause of male infertility, and multiple morphological abnormalities of the flagella (MMAF) is a particularly severe form. Here, using whole-exome sequencing of 78 MMAF patients, the authors identify mutations in two WDR proteins, CFAP43 and CFAP44, and confirm that these proteins are required for flagellogenesis in mouse and Trypanosoma brucei.
Collapse
|
50
|
Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19020527. [PMID: 29425159 PMCID: PMC5855749 DOI: 10.3390/ijms19020527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.
Collapse
|